Science.gov

Sample records for additional energy bands

  1. The Additive Property of Energy.

    ERIC Educational Resources Information Center

    Tsaoussis, Dimitris S.

    1995-01-01

    Presents exercises that analyze the additive property of energy. Concludes that if a body has more than one component of energy depending on the same physical quantity, the body's total energy will be the algebraic sum of the components if a linear relationship exists between the energy components and that physical quantity. (JRH)

  2. Controlling the band gap energy of cluster-assembled materials.

    PubMed

    Mandal, Sukhendu; Reber, Arthur C; Qian, Meichun; Weiss, Paul S; Khanna, Shiv N; Sen, Ayusman

    2013-11-19

    Cluster-assembled materials combine the nanoscale size and composition-dependent properties of clusters, which have highly tunable magnetic and electronic properties useful for a great variety of potential technologies. To understand the emergent properties as clusters are assembled into hierarchical materials, we have synthesized 23 cluster-assembled materials composed of As7(3-)-based motifs and different countercations and measured their band gap energies. We found that the band gap energy varies from 1.09 to 2.21 eV. In addition, we have carried out first principles electronic structure studies to identify the physical mechanisms that enable control of the band gap edges of the cluster assemblies. The choice of counterion has a profound effect on the band gap energy in ionic cluster assemblies. The top of the valence band is localized on the arsenic cluster, while the conduction band edge is located on the alkali metal counterions. Changing the counterion changes the position of the conduction band edge, enabling control of the band gap energy. We can also vary the architecture of the ionic solid by incorporating cryptates as counterions, which provide charge but are separated from the clusters by bulky ligands. Higher dimensionality typically decreases the band gap energy through band broadening; however band gap energies increased upon moving from zero-dimensional (0D) to two-dimensional (2D) assemblies. This is because internal electric fields generated by the counterion preferentially stabilize the adjacent lone pair orbitals that mark the top of the valence band. Thus, the choice of the counterion can control the position of the conduction band edge of ionic cluster assemblies. In addition, the dimensionality of the solid via internal electric fields can control the valence band edge. Through covalently linking arsenic clusters into composite building blocks, we have also been able to tune the band gap energy. We used a theoretical description based on

  3. Density of States for Warped Energy Bands

    PubMed Central

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-01-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest. PMID:26905029

  4. Density of States for Warped Energy Bands

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-02-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.

  5. Eastern Band of Cherokee Strategic Energy Plan

    SciTech Connect

    Souther Carolina Institute of energy Studies-Robert Leitner

    2009-01-30

    The Eastern Band of Cherokee Indians was awarded a grant under the U.S. Department of Energy Tribal Energy Program (TEP) to develop a Tribal Strategic Energy Plan (SEP). The grant, awarded under the “First Steps” phase of the TEP, supported the development of a SEP that integrates with the Tribe’s plans for economic development, preservation of natural resources and the environment, and perpetuation of Tribal heritage and culture. The Tribe formed an Energy Committee consisting of members from various departments within the Tribal government. This committee, together with its consultant, the South Carolina Institute for Energy Studies, performed the following activities: • Develop the Tribe’s energy goals and objectives • Establish the Tribe’s current energy usage • Identify available renewable energy and energy efficiency options • Assess the available options versus the goals and objectives • Create an action plan for the selected options

  6. Energy bands in some transition metals

    NASA Astrophysics Data System (ADS)

    Laurent, D. G.

    1981-08-01

    Self consistent linear combination of Gaussian orbitals energy band calculations were performed for the two paramagnetic 3d transition metals, chromium and vanadium. The energy bands densities of states and Fermi surfaces were obtained using the two most popular local exchange correlation potentials (Kohn-Sham-Gaspar and von Barth-Hedin) for chromium and the Kohn-Sham-Gaspar potential alone for vanadium. A comparison was made with the available experimental data. New interpretations for some of the neutron scattering data are made in the chromium case. Results are also presented for the Compton profiles and optical conductivities. These correlate well with the experiments if appropriate angular averages (for the Compton profile) and lifetime effcts (for the optical conductivity) are included. The electron energy loss spectrum, computed over the range 0-6.5 eV agreed well with experiment.

  7. Compactional deformation bands in Wingate Sandstone; additional evidence of an impact origin for Upheaval Dome, Utah

    NASA Astrophysics Data System (ADS)

    Okubo, Chris H.; Schultz, Richard A.

    2007-04-01

    Field and microstructural observations from Upheaval Dome, in Canyonlands National Park, Utah, show that inelastic strain of the Wingate Sandstone is localized along compactional deformation bands. These bands are tabular discontinuities (< 0.5 cm thick) that accommodate inelastic shear and compaction of inter-granular volume. Measurements of porosity and grain size from non-deformed samples are used to define a set of capped strength envelopes for the Wingate Sandstone. These strength envelopes reveal that compactional deformation bands require at least ca. 0.7 GPa (and potentially more than 2.3 GPa) of effective mean stress in order to nucleate within this sandstone. We find that the most plausible geologic process capable of generating these required magnitudes of mean stress is a meteoritic impact. Therefore the compactional deformation bands observed within the Wingate Sandstone are additional evidence of an impact event at Upheaval Dome and support a post-Wingate (post-Early Jurassic) age for this impact.

  8. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  9. Quantitative analysis on electric dipole energy in Rashba band splitting

    NASA Astrophysics Data System (ADS)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  10. Effect of Cd Addition in Band Gap and Volume Conductivity of SeTe Based Glasses

    NASA Astrophysics Data System (ADS)

    Saraswat, Vibhav K.; Kishore, V.; Saraswat, Y. K.; Saxena, N. S.

    2011-10-01

    Presented paper discusses the variation in optical band gap and volume dc conductivity of Se-Te-Cd ternary Chalcogenide glasses as a function of concentration of Cd i.e. the composition of the glasses. Also, the temperature dependence of volume conductivity has been studied. The amorphous nature of these glasses has been confirmed by XRD patterns. Keithley Electrometer/High resistance meter 6517A was used in its FVMI mode to record I_V characteristics at different temperatures. Variation in conductivity, derived from I_V curves, as a function of composition of sample could be accounted for the bonds formed in the system. Additionally, the Poole-Frenkel conduction mechanism has also been verified in order to investigate the good agreement with the established fact that most of Chalcogenide glasses obey the Poole-Frenkel conduction mechanism. Absorption spectra were recorded using Ocean Optics USB2000 spectrophotometer in visible region. Band gap calculation using Tauc relation reveals that the system under test is semi-conducting in nature. The observed results are found to be in good agreement with each other.

  11. Quantitative analysis on electric dipole energy in Rashba band splitting.

    PubMed

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  12. Quantitative analysis on electric dipole energy in Rashba band splitting

    PubMed Central

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  13. Intermolecular energy-band dispersion in PTCDA multilayers

    NASA Astrophysics Data System (ADS)

    Yamane, Hiroyuki; Kera, Satoshi; Okudaira, Koji K.; Yoshimura, Daisuke; Seki, Kazuhiko; Ueno, Nobuo

    2003-07-01

    The electronic structure of a well-oriented perylene-3,4,9,10-tetracarboxylic acid-dianhydride multilayer prepared on MoS2 single crystal surface were studied by angle-resolved ultraviolet photoemission spectroscopy using synchrotron radiation. From the photon energy dependence of normal emission spectra, we observed an intermolecular energy-band dispersion of about 0.2 eV for the highest occupied molecular orbital (HOMO) band of single π character. The observed energy-band dispersion showed a cosine curve, which originates from the intermolecular π-π interaction. Analyses using the tight-binding model gave that the transfer integral of about 0.05 eV for the π-π interaction, the effective mass of HOMO hole m*h=5.28m0, and the hole mobility μh>3.8 cm2/V s. This is the first observation of the intermolecular energy-band dispersion of a conventional single-component organic semiconductor only with the weak intermolecular van der Waals interaction.

  14. Experimental study of energy harvesting in UHF band

    NASA Astrophysics Data System (ADS)

    Bernacki, Ł.; Gozdur, R.; Salamon, N.

    2016-04-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments.

  15. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-06-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  16. Geometry-independent energy band simulator for radially symmetric diodes

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T.; Buonassisi, T.

    2016-07-01

    In this work, a geometrically independent method to calculate the energy band diagram of radially symmetric diodes is reported. For radially symmetric diodes, the calculation of electron (or hole) energies across the junction can be reduced to a singular spatially dependent variable. Because geometry is not incorporated into the calculation a priori, by reducing the physics to a single spatial variable, energy band calculations can be performed in multiple geometries, simultaneously, for direct comparison to each other. The calculation outlined herein is pseudo-analytical and does not utilize finite element and/or control volume methods. It is, therefore, capable of generating spatially analytic equations for analyzing limiting scenarios of the junction, beneficial for yielding insight into the physics and design criteria of depletion for non-planar semiconducting devices.

  17. Equilibrium deformations and excitation energies of single-quasiproton band heads of rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.; Riley, M. A.; Garrett, J. D.

    1990-05-01

    Noncollective single-proton states in odd- Z (Eu, Tb, Ho, Tm, Lu, Ta, Ir and Au) rare-earth nuclei have been calculated using the shell correction method with an average Woods-Saxon potential and a monopole pairing residual interaction. Calculated equilibrium deformations of the lowest single-proton states are presented, and calculated band head excitation energies are compared with experimental proton band heads for odd- Z rare-earth nuclei. Good agreement is found between the experimental and calculated band heads. We find that strong polarisation effects due to the odd proton explain many of the systematic trends of known band heads. Different deformation driving forces of the odd-proton orbitals can also partly explain deviations seen in high-spin data. Shape co-existence effects in Ir and Au isotopes are discussed. In addition, equilibrium deformations of even-even rare-earth nuclei are computed and compared with experimental values.

  18. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  19. A model describing the pressure dependence of the band gap energy for the group III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Sun, Xiao-Dong; Wang, Sha-Sha; Lu, Ke-Qing

    2016-08-01

    A model describing the pressure dependence of the band gap energy for the group III-V semiconductors has been developed. It is found that the model describes the pressure dependence of the band gap energy very well. It is also found that, although the pressure dependence of the band gap energy for both the conventional III-V semiconductors and the dilute nitride alloys can be described well by the model in this work, the physical mechanisms for them are different. In addition, the influence of the nonlinear compression of the lattice on the band gap energy is smaller than that of the coupling interaction between the N level and the conduction band minimum of the host material.

  20. Measurements of the energy band gap and valence band structure of AgSbTe2

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Heremans, J. P.

    2008-06-01

    The de Haas-van Alphen effect, galvanomagnetic and thermomagnetic properties of high-quality crystals of AgSbTe2 are measured and analyzed. The transport properties reveal the material studied here to be a very narrow-gap semiconductor (Eg≈7.6±3meV) with ˜5×1019cm-3 holes in a valence band with a high density of states and thermally excited ˜1017cm-3 high-mobility (2200cm2/Vs) electrons at 300 K. The quantum oscillations are measured with the magnetic field oriented along the ⟨111⟩ axis. Taken together with the Fermi energy derived from the transport properties, the oscillations confirm the calculated valence band structure composed of 12 half-pockets located at the X -points of the Brillouin zone, six with a density-of-states effective mass mda∗≫0.21me and six with mdb∗≫0.55me , giving a total density-of-states effective mass, including Fermi pocket degeneracy, of md∗≈1.7±0.2me ( me is the free electron mass). The lattice term dominates the thermal conductivity, and the electronic contribution in samples with both electrons and holes present is in turn dominated by the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe2 make it a most promising p -type thermoelectric material.

  1. Exact two-component relativistic energy band theory and application.

    PubMed

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results. PMID:26827200

  2. Additional comments on the assumption of homogenous survival rates in modern bird banding estimation models

    USGS Publications Warehouse

    Nichols, J.D.; Stokes, S.L.; Hines, J.E.; Conroy, M.J.

    1982-01-01

    We examined the problem of heterogeneous survival and recovery rates in bird banding estimation models. We suggest that positively correlated subgroup survival and recovery probabilities may result from winter banding operations and that this situation will produce positively biased survival rate estimates. The magnitude of the survival estimate bias depends on the proportion of the population in each subgroup. Power of the suggested goodness-of-fit test to reject the inappropriate model for heterogeneous data sets was low for all situations examined and was poorest for positively related subgroup survival and recovery rates. Despite the magnitude of some of the biases reported and the relative inability to detect heterogeneity, we suggest that levels of heterogeneity normally encountered in real data sets will produce relatively small biases of average survival rates.

  3. Energy band diagram of device-grade silicon nanocrystals.

    PubMed

    Macias-Montero, M; Askari, S; Mitra, S; Rocks, C; Ni, C; Svrcek, V; Connor, P A; Maguire, P; Irvine, J T S; Mariotti, D

    2016-03-17

    Device grade silicon nanocrystals (NCs) are synthesized using an atmospheric-pressure plasma technique. The Si NCs have a small and well defined size of about 2.3 nm. The synthesis system allows for the direct creation of thin films, enabling a range of measurements to be performed and easy implementation of this material in different devices. The chemical stability of the Si NCs is evaluated, showing relatively long-term durability thanks to hydrogen surface terminations. Optical and electrical characterization techniques, including Kelvin probe, ultraviolet photoemission spectroscopy and Mott-Schottky analysis, are employed to determine the energy band diagram of the Si NCs. PMID:26939617

  4. Additional evidence concerning the valence-band offset in HgTe/CdTe

    NASA Astrophysics Data System (ADS)

    Young, P. M.; Ehrenreich, H.

    1991-05-01

    The consistency of large values of the valence-band offset, Λ, in HgTe/CdTe superlattices with magneto-optical experiments is examined in light of data on a 90-Å HgTe/40-Å CdTe superlattice. The data are shown to be consistent with values Λ=400+/-40 meV rather than the much smaller cited values. This analysis, when considered with photoemission experiments, leaves intact the conclusion that HgTe/CdTe superlattices are best explained by a large offset.

  5. Energy band diagram of device-grade silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Macias-Montero, M.; Askari, S.; Mitra, S.; Rocks, C.; Ni, C.; Svrcek, V.; Connor, P. A.; Maguire, P.; Irvine, J. T. S.; Mariotti, D.

    2016-03-01

    Device grade silicon nanocrystals (NCs) are synthesized using an atmospheric-pressure plasma technique. The Si NCs have a small and well defined size of about 2.3 nm. The synthesis system allows for the direct creation of thin films, enabling a range of measurements to be performed and easy implementation of this material in different devices. The chemical stability of the Si NCs is evaluated, showing relatively long-term durability thanks to hydrogen surface terminations. Optical and electrical characterization techniques, including Kelvin probe, ultraviolet photoemission spectroscopy and Mott-Schottky analysis, are employed to determine the energy band diagram of the Si NCs.Device grade silicon nanocrystals (NCs) are synthesized using an atmospheric-pressure plasma technique. The Si NCs have a small and well defined size of about 2.3 nm. The synthesis system allows for the direct creation of thin films, enabling a range of measurements to be performed and easy implementation of this material in different devices. The chemical stability of the Si NCs is evaluated, showing relatively long-term durability thanks to hydrogen surface terminations. Optical and electrical characterization techniques, including Kelvin probe, ultraviolet photoemission spectroscopy and Mott-Schottky analysis, are employed to determine the energy band diagram of the Si NCs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07705b

  6. Broad band spectral energy distribution studies of Fermi bright blazars

    NASA Astrophysics Data System (ADS)

    Monte, C.; Giommi, P.; Cavazzuti, E.; Gasparrini, D.; Rainò, S.; Fuhrmann, L.; Angelakis, E.; Villata, M.; Raiteri, C. M.; Perri, M.; Richards, J.

    2011-02-01

    The Fermi Gamma-ray Space Telescope was successfully launched on June 11, 2008 and has already opened a new era for gamma-ray astronomy. The Large Area Telescope (LAT), the main instrument on board Fermi, presents a significant improvement in sensitivity over its predecessor EGRET, due to its large field of view and effective area, combined with its excellent timing capabilities. The preliminary results of the Spectral Energy Distribution Analysis performed on a sample of bright blazars are presented. For this study, the data from the first three months of data collection of Fermi have been used. The analysis is extended down to radio, mm, near-IR, optical, UV and X-ray bands and up to TeV energies based on unprecedented sample of simultaneous multi-wavelength observations by GASP-WEBT.

  7. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  8. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  9. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  10. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  11. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes

    SciTech Connect

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-01-09

    The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP. In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.

  12. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes

    DOE PAGESBeta

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-01-09

    The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP.more » In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.« less

  13. Feeding of superdeformed bands: The mechanism and constraints on band energies and the well depth

    SciTech Connect

    Lauritsen, T.; Benet, P.; Khoo, T.L.; Beard, K.B.; Ahmad, I.; Carpenter, M.P.; Daly, P.J.; Drigert, M.W.; Garg, U.; Fernandez, P.B.; Janssens, R.V.F.; Moore, E.F.; Wolfs, F.L.H.; Ye, D. Purdue University, West Lafayette, Indiana 47907 University of Notre Dame, Notre Dame, Indiana 46556 Idaho National Engineering Laboratory, EG and G Idaho, Idaho Falls, Idaho 83415 )

    1992-10-26

    Entry distributions leading to normal and superdeformed (SD) states in {sup 192}Hg have been measured. A model, based on Monte Carlo simulations of {gamma} cascades, successfully reproduces the entry distribution for SD states, as well as all other known observables connected with the population of SD states. Comparison of experimental and model results, together with the measured SD entry distribution, suggest that the SD band lies 3.3--4.3 MeV above the normal yrast line when it decays around spin 10 and that the SD well depth is 3.5--4.5 MeV at spin 40.

  14. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    NASA Astrophysics Data System (ADS)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  15. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  16. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  17. Density of States for Warped or non-Warped Energy Bands

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    The goal of this talk is to investigate when band warping affects density-of-states effective mass. Further, band ``corrugation,'' a form of band warping referring to energy dispersions that deviate ``more severely'' from being twice-differentiable at isolated critical points, may also correlate in different ways with density-of-states effective masses and other band warping parameters. In this talk, an angular effective mass formalism is developed and used to study the electronic density of states of warped and non-warped energy bands towards an application in thermoelectric transport design. We demonstrate effects of band warping and prove the superiority of the angular effective mass treatment for valence energy bands in cubic materials. We explore examples that can also be critical to precisely distinguish the contributions due to band warping and to band non-parabolicity in non-degenerate bands of thermoelectric materials that have a consequent practical interest. The presenter wished to thank the Vitreous State Laboratory.

  18. Band-pass design optimization of piezoelectric cantilever bimorph energy harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Williams, Keith A.

    2011-03-01

    Piezoelectric energy harvesting has become a feasible method for powering micro portable electronics and wireless sensor networks by converting ambient vibration energy into electrical energy. As a thumb of rule, it is critical to tune the resonant frequency of the generator to the frequency of the environmental vibrations in order to induce the maximum structural deformation and then the maximum converted electrical energy through piezoelectric effect. However, it is well-known that the ambient vibrations are not usually fixed in only one single frequency and could span over a limited frequency band. In this paper, a band-pass design optimization of piezoelectric cantilever bimorph (PCB) energy harvester is presented based on the system transfer function of the PCB generator presented in a previous literature. For such an energy harvester, a group of PCB with dimensions appropriately selected can be integrated into a band-pass energy harvester working over a limited frequency band if the dimensions of piezoelectric bimorphs and proof masses are appropriately chosen. Further, the finite element analysis (FEA) of such a band-pass energy harvester is performed in ANSYS to validate the theoretical proposal. The result shows that the band-pass design optimization leads to a piezoelectric generator working over a certain frequency band while keeping outputting the relatively stable open-circuit voltage.

  19. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    SciTech Connect

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  20. Very-high-energy blazars: A broad(band) perspective

    NASA Astrophysics Data System (ADS)

    Furniss, Amy Kathryn

    Very high energy (VHE; E ≥ 100 GeV) blazars are a type of active galaxy detected above 100 GeV with a jet pointed toward the observer. This work investigates VHE blazars through broadband observations, starting with a description of the VHE-discovery and time-independent modeling of the non-thermal emission from RX J0648.7+1516. Additionally, synchrotron self-Compton models are applied to six non-VHE blazars, with the VHE flux of each blazar being constrained by non-detection during observation by VERITAS. The general lack of physical measurements of model parameters is highlighted and a scheme of supplementary observations involving millimeter carbon monoxide (CO) luminosity and soft X-ray absorption measurements is explored for three VHE blazars. The limited sample supports a possible connection between the existence of CO in the vicinity of the blazar and additional soft X-ray absorption beyond what can be attributed to the Milky Way. RGB J0710+590 and W Comae both lack a significant level of CO and do not require additional absorption for the description of the soft X-ray emission as observed by Swift XRT. 1ES 1959+650, on the other hand, shows a significant level of CO in the vicinity of the blazar and requires additional absorption to describe the soft X-ray emission. The positive detection of CO in the vicinity of 1ES 1959+650 is used as motivation to apply a mirrored emission scenario to broadband variability data. Limits on the redshifts of the two VHE blazars 3C 66A and PKS 1424+240 are derived from HST/COS observations of intervening Lyman absorption. These observations show 3C 66A to reside at a redshift below the tentative z = 0.444 at 99.9% confidence and reveal PKS 1424+240 to be the most distant VHE-detected blazar thus far. The redshift information is paired with VERITAS and Fermi Large Area Telescope gamma-ray observations to probe the density of the extragalactic background light and correct the observed gamma-ray spectra to the intrinsically

  1. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  2. Multi-band Eilenberger Theory of Superconductivity: Systematic Low-Energy Projection

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Nakamura, Hiroki

    2016-07-01

    We propose the general multi-band quasiclassical Eilenberger theory of superconductivity to describe quasiparticle excitations in inhomogeneous systems. With the use of low-energy projection matrix, the M-band quasiclassical Eilenberger equations are systematically obtained from N-band Gor'kov equations. Here M is the internal degrees of freedom in the bands crossing the Fermi energy and N is the degree of freedom in a model. Our framework naturally includes inter-band off-diagonal elements of Green's functions, which have usually been neglected in previous multi-band quasiclassical frameworks. The resultant multi-band Eilenberger and Andreev equations are similar to the single-band ones, except for multi-band effects. The multi-band effects can exhibit the non-locality and the anisotropy in the mapped systems. Our framework can be applied to an arbitrary Hamiltonian (e.g., a tight-binding Hamiltonian derived by the first-principle calculation). As examples, we use our framework in various kinds of systems, such as noncentrosymmetric superconductor CePt3Si, three-orbital model for Sr2RuO4, heavy fermion CeCoIn5/YbCoIn5 superlattice, a topological superconductor with the strong spin-orbit coupling CuxBi2Se3, and a surface system on a topological insulator.

  3. Energy loss of ions at metal surfaces: Band-structure effects

    SciTech Connect

    Alducin, M.; Silkin, V.M.; Juaristi, J.I.; Chulkov, E.V.

    2003-03-01

    We study band-structure effects on the energy loss of protons scattered off the Cu (111) surface. The distance dependent stopping power for a projectile traveling parallel to the surface is calculated within the linear response theory. The self-consistent electronic response of the system is evaluated within the random-phase approximation. In order to characterize the surface band structure, the electronic single-particle wave functions and energies are obtained by solving the Schroedinger equation with a realistic one-dimensional model potential. This potential reproduces the main features of the Cu (111) surface: the energy band gap for electron motion along the surface normal, as well as the binding energy of the occupied surface state and the first image state. Comparison of our results with those obtained within the jellium model allows us to characterize the band-structure effects in the energy loss of protons interacting with the Cu (111) surface.

  4. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    NASA Astrophysics Data System (ADS)

    Ge, Li; Tureci, Hakan

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy Ef, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-Ef)/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rule for its inverse. This work is partially supported by NSF under Grant No. DMR-1506987.

  5. Energy-band alignments at ZrO2/Si, SiGe, and Ge interfaces

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Huan, A. C. H.; Foo, Y. L.; Chai, J. W.; Pan, J. S.; Li, Q.; Dong, Y. F.; Feng, Y. P.; Ong, C. K.

    2004-11-01

    The energy-band alignments for the ZrO2/Si, ZrO2/Si0.75Ge0.25, and ZrO2/Ge interfaces have been studied using x-ray photoemission. The valence-band offsets of ZrO2/Si, ZrO2/Si0.75Ge0.25, and ZrO2/Ge interfaces are determined to be 2.95, 3.13, and 3.36eV, respectively, while the conduction-band offsets are found to be the same value of 1.76±0.03eV for three interfaces. The upward shift of valence-band top accounts for the difference in the energy-band alignment at three interfaces.

  6. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    NASA Astrophysics Data System (ADS)

    Freitas, F. L.; Marques, M.; Teles, L. K.

    2016-08-01

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1-x-yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  7. Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market

    NASA Astrophysics Data System (ADS)

    Gillenwater, Michael Wayne

    In the United States, electricity consumers are told that they can "buy" electricity from renewable energy projects, versus fossil fuel-fired facilities, through participation in a voluntary green power program. The marketing messages communicate to consumers that their participation and premium payments for a green label will cause additional renewable energy generation and thereby allow them to claim they consume electricity that is absent pollution as well as reduce pollutant emissions. Renewable Energy Certificates (RECs) and wind energy are the basis for the majority of the voluntary green power market in the United States. This dissertation addresses the question: Do project developers respond to the voluntary REC market in the United States by altering their decisions to invest in wind turbines? This question is investigated by modeling and probabilistically quantifying the effect of the voluntary REC market on a representative wind power investor in the United States using data from formal expert elicitations of active participants in the industry. It is further explored by comparing the distribution of a sample of wind power projects supplying the voluntary green power market in the United States against an economic viability model that incorporates geographic factors. This dissertation contributes the first quantitative analysis of the effect of the voluntary REC market on project investment. It is found that 1) RECs should be not treated as equivalent to emission offset credits, 2) there is no clearly credible role for voluntary market RECs in emissions trading markets without dramatic restructuring of one or both markets and the environmental commodities they trade, and 3) the use of RECs in entity-level GHG emissions accounting (i.e., "carbon footprinting") leads to double counting of emissions and therefore is not justified. The impotence of the voluntary REC market was, at least in part, due to the small magnitude of the REC price signal and lack of

  8. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization.

    PubMed

    Lentz, Levi C; Kolb, Brian; Kolpak, Alexie M

    2016-05-18

    Layered transition metal phosphates and phosphites (TMPs) are a class of materials composed of layers of 2D sheets bound together via van der Waals interactions and/or hydrogen bonds. Explored primarily for use in proton transfer, their unique chemical tunability also makes TMPs of interest for forming large-scale hybrid materials. Further, unlike many layered materials, TMPs can readily be solution exfoliated to form single 2D sheets or bilayers, making them exciting candidates for a variety of applications. However, the electronic properties of TMPs have largely been unstudied to date. In this work, we use first-principles computations to investigate the atomic and electronic structure of TMPs with a variety of stoichiometries. We demonstrate that there exists a strong linear relationship between the band gap and the ionic radius of the transition metal cation in these materials, and show that this relationship, which opens opportunities for engineering new compositions with a wide range of band gaps, arises from constraints imposed by the phosphorus-oxygen bond geometry. In addition, we find that the energies of the valence and conduction band edges can be systematically tuned over a range of ∼3 eV via modification of the functional group extending from the phosphorus. Based on the Hammett constant of this functional group, we identify a simple, predictive relationship for the ionization potential and electron affinity of layered TMPs. Our results thus provide guidelines for systematic design of TMP-derived functional materials, which may enable new approaches for optimizing charge transfer in electronics, photovoltaics, electrocatalysts, and other applications. PMID:27157509

  9. Do Additional Bands (coastal, NIR-2, Red-Edge and Yellow) in WORLDVIEW-2 Multispectral Imagery Improve Discrimination of AN Invasive Tussock, Buffel Grass (cenchrus Ciliaris)?

    NASA Astrophysics Data System (ADS)

    Marshall, V.; Lewis, M.; Ostendorf, B.

    2012-07-01

    Our goals is to determine if Worldview-2 8-band multispectral imagery can be used to discriminate an invasive grass species namely, Buffel grass (Cenchrus ciliaris) in the subtropical arid parts of central Australia and whether it offers a tangible improvement on 4-band (visible and near infra red) multispectral imagery. A Worldview-2 scene was acquired for a 10*10km area just west of Alice Springs in central Australia following heavy rains of early Summer. Mixture Tuned Matched Filtering was used to classify the image. Target and background spectra were selected in the field and extracted from the image. Linear discriminate analysis (LDA) was used to examine the spectral separability of each group of the target/ background spectra. The importance of the additional spectral bands on the image classification was assessed by running LDA for both 8 and 4 bands (red, green, blue and NIR). LDA did not indicate improved separability between groups when additional spectral bands were applied. Preliminary classification results indicate that Buffel grass (Cenchrus ciliaris) is detected with an omission error 44%, commission error of 11.8% and overall accuracy of 59.5%. We were surprised that the additional spectral bands did not improve spectral separability and in part attribute this to the high degree of variance we observed within groups of spectra, which was particularly observable in the NIR2 and Yellow bands. The analyses may be significantly improved by acquiring imagery following the first big rains at the end of the dry season. At this time, phonological differences between our focal species and the surrounding native vegetation should be maximised. We suspect that Worldview-2 will offer even greater potential for the discrimination of Buffel grass under these conditions, being able to fully utilise the yellow-band in particular.

  10. Energy band bowing parameter in MgZnO alloys

    SciTech Connect

    Wang, Xu; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Nagaoka, Takashi; Arita, Makoto

    2015-07-13

    We report on bandgap bowing parameters for wurtzite and cubic MgZnO alloys from a study of high quality and single phase films in all Mg content range. The Mg contents in the MgZnO films were accurately determined using the energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra from XPS is proved to be valid for determining the bandgap of MgZnO films. The dependence of the energy bandgap on Mg content is found to deviate downwards from linearity. Fitting of the bandgap data resulted in two bowing parameters of 2.01 ± 0.04 eV and 1.48 ± 0.11 eV corresponding to wurtzite and cubic MgZnO films, respectively.

  11. Superlattice band structure: New and simple energy quantification condition

    NASA Astrophysics Data System (ADS)

    Maiz, F.

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga0.5Al0.5As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  12. Effective Ginzburg-Landau free energy functional for multi-band isotropic superconductors

    NASA Astrophysics Data System (ADS)

    Grigorishin, Konstantin V.

    2016-04-01

    It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role - such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg-Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  13. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  14. Wedge energy bands of monolayer black phosphorus: a first-principles study.

    PubMed

    Park, Minwoo; Bae, Hyeonhu; Lee, Seunghan; Yang, Li; Lee, Hoonkyung

    2016-08-01

    On the basis of first-principles calculations, we present intriguing electronic properties of halogen-striped functionalized monolayer black phosphorus. The halogen-striped monolayer black phosphorus is found to have a wedge energy band with the energy-momentum relation of [Formula: see text] when the stripe-stripe distance is smaller than ~40 Å. Our tight-binding study shows that the wedge energy band occurs when 2-atom basis 1D lattices are periodically repeated aligned with each other in a 2D lattice. We also discuss the possible applications of this wedge energy band in electron supercollimation with high mobility or severely anisotropic electronic transport, which can be used for the development of optics-like nano-electronics. PMID:27299467

  15. A pressure dependence model for the band gap energy of the dilute nitride GaNP

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Li, Na-Na; Wang, Sha-Sha; Lu, Ke-Qing

    2014-08-01

    The pressure dependence of the band gap energy of the dilute nitride GaNP is analyzed. It is found that the pressure dependence of the Г conduction band minimum (CBM) is stronger than that of the X CBM. We also find that the energy difference between the X CBM and the Г CBM in GaNP becomes large with increasing N content. In order to describe the pressure dependence of the band gap energy of the dilute nitride GaNP, a model is developed. Based on the model, we obtain the energy difference between the X CBM and the Г CBM in GaNP at standard atmospheric pressure. It agrees well with the results obtained by other method.

  16. Wedge energy bands of monolayer black phosphorus: a first-principles study

    NASA Astrophysics Data System (ADS)

    Park, Minwoo; Bae, Hyeonhu; Lee, Seunghan; Yang, Li; Lee, Hoonkyung

    2016-08-01

    On the basis of first-principles calculations, we present intriguing electronic properties of halogen-striped functionalized monolayer black phosphorus. The halogen-striped monolayer black phosphorus is found to have a wedge energy band with the energy-momentum relation of E\\propto {{p}y} when the stripe–stripe distance is smaller than ~40 Å. Our tight-binding study shows that the wedge energy band occurs when 2-atom basis 1D lattices are periodically repeated aligned with each other in a 2D lattice. We also discuss the possible applications of this wedge energy band in electron supercollimation with high mobility or severely anisotropic electronic transport, which can be used for the development of optics-like nano-electronics.

  17. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  18. Energy dependence of the band-limited noise in black hole X-ray binaries★

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2015-10-01

    Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.

  19. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  20. Band widening of piezoelectric vibration energy harvesters by utilizing mechanical stoppers and magnets

    NASA Astrophysics Data System (ADS)

    Maeguchi, T.; Masuda, A.; Katsumura, H.; Kagata, H.; Okumura, H.

    2015-12-01

    This paper presents a design of a piezoelectric hardening-type nonlinear vibration energy harvester which has widened resonance band while maintaining the same peak performance at the resonance frequency as that of the reference linear harvester. To this end, a pair of mechanical stoppers and a pair of repulsive magnets are introduced in this study. An experimental prototype device is designed by using a stainless steel-based piezoelectric cantilever, and numerical simulations and experiments are conducted to examine the validity of the presented design strategy. It is concluded that using the magnets to shift the resonance peak toward the lower frequency and using stoppers to expanding the resonance band toward the higher frequency can broaden the resonance band effectively maintaining the peak response. The damping due to the contact of the tip mass with the stopper is one of the key parameters which should be as small as possible to enhance the band widening effect.

  1. High binding energy band structure of Bi-2212 as measured by ARPES

    NASA Astrophysics Data System (ADS)

    McElroy, K.; Graf, J.; Gweon, G.-H.; Zhou, S. Y.; Sahrakorpi, S.; Lindroos, M.; Markiewicz, R. S.; Bansil, A.; Eisaki, H.; Sasagawa, T.; Takagi, H.; Uchida, S.; Lanzara, A.

    2006-03-01

    The study of the electronic structure of high temperature superconductors by angle resolved photoemission spectroscopy (ARPES) has so far focused on the states near the Fermi level, believed to be fundamental for most of the properties of cuprates. However, it is well known that in doped Mott insulators the low and high energy physics are strongly coupled one to the other. Therefore, to gain insight on the real physics of cuprates a full characterization of the electronic band structure up to energies of the order of the lower Hubbard band and beyond is needed. Here we report a detailed, doping dependent study of the band structure of Bi2212 superconductors at energies of the order of 1-2 eV. The experimental results are interpreted in terms of local density approximation (LDA) based computations, where the presence of the ``spaghetti'' of Cu-O and O-bands is predicted. Comparison between computed and measured bands provides insight into many-body renormalization effects.

  2. Laboratory-based x-ray reflectometer for multilayer characterization in the 15–150 keV energy band

    SciTech Connect

    Windt, David L.

    2015-04-15

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15–150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument’s design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  3. Laboratory-based x-ray reflectometer for multilayer characterization in the 15-150 keV energy band

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  4. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Li, Wei-Dong; Zhang, Yunbo; Liang, J.-Q.

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For EC/EJ≪1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as EC/EJ˜1.

  5. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed

    Wohlfahrt, Georg; Widmoser, Peter

    2013-02-15

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  6. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    SciTech Connect

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey; Ferguson, Kelly

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  7. Speeding up DFT: A faster method for integrating band energy in SCF cycles

    NASA Astrophysics Data System (ADS)

    Burbidge, Matthew M.; Jorgensen, Jeremy J.; Rosenbrock, Conrad W.; Thomas, Derek C.; Hess, Bret C.; Forcade, Rodney W.; Curtarolo, Stefano; Hart, Gus L. W.

    2015-03-01

    Typically in SCF cycles, a ``rectangle rule'' is used on uniformly spaced points (Monk Pack meshes)1 to integrate the band energy. The use of rectangles is motivated by their fast convergence when used on the fully occupied bands of semiconductors. Unfortunately integration with rectangles is extremely inefficient for metals. This motivates the use of gauss quadrature (or other higher order methods) for integrating the band energy. As we show, however, even in the case of semiconductors where the rectangle convergence is extremely efficient, higher order methods are still more efficient. The savings in semiconductors alone are sufficient to motivate the implementation of a higher order method in current DFT codes. Even though higher order quadrature methods were discussed immediately following the original Monkhorst and Pack1 paper, we revisit the issue in light of modern DFT calculations. MMB acknowledges support by NSF (DMR-0908753). JJJ, CWR, DCT, RWF, SC, GLWH was supported by ONR (MURI N00014-13-1-0635).

  8. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.

    PubMed

    Klein, Andreas

    2015-04-10

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  9. A compact ultra wideband antenna with WiMax band rejection for energy scavenging

    NASA Astrophysics Data System (ADS)

    Jalil, Y. E.; Kasi, B.; Chakrabarty, C. K.

    2013-06-01

    Radio Frequency (RF) energy harvesting has been rapidly advancing as a promising alternative to existing energy scavenging system. A well designed broadband antenna such as ultra-wideband (UWB) antenna can be used as one of the major components in an RF energy scavenging system. This paper presents a compact UWB antenna showing good impedance matching over a bandwidth of 2.8 to 11 GHz, suiTable for broadband RF energy scavenging. Nevertheless, the antenna usage in wireless communication has a limitation due to the problem of interference between UWB system and other narrowband systems. Thus, the proposed antenna is successfully designed with a single band-notched at the targeted WiMAX operating band of 3.3 to 3.6 GHz.

  10. Solar flares X-ray polarimetry in a wide energy band

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio; Campana, Riccardo; Costa, Enrico; Muleri, Fabio; Bellazzini, Ronaldo; Soffitta, Paolo; Del Monte, Ettore; Rubini, Alda

    2012-07-01

    Polarimetry of solar flares X-ray emission is an additional tool for investigating particles dynamics within the solar atmosphere. Accelerated electrons by magnetic reconnection in the corona produce bremsstrahlung radiation as primary emission in the footpoints of a solar flare which has moreover the possibility to be Compton backscattered resulting in albedo emission. Non-thermal bremsstrahlung emission is expected to be a significant above 15 keV and highly polarized. The albedo component peaks between 20 and 50 keV, its polarization properties depend on the Compton scattering angle. Such a diffusion modifies the spectrum and the polarization of the primary bremsstrahlung emission. Hard X-ray polarimetry, spectroscopy and imaging are therefore necessary to disentangle and modeling the different components in a solar flare. We present a non imaging Compton polarimeter sensitive from 20 keV designed as a single scattering unit surrounded by absorbers of high atomic number. A photelectric polarimeter based on the Gas Pixel Detector technology sensitive in the 15-35 keV energy band can be coupled for imaging.

  11. Removing energy from a beverage influences later food intake more than the same energy addition.

    PubMed

    McCrickerd, K; Salleh, N B; Forde, C G

    2016-10-01

    Designing reduced-calorie foods and beverages without compromising their satiating effect could benefit weight management, assuming that consumers do not compensate for the missing calories at other meals. Though research has demonstrated that compensation for overfeeding is relatively limited, the extent to which energy reductions trigger adjustments in later food intake is less clear. The current study tested satiety responses (characterised by changes in appetite and later food intake) to both a covert 200 kcal reduction and an addition of maltodextrin to a soymilk test beverage. Twenty-nine healthy male participants were recruited to consume three sensory-matched soymilk beverages across four non-consecutive study days: a medium energy control (ME: 300 kcal) and a lower energy (LE: 100 kcal) and higher energy (HE: 500 kcal) version. The ME control was consumed twice to assess individual consistency in responses to this beverage. Participants were unaware of the energy differences across the soymilks. Lunch intake 60 min later increased in response to the LE soymilk, but was unchanged after consuming the HE version. These adjustments accounted for 40% of the energy removed from the soymilk and 13% of the energy added in. Rated appetite was relatively unaffected by the soymilk energy content. No further adjustments were noted for the rest of the day. These data suggest that adult men tested were more sensitive to calorie dilution than calorie addition to a familiar beverage. PMID:27356202

  12. Ionic metal K sub x C sub 60 : Cohesion and energy bands

    SciTech Connect

    Saito, S.; Oshiyama, A. )

    1991-11-15

    Microscopic total-energy electronic-structure calculations for K{sub {ital x}}C{sub 60} show that solid C{sub 60} weakly bonded via van der Waals forces is transformed upon potassium doping into a strongly condensed {ital ionic} {ital metal} in which both Madelung and kinetic energies contribute to its large cohesive energy and bulk modulus. We also find that K doping induces lattice contraction which results in nonrigid energy-band modification. The Fermi level for K{sub 3}C{sub 60} is found to be located close to a peak of the density of states.

  13. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    SciTech Connect

    Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S.P.; Proffit, Diana E.; Mason, Thomas O.

    2010-11-02

    Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides ZnO, In{sub 2}O{sub 3}, and SnO{sub 2} as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  14. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    SciTech Connect

    Inaoka, Takeshi Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  15. Energy transfer from Rhodamine-B to Oxazine-170 in the presence of photonic stop band

    NASA Astrophysics Data System (ADS)

    Kedia, Sunita; Sinha, Sucharita

    2015-03-01

    Photonic crystals can effectively suppress spontaneous emission of embedded emitter in the direction were photonic stop band overlaps emission band of emitter. This property of PhC has been successfully exploited to enhance energy transfer from a donor Rhodamine-B dye to an acceptor Oxazine-170 dye by inhibiting the fluorescence emission of donor in a controlled manner. Self-assembled PhC were synthesized using RhB dye doped polystyrene microspheres subsequently infiltrated with O-170 dye molecules dissolved in ethanol. An angle dependent enhancement of emission intensity of acceptor via energy transfer in photonic crystal environment was observed. These results were compared with observations made on a dye mixture solution of the same two dyes. Restricted number of available modes in photonic crystal inhibited de-excitation of donor thereby enabling efficient transfer of energy from excited donor to acceptor dye molecules.

  16. Tunable electronic band structures and zero-energy modes of heterosubstrate-induced graphene superlattices

    NASA Astrophysics Data System (ADS)

    Fan, Xiong; Huang, Wenjun; Ma, Tianxing; Wang, Li-Gang

    2016-04-01

    We propose a tunable electronic band gap and zero-energy modes in periodic heterosubstrate-induced graphene superlattices. Interestingly, there is an approximate linear relation between the band gap and the proportion of an inhomogeneous substrate (i.e., percentages of different components) in the proposed superlattice, and the effect of structural disorder on the relation is discussed. In an inhomogeneous substrate with equal widths, zero-energy states emerge in the form of Dirac points by using asymmetric potentials, and the positions of Dirac points are addressed analytically. Further, the Dirac point exists at k =0 only for specific potentials; every time it appears, the group velocity vanishes in the ky direction, and the resonance occurs. For general cases of an inhomogeneous substrate with unequal widths, part of the zero-energy states are described analytically, and differently, they are not always Dirac points. Our prediction may be realized on a heterosubstrate such as SiO2/BN .

  17. Potential energy surface and vibrational band origins of the triatomic lithium cation

    NASA Astrophysics Data System (ADS)

    Searles, Debra J.; Dunne, Simon J.; von Nagy-Felsobuki, Ellak I.

    The 104 point CISD Li +3 potential energy surface and its analytical representation is reported. The calculations predict the minimum energy geometry to be an equilateral triangle of side RLiLi = 3.0 Å and of energy - 22.20506 E h. A fifth-order Morse—Dunham type analytical force field is used in the Carney—Porter normal co-ordinate vibrational Hamiltonian, the corresponding eigenvalue problem being solved variationally using a 560 configurational finite-element basis set. The predicted assignment of the vibrational band origins is in accord with that reported for H +3. Moreover, for 6Li +3 and 7Li +3 the lowest i.r. accessible band origin is the overlineν0,1,±1 predicted to be at 243.6 and 226.0 cm -1 respectively.

  18. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  19. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    SciTech Connect

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T.

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  20. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    NASA Astrophysics Data System (ADS)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  1. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Maréchal, A.; Aoukar, M.; Vallée, C.; Rivière, C.; Eon, D.; Pernot, J.; Gheeraert, E.

    2015-10-01

    Diamond metal-oxide-semiconductor capacitors were prepared using atomic layer deposition at 250 °C of Al2O3 on oxygen-terminated boron doped (001) diamond. Their electrical properties were investigated in terms of capacitance and current versus voltage measurements. Performing X-ray photoelectron spectroscopy based on the measured core level energies and valence band maxima, the interfacial energy band diagram configuration of the Al2O3/O-diamond is established. The band diagram alignment is concluded to be of type I with valence band offset Δ E v of 1.34 ± 0.2 eV and conduction band offset Δ E c of 0.56 ± 0.2 eV considering an Al2O3 energy band gap of 7.4 eV. The agreement with electrical measurement and the ability to perform a MOS transistor are discussed.

  2. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    NASA Astrophysics Data System (ADS)

    Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.

    2016-07-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  3. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  4. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  5. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  6. Quantitative operando visualization of the energy band depth profile in solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  7. Photoemission and density functional theory study of Ir(111); energy band gap mapping

    NASA Astrophysics Data System (ADS)

    Pletikosić, I.; Kralj, M.; Šokčević, D.; Brako, R.; Lazić, P.; Pervan, P.

    2010-04-01

    We have performed combined angle-resolved photoemission spectroscopy (ARPES) experiments and density functional theory (DFT) calculations of the electronic structure of the Ir(111) surface, with the focus on the existence of energy band gaps. The investigation was motivated by the experimental results suggesting Ir(111) as an ideal support for the growth of weakly bonded graphene. Therefore, our prime interest was electronic structure around the \\bar {\\mathrm {K}} symmetry point. In accordance with DFT calculations, ARPES has shown a wide energy band gap with the shape of a parallelogram centred around the \\bar {\\mathrm {K}} point. Within the gap three surface states were identified; one just below the Fermi level and two spin-orbit split surface states at the bottom of the gap.

  8. Development of wide band gap p- a-SiOxCy:H using additional trimethylboron as carbon source gas

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Won; Sichanugrist, Porponth; Janthong, Bancha; Khan, Muhammad Ajmal; Niikura, Chisato; Konagai, Makoto

    2016-07-01

    We report p-type a-SiOxCy:H thin films which were fabricated by introducing additional Trimethylboron (TMB, B(CH3)3) doping gas into conventional standard p-type a-SiOx:H films. The TMB addition into the condition of p-a-SiOx:H improved optical bandgap from 2.14 to 2.20 eV without deterioration of electrical conductivity, which is promising for p-type window layer of thin film solar cells. The suggested p-a-SiOxCy:H films were applied in amorphous silicon solar cells and we found an increase of quantum efficiency at short wavelength regions due to wide bandgap of the new p-layer, and thus efficiency improvement from 10.4 to 10.7% was demonstrated in a-Si:H solar cell by employing the p-a-SiOxCy:H film. In case of a-SiOx:H cell, high open circuit voltage of 1.01 V was confirmed by using the suggested the p-a-SiOxCy:H film as a window layer. This new p-layer can be highly promising as a wide bandgap window layer to improve the performance of thin film silicon solar cells. [Figure not available: see fulltext.

  9. Self-consistent energy bands in aluminum and electronic surface states and resonances on the (001) surface

    NASA Astrophysics Data System (ADS)

    Seel, M.

    1983-07-01

    The band structure of aluminum has been calculated self-consistently with the use of the Kohn-Sham-Gaspar local exchange potential and the linear combination of Gaussian orbitals method. The resulting band structure, using a basis set of 28 contracted Gaussian-type orbitals, is in excellent agreement with the previous work of Singhal and Callaway in which a basis set of 60 uncontracted Gaussian functions was used. After projection of the bulk bands onto the two-dimensional (001) surface Brillouin zone, surface states and resonances have been calculated along the Δ¯ line with the use of the Green's-function formalism. At point Γ¯, the surface state is located 2.92 eV below EF, in excellent agreement with the experimental result, 2.8+/-0.2 eV below EF. In addition, a resonance is found 0.7 eV below EF with a half-width of 0.4 eV, hitherto interpreted only as Fermi edge intensity. From the midpoint of the Δ¯ axis moving onward up to the Fermi energy, the observed main peak is attributed to surface resonances.

  10. Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation.

    PubMed

    Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B

    2012-01-11

    Semiconductor photocatalysts capable of broadband solar photon absorption may be nonetheless precluded from use in driving water splitting and other solar-to-fuel related reactions due to unfavorable band edge energy alignment. Using first-principles density functional theory and beyond, we calculate the electronic structure of passivated CdSe surfaces and explore the opportunity to tune band edge energies of this and related semiconductors via electrostatic dipoles associated with chemisorbed ligands. We predict substantial shifts in band edge energies originating from both the induced dipole at the ligand/CdSe interface and the intrinsic dipole of the ligand. Building on important induced dipole contributions, we further show that, by changing the size and orientation of the ligand's intrinsic dipole moment via functionalization, we can control the direction and magnitude of the shifts of CdSe electronic levels. Our calculations suggest a general strategy for enabling new active semiconductor photocatalysts with both optimal opto-electronic, and photo- and electrochemical properties. PMID:22192078

  11. Synthesis, structure and band gap energy of covalently linked cluster-assembled materials.

    PubMed

    Mandal, Sukhendu; Reber, Arthur C; Qian, Meichun; Liu, Ran; Saavedra, Hector M; Sen, Saikat; Weiss, Paul S; Khanna, Shiv N; Sen, Ayusman

    2012-10-28

    We have synthesized a series of cluster assembled materials in which the building blocks are As(7)(3-) clusters linked by group 12 metals, Zn, Cd and Hg, to investigate the effect of covalent linkers on the band gap energy. The synthesized assemblies include zero dimensional assemblies of [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-), [Hg(2)(As(7))(2)](4-), and [HgAsAs(14)](3-) in which the clusters are separated by cryptated counterions, and assemblies in which [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-) are linked by free alkali atoms into unusual three-dimensional structures. These covalently linked cluster-assembled materials have been characterized by elemental analysis, EDX and single-crystal X-ray diffraction. The crystal structure analysis revealed that in the case of Zn and Cd, the two As(7)(3-) units are linked by the metal ion, while in the case of Hg, two As(7)(3-) units are linked by either Hg-Hg or Hg-As dimers. Optical measurements indicate that the band gap energy ranges from 1.62 eV to 2.21 eV. A theoretical description based on cluster orbital theory is used to provide a microscopic understanding of the electronic character of the composite building blocks and the observed variations in the band gap energy. PMID:22940817

  12. Influence of In-N Clusters on Band Gap Energy of Dilute Nitride In x Ga1‑x N y As1‑y

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Guo, Heng-Fei; Chen, Li-Ying; Tang, Chun-Xiao; Lu, Ke-Qing

    2016-05-01

    The In-N clusters form in the dilute nitride InxGa1‑xNyAs1‑y alloys after annealing. It is found that the formation of the In-N clusters not only raises the N levels lying above the conduction band minimum (CBM) of InGaAs, but also raises the N levels below the CBM of InGaAs, leading to the variation of the impurity-host interaction. The blueshift of the band gap energy is relative to the variation of the impurity-host interaction. In order to describe the blueshift of the band gap energy due to the formation of the In-N clusters, a model is developed. It is found that the model can describe the blueshift of the band gap energy well. In addition, it is found the blueshift of the band gap energy due to the atom interdiffusion at the interface can be larger than that due to the formation of the In-N clusters. Supported by the National Natural Science Foundation of China under Grant No. 61504094, Tinjin Research Program of Application Foundation and Advanced Technology under No. 15JCYBJC16300, and Tianjin City High School Science and Technology Fund Planning Project No. 20120609

  13. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    SciTech Connect

    Li, Wei-Dong; Liang, J.-Q.; Zhang, Yunbo

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For E{sub C}/E{sub J}<<1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, E{sub C}/E{sub J}>>1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as E{sub C}/E{sub J}{approx}1.

  14. Augustine Band of Cahuilla Indians Energy Conservation and Options Analysis - Final Report

    SciTech Connect

    Paul Turner

    2008-07-11

    The Augustine Band of Cahuilla Indians was awarded a grant through the Department of Energy First Steps program in June of 2006. The primary purpose of the grant was to enable the Tribe to develop energy conservation policies and a strategy for alternative energy resource development. All of the work contemplated by the grant agreement has been completed and the Tribe has begun implementing the resource development strategy through the construction of a 1.0 MW grid-connected photovoltaic system designed to offset a portion of the energy demand generated by current and projected land uses on the Tribe’s Reservation. Implementation of proposed energy conservation policies will proceed more deliberately as the Tribe acquires economic development experience sufficient to evaluate more systematically the interrelationships between conservation and its economic development goals.

  15. The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces

    SciTech Connect

    Tao, Junguang; Chai, J. W.; Zhang, Z.; Pan, J. S.; Wang, S. J.

    2014-06-09

    Energy-band alignments for molybdenum disulphide (MoS{sub 2}) films on high-k dielectric oxides have been studied using photoemission spectroscopy. The valence band offset (VBO) at monolayer MoS{sub 2}/Al{sub 2}O{sub 3} (ZrO{sub 2}) interface was measured to be 3.31 eV (2.76 eV), while the conduction-band offset (CBO) was 3.56 eV (1.22 eV). For bulk MoS{sub 2}/Al{sub 2}O{sub 3} interface, both VBO and CBO increase by ∼0.3 eV, due to the upwards shift of Mo 4d{sub z{sup 2}} band. The symmetric change of VBO and CBO implies Fermi level pinning by interfacial states. Our finding ensures the practical application of both p-type and n-type MoS{sub 2} based complementary metal-oxide semiconductor and other transistor devices using Al{sub 2}O{sub 3} and ZrO{sub 2} as gate materials.

  16. Vanishing electronic energy loss of very slow light ions in insulators with large band gaps.

    PubMed

    Markin, S N; Primetzhofer, D; Bauer, P

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO2, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction. PMID:19792368

  17. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  18. Understanding the contribution of hydroxyl to the energy band of a semiconductor: Bi2O(OH)2SO4vs. Bi6S2O15.

    PubMed

    Xu, Juan; Teng, Fei; Zhao, Yunxuan; Kan, Yandong; Yang, Liming; Yang, Yang; Yao, Wenqing; Zhu, Yongfa

    2016-04-19

    It is still a big challenge to facilely tune the energy bands of a semiconductor. Herein, we have mainly investigated energy bands and photochemical properties of Bi6S2O15 and Bi2O(OH)2SO4, which have very similar layered structures. It is found that the hydroxyls have down shifted the conduction band (CB, 0.21 eV) and valence band (VB, 4.39 eV) of Bi2O(OH)2SO4, compared with those (CB = 0 eV; VB = 3.36 eV) of Bi6S2O15. Moreover, the main oxidative species of Bi6S2O5 and Bi2O(OH)2SO4 are holes (h(+)) and hydroxyl radicals (˙OH) for the degradation of rhodamine B (RhB) dye, respectively. This obvious difference has been mainly attributed to the hydroxyls, which have changed the energy band structure and the band gap. In addition, we have also investigated the morphology-dependent properties of Bi2O(OH)2SO4. Under ultraviolet light irradiation (λ ≤ 420 nm), Bi2O(OH)2SO4 microspheres show an activity 1.3 times and 2.2 times higher than the long flakes and straw sheaves for the degradation of (RhB), respectively. This study provides us a new idea that we can facilely tune the energy band of a semiconductor by introducing or removing hydroxyl or other anions. PMID:26898719

  19. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-01

    In this paper, we obtain the energy band positions of amorphous carbon (a-C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H2/H2O and O2/H2O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp2 sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  20. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    SciTech Connect

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  1. Theoretical study of energy states of two-dimensional electron gas in pseudomorphically strained InAs HEMTs taking into account the non-parabolicity of the conduction band

    SciTech Connect

    Nishio, Yui; Yamaguchi, Satoshi; Yamazaki, Youichi; Watanabe, Akira; Tange, Takahiro; Iida, Tsutomu; Takanashi, Yoshifumi

    2013-12-04

    We determined rigorously the energy states of a two-dimensional electron gas (2DEG) in high electron mobility transistors (HEMTs) with a pseudomorphically strained InAs channel (InAs PHEMTs) taking into account the non-parabolicity of the conduction band for InAs. The sheet carrier concentration of 2DEG for the non-parabolic energy band was about 50% larger than that for the parabolic energy band and most of the electrons are confined strongly in the InAs layer. In addition, the threshold voltage for InAs PHEMTs was about 0.21 V lower than that for conventional InGaAs HEMTs.

  2. Non-additive three-body interaction energies for H3 (quartet spin state)

    NASA Astrophysics Data System (ADS)

    Zhang, Z. C.; Allnatt, A. R.; Talman, James D.; Meath, William J.

    The results of an Unsold average energy calculation of the non-additive interaction energy for H3 (quartet spin state) are presented for equilateral triangular configurations. They are discussed in the context of the problems associated with the representation of non-additive energies for the interaction of closed-shell species.

  3. Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

    PubMed

    Huh, Yoon Ho; Park, Byoungchoo

    2013-01-14

    We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C₇₁ butyric acid methyl ester (PCBM₇₀), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM₇₀ system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM₇₀ PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells. PMID:23389265

  4. Study of energy band discontinuity in NiZnO/ZnO heterostructure using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Goyal, Anshu; Kapoor, A. K.; Tandon, R. P.; Gupta, Vinay

    2016-05-01

    A heterostructure based on ZnO and Ni doped ZnO (NiZnO) thin films has been prepared on c-plane sapphire substrate by pulsed laser deposition technique. X-ray photo electron spectroscopy has been utilized to study the energy band discontinuities, i.e., valence band offset ( Δ E v ) and conduction band offset ( Δ E c ) at the interface of NiZnO and ZnO thin films. A type-II band alignment is identified at the interface of prepared heterostructure from the computed data, which is attractive for the realization of efficient optoelectronic devices.

  5. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bands

    SciTech Connect

    Romano, A.; Pacella, D.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Mazon, D.; Malard, P.

    2010-10-15

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  6. The analysis of hand movement distinction based on relative frequency band energy method.

    PubMed

    Zhang, Yanyan; Wang, Gang; Teng, Chaolin; Sun, Zhongjiang; Wang, Jue

    2014-01-01

    For the purpose of successfully developing a prosthetic control system, many attempts have been made to improve the classification accuracy of surface electromyographic (SEMG) signals. Nevertheless, the effective feature extraction is still a paramount challenge for the classification of SEMG signals. The relative frequency band energy (RFBE) method based on wavelet packet decomposition was proposed for the prosthetic pattern recognition of multichannel SEMG signals. Firstly, the wavelet packet energy of SEMG signals in each subspace was calculated by using wavelet packet decomposition and the RFBE of each frequency band was obtained by the wavelet packet energy. Then, the principal component analysis (PCA) and the Davies-Bouldin (DB) index were used to perform the feature selection. Lastly, the support vector machine (SVM) was applied for the classification of SEMG signals. Our results demonstrated that the RFBE approach was suitable for identifying different types of forearm movements. By comparing with other classification methods, the proposed method achieved higher classification accuracy in terms of the classification of SEMG signals. PMID:25431766

  7. The Analysis of Hand Movement Distinction Based on Relative Frequency Band Energy Method

    PubMed Central

    Zhang, Yanyan; Teng, Chaolin; Sun, Zhongjiang; Wang, Jue

    2014-01-01

    For the purpose of successfully developing a prosthetic control system, many attempts have been made to improve the classification accuracy of surface electromyographic (SEMG) signals. Nevertheless, the effective feature extraction is still a paramount challenge for the classification of SEMG signals. The relative frequency band energy (RFBE) method based on wavelet packet decomposition was proposed for the prosthetic pattern recognition of multichannel SEMG signals. Firstly, the wavelet packet energy of SEMG signals in each subspace was calculated by using wavelet packet decomposition and the RFBE of each frequency band was obtained by the wavelet packet energy. Then, the principal component analysis (PCA) and the Davies-Bouldin (DB) index were used to perform the feature selection. Lastly, the support vector machine (SVM) was applied for the classification of SEMG signals. Our results demonstrated that the RFBE approach was suitable for identifying different types of forearm movements. By comparing with other classification methods, the proposed method achieved higher classification accuracy in terms of the classification of SEMG signals. PMID:25431766

  8. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGESBeta

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  9. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  10. Influence of the energy-band structure on ultracold reactive processes in lattices

    NASA Astrophysics Data System (ADS)

    Terrier, H.; Launay, J.-M.; Simoni, A.

    2016-03-01

    We study theoretically ultracold collisions in quasi-one-dimensional optical traps for bosonic and fermionic reactive molecules in the presence of a periodic potential along the trap axis. Elastic, reactive, and umklapp processes due to nonconservation of the center-of-mass motion are investigated for parameters of relevant experimental interest. The model naturally keeps into account the effect of excited energy bands and is particularly suited for being adapted to rigorous close-coupled calculations. Our formalism shows that a correct derivation of the parameters in tight-binding effective models must include the strong momentum dependence of the coupling constant we predict even for deep lattices.

  11. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  12. Relativistically parametrized extended Hueckel calculations. 11. Energy bands for elemental tellurium and polonium

    SciTech Connect

    Lohr, L.L.

    1987-06-17

    An extension of the REX relativistically parametrized extended Hueckel LCAO molecular orbital method to periodic solids is outlined. The method provides a simple and systematic approach to the description of the spin-orbit splitting of energy bands. The method is illustrated with results for the main-group elements tellurium and polonium, with trigonal-helical and simple-cubic structures, respectively. The helical structure of tellurium is described as a distortion of a simple-cubic structure, with the distortion being quenched in the case of polonium by its very large spin-orbit coupling. 36 references, 10 figures, 1 table.

  13. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  14. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  15. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  16. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  17. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  18. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  19. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    NASA Astrophysics Data System (ADS)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan

    2014-11-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.

  20. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  1. Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems

    NASA Astrophysics Data System (ADS)

    Van Cong, H.

    2016-04-01

    The effects of impurity size and heavy doping on energy-band-structure parameters of various donor (or acceptor)-Si systems were investigated. A satisfactory description was obtained for intrinsic properties such as: the effective dielectric constant, effective impurity ionization energy, effective intrinsic band gap, being doping-independent, and critical impurity density, Ncn(cp) GMM, which is derived from our simple generalized Mott model (GMM), as well as for extrinsic properties such as: the Fermi energy, reduced band gap, optical band gap, being doping-dependent, and critical impurity density, Ncn(cp) SSS, which is determined by our complicated spin-susceptibility-singularity (SSS) method. That gives: Ncn(cp) SSS ≡ Ncn(cp) GMM for all the studied donor (or acceptor)-Si systems.

  2. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  3. High-energy, in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Shaif-ul Alam; Richardson, David J

    2012-08-13

    We have demonstrated and compared high-energy, in-band pumped erbium doped fiber amplifiers operating at 1562.5 nm under both a core pumping scheme (CRS) and a cladding pumping scheme (CLS). The CRS/CLS sources generated smooth, single-peak pulses with maximum pulse energies of ~1.53/1.50 mJ, and corresponding pulse widths of ~176/182 ns respectively, with an M2 of ~1.6 in both cases. However, the conversion efficiency for the CLS was >1.5 times higher than the equivalent CRS variant operating at the same pulse energy due to the lower pump intensity in the CLS that mitigates the detrimental effects of ion concentration quenching. With a longer fiber length in a CLS implementation a pulse energy of ~2.6 mJ is demonstrated with a corresponding M2 of ~4.2. Using numerical simulations we explain that the saturation of pulse energy observed in our experiments is due to saturation of the pump absorption. PMID:23038520

  4. Energy band engineering using polarization induced interface charges in MOCVD grown III-nitride heterojunction devices

    NASA Astrophysics Data System (ADS)

    Tripathi, Neeraj

    2011-12-01

    Characteristics of III-nitride based heterojunction devices are greatly influenced by the presence of high density of polarization induced interface charges. Research undertaken in the current doctoral thesis demonstrates the effect of presence of one, three and six sheets of polarization induced charges in three different III-nitride based devices, namely in a photocathode, a high electron mobility transistor (HEMT) and a hyperspectral detector structure. Through a systematic set of experiments and theoretical modeling an in-depth study of the interaction between multiple sheets of polarization induced charges and their impact on energy band profile was undertaken. Various device designs were studied and optimized using device simulations. Subsequently device structures were grown using metallorganic chemical vapor deposition (MOCVD). Growth conditions for III-nitride epilayers were optimized for pressure, temperature and V/III ratio. Devices were fabricated using photolithography and e-beam evaporation. Novel GaN and GaN/AlGaN photocathode structures were developed. First demonstration of effective negative electron affinity (ENEA) in a GaN photocathode without the use of Cs was made. Effect of polarization induced surface charges on photoemission characteristics was successfully explained using simulated energy band diagrams. AlGaN/GaN/AlGaN/SiO2 based back barrier HEMT structures were developed in which bandgap, thin film thicknesses and polarization induced charge density were engineered to demonstrate Normally OFF operation along with the ability to engineer turn ON voltage of the device. Further, AlGaN based tunable hyperspectral detector pixel with 6-heterojunctions, for application in wavelength spectrometry from UV to IR part of the spectrum, was developed. The novel device design used in the hyperspectral detector utilized voltage tunable internal photoemission (IPE) barriers to measure the energy of the incident photon. Detailed IPE measurements were

  5. The capacity of the human iliotibial band to store elastic energy during running.

    PubMed

    Eng, Carolyn M; Arnold, Allison S; Lieberman, Daniel E; Biewener, Andrew A

    2015-09-18

    The human iliotibial band (ITB) is a poorly understood fascial structure that may contribute to energy savings during locomotion. This study evaluated the capacity of the ITB to store and release elastic energy during running, at speeds ranging from 2-5m/s, using a model that characterizes the three-dimensional musculoskeletal geometry of the human lower limb and the force-length properties of the ITB, tensor fascia lata (TFL), and gluteus maximus (GMax). The model was based on detailed analyses of muscle architecture, dissections of 3-D anatomy, and measurements of the muscles' moment arms about the hip and knee in five cadaveric specimens. The model was used, in combination with measured joint kinematics and published EMG recordings, to estimate the forces and corresponding strains in the ITB during running. We found that forces generated by TFL and GMax during running stretch the ITB substantially, resulting in energy storage. Anterior and posterior regions of the ITB muscle-tendon units (MTUs) show distinct length change patterns, in part due to different moment arms at the hip and knee. The posterior ITB MTU likely stores more energy than the anterior ITB MTU because it transmits larger muscle forces. We estimate that the ITB stores about 1J of energy per stride during slow running and 7J during fast running, which represents approximately 14% of the energy stored in the Achilles tendon at a comparable speed. This previously unrecognized mechanism for storing elastic energy may be an adaptation to increase human locomotor economy. PMID:26162548

  6. Energy bands of atomic monolayers of various materials: Possibility of energy gap engineering

    NASA Astrophysics Data System (ADS)

    Suzuki, Tatsuo; Yokomizo, Yushi

    2010-09-01

    The mobility of graphene is very high because the quantum Hall effects can be observed even at room temperature. Graphene has the potential of the material for novel devices because of this high mobility. But the energy gap of graphene is zero, so graphene cannot be applied to semiconductor devices such as transistors, LEDs, etc. In order to control the energy gaps, we propose atomic monolayers which consist of various materials besides carbon atoms. To examine the energy dispersions of atomic monolayers of various materials, we calculated the electronic states of these atomic monolayers using density functional theory with structural optimizations. The quantum chemical calculation software Gaussian 03 was used under periodic boundary conditions. The calculation method is LSDA/6-311G(d,p), B3LYP/6-31G(d), or B3LYP/6-311G(d,p). The calculated materials are C (graphene), Si (silicene), Ge, SiC, GeC, GeSi, BN, BP, BAs, AlP, AlAs, GaP, and GaAs. These atomic monolayers can exist in the flat honeycomb shapes. The energy gaps of these atomic monolayers take various values. Ge is a semimetal; AlP, AlAs, GaP, and GaAs are indirect semiconductors; and others are direct semiconductors. We also calculated the change of energy dispersions accompanied by the substitution of the atoms. Our results suggest that the substitution of impurity atoms for monolayer materials can control the energy gaps of the atomic monolayers. We conclude that atomic monolayers of various materials have the potential for novel devices.

  7. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    PubMed

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at

  8. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  9. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    PubMed

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (<100 rpm) or motion frequencies (<2 Hz) energy, which fits the frequency range for most of the water wave based blue energy, while W-EMG is able to produce larger output at high frequencies (>10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature. PMID:27267558

  10. Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide.

    PubMed

    Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L

    2014-02-25

    Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts. PMID:24472000

  11. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  12. Band structure effects in the energy loss of low-energy protons and deuterons in thin films of Pt

    NASA Astrophysics Data System (ADS)

    Celedón, C. E.; Sánchez, E. A.; Salazar Alarcón, L.; Guimpel, J.; Cortés, A.; Vargas, P.; Arista, N. R.

    2015-10-01

    We have investigated experimentally and by computer simulations the energy-loss and angular distribution of low energy (E < 10 keV) protons and deuterons transmitted through thin polycrystalline platinum films. The experimental results show significant deviations from the expected velocity dependence of the stopping power in the range of very low energies with respect to the predictions of the Density Functional Theory for a jellium model. This behavior is similar to those observed in other transition metals such as Cu, Ag and Au, but different from the linear dependence recently observed in another transition metal, Pd, which belongs to the same Group of Pt in the Periodic Table. These differences are analyzed in term of the properties of the electronic bands corresponding to Pt and Pd, represented in terms of the corresponding density of states. The present experiments include also a detailed study of the angular dependence of the energy loss and the angular distributions of transmitted protons and deuterons. The results are compared with computer simulations based on the Monte Carlo method and with a theoretical model that evaluates the contributions of elastic collisions, path length effects in the inelastic energy losses, and the effects of the foil roughness. The results of the analysis obtained from these various approaches provide a consistent and comprehensive description of the experimental findings.

  13. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu

    2015-08-01

    The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.

  14. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials. PMID:26651872

  15. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  16. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  17. Composition dependence of the band gap energy for the dilute nitride and As-rich GaNxSbyAs1-x-y (0≤x≤0.05, 0≤y≤0.3)

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Guo, Heng-Fei; Wei, Tong; Wang, Sha-Sha; Lu, Ke-Qing

    2016-03-01

    The double band anticrossing model is modified and the modified double band anticrossing model is used to describe the band gap energy of the dilute nitride GaNxSbyAs1-x-y. It is found that the parameter CMSb is independent on Sb content when the Sb content is not larger than 0.3. We also find that the main factor reducing the band gap energy is the coupling interaction between the N level and the CBM of GaAsSb. In addition, it is found that the impurity-host interaction is determined by the energy difference and the mismatches in size and electronegativity between the introduced atoms and the anions of the host material.

  18. Photodissociation of ozone in the Hartley band: Potential energy surfaces, nonadiabatic couplings, and singlet/triplet branching ratio

    NASA Astrophysics Data System (ADS)

    Schinke, R.; McBane, G. C.

    2010-01-01

    The lowest five A1' states of ozone, involved in the photodissociation with UV light, are analyzed on the basis of multireference configuration interaction electronic structure calculations with emphasis on the various avoided crossings in different regions of coordinate space. Global diabatic potential energy surfaces are constructed for the lowest four states termed X, A, B, and R. In addition, the off-diagonal potentials that couple the initially excited state B with states R and A are constructed to reflect results from additional electronic structure calculations, including the calculation of nonadiabatic coupling matrix elements. The A/X and A/R couplings are also considered, although in a less ambitious manner. The photodissociation dynamics are studied by means of trajectory surface hopping (TSH) calculations with the branching ratio between the singlet, O(D1)+O2(Δ1g), and triplet, O(P3)+O2(Σ3g-), channels being the main focus. The semiclassical branching ratio agrees well with quantum mechanical results except for wavelengths close to the threshold of the singlet channel. The calculated O(D1) quantum yield is approximately 0.90-0.95 across the main part of the Hartley band, in good agreement with experimental data. TSH calculations including all four states show that transitions B→A are relatively unimportant and subsequent transitions A→X/R to the triplet channel are negligible.

  19. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  20. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  1. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    NASA Astrophysics Data System (ADS)

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2016-03-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional HTCH407, about Fermi energy. Then, one-shot GW (G0W0) correction for precise computations of band structure is applied. Quasi-direct band gap of penta-graphene is obtained around 4.1-4.3 eV by G0W0 correction. Penta-graphene is an insulator and can be expected to have broad applications in future, especially in nanoelectronics and nanomechanics.

  2. Precise Determination of the Direct-Indirect Band Gap Energy Crossover In AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Fluegel, Brian; Beaton, Daniel; Alberi, Kirstin; Mascarenhas, Angelo

    2014-03-01

    AlxGa1-xAs is a technologically important semiconductor material system for optoelectronic applications due to its type I band alignment with GaAs under nearly lattice-matched conditions. Heterostructure design often relies on exactly controlling the relative positions of the Γ and X conduction band edges, yet despite over three decades of research on this alloy, the precise energy and composition of the direct-indirect band gap crossover is still not well resolved. We report the results of our most recent investigation of AlxGa1-xAs (0.28 < x<0.42) epitaxial films, in which the observation of concurrent photoluminescence (PL) emission peaks from the direct and indirect band gaps combined with time-resolved PL information yields a precise determination of the direct-indirect band gap crossover energy and composition. This work was supported by the DOE Office of Science, Basic Energy Sciences under contract DE-AC36-08GO28308. Acknowledgement: the samples were provided by John Reno from Sandia National Laboratory.

  3. Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation.

    PubMed

    Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-09-01

    A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method. PMID:27608986

  4. Study of Harmonics-to-Noise Ratio and Critical-Band Energy Spectrum of Speech as Acoustic Indicators of Laryngeal and Voice Pathology

    NASA Astrophysics Data System (ADS)

    Shama, Kumara; krishna, Anantha; Cholayya, Niranjan U.

    2006-12-01

    Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple[InlineEquation not available: see fulltext.]-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR) measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.

  5. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Takafumi; Kobayashi, Shunsuke; Wada, Masashi; Fisher, Craig A. J.; Kuwabara, Akihide; Kato, Takeharu; Yoshiya, Masato; Kitaoka, Satoshi; Moriwake, Hiroki

    2016-05-01

    We report the detection of an isolated energy level in the band gap of crystalline Yb2Si2O7 in the low-energy-loss region of its electron energy-loss (EEL) spectrum, obtained using a monochromated scanning transmission electron microscope. The experimental results are corroborated by first-principles calculations of the theoretical EEL spectrum. The calculations reveal that unoccupied Yb 4 f orbitals constitute an isolated energy level about 1 eV below the conduction band minimum (CBM), resulting in a terrace about 1 eV wide at the band edge of the EEL spectrum. In the case of Yb2O3 , no band edge terrace is present because the unoccupied f level lies just below the CBM. We also examined optical absorption properties of Yb2Si2O7 using UV-vis diffuse reflectance spectroscopy, which shows that the isolated energy level could not be detected in the band edge of the obtained absorbance spectrum. These findings demonstrate the utility of low-loss EEL spectroscopy with high energy resolution for probing semilocalized electronic features.

  6. Compressive asymmetry evaluation for M-Band Radiation generated from the interaction of high energy laser and the hohlraum

    NASA Astrophysics Data System (ADS)

    Jiang, Shaoen; Huang, Yunbao; Li, Liling; Jing, Longfei; Lin, Zhiwei

    2015-11-01

    In indirect drive inertial confinement fusion, intense laser interacts with high-Z materials in the hohlraum and X-rays are generated to heat and drive the centrally located capsule. Most of these X-rays emitted from the wall of hohlraum are soft x-rays, but also a comparable fraction of them are high-energy X-rays (mainly from M band of wall material, >2keV for Au), which may lead to preheat and compressive asymmetry on the capsule, and affect final ignition result. Therefore, such preheat and compressive asymmetry needs to be characterized and evaluated, to enable it restrained or controlled. In this paper, by using one-dimensional multi-group radiation hydrodynamic codes and view-factor based radiation transport codes, we evaluate the compressive asymmetry on the centrally located capsule for various fractions of M-band X-rays. The result shows that: 1) The M-band X-rays may lead to significant compressive asymmetry when the thermal flux is symmetric,2) More fractions of M-band X-rays tends to result in more compressing asymmetry, and 3) 15% of M-band X-rays may result in 50% compressive asymmetry. Base on the above analysis, such significant compressive asymmetry due to M-band radiation may decrease the compressibility of the fuel or the capsule performance. Therefore, it motivates us to validate and measure such quantity of compressive asymmetry occurred on the capsule in recent experiments.

  7. Synthesis, characterization and band gap energy of poly(ɛ-caprolactone)/Sr-MSA nano-composite

    NASA Astrophysics Data System (ADS)

    Kannammal, L.; Palanikumar, S.; Meenarathi, B.; Yelilarasi, A.; Anbarasan, R.

    2014-04-01

    A mercaptosuccinic acid (MSA) decorated Sr nano-particle (NP) was prepared and characterized by using various analytical techniques and was used as a chemical initiator for the ring opening polymerization (ROP) of ɛ-caprolactone (CL). The ROP of CL was carried out at various experimental conditions under N2 atmosphere with mild stirring. The initiating efficiency of MSA-decorated Sr NP was tested in terms of Fourier transform infrared-relative intensity, melting temperature (Tm), degradation temperature (Td) and molecular weight (Mw) of poly(ɛ-caprolactone) (PCL), differential scanning calorimetry, UV-visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis and gel permeation chromatography analytical techniques. The nuclear magnetic resonance spectrum confirms the chemical structure of PCL. While increasing the [M/I] ratio, the Mw of PCL was linearly increased. The band gap energy of Sr was determined from the UV-visible spectrum. The reflectance study proves the hydrophobic nature of the Sr-hybrid and its nano-composite formation with PCL.

  8. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Lian, Ke-Yan; Qiu, Qi; Luo, Yi

    2015-02-01

    Nitrogen-doping brings novel properties and promising applications into graphene, but the underlying mechanism is still in debate. To determine the key factor in motivating the negative differential resistance (NDR) behaviour of nitrogen-doped graphene, the electronic structure and transport properties of an 11-dimer wide nitrogen-doped armchair graphene nanoribbon (N-AGNR) were systematically studied by first principles calculations. Both the effect of interaction between N-dopants and the effect of doping-sublattice on the NDR were examined for the first time. Taking into account the two effects, N-AGNR becomes metallic or semiconducting depending on the doping configuration, and its Fermi level varies in a large range. NDR was firmly verified not to be intrinsic for N-AGNRs. However, it is totally determined by whether nitrogen-doping induces half-filled energy bands (HFEBs) because it is HFEBs that cross the Fermi level and determine the transport properties of N-AGNR under low biases. With the bias increasing, the transmission spectrum near the Fermi level showed a flag shape, and therefore, the corresponding transport channel is totally suppressed at a certain bias, resulting in the NDR behaviour with a configuration-dependent peak-to-valley current ratio (PVCR) up to 104. Our findings give new insights into the microscopic mechanism of chemical doping induced NDR behaviour and will be useful in building NDR-based nanodevices in the future.

  9. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.

  10. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics. PMID:26247853

  11. Free energy calculation of water addition coupled to reduction of aqueous RuO4-

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Blumberger, Jochen; Ohno, Takahisa; Sprik, Michiel

    2007-05-01

    Free energy calculations were carried out for water addition coupled reduction of aqueous ruthenate, RuO4-+H2O +e-→[RuO3(OH)2]2-, using Car-Parrinello molecular dynamics simulations. The full reaction is divided into the reduction of the tetrahedral monoanion, RuO4-+e-→RuO42-, followed by water addition, RuO42-+H2O →[RuO3(OH)2]2-. The free energy of reduction is computed from the fluctuations of the vertical energy gap using the MnO4-+e -→MnO42- reaction as reference. The free energy for water addition is estimated using constrained molecular dynamics methods. While the description of this complex reaction, in principle, involves multiple reaction coordinates, we found that reversible transformation of the reactant into the product can be achieved by control of a single reaction coordinate consisting of a suitable linear combination of atomic distances. The free energy difference of the full reaction is computed to be -0.62eV relative to the normal hydrogen electrode. This is in good agreement with the experimental value of -0.59eV, lending further support to the hypothesis that, contrary to the ruthenate monoanion, the dianion is not tetrahedral but forms a trigonal-bipyramidal dihydroxo complex in aqueous solution. We construct an approximate two-dimensional free energy surface using the coupling parameter for reduction and the mechanical constraint for water addition as variables. Analyzing this surface we find that in the most favorable reaction pathway the reduction reaction precedes water addition. The latter takes place via the protonated complex [RuO3(OH)]- and subsequent transport of the created hydroxide ion to the fifth coordination site of Ru.

  12. Activation energies for addition of O/3P/ to simple olefins.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1972-01-01

    Description of relative rate measurements for the addition of O(3P) to C2H4, C2F4, C3H6, and C4H8-1 in liquid argon at 87.5 K. The data strongly indicate that the activation energies for the addition of O(3P) to the double bonds of propylene and butene-1 are identical, probably to within 0.1 kcal/mole. It is very doubtful that differences in pre-exponential factors or other factors such as solvent effects, could invalidate this conclusion. A similar argument holds for the C2H4 and C2F4 reactions. Furthermore, the experiments suggest that the activation energy for addition of O(3P) to the double bond of butene-1 is about 0.1 kcal/mole.

  13. Energy band alignment of InGaZnO{sub 4}/Si heterojunction determined by x-ray photoelectron spectroscopy

    SciTech Connect

    Xie Zhangyi; Lu Hongliang; Xu Saisheng; Geng Yang; Sun Qingqing; Ding Shijin; Zhang, David Wei

    2012-12-17

    X-ray photoelectron spectroscopy was utilized to determine the valence band offset ({Delta}E{sub V}) of the InGaZnO{sub 4} (IGZO)/Si heterojunction. The IGZO films were grown on Si (100) using radio frequency magnetron sputtering. A value of {Delta}E{sub V} = 2.53 eV was obtained by using In 3d{sub 5/2}, Ga 2p{sub 3/2} core energy levels as references. Taking into consideration the experimental band gap of 3.20 eV of the IGZO, this would result in a conduction band offset {Delta}E{sub C} = 0.45 eV in this heterostructure.

  14. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

  15. Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina.

    PubMed

    Nganou, A C; David, L; Adir, N; Pouhe, D; Deen, M J; Mkandawire, M

    2015-02-01

    To improve the energy conversion efficiency of solar organic cells, the clue may lie in the development of devices inspired by an efficient light harvesting mechanism of some aquatic photosynthetic microorganisms that are adapted to low light intensity. Consequently, we investigated the pathways of excitation energy transfer (EET) from successive light harvesting pigments to the low energy level inside the phycobiliprotein antenna system of Acaryochloris marina, a cyanobacterium, using a time resolved absorption difference spectroscopy with a resolution time of 200 fs. The objective was to understand the actual biochemical process and pathways that determine the EET mechanism. Anisotropy of the EET pathway was calculated from the absorption change trace in order to determine the contribution of excitonic coupling. The results reveal a new electron energy relaxation pathway of 14 ps inside the phycocyanin component, which runs from phycocyanin to the terminal emitter. The bleaching of the 660 nm band suggests a broader absorption of the terminal emitter between 660 nm and 675 nm. Further, there are trimer depolarization kinetics of 450 fs and 500 fs in high and low ionic strength, respectively, which arise from the relaxation of the β84 and α84 in adjacent monomers of phycocyanin. Under conditions of low ionic strength buffer solution, the evolution of the kinetic amplitude during the depolarization of the trimer is suggestive of trimer conservation within the phycocyanin hexamer. The anisotropy values were 0.38 and 0.40 in high and in low ionic strength, respectively, indicating that there is no excitonic delocalization in the high energy level of phycocyanin hexamers. PMID:25470281

  16. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  17. Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand.

    PubMed

    Hansen, Martin N; Sommer, Sven G; Madsen, Niels P

    2003-01-01

    Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected. PMID:12809311

  18. Non-pairwise additivity of the leading-order dispersion energy

    SciTech Connect

    Hollett, Joshua W.

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained in terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is −0.11 kJ mol{sup −1} well{sup −1}, which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.

  19. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  20. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  1. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-15

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO{sub 3}) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO{sub 4}) additive on the combustion behavior of these energetic films. Without KClO{sub 4} the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO{sub 4} increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO{sub 4}. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO{sub 4} concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO{sub 4} promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO{sub 4} adding energy to the reaction and promoting propagation.

  2. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    DOE PAGESBeta

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermalmore » instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.« less

  3. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    SciTech Connect

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  4. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  5. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    SciTech Connect

    Dong, Liang; Wang, Jin; Dongare, Avinash M.; Namburu, Raju; O'Regan, Terrance P.; Dubey, Madan

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.

  6. Edge effects on band gap energy in bilayer 2H-MoS2 under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Wang, Jin; Namburu, Raju; O'Regan, Terrance P.; Dubey, Madan; Dongare, Avinash M.

    2015-06-01

    The potential of ultrathin MoS2 nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS2 film. In this study, a bilayer MoS2 supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS2 film under uniaxial mechanical deformations. The supercell contains an MoS2 bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS2 flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS2 films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.

  7. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  8. Observing tunnel magnetoresistance in junctions comprising of superconductors with Zeeman-split energy bands

    NASA Astrophysics Data System (ADS)

    Li, Bin; Miao, Guo-Xing; Moodera, Jagadeesh S.

    2014-03-01

    The spin-splitting of the quasiparticle density of states (DOS) in a superconductor due to Zeeman energy can lead to a highly field responsive spintronic device. We present our magnetotunneling studies in superconductor/insulator/ferromagnet tunnel junctions in which the superconducting quasiparticle DOS is energy split by an internal exchange field at the interface from an adjacent ferromagnetic insulator EuS layer. A tunnel magnetoresistance (TMR) as large as 36% is observed, and that only occurs in the superconducting state. Tunnel conductance simulation suggests that the TMR originates from the conductance variation resulting from spin selective quasiparticle tunneling. Our results show that in addition to the naturally existent spin imbalance at Fermi level in ferromagnets that gives rise to conventional TMR in standard magnetic junction (MTJs), we can manipulate tunnel conductance by tailoring spin dependent density of states with interfacial exchange fields. Furthermore, a similar TMR is also observed even with a tunnel junction with both superconducting electrodes that have exchange split DOS. [B. Li, G.-X. Miao, and J. S. Moodera, Phys. Rev. B 88, 161105(R) (2013)] The work was supported by NSF Grant No. DMR-1207469 and ONR Grant No. N00014-13-1-0301.

  9. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-28

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  10. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  11. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    DOE PAGESBeta

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  12. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  13. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Joglekar, P. V.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886.

  14. 77 FR 59393 - Jordan Cove Energy Project LP; Pacific Connector Gas Pipeline LP; Notice of Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Energy Regulatory Commission Jordan Cove Energy Project LP; Pacific Connector Gas Pipeline LP; Notice of Additional Public Scoping Meetings for the Jordan Cove Liquefaction and Pacific Connector Pipeline Projects...), will hold three additional public scoping meetings to take comments on Jordan Cove Energy Project...

  15. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  16. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Jung; Shih, Ko-Han

    2016-05-01

    Internal photoemission (IPE) across an n-type Schottky junction due to standard AM1.5G solar illumination is quantified with practical considerations for Cu, Ag, and Al under direct and fully nondirect transitions, all in the context of the constant matrix element approximation. Under direct transitions, photoemitted electrons from d bands dominate the photocurrent and exhibit a strong dependence on the barrier energy ΦB but are less sensitive to the change in the metal thickness. Photocurrent is shown to be nearly completely contributed by s-state electrons in the fully nondirect approximation that offers nearly identical results as in the direct transition for metals having a free-electron-like band structure. Compared with noble metals, Al-based IPE has the highest quantum yield up to about 5.4% at ΦB = 0.5 eV and a maximum power conversion efficiency of approximately 0.31% due mainly to its relatively uniform and wide Pexc energy spectral width. Metals (e.g., Ag) with a larger interband absorption edge are shown to outperform those with shallower d-bands (e.g., Cu and Au).

  17. Theoretical study of the dissociation energy and the red and violet band systems of CN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1987-01-01

    The dissociation energy (D sub O) of CN is determined to be 7.65 + or - 0.06 eV. This corresponds to delta H sub f (CN) = 105.3 + or - 1.5 kcal/mole, in excellent agreement with Engleman and Rouse (1975), but considerably larger than the recent value deduced from shock-tube studies by Colket (1984). The result is obtained not only from extensive ab initio MRCI calculations using a very large Gaussian basis set, but also from extrapolation of the directly computed value by comparison of computed and experimental results fo NO, C2, and N2. As an additional calibration of the methods, the D sub O value for CN was computed from the corresponding value for CN(-) using the experimental electron affinity data. The lifetime of the nu prime = 0 level of the violet (B 2 sigma + yields X 2 sigma +) system was computed to be 62.4 ns, in good agreement with both experiment and previous calculations. Lifetimes for the red (A 2 pi yields X 2 sigma +) system decrease with increasing nu prime, which is consistent both with the recent experiment and calculations. While the computed lifetimes are significantly longer that those obtained from the experiment, they are shorter than those deduced from an analysis of the solar spectrum. However the D sub O and f (sub OO) are consistent with Lambert's model for the solar spectrum.

  18. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    PubMed Central

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  19. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  20. Energy ranges and pitch angles of outer radiation belt electrons depleted by an intense dayside hydrogen band EMIC wave event on February 23, 2014

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Huang, C. L.; Kanekal, S. G.; Fok, M. C. H.; Rodger, C. J.; Smith, C. W.; Spence, H. E.; Baker, D. N.; Kletzing, C.; Wygant, J. R.

    2015-12-01

    Although most studies of the effect of EMIC waves on relativistic electrons have focused on wave events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of an intense, long-duration hydrogen band EMIC wave event on February 23, 2014 that was stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) that included triggered emissions appeared for over 4 hours at both Van Allen Probes while these spacecraft were outside the plasmapause, in a region with densities ~5-20 cm-3, as they passed near apogee from late morning through local noon. Observations of radiation belt electrons by the REPT and MagEIS instruments on these spacecraft showed that these waves caused significant depletions of more field-aligned electrons at ultrarelativistic energies from 5.2 MeV down to ~2 MeV, and some depletions at energies down to below 1 MeV as well.

  1. Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan

    SciTech Connect

    Bryan Hoover

    2009-11-16

    This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

  2. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO{sub 2} TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 {mu}s and 80 {mu}s are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay.

  3. Two-term formula for ground band energy symmetry in low-lying levels of light Mg-Zr nuclei

    NASA Astrophysics Data System (ADS)

    Devi, Vidya

    2015-12-01

    In this paper, two parameter single-term energy formula EJ = aJb is used to study the energy spin relationship within the ground bands of even-even Mg-Zr nuclei. The formula works better for the γ-soft nuclei as well as vibrational nuclei. We also compared it with other two-parameter formulas: Ejiri, ab, pq and soft rotor formula (SRF). We also study the symmetry of the nuclei in the framework of interacting boson model (IBM-1). The IBM-1 was employed to determine the most appropriate Hamiltonian, the Hamiltonian of the IBM-1 and O(6) symmetry calculation, for the study of these isotopes. We have also calculated energy levels and B(E2) values for number of transitions in these 76-78Se and 76-78Kr isotopes and there is a good agreement between the presented results and the previous experimental data.

  4. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGESBeta

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  5. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  6. Work function contrast and energy band modulation between amorphous and crystalline Ge2Sb2Te5 films

    NASA Astrophysics Data System (ADS)

    Tong, H.; Yang, Z.; Yu, N. N.; Zhou, L. J.; Miao, X. S.

    2015-08-01

    The work function (WF) is of crucial importance to dominate the carrier transport properties of the Ge-Sb-Te based interfaces. In this letter, the electrostatic force microscopy is proposed to extract the WF of Ge2Sb2Te5 (GST) films with high spatial and energy resolution. The measured WF of as-deposited amorphous GST is 5.34 eV and decreases drastically after the amorphous GST is crystallized by annealing or laser illumination. A 512 × 512 array 2D-WF map is designed to study the WF spatial distribution and shows a good consistency. The WF contrast between a-GST and c-GST is ascribed to band modulation, especially the modification of electron affinity including the contribution of charges or dipoles. Then, the band alignments of GST/n-Si heterostructures are obtained based on the Anderson's rule. Due to the band modulation, the I-V characteristics of a-GST/Si heterojunction and c-GST/Si heterojunction are very different from each other. The quantitative relationship is calculated by solving the Poisson's equation, which agrees well with the I-V measurements. Our findings not only suggest a way to further understand the electrical transport properties of Ge-Sb-Te based interfaces but also provide a non-touch method to distinguish crystalline area from amorphous matrix with high spatial resolution.

  7. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1−x}O alloys

    SciTech Connect

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D.; Battaglia, Corsin; Javey, Ali; Denlinger, Jonathan D.; Lim, Sunnie H. N.; Anders, André; Yu, Kin M.; Walukiewicz, Wladek

    2014-06-21

    We have measured the band edge energies of Cd{sub x}Zn{sub 1−x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  8. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    SciTech Connect

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-07-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials.

  9. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    SciTech Connect

    Howard Bender, Dave Schwellenbach, Ron Sturges, Rusty Trainham

    2008-03-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials.

  10. Optical constants and related electronic energy bands of lithium triborate crystal in the 6{endash}12-eV region

    SciTech Connect

    Chen, T.; Tao, R.; Rife, J.C.; Hunter, W.R.

    1998-01-01

    Reflectance of lithium triborate crystal in the 6{endash}12-eV region is measured with synchrotron radiation, and the principal values of optical constants are derived. Six absorption peaks are found in both X- and Y-polarized spectra. Among them the five transitions of the Y-polarized peaks and three of the X-polarized peaks are identified. The measurement suggests that the energy of the lowest conducting band 4A{sub 2} is 7.3 eV rather than 7.57 eV, as previously reported. {copyright} 1998 Optical Society of America

  11. Quest for band renormalization and self-energy in correlated f-electron systems

    SciTech Connect

    Durakiewicx, Tomasz

    2009-01-01

    Coexisting energy scales are observed in f-electron materials. Information about some of the low-energy scales is imprinted in the electron self-energy which can be measured by angle-resolved photoemission (ARPES). Such measurements in d-electron materials over the last decade were based on high energy- and momentum-resolution ARPES techniques used to extract the self-energy information from measured spectra. Simultaneously, many-body theoretical approaches have been developed to find a link between self-energy and many-body interactions. Here we show the transcription of such methods from d-electrons to f-electrons by presenting the first example of low energy scales in f-electron material USb{sub 2}, measured with synchrotron-based ARPES. Proposed approach will help in answering the fundamental questions about the complex nature of the heavy fermion state.

  12. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-01

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  13. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  14. Banded ion morphology

    SciTech Connect

    Frahm, R.A.

    1987-01-01

    Bands of ions have been observed at constant pitch angle by the Dynamics Explorer High- and Low-Altitude Plasma Instruments at auroral latitudes. The observed ion-dispersion pattern shows lower-energy ions toward the equatorward side of the band and higher-energy ions toward the poleward side of the band. Ion bands have their highest-energy flux at small pitch angles. The observed bands have been correlated with storm phase (by Dst) and substorm phase (by AE). Bands are more likely to occur during main-storm phase than during recovery storm phase. Substorm correlations are statistically significant, but there is a hint that most bands occur during substorm recovery phase. Two models have the potential of producing ion signatures that are similar to the band feature. They are the time-of-flight mechanism and the convective dispersion mechanism. Under a time-of-flight mechanism, ions are dispersed along a magnetic filed line with higher-energy particles outrunning lower energy particles. Ions are dispersed perpendicular to the magnetic field under convective dispersion. A time-of-flight effect does not explain the band energy-latitude dependence observed in the southern night or northern day very well, whereas the convective dispersion mechanism easily accomplishes this.

  15. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs /In (As ,Sb ) Type-II Superlattices

    NASA Astrophysics Data System (ADS)

    Aytac, Y.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.; Flatté, M. E.; Boggess, T. F.

    2016-05-01

    A set of seven InAs /In (As ,Sb ) type-II superlattices (T2SLs) are designed to have specific band-gap energies between 290 meV (4.3 μ m ) and 135 meV (9.2 μ m ) in order to study the effects of the T2SL band-gap energy on the minority-carrier lifetime. A temperature-dependent optical pump-probe technique is used to measure the carrier lifetimes, and the effect of a midgap defect level on the carrier-recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 ±12 meV relative to the valence-band edge of bulk GaSb for the entire set of T2SL structures, even though the T2SL valence-band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs /In (As ,Sb ) T2SLs is singular and is nearly independent of the exact position of the T2SL band-gap or band-edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the band gap, a result that should significantly increase the minority-carrier lifetime.

  16. A two-step energy injection explanation for the rebrightenings of the multi-band afterglow of GRB 081029

    NASA Astrophysics Data System (ADS)

    Yu, Yong-Bo; Huang, Yong-Feng

    2013-06-01

    The afterglow of GRB 081029 showed unusual behavior, with a significant rebrightening being observed at the optical wavelength at about 3000 s after the burst. One possible explanation is that the rebrightening resulted from an energy injection. Here we present a detailed numerical study of the energy injection process and interpret the X-ray and optical afterglow light curves of GRB 081029. In our model, we have assumed two periods of energy injection, each with a constant injection power. One injection starts at 2.8 × 103 s and lasts for about 2500 s, with a power of 7.0 × 1047 erg s-1. This energy injection mainly accounts for the rapid rebrightening at about 3000 s. The other injection starts at 8.0 × 103 s and lasts for about 5000 s. The injection power is 3.5 × 1047 erg s-1. This energy injection can help to explain the slight rebrightening at about 10 000 s. It is shown that the observed optical afterglow, especially the marked rebrightening at about 3000 s, can be reproduced well. In the X-ray band, the predicted amplitude of the rebrightening is much shallower, which is also consistent with the observed X-ray afterglow light curve. It is argued that the two periods of energy injection can be produced by clumpy materials falling onto the central compact object of the burster, which leads to an enhancement of accretion and gives rise to a strong temporary outflow.

  17. Effect of electrolyte addition to rehydration drinks consumed after severe fluid and energy restriction.

    PubMed

    James, Lewis J; Shirreffs, Susan M

    2015-02-01

    This study examined the effect of electrolyte addition to drinks ingested after severe fluid and energy restriction (FER). Twelve subjects (6 male and 6 female) completed 3 trials consisting of 24-hour FER (energy intake: 21 kJ·kg body mass; water intake: 5 ml·kg body mass), followed by a 2-hour rehydration period and a 4-hour monitoring period. During rehydration, subjects ingested a volume of drink equal to 125% of the body mass lost during FER in 6 aliquots, once every 20 minutes. Drinks were a sugar-free lemon squash (P) or the P drink with the addition of 50 mmol·L sodium chloride (Na) or 30 mmol·L potassium chloride (K). Total void urine samples were given before and after FER and every hour during rehydration and monitoring. Over all trials, FER produced a 2.1% reduction in body mass and negative sodium (-67 mmol), potassium (-48 mmol), and chloride (-84 mmol) balances. Urine output after drinking was 1627 (540) ml (P), 1391 (388) ml (K), and 1150 (438) ml (Na), with a greater postdrinking urine output during P than Na (p ≤ 0.05). Ingestion of drink Na resulted in a more positive sodium balance compared with P or K (p < 0.001), whereas ingestion of drink K resulted in a more positive potassium balance compared with P or Na (p < 0.001). These results demonstrate that after 24-hour FER, ingestion of a high sodium drink results in an increased sodium balance that augments greater drink retention compared with a low electrolyte placebo drink. PMID:25162651

  18. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  19. Lcao-Gáspár-Kohn-Sham energy bands of trans-polyacetylene-chain

    NASA Astrophysics Data System (ADS)

    von Boehm, J.; Kuivalainen, P.; Calais, J.-L.

    1983-12-01

    The band structure of the dimerised trans-polyacetylene-chain ( d CC = 1.35 Å, d CC = 1.46 Å, ∡ CCC = 120° , d CH = 1.09 Å) is calculated with the (parameter-free, non-self-consistent) linear-combination-of-atomic-orbitals method using the Gáspár-Kohn-Sham (GKS) potential for the exchange and correlation. The calculated dimerisation gap of 1.6 eV agrees closely with experiment and also with other GKS calculations when the degree of dimerisation is taken into account. The calculated density of states agrees closely with the X-ray photoemission spectrum of Brundle.

  20. Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure

    PubMed Central

    Noh, Eul; Noh, Kyung-Jong; Yun, Kang-Seop; Kim, Bo-Ra; Jeong, Hee-June; Oh, Hyo-Jin; Kang, Woo-Seung

    2013-01-01

    The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode. PMID:24501585

  1. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

    PubMed Central

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-01-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency. PMID:26928583

  2. Enhanced water splitting by Fe2O3-TiO2-FTO photoanode with modified energy band structure.

    PubMed

    Noh, Eul; Noh, Kyung-Jong; Yun, Kang-Seop; Kim, Bo-Ra; Jeong, Hee-June; Oh, Hyo-Jin; Jung, Sang-Chul; Kang, Woo-Seung; Kim, Sun-Jae

    2013-01-01

    The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α -Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode. PMID:24501585

  3. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

    NASA Astrophysics Data System (ADS)

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-03-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency.

  4. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.

    PubMed

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-01-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency. PMID:26928583

  5. Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package

    NASA Astrophysics Data System (ADS)

    Deguchi, Daiki; Sato, Kazunori; Kino, Hiori; Kotani, Takao

    2016-05-01

    We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj package is numerically stable and more accurate than the previous versions, we can perform calculations easily without being bothered with tuning input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points, and effective mass, for a variety of semiconductors and insulators. We treat C, Si, Ge, Sn, SiC (in 2H, 3C, and 4H structures), (Al, Ga, In) × (N, P, As, Sb), (Zn, Cd, Mg) × (O, S, Se, Te), SiO2, HfO2, ZrO2, SrTiO3, PbS, PbTe, MnO, NiO, and HgO. We propose that a hybrid QSGW method, where we mix 80% of QSGW and 20% of LDA, gives universally good agreement with experiments for these materials.

  6. High energy pulsed fiber laser transmitters in the C- and L-band for coherent lidar applications

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Moor, Nick; Petersen, Eliot B.; Nguyen, Dan T.; Yao, Zhidong; Stephen, Mark A.; Chavez-Pirson, Arturo; Peyghambarian, Nasser

    2011-10-01

    We report a monolithic specialized high stimulated Brillouin scattering (SBS) threshold fiber laser/amplifier in the C and L band based on highly co-doped phosphate glass fibers. This represents an important new development for coherent LIDAR and remote sensing applications. By using single mode polarization-maintaining large core highly Er/Yb codoped phosphate fibers in the power amplifier stages, we have achieved the highest peak power of 2.02 kW at 1530 nm for 105 ns pulses with transform-limited linewidth, and with a corresponding pulse energy of about 0.212 mJ. The achieved high-energy pulses were frequency doubled by using a commercial periodically poled lithium niobate (PPLN) crystal, and the highest SHG peak power of 271 W has been achieved for the SHG pulses at 765 nm that can be used for oxygen coherent remote sensing. In the L band, more than 80 μJ fiber laser pulses at 1572 nm with 1-2 μs pulse width and transform-limited linewidth have been achieved by using a monolithic fiber laser system in MOPA configuration, which can be used for CO2 coherent remote sensing.

  7. Energy band structure and metal-organic interactions in tetracyanoquinodimethane (TCNQ) and N,N'-dicyanoquinonediimine (DCNQI) materials

    SciTech Connect

    Kojima, Hirotaka; Zhang, Zhongyue; Dunbar, Kim R.; Mori, Takehiko

    2013-07-16

    The interplay of metal orbitals in metal TCNQ (7,7,8,8-tetracyanoquinodimethane) and DCNQI (N,N'-dicyanoquinonediimine) complexes is investigated on the basis of molecular orbital calculations. For the M(TCNQ) materials, where M = Na, K, Rb, Cs, Tl, Cu, and Ag, the conductivity decreases with the increase in dimerization. Some Cu compounds, however, exhibit uniform columns and higher conducting properties, for which hybridization of the Cu 3d orbitals with the organic radicals is expected. The energy level of Tl 6s is slightly more separated from the TCNQ LUMO, but could potentially mediate similar metal–organic interactions. A simple analytical energy band model is proposed to evaluate the hybridization of the metal orbitals, providing the criteria to form a closed Fermi surface. Accordingly, semiconducting and comparatively high-conducting states of many Cu and Tl TCNQ complexes with uniform columns are to be regarded as a Mott insulating state rather than a Peierls insulating state.

  8. Energy band structure and metal-organic interactions in tetracyanoquinodimethane (TCNQ) and N,N'-dicyanoquinonediimine (DCNQI) materials

    SciTech Connect

    Kojima, Hirotaka; Zhang, Zhongyue; Dunbar, Kim R; Mori, Takehiko

    2013-03-29

    The interplay of metal orbitals in metal TCNQ (7,7,8,8-tetracyanoquinodimethane) and DCNQI (N,N'-dicyanoquinonediimine) complexes is investigated on the basis of molecular orbital calculations. For the M(TCNQ) materials, where M = Na, K, Rb, Cs, Tl, Cu, and Ag, the conductivity decreases with the increase in dimerization. Some Cu compounds, however, exhibit uniform columns and higher conducting properties, for which hybridization of the Cu 3d orbitals with the organic radicals is expected. The energy level of Tl 6s is slightly more separated from the TCNQ LUMO, but could potentially mediate similar metal–organic interactions. A simple analytical energy band model is proposed to evaluate the hybridization of the metal orbitals, providing the criteria to form a closed Fermi surface. Accordingly, semiconducting and comparatively high-conducting states of many Cu and Tl TCNQ complexes with uniform columns are to be regarded as a Mott insulating state rather than a Peierls insulating state.

  9. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration.

    PubMed

    Di Luca, Andrea; Longoni, Alessia; Criscenti, Giuseppe; Lorenzo-Moldero, Ivan; Klein-Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Mota, Carlos; Moroni, Lorenzo

    2016-03-01

    Swift progress in biofabrication technologies has enabled unprecedented advances in the application of developmental biology design criteria in three-dimensional scaffolds for regenerative medicine. Considering that tissues and organs in the human body develop following specific physico-chemical gradients, in this study, we hypothesized that additive manufacturing (AM) technologies would significantly aid in the construction of 3D scaffolds encompassing such gradients. Specifically, we considered surface energy and stiffness gradients and analyzed their effect on adult bone marrow derived mesenchymal stem cell differentiation into skeletal lineages. Discrete step-wise macroscopic gradients were obtained by sequentially depositing different biodegradable biomaterials in the AM process, namely poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymers. At the bulk level, PEOT/PBT homogeneous scaffolds supported a higher alkaline phosphatase (ALP) activity compared to PCL, PLA, and gradient scaffolds, respectively. All homogeneous biomaterial scaffolds supported also a significantly higher amount of glycosaminoglycans (GAGs) production compared to discrete gradient scaffolds. Interestingly, the analysis of the different material compartments revealed a specific contribution of PCL, PLA, and PEOT/PBT to surface energy gradients. Whereas PEOT/PBT regions were associated to significantly higher ALP activity, PLA regions correlated with significantly higher GAG production. These results show that cell activity could be influenced by the specific spatial distribution of different biomaterial chemistries in a 3D scaffold and that engineering surface energy discrete gradients could be considered as an appealing criterion to design scaffolds for osteochondral regeneration. PMID:26924824

  10. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    SciTech Connect

    Bouneau, S.; Azaiez, F.; Duprat, J.

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  11. The Number of High-Energy Bands in the Photoelectron Spectrum of Alkanes

    NASA Astrophysics Data System (ADS)

    Merris, Russell; Gutman, Ivan

    2000-12-01

    It was observed that within the Bieri-Dill-Heilbronner-Schmelzer model for the calculation of the ion-ization energies of alkanes CnH2n+2, there are exactly n C2s -electron energy levels lying below the degenerate α-ß manifold. We now show that, indeed, this regularity is obeyed by practically all alkane species. Exceptions do exist, but they must possess a (chemically infeasible) group of more than six mutually connected quaternary carbon atoms.

  12. Extension of an exponential light-curve gamma-ray burst pulse model across energy bands

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2012-01-01

    A simple mathematical model of gamma-ray burst(GRB) pulses in time, suggested by Norris et al., is extended across energy. For a class of isolated pulses, two fit parameters appear to be effectively independent of energy. Specifically, statistical fits indicate that pulse amplitude A and pulse width τ are energy dependent, while pulse start time and pulse shape are effectively energy independent. These results bolster the pulse start and pulse scale conjectures of Nemiroff and add a new pulse shape conjecture which states that a class of pulses all have the same shape. The simple resulting pulse counts model is P(t, E) =A(E) exp[ -t/τ(E) -τ(E)/t], where t is the time since the start of the pulse. This pulse model is found to be an acceptable statistical fit to many of the fluent separable Burst and Transient Source Experiment (BATSE) pulses listed by Norris et al. Even without theoretical interpretation, this cross-energy extension may be immediately useful for fitting prompt emission from GRB pulses across energy channels with a minimal number of free parameters.

  13. Complete description of ionization energy and electron affinity in organic solids: Determining contributions from electronic polarization, energy band dispersion, and molecular orientation

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Yamada, Kazuto; Tsutsumi, Jun'ya; Sato, Naoki

    2015-08-01

    Ionization energy and electron affinity in organic solids are understood in terms of a single molecule perturbed by solid-state effects such as polarization energy, band dispersion, and molecular orientation as primary factors. However, no work has been done to determine the individual contributions experimentally. In this work, the electron affinities of thin films of pentacene and perfluoropentacene with different molecular orientations are determined to a precision of 0.1 eV using low-energy inverse photoemission spectroscopy. Based on the precisely determined electron affinities in the solid state together with the corresponding data of the ionization energies and other energy parameters, we quantitatively evaluate the contribution of these effects. It turns out that the bandwidth as well as the polarization energy contributes to the ionization energy and electron affinity in the solid state while the effect of the surface dipole is at most a few eV and does not vary with the molecular orientation. As a result, we conclude that the molecular orientation dependence of the ionization energy and electron affinity of organic solids originates from the orientation-dependent polarization energy in the film.

  14. Research on a middle infrared and long infrared dual-band laser based on energy transferring from DF (v) to CO2 (0000)

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Yuan, Shengfu; Sun, Xu

    2013-05-01

    We propose a continuous wave (CW) middle infrared (MIR) and long infrared (LIR) dual-band laser based on energy transferring from DF (v) to CO2(0000). A total output power of 5W is achieved by the proposed dual-band laser consisted of DF gain medium module (DF module) and DF-CO2 gain medium module (DF-CO2 module). Technologies about the gain peak position, beam qualification are analyzed. The two modules use a common stable resonator and output mirror with nominal transmissivities of 3.5%-5% in the MIR band and 6%-10% in the LIR band. Spectra of dual-band laser are acquired.

  15. Radical Energies and the Regiochemistry of Addition to Heme Groups. Methylperoxy and Nitrite Radical Additions to the Heme of Horseradish Peroxidase

    PubMed Central

    Wojciechowski, Grzegorz; Ortiz de Montellano, Paul R.

    2008-01-01

    The heme of hemoproteins, as exemplified by horseradish peroxidase (HRP), can undergo additions at the meso carbons and/or vinyl groups of the electrophilic or radical species generated in the catalytic oxidation of halides, pseudohalides, carboxylic acids, aryl and alkyl hydrazines, and other substrates. The determinants of the regiospecificity of these reactions, however, are unclear. We report here modification of the heme of HRP by autocatalytically generated, low energy NO2• and CH3OO• radicals. The NO2• radical adds regioselectively to the 4- over the 2-vinyl group but does not add to the meso positions. Reaction of HRP with tert-BuOOH does not lead to heme modification, but reaction with the F152M mutant, in which the heme vinyls are more sterically accessible, results in conversion of the heme 2-vinyl into a 1-hydroxy-2-(methylperoxy)-ethyl group [-CH(OH)CH2OOCH3]. [18O]-labeling studies indicate that the hydroxyl group in this adduct derives from water and the methylperoxide oxygens from O2. Under anaerobic conditions, methyl radicals formed by fragmentation of the autocatalytically generated tert-BuO• radical add to both the δ-meso-carbon and the 2-vinyl group. The regiochemistry of these and the other known additions to the heme indicate that only high-energy radicals (e.g., CH3•) add to the meso-carbon. Less energetic radicals, including NO2• and CH3OO•, add to heme vinyl groups if they are small enough but do not add to the meso-carbons. Electrophilic species such as HOBr, HOCl, and HOSCN add to vinyl groups but do not react with the meso-carbons. This meso- versus vinyl-reactivity paradigm, which appears to be general for autocatalytic additions to heme prosthetic groups, suggests that meso-hydroxylation of the heme by heme oxygenase occurs by a controlled radical reaction rather than by electrophilic addition. PMID:17249668

  16. Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University

    NASA Astrophysics Data System (ADS)

    Nassar, Abdalla R.; Reutzel, Edward W.; Brown, Stephen W.; Morgan, John P.; Morgan, Jacob P.; Natale, Donald J.; Tutwiler, Rick L.; Feck, David P.; Banks, Jeffery C.

    2016-04-01

    Additive manufacturing of metal components through directed energy deposition or powder bed fusion is a complex undertaking, often involving hundreds or thousands of individual laser deposits. During processing, conditions may fluctuate, e.g. material feed rate, beam power, surrounding gas composition, local and global temperature, build geometry, etc., leading to unintended variations in final part geometry, microstructure and properties. To assess or control as-deposited quality, researchers have used a variety of methods, including those based on sensing of melt pool and plume emission characteristics, characteristics of powder application, and layer-wise imaging. Here, a summary of ongoing process monitoring activities at Penn State is provided, along with a discussion of recent advancements in the area of layer-wise image acquisition and analysis during powder bed fusion processing. Specifically, methods that enable direct comparisons of CAD model, build images, and 3D micro-tomographic scan data will be covered, along with thoughts on how such analyses can be related to overall process quality.

  17. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  18. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  19. Excitonic spectra and energy band structure of ZnAl2Se4 crystals

    NASA Astrophysics Data System (ADS)

    Syrbu, N. N.; Zalamai, V. V.; Tiron, A. V.; Tiginyanu, I. M.

    2015-11-01

    Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl2Se4 crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals V1(Γ7)-C1(Γ6), V2(Γ6)-C1(Γ6), and V3(Γ7)-C1(Γ6) were estimated. Values of splitting due to crystal field and spin-orbital interaction were calculated. Effective masses of electrons (mC1∗) and holes (mV1∗, mV2∗, mV3∗) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for E > Eg from measured reflection spectra were assigned on the base of Kramers-Kronig relations.

  20. Theoretical study of the dissociation energy and the red and violet band systems of CN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The dissociation energy D0 is determined here for the CN ground-state and radiative lifetimes for the A 2Pi and B 2Sigma(+) states. D0 is found to be 7.65 + or - 0.06 eV, corresponding to Delta Hf (CN) = 105.3 + or - 1.5 kcal/mole. These results are compared with current experimental estimates and with previous theoretical calculations.

  1. Extension of the non-Markovian Energy-Corrected Sudden model to the case of parallel and perpendicular infrared bands.

    PubMed

    Buldyreva, Jeanna; Daneshvar, Leila

    2013-10-28

    The non-Markovian Energy-Corrected Sudden approach [J. Buldyreva and L. Bonamy, Phys. Rev. A 60, 370 (1999)] previously developed for wide-band rototranslational Raman spectra of linear rotors is extended to the case of infrared absorption by linear molecules with stretching and bending modes. Basic relations such as detailed balance and double-sided sum rules for the rotational relaxation matrix are easily satisfied owing to the specific choice of a symmetric metric in the Liouville space. A single set of model parameters deduced from experimental widths of isolated isotropic Raman lines enables calculations of line-shape characteristics and full spectra up to the far wings. Applications to the important but quite complex example of pure carbon dioxide indicate the crucial role of the frequency dependence in the relaxation operator even for calculations of isolated-line characteristics. PMID:24182004

  2. Band bending and structure dependent HOMO energy at the ZnO(0 0 0 1)-titanyl phthalocyanine interface

    NASA Astrophysics Data System (ADS)

    Palmgren, P.; Claesson, T.; Önsten, A.; Agnarsson, B.; Månsson, M.; Tjernberg, O.; Göthelid, M.

    2007-09-01

    We have investigated the initial stages of titanyl phthalocyanine (TiOPc) growth on single crystalline ZnO(0 0 0 1). This organic-semiconductor interface is self-organizing as a 2 × 1 pattern appears in a low energy electron diffraction upon deposition of the molecules. To achieve this pattern, the TiOPc is suggested to adsorb standing with the edge of the molecule along the substrate atomic rows. Photoelectron spectroscopy is used to further analyze the interface; a relatively large upwards band bending amounting to 0.5 eV is found and a splitting of the molecules highest occupied molecular orbital occurs after thermal treatment, indicating that the molecules are lying down.

  3. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    SciTech Connect

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  4. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; Olea, J.; González-Díaz, G.

    2015-12-01

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (1013 cm-2 and 1014 cm-2) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around Ec-425 and Ec-275 meV for implantation doses of 1013 cm-2 and 1014 cm-2, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, Ec and Ec-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known, the Meyer-Neldel rule typically appears in processes involving multiple excitations, like

  5. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    SciTech Connect

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  6. Correlation-corrected energy bands of YBa{sub 2}Cu{sub 3}O{sub 7}: A mutually consistent treatment

    SciTech Connect

    Wechsler, D.; Ladik, J.

    1997-04-01

    The band structures and density of states (DOS) of important subunits (Cu-O planes and chains, both including apical oxygens) in YBa{sub 2}Cu{sub 3}O{sub 7} were computed. As a first step we employed an {ital ab initio} Hartree-Fock (HF) crystal-orbital method to both subunits in a mutually consistent way embedding them also in a partially self-consistent Madelung potential of the 3D crystal. Afterwards the bands were corrected for correlation by a Green{close_quote}s-function method in second order of the Mo/ller-Plesset many-body perturbation theory. The main purpose of these rather large-scale calculations was to obtain reliable unfilled energy bands to be used in subsequent exciton bands calculations. This will make it possible to look more thoroughly at the proposed excitonic (polarization) mechanism of high-T{sub c} superconductivity. A comparison with calculations based on a local-density-functional (LDF) approximation showed good agreement to our approach in the valence-band energy region above {minus}8 eV while the LDF results agree well with experimental photoelectron spectra. In contrast to the LDF methods, we detected between {minus}8 and {minus}12 eV flat Cu3d energy bands, which correspond to satellite structures observed by experiment. {copyright} {ital 1997} {ital The American Physical Society}

  7. Department of Energy Efforts to Promote Universal Adherence to the IAEA Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Hansen, Linda H.; Kovacic, Don N.; VanSickle, Matthew; Apt, Kenneth E.

    2009-10-06

    Entry-into-force of the U.S. Additional Protocol (AP) in January 2009 continues to demonstrate the ongoing commitment by the United States to promote universal adherence to the AP. The AP is a critical tool for improving the International Atomic Energy Agency’s (IAEA) capabilities to detect undeclared activities that indicate a clandestine nuclear weapons program. This is because States Parties are required to provide information about, and access to, nuclear fuel cycle activities beyond their traditional safeguards reporting requirements. As part of the U.S. AP Implementation Act and Senate Resolution of Ratification, the Administration is required to report annually to Congress on measures taken to achieve the adoption of the AP in non-nuclear weapon states, as well as assistance to the IAEA to promote the effective implementation of APs in those states. A key U.S. effort in this area is being managed by the International Nuclear Safeguards and Engagement Program (INSEP) of the U.S. Department of Energy (DOE). Through new and existing bilateral cooperation agreements, INSEP has initiated technical assistance projects for AP implementation with selected non-weapon states. States with which INSEP is currently cooperating include Vietnam and Thailand, with Indonesia, Algeria, Morocco, and other countries as possible future collaborators in the area of AP implementation. The INSEP collaborative model begins with a joint assessment with our partners to identify specific needs they may have regarding entering the AP into force and any impediments to successful implementation. An action plan is then developed detailing and prioritizing the necessary joint activities. Such assistance may include: advice on developing legal frameworks and regulatory documents; workshops to promote understanding of AP requirements; training to determine possible declarable activities; assistance in developing a system to collect and submit declarations; performing industry outreach to

  8. Photoluminescence determination of valence-band symmetry and Auger-1 threshold energy in biaxially compressed InAsSb layers

    SciTech Connect

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.

    1994-08-01

    InAsSb/InGaAs strained-layer superlattices (SLSs) and InAsSb quantum wells, both with biaxially compressed InAsSb layers, were characterized using magneto-photoluminescence and compared with unstained InAsSb and InAs alloys. In heterostructures with biaxially compressed InAsSb, the holes exhibited a decrease in effective mass, approaching that of the electrons. Correcting the data for the magneto-exciton binding energy, we obtain electron-hole reduced mass values in the range, {mu}=0.010--0.015, for the InAsSb heterostructures, whereas {mu}=0.026 and {mu}-0.023 for unstrained InAsSb and InAs alloys respectively. In the 2-dimensional limit, a large increase in the Auger-1 threshold energy accompanies this strain-induced change in valence-band symmetry. Correspondingly, the activation energy for nonradiative recombination in the SLSs displayed a marked increase compared with that of the unstrained alloys.

  9. Atmospheric correction of LANDSAT TM thermal band using surface energy balance

    NASA Technical Reports Server (NTRS)

    Vidal, Alain; Devaux-Ros, Claire; Moran, M. Susan

    1994-01-01

    Thermal infrared data of LANDSAT Thematic Mapper (TM) are hardly used, probably due to the difficulties met when trying to correct them for atmospheric effects. A method for correcting these data was designed, based on surface energy balance estimation of known wet and dry targets included in the TM image to be corrected. This method, only using the image itself and local meteorological data was tested and validated on various surfaces: agricultural, forest and rangeland. The root mean square error on corrected temperatures is on the order of 1C.

  10. Cascaded Energy Transfer for Efficient Broad-Band Pumping of High Quality, Micro Lasers

    SciTech Connect

    Rotschild, Carmel; Tomes, M.; Mendoza, H.; Andrew, T. L.; Swager, Timothy M.; Carmon, T.; Baldo, Marc

    2011-05-24

    Micro-ring lasers that exhibit a quality factor (Q) larger than 5.2 × 10{sup 6} with a direct-illumination, non-resonant pump are demonstrated. The micro-rings are coated with three organic dyes forming a cascaded energy-transfer, which reduces material-losses by a factor larger than 10{sup 4}, transforming incoherent light to coherent light with high quantum-efficiency. The operating principle is general and can enable fully integrated on-chip, high-Q micro-lasers.

  11. Energy transition characterization of 1.18 and 1.3 {mu}m bands of bismuth fiber by spectroscopy of the transient oscillations

    SciTech Connect

    Gumenyuk, Regina; Okhotnikov, Oleg G.; Golant, Konstantin; Golant, Konstantin; Gumenyuk, Regina; Okhotnikov, Oleg G.

    2011-05-09

    The experimental evidence of laser transition type in bismuth-doped silica fibers operating at different spectral bands is presented. Spectrally resolved transient (relaxation) oscillations studied for a Bi-doped fiber laser at room and liquid-nitrogen temperatures allow to identify the three- and four-level energy bands. 1.18 {mu}m short-wavelength band is found to be a three-level system at room temperature with highly populated terminal energy level of laser transition. The depopulation of ground level by cooling the fiber down to liquid-nitrogen temperature changes the transition to four-level type. Four-level energy transition distinguished at 1.32 {mu}m exhibits the net gain at room temperature.

  12. The influence of feed energy density and a formulated additive on rumen and rectal temperature in hanwoo steers.

    PubMed

    Cho, Sangbuem; Mbiriri, David Tinotenda; Shim, Kwanseob; Lee, A-Leum; Oh, Seong-Jin; Yang, Jinho; Ryu, Chaehwa; Kim, Young-Hoon; Seo, Kang-Seok; Chae, Jung-Il; Oh, Young Kyoon; Choi, Nag-Jin

    2014-11-01

    The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower

  13. The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

    PubMed Central

    Cho, Sangbuem; Mbiriri, David Tinotenda; Shim, Kwanseob; Lee, A-Leum; Oh, Seong-Jin; Yang, Jinho; Ryu, Chaehwa; Kim, Young-Hoon; Seo, Kang-Seok; Chae, Jung-Il; Oh, Young Kyoon; Choi, Nag-Jin

    2014-01-01

    The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower

  14. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  15. SIMULATION OF A WIDE-BAND LOW-ENERGY NEUTRINO BEAM FOR VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS.

    SciTech Connect

    BISHAI, M.; HEIM, J.; LEWIS, C.; MARINO, A.D.; VIREN, B.; YUMICEVA, F.

    2006-08-01

    We present simulations of a wide-band low-energy neutrino beam for a future very long baseline neutrino oscillation (VLBNO) program using the proton beam from the Main Injector (MI) proton accelerator at Fermi National Accelerator Laboratory (Fermilab). The target and horn designs previously developed for Brookhaven Laboratory's Alternating Gradient Synchrotron (AGS) VLBNO program are used without modifications. The neutrino flux distributions for various MI proton beam energies and new high-intensity neutrino beam-line designs possible at Fermilab are presented. The beam-line siting and design parameters are chosen to match the requirements of an on-axis beam from Fermilab to one of the two possible sites for the future Deep Underground Science and Engineering Laboratory (DUSEL). A preliminary estimate of the observable event rates and spectra at a detector located in DUSEL for different beam configurations has been performed. Our preliminary conclusions are that a 40-60 GeV 0.5 to 1 MW beam from the Fermilab Main Injector to a DUSEL site has the potential to reach the desired intensity for the next generation of neutrino oscillation experiments. Recent studies indicate that the Fermilab MI can reach a beam power of 0.5 MW at 60 GeV with incremental upgrades to the existing accelerator complex.

  16. Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface

    SciTech Connect

    Engel, V.; Staemmler, V.; Vander Wal, R.L.; Crim, F.F.

    1992-04-16

    The photodissociation of water in the first absorption band, H{sub 2}O(X) + {Dirac_h}{omega} {yields} H{sub 2}O(A{sup 1}B{sub 1}) {yields} H({sup 2}S) + OH({sup 2}II), is a prototype of fast and direct bond rupture in an excited electronic state. It has been investigated from several perspectives-absorption spectrum, final state distributions of the products, dissociation of vibrationally excited states, isotope effects, and emission spectroscopy. The availability of a calculated potential energy surface for the A state, including all three internal degrees of freedom, allows comparison of all experimental data with the results of rigorous quantum mechanical calculations without any fitting parameters or simplifying model assumptions. As the result of the confluence of ab initio electronic structure theory, dynamical theory, and experiment, water is probably the best studied and best understood polyatomic photodissociation system. In this article we review the joint experimental and theoretical advances which make water a unique system for studying molecular dynamics in excited electronic states. We focus our attention especially on the interrelation between the various perspectives and the correlation with the characteristic features of the upper-state potential energy surface. 80 refs., 14 figs.

  17. Effect of a Simulated Analogue Telephone Channel on the Performance of a Remote Automatic System for the Detection of Pathologies in Voice: Impact of Linear Distortions on Cepstrum-Based Assessment - Band Limitation, Frequency Response and Additive Noise

    NASA Astrophysics Data System (ADS)

    Fraile, Rubén; Sáenz-Lechón, Nicolás; Godino-Llorente, Juan Ignacio; Osma-Ruiz, Víctor; Fredouille, Corinne

    Advances in speech signal analysis during the last decade have allowed the development of automatic algorithms for a non-invasive detection of laryngeal pathologies. Performance assessment of such techniques reveals that classification success rates over 90 % are achievable. Bearing in mind the extension of these automatic methods to remote diagnosis scenarios, this paper analyses the performance of a pathology detector based on Mel Frequency Cepstral Coefficients when the speech signal has undergone the distortion of an analogue communications channel, namely the phone channel. Such channel is modeled as a concatenation of linear effects. It is shown that while the overall performance of the system is degraded, success rates in the range of 80% can still be achieved. This study also shows that the performance degradation is mainly due to band limitation and noise addition.

  18. The evolution of the band gap energy of the P-rich GaNxP1-x(0

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Li, Na-Na; Wang, Sha-Sha; Lu, Ke-Qing

    2013-10-01

    We analyze the evolution of the band gap energy of the P-rich GaNP on composition and temperature by modifying the BAC model. In the modified BAC model, the effects of the composition and the temperature on the parameters in the BAC model are considered. It is found that the coupling constant becomes small after considering the effect of the composition on the N level. It is also found that the temperature dependecnce of the band gap energy becomes large with increasing N content. This is due to two factors. One is that the localized degree of the N states becomes weak with increasing N content. The other one is that the coupling interaction between the N level and the Γ conduction band of GaP becomes large with increasing N content.

  19. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.

    PubMed

    Woolf, Dominic; Lehmann, Johannes; Fisher, Elizabeth M; Angenent, Largus T

    2014-06-01

    Coproduction of biofuels with biochar (the carbon-rich solid formed during biomass pyrolysis) can provide carbon-negative bioenergy if the biochar is sequestered in soil, where it can improve fertility and thus simultaneously address issues of food security, soil degradation, energy production, and climate change. However, increasing biochar production entails a reduction in bioenergy obtainable per unit biomass feedstock. Quantification of this trade-off for specific biochar-biofuel pathways has been hampered by lack of an accurate-yet-simple model for predicting yields, product compositions, and energy balances from biomass slow pyrolysis. An empirical model of biomass slow pyrolysis was developed and applied to several pathways for biochar coproduction with gaseous and liquid biofuels. Here, we show that biochar production reduces liquid biofuel yield by at least 21 GJ Mg(-1) C (biofuel energy sacrificed per unit mass of biochar C), with methanol synthesis giving this lowest energy penalty. For gaseous-biofuel production, the minimum energy penalty for biochar production is 33 GJ Mg(-1) C. These substitution rates correspond to a wide range of Pareto-optimal system configurations, implying considerable latitude to choose pyrolysis conditions to optimize for desired biochar properties or to modulate energy versus biochar yields in response to fluctuating price differentials for the two commodities. PMID:24787482

  20. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. PMID:24265209

  1. Study on the energy band structure and photoelectrochemical performances of spinel Li{sub 4}Ti{sub 5}O{sub 12}

    SciTech Connect

    Ge, Hao; Tian, Hui; Song, Hua; Liu, Daliang; Wu, Shuyao; Shi, Xicheng; Gao, Xiaoqiang; Lv, Li; Song, Xi-Ming

    2015-01-15

    Highlights: • Spinel Li{sub 4}Ti{sub 5}O{sub 12} possesses more positive potential of valence band and wider band gap than TiO{sub 2}. • Spinel Li{sub 4}Ti{sub 5}O{sub 12} displays typical n-type semiconductor characteristic and excellent UV-excitateded photocatalysis activity. • Our preliminary study will open new perspectives in investigation of other lithium-based compounds for new photocatalysts. - Abstract: Energy band structure, photoelectrochemical performances and photocatalysis activity of spinel Li{sub 4}Ti{sub 5}O{sub 12} are investigated for the first time in this paper. Li{sub 4}Ti{sub 5}O{sub 12} possesses more positive valence band potential and wider band gap than TiO{sub 2} due to its valence band consisting of Li{sub 1s} and Ti{sub 3d} orbitals mixed with O{sub 2p}. Li{sub 4}Ti{sub 5}O{sub 12} shows typical photocatalysis material characteristics and excellent photocatlytic activity under UV irradiation.

  2. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  3. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  4. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    PubMed Central

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  5. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting.

    PubMed

    Jia, Yu; Du, Sijun; Seshia, Ashwin A

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  6. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-07-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a ‑3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.

  7. Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes.

    PubMed

    Xie, Li; Liu, Haiyan; Yang, Weitao

    2004-05-01

    Optimization of reaction paths for enzymatic systems is a challenging problem because such systems have a very large number of degrees of freedom and many of these degrees are flexible. To meet this challenge, an efficient, robust and general approach is presented based on the well-known nudged elastic band reaction path optimization method with the following extensions: (1) soft spectator degrees of freedom are excluded from path definitions by using only inter-atomic distances corresponding to forming/breaking bonds in a reaction; (2) a general transformation of the distances is defined to treat multistep reactions without knowing the partitioning of steps in advance; (3) a multistage strategy, in which path optimizations are carried out for reference systems with gradually decreasing rigidity, is developed to maximize the opportunity of obtaining continuously changing environments along the path. We demonstrate the applicability of the approach using the acylation reaction of type A beta-lactamase as an example. The reaction mechanism investigated involves four elementary reaction steps, eight forming/breaking bonds. We obtained a continuous minimum energy path without any assumption on reaction coordinates, or on the possible sequence or the concertedness of chemical events. We expect our approach to have general applicability in the modeling of enzymatic reactions with quantum mechanical/molecular mechanical models. PMID:15267723

  8. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-12-28

    The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure is used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.

  9. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y.-H.; Johnson, S. R.

    2015-12-01

    The structural and optical properties of lattice-matched InAs0.911Sb0.089 bulk layers and strain-balanced InAs/InAs1-xSbx (x ˜ 0.1-0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure is used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and -380 and -367 meV for the valence band.

  10. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

    SciTech Connect

    Tan, Chunxia; Bu, Weifeng

    2014-11-15

    A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-type POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.

  11. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  12. Broad-band spectral energy distribution of 3000 Å break quasars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Schalldach, P.; Mirhosseini, A.; Pertermann, F.

    2016-03-01

    Context. In past decades, huge surveys have confirmed the existence of populations of exotic and hitherto unknown quasar types. The discovery and investigation of these rare peculiar objects is important because they may represent links to special evolutionary stages and hold clues to the evolution of quasars and galaxies. Aims: The Sloan Digital Sky Survey (SDSS) discovered the unusual quasars J010540.75-003313.9 and J220445.27+003141.8 and a small number of similar objects. Their spectra are characterised by a break in the continuum around 3000 Å that neither shows the typical structure of broad absorption line (BAL) troughs nor is explained by typical intrinsic dust reddening. The main aim of the present paper was twofold. First, a new target-oriented search was performed in the spectra database of the SDSS to construct a sizable sample of such 3000 Å break quasars. Second, their broad-band spectral energy distribution (SED) was compared with SEDs of BAL quasars. Methods: We used the method of Kohonen self-organising maps for data mining in the SDSS spectra archive to search for more quasars with properties comparable to the prototypes J010540.75-003313.9 and J220445.27+003141.8. We constructed a sample of 3000 Å break quasars and comparison samples of quasars with similar properties, to some extent, but also showing indications for typical BAL features. Particular attention was payed to a possible contamination by rare stellar spectral types, in particular DQ white dwarfs. We construct ensemble-averaged broad-band SEDs based on archival data from SDSS, GALEX, 2MASS, UKIDSS, WISE, and other surveys. The SEDs were corrected for dust absorption at the systemic redshifts of the quasars by the comparison with the average SED of normal quasars. Results: We compiled a list of 23 quasars classified as 3000 Å break quasars with properties similar to 010540.75-003313.9 and J220445.27+003141.8. Their de-reddened arithmetic median composite SED is indistinguishable

  13. A shock-tube determination of the CN ground state dissociation energy and electronic transition moments for the CN violet and red band systems

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Nicholls, R. W.

    1973-01-01

    The CN ground state dissociation energy and the sum of squares of the electronic transition moments of the CN violet bands have been simultaneously determined from spectral emission measurements behind incident shock waves. The unshocked test gases were composed of various CO2-CO-N2-Ar mixtures, and the temperatures behind the incident shocks ranged from 3500 to 8000 K. The variation of the electronic transition moment with internuclear separation was found to be small for both the CN violet and red band systems.

  14. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    SciTech Connect

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  15. Digestible energy values of feed ingredients with or without addition of enzymes complex in growing pigs.

    PubMed

    Cozannet, P; Preynat, A; Noblet, J

    2012-12-01

    The DE values and digestible nutrients content of 6 diets were measured in 60-kg male growing pigs fed restricted amount of feed. Diets were prepared from 5 ingredients [wheat (Triticum aestivum), corn (Zea mays), barley (Hordeum vulgare), wheat bran, and soybean (Glycine max) meal; inclusion levels of ingredients were not correlated] with or without carbohydrose enzyme (Rovabio Excel AP; 3300 endo-β-1,4-xylanase visco units and 300 endo-1,3(4)-β-glucanase units/kg of feed; 150 g/t of feed) according to a 6 × 2 factorial arrangement; dietary NDF ranged from 10.6 to 20.1% of DM. Pigs (5 per treatment) were placed in metabolism cages that allowed total collections of feces and urine for 10 d after a 11-d adaptation. Samples of feed, urine, and feces were analyzed for GE, ash, and N. Digestibility of GE, N, and OM were calculated. The effects of diet and enzyme (Enz) were evaluated by ANOVA. In addition, the DE and digestible nutrient contents of ingredients were calculated by regression of nutritive values of diets on level of ingredient inclusions. Apparent total tract digestibility of OM, N, and GE of diets were associated with dietary NDF content (r = -0.97; P < 0.001) and were increased (P < 0.05) by Enz addition by 0.4, 1.6, and 0.5%-units (a difference between two percentage values) for OM, N, and GE digestibility, respectively. Improvement in DE value due to Enz averaged 0.09 MJ/kg DM (15.11 vs. 15.02 MJ/kg DM; P < 0.05). The ADG (891 vs. 850 g/d; P < 0.05) was also increased by Enz addition. The calculated DE content without Enz addition averaged 16.3, 16.4, 14.9, 10.5, and 17.2 MJ/kg DM for wheat, corn, barley, wheat bran, and soybean meal, respectively. The Enz addition increased the DE value of ingredients similarly, but the best response was observed for wheat (0.33 MJ/kg DM). PMID:23365332

  16. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat

  17. Improvement of the quantum confined Stark effect characteristics by means of energy band profile modulation: The case of Gaussian quantum wells

    NASA Astrophysics Data System (ADS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2011-11-01

    We study the quantum confined stark effect (QCSE) characteristics in Gaussian quantum wells (GQW). This special energy band profile is built varying the aluminum concentration of the AlGaAs ternary alloy in Gaussian fashion. The semi-empirical sp3s* tight-binding model including spin is used to obtain the energy Stark shifts (ESS) and the wave-function Gaussian spatial overlap (GSO) between electrons and holes for different electric field strengths, quantum well widths and aluminum concentrations. We find that both the ESS and the GSO depend parabolically with respect to the electric field strength and the quantum well width. These QCSE characteristics show an asymmetry for the electric field in the forward and reverse directions, related directly to the different band-offset of electrons and holes, being the negative electric fields (reverse direction) more suitable to reach greater ESS. Two important features are presented by this special energy band profile: (1) reductions of the ESS and (2) enhancements of the GSO of tents to hundreds with respect to parabolic and rectangular quantum wells. Even more, tailoring the quantum well width it is possible to reach GSO of thousands with respect to rectangular quantum wells. Finally, it is important to mention that similar results could be obtained in other quantum well heterostructures of materials such as nitrides, oxides (ZnO), and SiGe whenever the confinement band profiles are modulated in Gaussian form.

  18. Pairwise additivity of energy components in protein-ligand binding: the HIV II protease-Indinavir case.

    PubMed

    Ucisik, Melek N; Dashti, Danial S; Faver, John C; Merz, Kenneth M

    2011-08-28

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ∼82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n=3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions. PMID:21895219

  19. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  20. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  1. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  2. Graph model for calculating the properties of saturated monoalcohols based on the additivity of energy terms

    NASA Astrophysics Data System (ADS)

    Grebeshkov, V. V.; Smolyakov, V. M.

    2012-05-01

    A 16-constant additive scheme was derived for calculating the physicochemical properties of saturated monoalcohols CH4O-C9H20O and decomposing the triangular numbers of the Pascal triangle based on the similarity of subgraphs in the molecular graphs (MGs) of the homologous series of these alcohols. It was shown, using this scheme for calculation of properties of saturated monoalcohols as an example, that each coefficient of the scheme (in other words, the number of methods to impose a chain of a definite length i 1, i 2, … on a molecular graph) is the result of the decomposition of the triangular numbers of the Pascal triangle. A linear dependence was found within the adopted classification of structural elements. Sixteen parameters of the schemes were recorded as linear combinations of 17 parameters. The enthalpies of vaporization L {298/K 0} of the saturated monoalcohols CH4O-C9H20O, for which there were no experimental data, were calculated. It was shown that the parameters are not chosen randomly when using the given procedure for constructing an additive scheme by decomposing the triangular numbers of the Pascal triangle.

  3. Theory of band comparison in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Buck, B.; Merchant, A. C.; Perez, S. M.

    2003-08-01

    We previously found that a cluster model reproduces satisfactorily the properties of normal deformed (ND) ground state and superdeformed (SD) excited bands in a wide range of even-even nuclei. We show here that the fractional change of the transition energies in two bands described by similar core-cluster configurations is closely related to the fractional change in the corresponding reduced masses. We compare our predictions to data on ground state ND bands for a series of light rare-earth and actinide isotopes, and on SD bands in the A˜150 and 190 regions. The model strongly suggests the existence of similar excited SD bands in 212Pb and 212Po, in addition to the observed α-cluster-like ND ground state bands of these nuclei.

  4. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  5. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2016-05-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  6. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  7. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  8. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  9. Focused ultrasound: relevant history and prospects for the addition of mechanical energy to the neurosurgical armamentarium.

    PubMed

    Christian, Eisha; Yu, Cheng; Apuzzo, Michael L J

    2014-01-01

    Although the concept of focused ultrasonography emerged more than 70 years ago, the need for a craniectomy obviated its development as a noninvasive technology. Since then advances in phased array transducers and magnetic resonance imaging technology have resurrected the ultrasound as a noninvasive therapeutic for a plethora of neurological conditions ranging from embolic stroke and intracranial hemorrhage to movement disorders and brain neoplasia. In the same way that stereotactic radiosurgery has fundamentally changed the scope and treatment paradigms of tumor and specifically skull base surgery, focused ultrasound has a similar potential to revolutionize the field of neurological surgery. In addition, focused ultrasound comes without the general complexity or the risks of ionizing radiation that accompany radiosurgery. As the quest for minimally invasive and noninvasive therapeutics continues to define the new neurosurgery, the focused ultrasound evolves to join the neurosurgical armamentarium. PMID:24952224

  10. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas

  11. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs/In(As,Sb) Type-II Superlattices

    DOE PAGESBeta

    Aytac, Y.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.; Flatté, M. E.; Boggess, T. F.

    2016-05-24

    A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entiremore » set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.« less

  12. Dielectric-dependent screened Hartree-Fock exchange potential and Slater-formula with Coulomb-hole interaction for energy band structure calculations.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2014-09-21

    We previously reported a screened Hartree-Fock (HF) exchange potential for energy band structure calculations [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009); T. Shimazaki and Y. Asai, J. Chem. Phys. 132, 224105 (2010)]. In this paper, we discuss the Coulomb-hole (COH) interaction and screened Slater-formula and determine the energy band diagrams of several semiconductors, such as diamond, silicon, AlAs, AlP, GaAs, GaP, and InP, based on the screened HF exchange potential and Slater-formula with COH interaction, to demonstrate the adequacy of those theoretical concepts. The screened HF exchange potential and Slater-formula are derived from a simplified dielectric function and, therefore, include the dielectric constant in their expressions. We also present a self-consistent calculation technique to automatically determine the dielectric constant, which is incorporated into each self-consistent field step. PMID:25240347

  13. Influence of Water Vapors and Hydrogen on the Energy Band Bending in the SnO2 Microcrystals of Polycrystalline Tin Dioxide Films

    NASA Astrophysics Data System (ADS)

    Gaman, V. I.; Almaev, A. V.; Sevast'yanov, E. Yu.; Maksimova, N. K.

    2015-06-01

    The results of studying the dependence of the energy band bending at the interface of contacting SnO2 microcrystals in the polycrystalline tin dioxide film on the humidity level of clean air and hydrogen concentration in the gas mixture of clean air + H2 are presented. The experimental results showed that the bending of energy bands in SnO2 is decreased under exposure to the water vapors and molecular hydrogen. The presence of two types of the adsorption centers for water molecules on the surface of SnO2 is found. It is shown that at the absolute humidity of the gas mixture above 12 g/m3, the H2O and H2 molecules are adsorbed on the same centers, whose surface density is of 1012 сm-2 at a concentration of donor impurity in SnO2 equal to 1018 сm-3.

  14. Characteristics of the energy bands and the spectroscopic parameters of Pr3+ ions in PrCl3 mixed methanol, iso-propanol and butanol solutions.

    PubMed

    Jana, Samar; Mitra, Subrata

    2011-12-01

    An investigation on the absorption spectra of the praseodymium chloride (PrCl(3)) in methanol, iso-propanol and butanol is carried out between 190 nm and 1100 nm. We have observed and assigned six energy bands of the 4f(2) electronic configuration of the Pr(3+) ion in the visible to near-infra-red and one due to 4f5d configuration in the ultraviolet region. The 4f5d band has been detected properly for low concentration of PrCl(3). We have also constructed a free-ion Hamiltonian and calculated the energy levels of the 4f(2) configuration theoretically. Hence, the best fit free-ion parameters are deduced. PMID:21840250

  15. Dielectric-dependent screened Hartree-Fock exchange potential and Slater-formula with Coulomb-hole interaction for energy band structure calculations

    NASA Astrophysics Data System (ADS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2014-09-01

    We previously reported a screened Hartree-Fock (HF) exchange potential for energy band structure calculations [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009); T. Shimazaki and Y. Asai, J. Chem. Phys. 132, 224105 (2010)]. In this paper, we discuss the Coulomb-hole (COH) interaction and screened Slater-formula and determine the energy band diagrams of several semiconductors, such as diamond, silicon, AlAs, AlP, GaAs, GaP, and InP, based on the screened HF exchange potential and Slater-formula with COH interaction, to demonstrate the adequacy of those theoretical concepts. The screened HF exchange potential and Slater-formula are derived from a simplified dielectric function and, therefore, include the dielectric constant in their expressions. We also present a self-consistent calculation technique to automatically determine the dielectric constant, which is incorporated into each self-consistent field step.

  16. Observation of mini-band formation in the ground and high-energy electronic states of super-lattice solar cells

    NASA Astrophysics Data System (ADS)

    Usuki, Takanori; Matsuochi, Kouki; Nakamura, Tsubasa; Toprasertpong, Kasidit; Fukuyama, Atsuhiko; Sugiyama, Masakazu; Nakano, Yoshiaki; Ikari, Tetsuo

    2016-03-01

    Multiple Quantum wells (MQWs) have been studied as one promising material for high-efficiency nextgeneration solar cells. However, a portion of photo-excited carriers recombine in MQWs, resulting in the degradation of cell performance. Super-lattice (SL) structures, where quantum states in neighboring quantum wells strongly couple with each other, have been proposed for the carrier collection improvement via the tunneling transport through mini-bands. Therefore, it is important to characterize mini-band formation in various types of SL structures. We examined p-i-n GaAs-based solar cells whose i layers contain 20 stacks of InGaAs/GaAsP MQW structures with 2.1-nm GaAsP barriers (thin-barrier cell), with 2.1-nm barriers and 3-nm GaAs interlayers in between GaAsP barriers and InGaAs wells (stepbarrier cell), and with 7.8-nm barriers (thick-barrier cell). We investigated the optical absorption spectra of the SL solar cells using piezoelectric photo-thermal (PPT) spectroscopy. In the thick-barrier cell, one exciton peak was observed near the absorption edge of MQWs. On the other hand, we confirmed a split of the exciton peak for the thin-barrier SL, suggesting the formation of mini-band. Moreover, in the step-barrier cell, the mini-band at the ground state disappears since thick GaAs interlayers isolate each quantum-well ground state and, instead, the mini-band formation of highenergy states could be observed. By estimating from the energy-level calculation, this is attributed to the mini-band formation of light-hole states. This can well explain the improvement of carrier collection efficiency (CCE) of the thinbarrier and the step-barrier cells compared with the thick-barrier cell.

  17. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  18. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  19. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    SciTech Connect

    Spackman, Peter R.; Karton, Amir

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  20. A reward band study of mallards to estimate band reporting rates

    USGS Publications Warehouse

    Henny, C.J.; Burnham, K.P.

    1976-01-01

    Reward bands ($10) were placed on 2,122 hatching-year mallards (Anas platyrhynchos), and an additional 11,490 received conventional bands (controls) to estimate band reporting rates. An analysis of band recoveries indicated that the reporting rate was dependent primarily upon three factors: (1) the distance banded birds were recovered from the banding site, (2) band collecting activities of conservation agencies (usually near banding sites), and ( 3) the intensity of banding effort in the region (frequency of banded birds in the population of the region). Reporting rates were uniformly depressed near the banding sites, but they showed an east-west cline at distances greater than 80 km from the banding sites. The reporting rate was highest in the west. Limited data on historical band reporting rates were compiled. Recommendations are given for adjusting band recoveries to account for the nonreporting of bands for 1957-73.

  1. Energy band gap and spectroscopic studies in Mn1-xCuxWO4 (0 ≤ x ≤ 0.125)

    NASA Astrophysics Data System (ADS)

    Mal, Priyanath; Rambabu, P.; Turpu, G. R.; Gupta, A. K.; Chakraborty, Brahmananda; Sen, Pintu; Das, Pradip

    2016-05-01

    A study on the effect of nonmagnetic Cu2+ substitution at Mn2+ site on the structural and energy band gap of the MnWO4 is reported. Convenient solid state reaction route has been adopted for the synthesis of Mn1-xCuxWO4. X-ray diffraction (XRD) pattern showed high crystalline quality of the prepared samples. Raman spectroscopic studies were carried out to understand the structural aspects of the doping. 15 Raman active modes were identified out of 18, predicted for wolframite type monoclinic structure of MnWO4. UV-visible diffuse reflectance spectra were recorded and analyzed to get energy band gap of the studied system and are found in the range of 2.5 eV to 2.04 eV with a systematic decrease with the increase in Cu2+ concentration. Energy band gap values are verified by Density Functional Theory calculations based on projector augmented wave (PAW) method. The calculated values are in good agreement with the experimental data.

  2. Microstructure evolution and energy band alignment at the interface of a Si-rich amorphous silicon carbide/c-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Wen, Xixing; Zeng, Xiangbin; Liao, Wugang; Wen, Yangyang; Chen, Xiaoxiao

    2015-11-01

    The microstructure evolution of Si-rich amorphous a-SiC:H films obtained under different annealing conditions was investigated by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The influence of its microstructure on the energy band alignment at a Si-rich a-SiC:H/n-type c-Si hetero-interface was analyzed by ultraviolet visible transmission spectroscopy and ultraviolet photoelectron spectroscopy. The results revealed that the as-deposited Si-rich a-SiC:H film was mainly in an amorphous state. After annealing, Si and SiC quantum dots (QDs) formed, and the crystallinity of the QDs and the proportion of SiC QDs increased with increasing the annealing time at the same annealing temperature. It is found that the energy band alignment at the hetero-interface was influenced by the crystallinity of the films, the sizes of the QDs, and the relative proportion of Si to SiC QDs in a-SiC:H films. Moreover, the contact potential at the hetero-interface decreased with the improved crystallinity of the QDs in a-SiC:H film. The determination of energy band alignment at the Si-rich a-SiC:H/c-Si hetero-interface is beneficial to understanding the carrier transport behavior and designing hetero-structure devices.

  3. Evidence for Temperature-Dependent Electron Band Dispersion in Pentacene

    SciTech Connect

    Koch,N.; Vollmer, A.; Salzmann, I.; Nickel, B.; Weiss, H.; Rabe, J.

    2006-01-01

    Evidence for temperature-dependent electron band dispersion in a pentacene thin film polymorph on graphite is provided by angle- and energy-dependent ultraviolet photoelectron spectroscopy. The bands derived from the highest occupied molecular orbital exhibit dispersion of {approx}190 meV at room temperature, and {approx}240 meV at 120 K. Intermolecular electronic coupling in pentacene thin films is thus confirmed to be dependent on temperature and possibly crystal structure, as suggested by additional infrared absorption measurements.

  4. Optical broad-band photometry and reference image for APMUKS(BJ) B215839.70-615403.9 / ASASSN-15lh from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Melchior, Peter; Drlica-Wagner, Alexander; Bechtol, Keith; Rykoff, Eli; Hartley, William; Dark Energy Survey Collaboration

    2015-07-01

    We report optical broad-band photometry of the host galaxy APMUKS(BJ) B215839.70-615403.9 of SLSN ASASSN-15lh (ATel #7642; Dong et al., arXiv:1507.03010). The images were obtained using the DECam imager on the Blanco 4-m telescope at NOAO's Cerro Tololo Inter-American Observatory during Year-2 observations of the Dark Energy Survey (DES). A preliminary reduction of the images was performed by the DES Data Management pipeline (Mohr et al. 2012, SPIE Conference Series, 84510D; Desai et al. 2012, ApJ, 757, 83). The photometry was measured using SExtractor with additional calibration via stellar locus regression to provide magnitude zero points with 2-3% calibration uncertainty for point sources (relative to 2MASS) and mildly increased uncertainties for extended sources. We fit the DES g-r, r-i, and i-z colors to a red-sequence model from redMaPPer (Rykoff et al. 2014, ApJ, 785, 104) and obtain a redshift 0.25±0.02, consistent with the spectroscopic redshift of z = 0.2326 (ATel #7774). Fixed to that redshift, the host photometry is fully consistent with a red-sequence galaxy. We combine photometry from DES grizY with VHS NIR (ATel #7776) and WISE IR and fit a linear combination of single stellar populations with a variety of ages. We find that the fit is dominated by an old (5 Gyr) component, consistent with those of elliptical galaxies. We further compare with dusty SEDs taken from the latest set of templates in EAZY (Brammer, van Dokkum & Coppi, 2008, ApJ, 686, 1503). The combined host photometry is not well described by any of the dusty templates.

  5. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  6. Energy and water additions give rise to simple responses in plant canopy and soil microclimates of a high arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick F.; Welker, Jeffrey M.; Steltzer, Heidi; Sletten, Ronald S.; Hagedorn, Birgit; Arens, Seth J. T.; Horwath, Jennifer L.

    2008-09-01

    Energy and water inputs were increased during the snow-free season to test the sensitivity of a cold, dry ecosystem to climate change. Infrared radiators were used to provide two levels of supplemental radiation (T1 and T2) to prostrate dwarf-shrub, herb tundra in northwest Greenland. The higher radiation addition was combined with supplemental water in a factorial design. Radiation additions increased midday canopy temperatures by up to 4.0°C and 6.0°C and growing season mean shallow soil temperatures by 1.3°C and 2.4°C in T1 and T2 plots, respectively. Soil warming was measured at and probably exceeded 10 cm in depth. There was no evidence of soil drying in plots that received additional radiation, in contrast with other studies, nor was there evidence that supplemental water interacted with radiation additions to affect soil temperatures. Water additions were generally undetectable against a background of large seasonal changes in soil water content. We suggest that well-drained soils and strong seasonal controls on soil water contents (e.g., soil thaw and evapotranspiration) limit the system's sensitivity to changes in precipitation during the brief growing season. In general, multifactor changes in climate gave rise to simple changes in the vegetation microclimate of this cold, dry ecosystem.

  7. An Innovative Anion Regulation Strategy for Energy Bands of Semiconductors: A Case from Bi2O3 to Bi2O(OH)2SO4

    PubMed Central

    Tian, Hao; Teng, Fei; Xu, Juan; Lou, Sunqi; Li, Na; Zhao, Yunxuan; Chen, Mindong

    2015-01-01

    How to develop a new, efficient photo catalyst is still a big challenge to us. A suitable band gap is the key for light absorption of semiconductor. Herein, an innovative anion intercalation strategy is, for the first time, developed to regulate the energy band of semiconductor. Typically, we introduce a layered sulfate compound (Bi2O(OH)2SO4) as a new photo catalyst, which has not been known before. Both partial density of states (PDOS) and total density of states (TDOS) have demonstrated that compared with Bi2O3 (2.85 eV), the band gap of Bi2O(OH)2SO4 has been widened to 4.18 eV by the intercalation of sulfate anion. Moreover, the band gap width of oxyacid salt compound is mainly predominated by the number of the outmost electrons (NOE) of central atom of anion. This study suggests that new photo catalysts can be developed by grouping anions with the existing oxides or sulfides. PMID:25597769

  8. An innovative anion regulation strategy for energy bands of semiconductors: a case from Bi2O3 to Bi2O(OH)2SO4.

    PubMed

    Tian, Hao; Teng, Fei; Xu, Juan; Lou, Sunqi; Li, Na; Zhao, Yunxuan; Chen, Mindong

    2015-01-01

    How to develop a new, efficient photo catalyst is still a big challenge to us. A suitable band gap is the key for light absorption of semiconductor. Herein, an innovative anion intercalation strategy is, for the first time, developed to regulate the energy band of semiconductor. Typically, we introduce a layered sulfate compound (Bi2O(OH)2SO4) as a new photo catalyst, which has not been known before. Both partial density of states (PDOS) and total density of states (TDOS) have demonstrated that compared with Bi2O3 (2.85 eV), the band gap of Bi2O(OH)2SO4 has been widened to 4.18 eV by the intercalation of sulfate anion. Moreover, the band gap width of oxyacid salt compound is mainly predominated by the number of the outmost electrons (NOE) of central atom of anion. This study suggests that new photo catalysts can be developed by grouping anions with the existing oxides or sulfides. PMID:25597769

  9. Dynamic quasi-energy-band modulation and exciton effects in biased superlattices driven by a two-color far-infrared field: Disappearance of dynamic localization

    NASA Astrophysics Data System (ADS)

    Yashima, Kenta; Hino, Ken-Ichi; Toshima, Nobuyuki

    2003-12-01

    A theoretical study of the optical and electronic properties of semiconductor superlattices in ac-dc fields, termed the dynamic Wannier-Stark ladder (DWSL), is done. The biased superlattices are driven by two far-infrared fields with different frequencies and relative phase of δ. Here, the frequency of the first laser is equal to the Bloch frequency ωB of the system under study, while that of the second laser is equal to 2ωB. Quasienergies of the DWSL are calculated based on the Floquet theorem, and the associated linear photoabsorption spectra are evaluated. For δ=0, a gourd-shaped quasi-energy structure characteristic of both dynamic localization (DL) and delocalization (DDL), similar to the usual DWSL driven by a single laser, appears. By changing the ratio of the two laser strengths, however, the width of the quasi-energy band and the locations of both DL and DDL vary noticeably. As for δ≠0, on the other hand, band collapse and the associated DL do not necessarily follow. In fact, DL vanishes and the quasi-energy degeneracy is lifted in a certain range of δ. Just DDL remains over the entire range of the laser strength, eventually resulting in a plateaulike band structure in the linear absorption spectra. The basic physics underlying this phenomenon, which can be readily interpreted in terms of a closed analytical expression, is that all quasi-energies for given crystal momenta are out of phase with each other as a function of laser strength without converging to a single point of energy. This is a feature of this DWSL which sharply distinguishes it from a conventional DWSL generated using a single laser to drive it. Furthermore, an exciton effect is incorporated with the above noninteracting problem, so that exciton dressed states are formed. It is found that this effect gives rise to more involved quasi-energy structures and a more pronounced release of the energy degeneracy of DL, leading again to the formation of a band structure in the absorption

  10. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  11. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  12. Octupole and hexadecapole bands in 152Sm

    SciTech Connect

    Garrett, P E; Kulp, W D; Wood, J L; Bandyopadhyay, D; Christen, S; Choudry, S; Dewald, A; Fitzler, A; Fransen, C; Jessen, K; Jolie, J; Kloezer, A; Kudejova, P; Kumar, A; Lesher, S R; Linnemann, A; Lisetskiy, A; Martin, D; Masur, M; McEllistrem, M T; Moller, O; Mynk, M; Orce, J N; Pejovic, P; Pissulla, T; Regis, J; Schiller, A; Tonev, D; Yates, S W

    2005-05-13

    The nucleus {sup 152}Sm is characterized by a variety of low-energy collective modes, conventionally described as rotations, {beta} vibrations, and {gamma} vibrations. Recently, it has been suggested that {sup 152}Sm is at a critical point between spherical and deformed collective phases. Consequently, {sup 152}Sm is being studied by a variety of techniques, including radioactive decay, multi-step Coulomb excitation, in-beam ({alpha},2n{gamma}) {gamma}-ray spectroscopy, and (n,n'{gamma}) spectroscopy. The present work focuses on the latter two reactions; these have been used to investigate the low-lying bands associated with the octupole degree of freedom, including one built on the first excited 0{sup +} band. In addition, the K{sup {pi}} = 4{sup +} hexadecapole vibrational band has been identified.

  13. Effect of high energy β-radiation and addition of triallyl isocyanurate on the selected properties of polylactide

    NASA Astrophysics Data System (ADS)

    Malinowski, Rafał

    2016-06-01

    Comparison of some changes occurring in polylactide (PLA) due to high energy β-radiation and addition of triallyl isocyanurate (TAIC) was the main objective of the present study. It was found that irradiation of PLA by high energy β-radiation causes essential changes in its properties, that undergoes mainly degradation, to form a porous structure. The PLA degradation can be diminished by introduction into the polymer matrix of a low-molecular mass multifunctional compound like TAIC. Upon the electron radiation, effective crosslinking of PLA by TAIC occurs. Application of TAIC favorably influences hindering of the PLA degradation or, when the doses are very large, diminishes worsening of the PLA functional qualities. It was also found that the optimum crosslinking of PLA is obtained when the electron radiation doses of the range of 40-200 kGy are applied and the amount of TAIC equal 3-5 wt% is used.

  14. Calcium Carbonate Nanoplate Assemblies with Directed High-Energy Facets: Additive-Free Synthesis, High Drug Loading, and Sustainable Releasing.

    PubMed

    Zhang, Jing; Li, Yu; Xie, Hao; Su, Bao-Lian; Yao, Bin; Yin, Yixia; Li, Shipu; Chen, Fang; Fu, Zhengyi

    2015-07-29

    Developing drug delivery systems (DDSs) with high drug-loading capacity and sustainable releasing is critical for long-term chemotherapeutic efficacy, and it still remains challenging. Herein, vaterite CaCO3 nanoplate assemblies with exposed high-energy {001} facets have been synthesized via a novel, additive-free strategy. The product shows a high doxorubicin-loading capacity (65%); the best of all the CaCO3-based DDSs so far. Also, the product's sustainable releasing performance and its inhibition of the initial burst release, together, endow it with long-term drug efficacy. The work may shed light on exposing directed high-energy facets for rationally designing of a drug delivery system with long-term efficacy. PMID:26161808

  15. Absence of a {open_quote}{open_quote}Threshold Effect{close_quote}{close_quote} in the Energy Loss of Slow Protons Traversing Large-Band-Gap Insulators

    SciTech Connect

    Eder, K.; Semrad, D.; Bauer, P.; Golser, R.; Maier-Komor, P.; Aumayr, F.; Penalba, M.; Arnau, A.; Ugalde, J.M.; Echenique, P.M.

    1997-11-01

    The electronic stopping cross section {var_epsilon} of slow hydrogen projectiles in large-band-gap insulators has been measured at energies of a few keV. Even at velocities as low as v{sub 0}/3 (v{sub 0}=c/137) , we find no influence of the band gap on the velocity dependence of {var_epsilon} , contrary to the case of gaseous targets with similar minimum excitation energy. The magnitude of {var_epsilon} and its essentially linear velocity dependence allow us to arrive at the following conclusion: Electron promotion processes contribute substantially to stopping due to formation of molecular orbitals. This points towards the existence of a bound electron state at a proton that moves slowly in an insulator. A simple model based on the calculation of molecular orbital correlation diagrams for the H/LiF collision system supports the idea of local reduction of the band gap of an insulating target. {copyright} {ital 1997} {ital The American Physical Society}

  16. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  17. Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity

    SciTech Connect

    Deshlahra, Prashant; Iglesia, Enrique

    2014-11-13

    The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via O–H dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the O–H bond formed, making H-addition energies (HAE) accurate and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form O–H bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures.

  18. The Addition of a Video Game to Stationary Cycling: The Impact on Energy Expenditure in Overweight Children.

    PubMed

    Haddock, Bryan L; Siegel, Shannon R; Wikin, Linda D

    2009-01-01

    INTRODUCTION: The prevalence of obesity in children has reached epidemic proportions with over 37% of children aged 6-11 years in the U.S. being classified as "at risk for overweight" or "overweight." Utilization of active video games has been proposed as one possible mechanism to help shift the tide of the obesity epidemic. PURPOSE: The purpose of this study was to determine if riding a stationary bike that controlled a video game would lead to significantly greater energy expenditure than riding the same bike without the video game connected. METHODS: Twenty children, 7-14 years old, with a BMI classification of "at risk for overweight" or "overweight" participated in this study. Following familiarization, energy expenditure was evaluated while riding a stationary bike for 20 minutes. One test was performed without the addition of a video game and one test with the bike controlling the speed of a car on the video game. RESULTS: Oxygen consumption and energy expenditure were significantly elevated above baseline in both conditions. Energy expenditure was significantly higher while riding the bike as it controlled the video game (4.4 ± 1.2 Kcal·min(-1)) than when riding the bike by itself (3.7 ± 1.1 Kcal·min(-1)) (p<0.05). Perceived exertion was not significantly different between the two sessions (p>0.05). CONCLUSION: Using a stationary bike to control a video game led to greater energy expenditure than riding a stationary bike without the video game and without a related increase in perceived exertion. PMID:19946380

  19. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  20. Band effects on inelastic scattering of low-energy ions from metallic and ionic surfaces: A formalism beyond the adiabatic molecular-orbitals calculation

    NASA Astrophysics Data System (ADS)

    García, Evelina A.; Goldberg, E. C.

    1998-03-01

    Charge exchange and inelastic excitation processes have been analyzed in the scattering of low-energy He+ from metallic and ionic surfaces. An Anderson-like Hamiltonian is proposed, where the parameters are defined taking into account the electronic band structure of the surface as well as the atomic nature of the interaction between the projectile and the target atoms. The time-dependent collisional process is solved by using a Green-function formalism, which allows us to calculate not only the charge-state probabilities but also the one-electron interband excitations in the solid. Competitive effects of the hybridizations among the localized state at the projectile site and the localized and extended surface states are contemplated. In this way we can explain the observed energy dependences of the neutralization probability, as well as the occurrence of energy-loss processes due to the excitation of valence and core surface electrons induced by the collision.

  1. Work function contrast and energy band modulation between amorphous and crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films

    SciTech Connect

    Tong, H.; Yang, Z.; Yu, N. N.; Zhou, L. J.; Miao, X. S.

    2015-08-24

    The work function (WF) is of crucial importance to dominate the carrier transport properties of the Ge-Sb-Te based interfaces. In this letter, the electrostatic force microscopy is proposed to extract the WF of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) films with high spatial and energy resolution. The measured WF of as-deposited amorphous GST is 5.34 eV and decreases drastically after the amorphous GST is crystallized by annealing or laser illumination. A 512 × 512 array 2D-WF map is designed to study the WF spatial distribution and shows a good consistency. The WF contrast between a-GST and c-GST is ascribed to band modulation, especially the modification of electron affinity including the contribution of charges or dipoles. Then, the band alignments of GST/n-Si heterostructures are obtained based on the Anderson's rule. Due to the band modulation, the I-V characteristics of a-GST/Si heterojunction and c-GST/Si heterojunction are very different from each other. The quantitative relationship is calculated by solving the Poisson's equation, which agrees well with the I-V measurements. Our findings not only suggest a way to further understand the electrical transport properties of Ge-Sb-Te based interfaces but also provide a non-touch method to distinguish crystalline area from amorphous matrix with high spatial resolution.

  2. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  3. Addition-Elimination or Nucleophilic Substitution? Understanding the Energy Profiles for the Reaction of Chalcogenolates with Dichalcogenides.

    PubMed

    Bortoli, Marco; Wolters, Lando P; Orian, Laura; Bickelhaupt, F Matthias

    2016-06-14

    We have quantum chemically explored the mechanism of the substitution reaction between CH3X(-) and the homo- and heterodichalcogenides CH3X'X″CH3 (X, X', X″ = S, Se, Te) using relativistic density functional theory at ZORA-OLYP/TZ2P and COSMO for simulating the effect of aqueous solvation. In the gas phase, all substitution reactions proceed via a triple-well addition-elimination mechanism that involves a stable three-center intermediate. Aqueous solvation, in some cases, switches the character of the mechanism to double-well SN2 in which the stable three-center intermediate has become a labile transition state. We rationalize reactivity trends and some puzzling aspects of these elementary reactions, in particular, vanishing activation energies and ghost three-center intermediates, using the activation strain model (ASM). PMID:27096625

  4. A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.

    PubMed

    Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto

    2015-02-15

    Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. PMID:25516550

  5. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  6. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  7. Multifaceted Regioregular Oligo(thieno[3,4-b]thiophene)s Enabled by Tunable Quinoidization and Reduced Energy Band Gap.

    PubMed

    Liu, Feng; Espejo, Guzmán L; Qiu, Shuhai; Oliva, María Moreno; Pina, João; Seixas de Melo, J Sérgio; Casado, Juan; Zhu, Xiaozhang

    2015-08-19

    Thiophene-based materials have occupied a crucial position in the development of organic electronics. However, the energy band gaps of oligo- and polythiophenes are difficult to modulate without resorting to push-pull electronic effects. We describe herein a new series of monodisperse oligo(thieno[3,4-b]thiophene) derivatives with well-defined regioregular structures synthesized efficiently by direct C-H arylation. These compounds show a unique palette of colors and amphoteric redox properties with widely tunable energy band gaps. The capacity to stabilize both cations and anions results in both anodic and cathodic electrochromism. Under excitation, these compounds can produce photoionized states able to interconvert into neutral triplet or form these through singlet exciton fission or intersystem crossing. These features arise from a progressive increase in quinoidization on a fully planar platform making the largest effective conjugation length among hetero-oligomers. Oligo(thieno[3,4-b]thiophene)s might represent the more distinctive family of oligothiophenes of this decade. PMID:26186503

  8. A Route to Phase Controllable Cu2ZnSn(S1−xSex)4 Nanocrystals with Tunable Energy Bands

    PubMed Central

    Ji, Shulin; Shi, Tongfei; Qiu, Xiaodong; Zhang, Jian; Xu, Guoping; Chen, Chao; Jiang, Zheng; Ye, Changhui

    2013-01-01

    Cu2ZnSn(S1−xSex)4 nanocrystals are an emerging family of functional materials with huge potential of industrial applications, however, it is an extremely challenging task to synthesize Cu2ZnSn(S1−xSex)4 nanocrystals with both tunable energy band and phase purity. Here we show that a green and economic route could be designed for the synthesis of Cu2ZnSn(S1−xSex)4 nanocrystals with bandgap tunable in the range of 1.5–1.12 eV. Consequently, conduction band edge shifted from −3.9 eV to −4.61 eV (relative to vacuum energy) is realized. The phase purity of Cu2ZnSn(S1−xSex)4 nanocrystals is substantiated with in-depth combined optical and structural characterizations. Electrocatalytic and thermoelectric performances of Cu2ZnSn(S1−xSex)4 nanocrystals verify their superior activity to replace noble metal Pt and materials containing heavy metals. This green and economic route will promote large-scale application of Cu2ZnSn(S1−xSex)4 nanocrystals as solar cell materials, electrocatalysts, and thermoelectric materials. PMID:24061108

  9. A route to phase controllable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals with tunable energy bands.

    PubMed

    Ji, Shulin; Shi, Tongfei; Qiu, Xiaodong; Zhang, Jian; Xu, Guoping; Chen, Chao; Jiang, Zheng; Ye, Changhui

    2013-01-01

    Cu2ZnSn(S(1-x)Se(x))4 nanocrystals are an emerging family of functional materials with huge potential of industrial applications, however, it is an extremely challenging task to synthesize Cu2ZnSn(S(1-x)Se(x))4 nanocrystals with both tunable energy band and phase purity. Here we show that a green and economic route could be designed for the synthesis of Cu2ZnSn(S(1-x)Se(x))4 nanocrystals with bandgap tunable in the range of 1.5-1.12 eV. Consequently, conduction band edge shifted from -3.9 eV to -4.61 eV (relative to vacuum energy) is realized. The phase purity of Cu2ZnSn(S(1-x)Se(x))4 nanocrystals is substantiated with in-depth combined optical and structural characterizations. Electrocatalytic and thermoelectric performances of Cu2ZnSn(S(1-x)Se(x))4 nanocrystals verify their superior activity to replace noble metal Pt and materials containing heavy metals. This green and economic route will promote large-scale application of Cu2ZnSn(S(1-x)Se(x))4 nanocrystals as solar cell materials, electrocatalysts, and thermoelectric materials. PMID:24061108

  10. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.

    PubMed

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-14

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases. PMID:27083708

  11. A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system.

    PubMed

    Muhammad, Fahmi F; Yahya, Mohd Yazid; Ketuly, Kamal Aziz; Muhammad, Abdulkader Jaleel; Sulaiman, Khaulah

    2016-12-01

    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33eV to 1.83eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π-π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry. PMID:27372510

  12. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-01

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.

  13. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    SciTech Connect

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele; Mucollari, Irena; Pupillo, Gaia; Sisini, Francesco; Taibi, Angelo; Gambaccini, Mauro

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult with traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.

  14. Broad-band modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    NASA Astrophysics Data System (ADS)

    Gompertz, B. P.; van der Horst, A. J.; O'Brien, P. T.; Wynn, G. A.; Wiersema, K.

    2015-03-01

    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broad-band spectrum are not well explored. We investigate the broad-band modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multiwavelength observations for each burst. The application of the magnetar energy injection profile restricts the successful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework. We produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked given the restrictions imposed by the available data, and discuss the detectability of these signatures with present-day and near-future radio telescopes. Our results show that both the Atacama Large Millimeter Array (ALMA) and the upgraded Very Large Array are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometre Array will be sensitive to depths greater than those of our lower limit predictions.

  15. Interband interaction between bulk and surface resonance bands of a Pb-adsorbed Ge(001) surface

    NASA Astrophysics Data System (ADS)

    Sakata, Tomohiro; Takeda, Sakura N.; Kitagawa, Kosuke; Daimon, Hiroshi

    2016-08-01

    We investigated the valence band structure of a Pb-adsorbed Ge(001) surface by angle-resolved photoelectron spectroscopy. Three Ge bands, G1, G2, and G3, were observed in a Ge(001) 2 × 1 clean surface. In addition to these three bands, a fourth band (R band) is found on the surface with 2 ML of Pb. The R band continuously appeared even when the surface superstructure was changed. The position of the R band does not depend on Pb coverage. These results indicate that the R band derives from Ge subsurface states, known as surface resonance states. Furthermore, the effective mass of G3 is significantly reduced when the R band exists. We found that this reduction of G3 effective mass was explained by the interaction of the G3 and R bands. Consequently, the surface resonance band is considered to penetrate into the Ge subsurface region affecting the Ge bulk states. We determine the hybridization energy to be 0.068 eV by fitting the observed bands.

  16. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand

    2015-09-01

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α =0.0 ) and HSE06 (α =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been

  17. FERMI OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES

    SciTech Connect

    Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E. E-mail: sylvain.guiriec@lpta.in2p3.f E-mail: ohno@astro.isas.jaxa.j

    2010-06-20

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E{sub peak} = 3.9 {+-} 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 {+-} 0.03 that dominates the emission below {approx}20 keV and above {approx}100 MeV. The onset of the high-energy spectral component appears to be delayed by {approx}0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5{sup +5.8}{sub -2.6} GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, {Gamma}{approx_gt} 1200, using simple {gamma}{gamma} opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the {approx}100 keV-few MeV flux. Stricter high confidence estimates imply {Gamma} {approx_gt} 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  18. Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-06-01

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈20 keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γgsim 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ >~ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  19. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  20. Theoretical study on electronic structure of bathocuproine: Renormalization of the band gap in the crystalline state and the large exciton binding energy

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu; Hatada, Shin-No-Suke; Morikawa, Yoshitada

    Bathocuproine (BCP) is a promising organic material of a hole blocking layer in organic light-emitting diodes or an electron buffer layer in organic photovoltaic cells. The nature of the unoccupied electronic states is a key characteristic of the material, which play vital roles in the electron transport. To elucidate the electronic properties of the molecular or crystalline BCP, we use the GW approximation for calculation of the fundamental gap, and the long-range corrected density functional theory for the molecular optical absorption. It is found that the band gap of the BCP single crystal is 4.39 eV, and it is in agreement with the recent low-energy inverse photoemission spectroscopy measurement. The polarization energy is estimated to be larger than 1 eV, demonstrating the large polarization effects induced by the electronic clouds surrounding the injected charge. The theoretical optical absorption energy is 3.68 eV, and the exciton binding energy is estimated to be 0.71 eV, implying the large binding in the eletron-hole pair distributed around the small part of the molecular region. This work was supported by the Grants-in-Aid for Young Scientists (B) (No. 26810009), and for Scientific Research on Innovative Areas ``3D Active-Site Science'' (No. 26105011) from Japan Society for the Promotion of Science.

  1. Time-resolved absorption changes of the pheophytin Q{sub x} band in isolated photosystem II reaction centers at 7K : energy transfer and charge separation.

    SciTech Connect

    Greenfield, S. R.; Seibert, M.; Wasielewski, M. R.; Chemistry; LANL; NREL; Northwestern Univ.

    1999-09-30

    The pheophytin {alpha} Q{sub x} spectral region of the isolated photosystem II reaction center was investigated at 7 K using femtosecond transient absorption spectroscopy. At this temperature, uphill energy transfer, which greatly complicates the interpretation of the kinetics at or near room temperature, should be essentially shut off. Low-energy ({approx}100 nJ) pulses at 661 and 683 nm were used to excite the short-wavelength and long-wavelength sides of the composite Q{sub y} band, providing preferential excitation of the accessory pigment pool and P680, respectively. The data analysis uses a background subtraction technique developed earlier (Greenfield et al. J. Phys. Chem. B 1997, 101, 2251-2255) to remove the kinetic components of the data that are due to the large time-dependent changes in the background that are present in this spectral region. The instantaneous amplitude of the bleach of the pheophytin {alpha} Q{sub x} band with 683 nm excitation is roughly two-thirds of its final amplitude, providing strong evidence of a multimer description of the reaction center core. The subsequent growth of the bleach shows biphasic kinetics, similar to our earlier results at 278 K. The rate constant of the faster component is (5 ps){sup -1} for 683 nm excitation (a factor of almost two faster than at 278 K), and represents the intrinsic rate constant for charge separation. The bleach growth with 661 nm excitation is also biphasic; however, the faster component appears to be a composite of a (5 ps){sup -1} component corresponding to charge separation following subpicosecond energy transfer to the long-wavelength pigments and a roughly (22 ps){sup -1} component corresponding to charge separation limited by slow energy transfer. The combined quantum yield for these two energy transfer processes is near unity. For both excitation wavelengths, there is also a roughly (100 ps){sup -1} component to the bleach growth. Exposure to high excitation energies ({>=}1 {mu}J) at

  2. Time-resolved absorption changes of the pheophytin Q{sub x} band in isolated photosystem II reaction centers at 7 K: Energy transfer and charge separation

    SciTech Connect

    Greenfield, S.R.; Seibert, M.; Wasielewski, M.R.

    1999-09-30

    The pheophytin a Q{sub x} spectral region of the isolated photosystem II reaction center was investigated at 7 K using femtosecond transient absorption spectroscopy. At this temperature, uphill energy transfer, which greatly complicates the interpretation of the kinetics at or near room temperature, should be essentially shut off. Low-energy ({approximately}100 nJ) pulses at 661 and 683 nm were used to excite the short-wavelength and long-wavelength sides of the composite Q{sub y} band, providing preferential excitation of the accessory pigment pool and P680, respectively. The data analysis uses a background subtraction technique developed earlier (Greenfield et al. J. Phys. Chem. B 1997, 101, 2251--2255) to remove the kinetic components of the data that are due to the large time-dependent changes in the background that are present in this spectral region. The instantaneous amplitude of the bleach of the pheophytin a Q{sub x} band with 683 nm excitation is roughly two-thirds of its final amplitude, providing strong evidence of a multimer description of the reaction center core. The subsequent growth of the bleach shows biphasic kinetics, similar to the earlier results at 278 K. The rate constant of the faster component is (5 ps){sup {minus}1} for 683 nm excitation (a factor of almost two faster than at 278 K), and represents the intrinsic rate constant for charge separation. The bleach growth with 661 nm excitation is also biphasic; however, the faster component appears to be a composite of a (5 ps){sup {minus}1} component corresponding to charge separation following subpicosecond energy transfer to the long-wavelength pigments and a roughly (22 ps){sup {minus}1} component corresponding to charge separation limited by slow energy transfer. The combined quantum yield for these two energy transfer processes is near unity. For both excitation wavelengths, there is also a roughly (100 ps){sup {minus}1} component to the bleach growth. Exposure to high excitation

  3. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    SciTech Connect

    Meevasana, Warawat

    2010-05-26

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO{sub 3} (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La{sub 2}CuO{sub 4} by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO{sub 3}. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a {lambda}{prime} {approx} 0.3 and an overall bandwidth renormalization suggesting an overall {lambda}{prime} {approx} 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  4. First-principles energy band calculation of Ruddlesden-Popper compound Sr3Sn2O7 using modified Becke-Johnson exchange potential

    NASA Astrophysics Data System (ADS)

    Kamimura, Sunao; Obukuro, Yuki; Matsushima, Shigenori; Nakamura, Hiroyuki; Arai, Masao; Xu, Chao-Nan

    2015-12-01

    The electronic structure of Sr3Sn2O7 is evaluated by the scalar-relativistic full potential linearized augmented plane wave (FLAPW+lo) method using the modified Becke-Johnson potential (Tran-Blaha potential) combined with the local density approximation correlation (MBJ-LDA). The fundamental gap between the valence band (VB) and conduction band (CB) is estimated to be 3.96 eV, which is close to the experimental value. Sn 5s states and Sr 4d states are predominant in the lower and upper CB, respectively. On the other hand, the lower VB is mainly composed of Sn 5s, 5p, and O 2p states, while the upper VB mainly consists of O 2p states. These features of the DOS are well reflected by the optical transition between the upper VB and lower CB, as seen in the energy dependence of the dielectric function. Furthermore, the absorption coefficient estimated from the MBJ-LDA is similar to the experimental result.

  5. Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Shin, Dongguen; Lee, Jeihyun; Park, Soohyung; Jeong, Junkyeong; Seo, Ki-Won; Kim, Hyo-Joong; Kim, Han-Ki; Choi, Min-Jun; Chung, Kwun-Bum; Yi, Yeonjin

    2015-09-01

    The interfacial energy level alignments between poly(thieno[3,4-b]-thiophene)-co-benzodithiophene (PTB7) and indium zinc oxide (IZO) were investigated. In situ ultraviolet photoemission spectroscopy measurements were conducted with the step-by-step deposition of PTB7 on IZO substrate. All spectral changes were analyzed between each deposition step, and interfacial energy level alignments were estimated. The hole barrier of standard ultraviolet-ozone treated IZO is 0.58 eV, which is lower than the value of 1.09 eV obtained for bare IZO. The effect of barrier reduction on the hole transport was also confirmed with electrical measurements of hole-dominated devices.

  6. Gamma-Ray Bursts in the One of the Last Frontiers: the 10-100 GeV Energy Band

    NASA Astrophysics Data System (ADS)

    Tam, P. H. Thomas

    2016-07-01

    Thanks to many space-borne detectors such as the Swift and Fermi satellites and numerous ground-based followed-up telescopes, gamma-ray bursts (GRBs) are now quickly covered in virtually every wavelength in the electromagnetic spectrum. Covering the energy range above 30 MeV, the Fermi-LAT has seen more than a hundred GRBs and have seen tens of photons above 10 GeV from several bright GRBs, limited by its collective area. In this talk, I will review recent GRB observations at >10 GeV up to nearly a day after the burst, including that of GRB 130427A and some recent GRBs, and discuss the corresponding radiation mechanisms in the afterglow at these energies.

  7. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    NASA Astrophysics Data System (ADS)

    Koh, Meng-Hock; Duy Duc, Dao; Nhan Hao, T. V.; Thuy Long, Ha; Quentin, P.; Bonneau, L.

    2016-01-01

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed.

  8. Energy band structure calculations based on screened Hartree-Fock exchange method: Si, AlP, AlAs, GaP, and GaAs.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro

    2010-06-14

    The screening effect on the Hartree-Fock (HF) exchange term plays a key role in the investigation of solid-state materials by first-principles electronic structure calculations. We recently proposed a novel screened HF exchange potential, in which the inverse of the dielectric constant represents the fraction of the HF exchange term incorporated into the potential. We demonstrated that this approach can be used to reproduce the energy band structure of diamond well [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009)]. In the present paper, we report that the screened HF exchange method is applicable to other semiconductors such as silicon, AlP, AlAs, GaP, and GaAs. PMID:20550388

  9. Preparation of nanofibers consisting of MnO/Mn3O4 by using the electrospinning technique: the nanofibers have two band-gap energies

    NASA Astrophysics Data System (ADS)

    Barakat, Nasser A. M.; Woo, Kee-Do; Ansari, S. G.; Ko, Jung-Ahn; Kanjwal, Muzafar A.; Kim, Hak Yong

    2009-06-01

    In the present study, nanofibers consisting of manganese monoxide (MnO), which is hard to prepare because of the chemical activity of the manganese metal, and the popular Mn3O4 have been synthesized via the electrospinning technique. The nanofibers were obtained by electrospinning of an aqueous sol-gel consisting of manganese acetate tetra-hydrate and poly(vinyl alcohol). The obtained nanofiber mats were dried in vacuum at 80°C for 24 h and then calcined in argon atmosphere at 900°C for 5 h. According to X-ray diffraction results, the obtained nanofibers contain 65% MnO. Transmission electron microscope analysis reveals good crystallinity of the produced nanofibers. UV-visible spectroscopic analysis has indicated that the produced nanofibers have two band-gap energies, 2 and 3.7 eV, which enhances utilizing of the nanofibers in different applications.

  10. Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective.

    PubMed

    Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2016-04-20

    Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%. PMID:27020395

  11. On the additional information content of hyperspectral remote sensing data for estimating ecosystem carbon dioxde and energy exchange

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Hammerle, Albin; Tomelleri, Enrico

    2015-04-01

    Radiation reflected back from an ecosystem carries a spectral signature resulting from the interaction of radiation with the vegetation canopy and the underlying soil and thus allows drawing conclusions about the structure and functioning of an ecosystem. When this information is linked to a model of the leaf CO2 exchange, the ecosystem-scale CO2 exchange can be simulated. A well-known and very simplistic example for this approach is the light-use efficiency (LUE) model proposed by Monteith which links the flux of absorbed photosynthetically active radiation times a LUE parameter, both of which may be estimated based on remote sensing data, to predict the ecosystem gross photosynthesis. Here we explore the ability of a more elaborate approach by using near-surface remote sensing of hyperspectral reflected radiation, eddy covariance CO2 and energy flux measurements and a coupled radiative transfer and soil-vegetation-atmosphere-transfer (SVAT) model. Our main objective is to understand to what degree the joint assimilation of hyperspectral reflected radiation and eddy covariance flux measurements into the model helps to better constrain model parameters. To this end we use the SCOPE model, a combination of the well-known PROSAIL model and a SVAT model, and the Bayesian inversion algorithm DREAM. In order to explicitly link reflectance in the visible light and the leaf CO2 exchange, a novel parameterisation of the maximum carboxylation capacity parameter (Vcmax) on the leaf a+b chlorophyll content parameter of PROSAIL is introduced. Results are discussed with respect to the additional information content the hyperspectral data yield for simulating canopy photosynthesis.

  12. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for heating and cooling (see § 450.35 of 10 CFR part 450 (1980)). (7) The impact of increased demand... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of...

  13. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for heating and cooling (see § 450.35 of 10 CFR part 450 (1980)). (7) The impact of increased demand... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of...

  14. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for heating and cooling (see § 450.35 of 10 CFR part 450 (1980)). (7) The impact of increased demand... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of...

  15. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for heating and cooling (see § 450.35 of 10 CFR part 450 (1980)). (7) The impact of increased demand... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of...

  16. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for heating and cooling (see § 450.35 of 10 CFR part 450 (1980)). (7) The impact of increased demand... approved list of energy-conserving components or renewable energy sources. 1.23-6 Section 1.23-6 Internal... During A Taxable Year § 1.23-6 Procedure and criteria for additions to the approved list of...

  17. Integrated Autopilot/Autothrottle Based on a Total Energy Control Concept: Design and Evaluation of Additional Autopilot Modes

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1988-01-01

    An integrated autopilot/autothrottle system was designed using a total energy control design philosophy. This design ensures that the system can differentiate between maneuvers requiring a change in thrust to accomplish a net energy change, and those maneuvers which only require elevator control to redistribute energy. The system design, the development of the system, and a summary of simulation results are defined.

  18. TDRS Ku band gateway

    NASA Technical Reports Server (NTRS)

    Collins, Cynthia; Lecha, Javier; Principe, Caleb M.; Ross, Douglas

    1987-01-01

    The Wideband Transport Frame Formatter (WTFF) is the tracking and data relay satellite (TDRS) ku-band return link gateway. The WTFF system is a multiplexing device developed to process and downlink the high rate data generated by a wide variety of users. The WTFF is designed to frame and format high data rate user channels into transport frames and multiplex according to a predefined schedule into two bit streams that are compatible with TDRS Ku I and Q band service. The combined data rate will be 300 Mbps. The WTFF will service up to eight input channels generating data in the range of 10 to 150 Mbps. In addition to these input channels, audio data will be accepted by the WTFF system and inserted in the downlink. A second function of the WTFF is to provide telecommunication coding as assigned to each virtual channel to ensure a given quality of service.

  19. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  20. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  1. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  2. Density dependence of the conduction-band energy {ital V}{sub 0} of excess electrons in fluid xenon

    SciTech Connect

    Frongillo, Y.; Plenkiewicz, B.; Jay-Gerin, J.

    1996-05-01

    The ground-state energy {ital V}{sub 0} (relative to vacuum) of quasifree excess electrons in fluid xenon is calculated as a function of fluid density {ital n}. The calculations are performed within the framework of the Wigner-Seitz mean-field approximation for nonpolar fluids, using an accurate atomic pseudopotential to model the excess electron-xenon interaction. The calculated values of {ital V}{sub 0}({ital n}) are compared to experimental data and with other theoretical results. {copyright} {ital 1996 The American Physical Society.}

  3. Nonzero Quadrupole Moments of Candidate Tetrahedral Bands

    SciTech Connect

    Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.

    2010-01-15

    Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.

  4. Decay from the superdeformed bands in {sup 194}Hg

    SciTech Connect

    Henry, R.G.; Khoo, T.L.; Carpenter, M.P.

    1995-08-01

    Superdeformed bands in {sup 194}H g were studied using the early implementation of Gammasphere. The response functions for the Ge detectors were measured for the first time as part of this experiment. Experiments were performed with both a backed target (where the residue stopped in the Au backing) and a thin target (where the residue recoiled into vacuum). This will permit measurements of the decay times of the quasicontinuum {gamma}rays. The spectrum in coincidence with the yrast SD band in {sup 194}Hg reveals the same features as found in the quasicontinuum structure in {sup 192}Hg. These features include: statistical {gamma}rays feeding the SD band, a pronounced E2 peak from transitions feeding the SD band, a Ml/E2 bump at low energies that is associated with the last stages of feeding of the superdeformed band, and a quasicontinuous distribution from {gamma}rays linking SD and normal states, including a sizable clustering of strength around 1.7 MeV. The remarkable similarity of the spectra coincident with SD bands in {sup 192,194}Hg provides additional support for a statistical process for decay out of the SD states. This similarity contrasts with differences observed in the spectrum coincident with the SD band in the odd-even {sup 191}Hg, confirming the predictions about the role of pairing (in normal states) in influencing the shape of the decay-out spectrum.

  5. Density functional theory studies of structural properties, energies and natural band orbital for two new aluminate compounds

    NASA Astrophysics Data System (ADS)

    Sahebalzamani, Hajar; Ghammamy, Shahriare; Mehrani, Kheyrollah; Jahandide, Shahram; Salimi, Farshid

    2012-05-01

    Two new aluminate compounds was prepared by the reaction of AlCl3 with KX (X = SCN-, CN-) in a 1:1 mole ratio. In these salts the aluminum atom is surrounded by three chlorine atoms and a ligand (X = SCN-, CN-). In AlCl3SCN anion, the SCN coordinates to the Al through sulfur and AlCl3CN anion the CN- coordinates to the Al center through carbon. The molecular geometry, vibrational frequencies, energies and natural bond orbital (NBO) in the ground state are calculated by using the DFT (B3LYP) methods with 6-311G* basis sets. The geometries and normal modes of vibrations obtained from B3LYP calculations are in good agreement with the experimentally observed data.

  6. Obituary: David L. Band (1957-2009)

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn

    2011-12-01

    two new follow-up missions to CGRO, the Swift and Fermi observatories, Band seized an opportunity in 2001 to join the staff of the Fermi Science Support Center at the NASA Goddard Space Flight Center in Greenbelt Maryland. He was hired as the lead scientist for user support functions and to help to define and implement planning for the 2008 launch of the Fermi spacecraft. He brought a high level of energy and enthusiasm to the job, becoming in many ways the heart and soul of that organization. Neil Gehrels, the Goddard Astroparticle Physics Division Director and a Fermi deputy project scientist notes that "David was the perfect person for community support, with this outgoing personality and deep knowledge of astrophysics." Band also became an important member of the Fermi science team; despite his failing health, he actively contributed to the first Fermi gamma-ray burst publication as well as making important contributions to the burst detection and data analysis techniques. Additionally, Band was known as a great communicator and mentor. He supervised a PhD student at UCSD who has subsequently been appointed to a faculty position. At Goddard, Band was an integral part of the weekly scientific discussion groups within the gamma-ray astronomy group and he would always find the time to share his knowledge and expertise with new postdoctoral fellows and senior scientists alike. He was also involved with planning the EXIST mission, a candidate for a future NASA mission. He will be greatly missed by his many friends and colleagues within the Fermi mission and the high-energy astrophysics community.

  7. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.

    PubMed

    Peng, Xiang; Mielke, Michael; Booth, Timothy

    2011-01-17

    We demonstrate high average power, high energy 1.55 μm ultra-short pulse (<1 ps) laser delivery using helium-filled and argon-filled large mode area hollow core photonic band-gap fibers and compare relevant performance parameters. The ultra-short pulse laser beam-with pulse energy higher than 7 μJ and pulse train average power larger than 0.7 W-is output from a 2 m long hollow core fiber with diffraction limited beam quality. We introduce a pulse tuning mechanism of argon-filled hollow core photonic band-gap fiber. We assess the damage threshold of the hollow core photonic band-gap fiber and propose methods to further increase pulse energy and average power handling. PMID:21263632

  8. Mars Global Surveyor Ka-Band Frequency Data Analysis

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    for the feed and electronics equipment. A dichroic plate is used to reflect the X-band energy and pass the Ka-band energy to another mirror. The RF energy for each band is then focused onto a feed horn and low-noise amplifier package. After amplification and RF/IF downconversion, the IF signals are sent to the Experimental Tone Tracker (ETT), a digital phase-lock-loop receiver, which simultaneously tracks both X-band and Ka-band carrier signals. Once a signal is detected, the ETT outputs estimates of the SNR in a I -Hz bandwidth (Pc/No), baseband phase and frequency of the signals every I -sec. Between December 1996 and December 1998, the Ka-band and X-band signals from MGS were tracked on a regular basis using the ETT. The Ka-band downlink frequencies described here were referenced to the spacecraft's on-board USO which was also the X-band frequency reference (fka= 3.8 fx). The ETT estimates of baseband phase at I -second sampled time tags were converted to sky frequency estimates. Frequency residuals were then generated for each band by removing a model frequency from each observable frequency at each time tag. The model included Doppler and other effects derived from spacecraft trajectory files obtained from the MGS Navigation Team. A simple troposphere correction was applied to the data. In addition to residuals, the USO frequencies emitted by the spacecraft were estimated. For several passes, the USO frequencies were determined from X-band data and from Ka-band data (referred to X-band by dividing by 3.8) and were found to be in good agreement. In addition, X-band USO frequency estimates from MGS Radio Science data acquired from operational DSN stations were available for comparison and were found to agree within the I Hz level. The remaining sub-Hertz differences were attributed to the different models and software algorithms used by MGS Radio Science and KaBLE-11. A summary of the results of a linear fit of the USO frequency versus time (day of year) is

  9. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  10. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation. PMID:10757939

  11. Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices

    NASA Astrophysics Data System (ADS)

    Imani, Roghayeh; Pazoki, Meysam; Tiwari, Ashutosh; Boschloo, G.; Turner, Anthony P. F.; Kralj-Iglič, V.; Iglič, Aleš

    2015-06-01

    Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles.Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling

  12. Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices.

    PubMed

    Imani, Roghayeh; Pazoki, Meysam; Tiwari, Ashutosh; Boschloo, G; Turner, Anthony P F; Kralj-Iglič, V; Iglič, Aleš

    2015-06-21

    Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g(-1) was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles. PMID:26001096

  13. A figure of merit for blazar-like source identification in the gamma-ray energy band

    SciTech Connect

    Cavazzuti, Elisabetta; Pittori, Carlotta; Giommi, Paolo; Colafrancesco, Sergio

    2007-07-12

    The microwave to gamma-ray slope {alpha}{mu}{gamma} can be used as a viable figure of merit for blazar-like source identification in gamma-rays. Taking into account the constraints from the observed extragalactic gamma-ray background, one can estimate the maximum duty cycle allowed for a selected sample of low energy peaked (LBL) blazars, in order to be detectable for the nominal sensitivity values of AGILE and GLAST gamma-ray experiments. This work is based on the results of a recently derived blazar radio LogN-LogS obtained by combining several multi-frequency surveys. We present our estimates of duty cycle constraints applied on a sample composed by 146 high latitude and 74 medium latitude LBL blazars from the new WMAP3 yr catalog. Our results can be used as an indicator to identify good gamma-ray blazar candidates: sources with high values of duty cycle can in principle be detectable also in a ''steady'' state by AGILE and GLAST without over-predicting the extragalactic background.

  14. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dileep, K.; Sahu, R.; Sarkar, Sumanta; Peter, Sebastian C.; Datta, R.

    2016-03-01

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS2 and ReS2, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS2, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS2. For ReS2, the band gap is direct, and a value of 1.52 and 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS2 forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.

  15. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  16. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  17. Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface: A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopy.

    PubMed

    Hauschild, Dirk; Handick, Evelyn; Göhl-Gusenleitner, Sina; Meyer, Frank; Schwab, Holger; Benkert, Andreas; Pohlner, Stephan; Palm, Jörg; Tougaard, Sven; Heske, Clemens; Weinhardt, Lothar; Reinert, Friedrich

    2016-08-17

    Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in InxSy, annealed InxSy, and CIGSSe at a kinetic energy of 1000 eV. PMID:27463021

  18. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Eremin, Ilya; Efremov, Dmitri V.

    2016-05-01

    We analyze the interplay between superconductivity and the formation of bound pairs of fermions (BCS-BEC crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak attractive interaction, which extends to energies well above EF. The 2D case is special because a two-particle bound state forms at arbitrary weak interaction, and already at weak coupling, one has to distinguish between the bound-state formation and superconductivity. We briefly review the situation in the one-band model and then consider two different two-band models: one with one hole band and one electron band and another with two hole or two electron bands. In each case, we obtain the bound-state energy 2 E0 for two fermions in a vacuum and solve the set of coupled equations for the pairing gaps and the chemical potentials to obtain the onset temperature of the pairing Tins and the quasiparticle dispersion at T =0 . We then compute the superfluid stiffness ρs(T =0 ) and obtain the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios of E0 and EF in the other band. We show that at EF≫E0 , the behavior of both two-band models is BCS-like in the sense that Tc≈Tins≪EF and Δ ˜Tc . At EF≪E0 , the two models behave differently: in the model with two hole/two electron bands, Tins˜E0/lnE/0EF , Δ ˜(E0EF) 1 /2 , and Tc˜EF , like in the one-band model. In between Tins and Tc, the system displays a preformed pair behavior. In the model with one hole and one electron bands, Tc remains of order Tins, and both remain finite at EF=0 and of the order of E0. The preformed pair behavior still does exist in this model because Tc is numerically smaller than Tins. For both models, we reexpress Tins in terms of the fully renormalized two-particle scattering amplitude by extending to the two-band case (the method pioneered by Gorkov and Melik-Barkhudarov back in 1961). We apply our results for the model with a hole and an electron band to

  19. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  20. Interfacial bonding distribution and energy band structure of (Gd 2O 3) 1 - x(SiO 2) x ( x = 0.5)/GaAs (0 0 1) system

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Kyu; Kang, Min-Gu; Kim, Woo Sik; Park, Hyung-Ho

    2004-10-01

    A (Gd 2O 3) 1 - x(SiO 2) x ( x = 0.5) gate dielectric film was deposited on an n-GaAs (0 0 1) substrate at various substrate temperatures. Bonding distribution of interfacial Ga and As was characterized by comparing the 3d and 3p photoelectron lines. Surface passivation using (NH 4) 2S was employed to preserve a stable interface. Interfacial GaAs oxide was not formed after the deposition, since bonding transition from AsS to GaS bonds provides thermal stability and protective effect against oxidation. While, without the passivation, interfacial GaAs-oxides were continuously grown as the substrate temperature was increased. The energy band gap of (Gd 2O 3) 0.5(SiO 2) 0.5 was defined as 6.8 eV using energy loss spectra of O 1s photoelectrons. The valence band maximum energy ( EVBM) of (Gd 2O 3) 0.5(SiO 2) 0.5 was determined to be 3.7 eV. By arrangement of the measured energy bandgap and EVBM, the energy band structure of (Gd 2O 3) 0.5(SiO 2) 0.5/GaAs system was demonstrated and an enhanced conduction band offset was observed.

  1. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  2. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  3. Leakage current characteristics and the energy band diagram of Al/ZrO2/Si0.3Ge0.7 hetero-MIS structures

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Bera, M. K.; Dalapati, G. K.; Paramanik, D.; Varma, S.; Bose, P. K.; Bhattacharya, S.; Maiti, C. K.

    2006-04-01

    Zirconium oxide (ZrO2) films have been deposited on Ge-rich SiGe heterolayers at 150 °C by the microwave plasma enhanced chemical vapour deposition (PECVD) technique using zirconium tetra-tert-butoxide. The possible conduction mechanisms in deposited ZrO2 films have been investigated at both room and high temperature. It is found that the conduction mechanism is dominated by Schottky emission at a low electric field (E < 1.2 MV cm-1). The intrinsic barrier height between Al and ZrO2 was found to be 0.83 eV. The trap-assisted Poole-Frenkel conduction mechanism is found to take place at a relatively high electric field (E > 1.2 MV cm-1). The extracted trap energy is about 0.78 eV from the conduction band of ZrO2. It is shown that the current in ZrO2 films exhibits strong temperature dependence at a low electric field. The trapping behaviour of the charge carriers in thin ZrO2 gate dielectric stacks during constant gate voltage stress of metal-oxide-semiconductor capacitors has also been investigated.

  4. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    PubMed

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-01

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices. PMID:26782061

  5. Camel-back band-induced power factor enhancement of thermoelectric lead-tellurium from Boltzmann transport calculations

    SciTech Connect

    Wang, X. G. Wang, L. Liu, J. Peng, L. M.

    2014-03-31

    Band structures of PbTe can be abnormally bended via dual-doping on both the cationic and anionic sites to form camel-back multivalley energy band structures near the band edge. As a result, additional carrier pockets and strong intervalley scattering of carriers are introduced. Boltzmann transport calculations indicate that their contradictory effects yield remarkably enhanced power factor due to the improved thermopower and almost unchanged electrical conductivity in low temperature and high carrier concentration ranges. These findings prove dual-doping-induced band bending as an effective approach to improve the thermoelectric properties of PbTe and other similar materials.

  6. Calculating the properties of C2H2-C9H16 alkynes, based on the additivity of energy contributions

    NASA Astrophysics Data System (ADS)

    Smolyakov, V. M.; Grebeshkov, V. V.

    2015-05-01

    A ten-constant additive model is obtained for calculating the physicochemical properties of a number of C n H2 n-2 alkynes, based on the group additivity method (with allowance for the initial atomic environment), two topological indices that allow for the second atomic environment, and pairwise non-valence interactions (in implicit form) between three atoms, four atoms, and so forth along the chain of a molecule. Two linear dependences are revealed. The obtained formula is used for numerical calculations of the normal heats of vaporization L NBT and normal boiling temperatures T b of C2H2-C9H16 alkynes, neither of which had been studied experimentally.

  7. Addition of water, methanol, and ammonia to Al3O3- clusters: Reaction products, transition states, and electron detachment energies

    NASA Astrophysics Data System (ADS)

    Guevara-García, Alfredo; Martínez, Ana; Ortiz, J. V.

    2005-06-01

    Products of reactions between the book and kite isomers of Al3O3- and three important molecules are studied with electronic structure calculations. Dissociative adsorption of H2O or CH3OH is highly exothermic and proton-transfer barriers between anion-molecule complexes and the products of these reactions are low. For NH3, the reaction energies are less exothermic and the corresponding barriers are higher. Depending on experimental conditions, Al3O3- (NH3) coordination complexes or products of dissociative adsorption may be prepared. Vertical electron detachment energies of stable anions are predicted with ab initio electron propagator calculations and are in close agreement with experiments on Al3O3- and its products with H2O and CH3OH. Changes in the localization properties of two Al-centered Dyson orbitals account for the differences between the photoelectron spectra of Al3O3- and those of the product anions.

  8. Twisted bilayer blue phosphorene: A direct band gap semiconductor

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Duque, C. A.; Correa, J. D.; Suárez Morell, Eric

    2016-09-01

    We report that two rotated layers of blue phosphorene behave as a direct band gap semiconductor. The optical spectrum shows absorption peaks in the visible region of the spectrum and in addition the energy of these peaks can be tuned with the rotational angle. These findings makes twisted bilayer blue phosphorene a strong candidate as a solar cell or photodetection device. Our results are based on ab initio calculations of several rotated blue phosphorene layers.

  9. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  10. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  11. Flat-band engineering of mobility edges

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej

    2015-06-01

    Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.

  12. Theory of band warping and its effects on thermoelectronic transport properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2014-04-01

    Optical and transport properties of materials depend heavily upon features of electronic band structures in proximity of energy extrema in the Brillouin zone (BZ). Such features are generally described in terms of multidimensional quadratic expansions and corresponding definitions of effective masses. Multidimensional quadratic expansions, however, are permissible only under strict conditions that are typically violated when energy bands become degenerate at extrema in the BZ. Even for energy bands that are nondegenerate at critical points in the BZ there are instances in which multidimensional quadratic expansions cannot be correctly performed. Suggestive terms such as "band warping," "fluted energy surfaces," or "corrugated energy surfaces" have been used to refer to such situations and ad hoc methods have been developed to treat them. While numerical calculations may reflect such features, a complete theory of band warping has not hitherto been developed. We define band warping as referring to band structures that do not admit second-order differentiability at critical points in k space and we develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass. Our theory also accounts for effects of band nonparabolicity and anisotropy, which hitherto have not been precisely distinguished from, if not utterly confused with, band warping. Based on our theory, we develop precise procedures to evaluate band warping quantitatively. As a benchmark demonstration, we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with previous semiempirical models. As an application of major significance to thermoelectricity, we use our theory and angular effective masses to generalize derivations of tensorial transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. From that

  13. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  14. X-Band/Ka-Band Dichroic Plate

    NASA Technical Reports Server (NTRS)

    Chen, Jacqueline C.

    1993-01-01

    Dichroic plate designed nearly transparent to circularly polarized microwaves at frequencies between 31.8 and 34.7 GHz (in and near Ka band) and reflective at frequencies between 8.4 and 8.5 GHz (in the X band). Made of electrically conductive material and contains rectangular holes in staggered pattern.

  15. Influence of Intermediate Principal Stress on Deformation Band Formation in Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Issen, K. A.; Ingraham, M. D.; Dewers, T. A.

    2011-12-01

    In recent years, field observations of volumetric deformation bands (compaction bands and dilation bands) have prompted renewed laboratory and theoretical research efforts to understand conditions for deformation band formation. Historically, laboratory experiments have been conducted on cylindrical cores using axisymmetric stress states, where the intermediate principal stress is equal to either minimum or maximum compression. While experimentally convenient, it is not clear that these specialized stress states are common in field settings, where the intermediate principal stress likely falls between minimum and maximum compression. Additionally, theoretical predictions developed using a bifurcation approach to strain localization (Rudnicki and Rice, 1975) suggest that the deformation band type predicted to form (compaction, compactant shear, dilatant shear, dilation), and the orientation of the band relative to maximum compression, both depend on the magnitude of the intermediate principal stress relative to maximum and minimum compression. To examine the role of the intermediate principal stress in deformation band formation, a suite of true triaxial tests were conducted on Castlegate sandstone; this paper focuses on comparing theoretical predictions with experimental observations. Tests covered a wide range of mean stresses, from dilatant to compactant response. For a given mean stress, five stress states were tested, in which the intermediate principal stress was: A) equal to minimum compression, B) greater than the minimum but less than halfway to maximum compression, C) halfway between minimum and maximum compression, D) greater than halfway but less than maximum compression, and E) equal to maximum compression. Overall, reasonable agreement was found between predicted and observed band angles (defined as the angle between the band normal and maximum compression). Low mean stress tests produced the predicted high angles bands; at intermediate stresses

  16. Band structure of doubly-odd nuclei around mass 130

    SciTech Connect

    Higashiyama, Koji; Yoshinaga, Naotaka

    2011-05-06

    Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

  17. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  18. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  19. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Cheng, Shaodong; Li, Chao; Zhong, Jiasong; Ma, Chuansheng; Wang, Zhao; Xiang, Weidong

    2014-12-01

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  20. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    SciTech Connect

    Yang, Guang Cheng, Shaodong; Li, Chao; Ma, Chuansheng; Zhong, Jiasong; Xiang, Weidong; Wang, Zhao

    2014-12-14

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  1. Josephson systems based on ballistic point contacts between single-band and multi-band superconductors

    NASA Astrophysics Data System (ADS)

    Yerin, Y. S.; Kiyko, A. S.; Omelyanchouk, A. N.; Il'ichev, E.

    2015-11-01

    The Josephson effect in ballistic point contacts between single-band and multi-band superconductors was investigated. It was found that in the case of Josephson junctions formed by a single-band and an s±-wave two-band superconductor as well as by a single-band and a three-band superconductor the junctions become frustrated, showing the φ-contact properties. Depending on the ground state of a three-band superconductor with time-reversal symmetry breaking, the Josephson junction can have from one to three energy minima, some of which can be locally stable. We also study the behavior of a dc SQUID based on the Josephson junctions between single-band and multi-band superconductors. Some features on the dependences of the critical current and the total magnetic flux on the applied flux of a dc SQUID based on the Josephson point contacts between a single-band superconductor and an s±-wave superconductor, three-band superconductor with broken time-reversal symmetry and three-band superconductor without broken time-reversal symmetry as compared to the conventional dc SQUIDs based on single-band superconductors were found. The results can be used as an experimental tool to detect the existence of multi-band structure and time-reversal symmetry breaking.

  2. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  3. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Pronin, Evgeny A.; Starace, Anthony F.

    2008-02-01

    The effects of the carrier-envelope phase (CEP) of a few-cycle attosecond pulse on ionized electron momentum and energy spectra are analyzed, both with and without an additional few-cycle IR pulse. In the absence of an IR pulse, the CEP-induced asymmetries in the ionized electron momentum distributions are shown to vary as the 3/2 power of the attosecond pulse intensity. These asymmetries are also found to satisfy an approximate scaling law involving the frequency and intensity of the attosecond pulse. In the presence of even a very weak IR pulse (having an intensity of the order of 1011 1012 W cm-2), the attosecond pulse CEP-induced asymmetries in the ionized electron momentum distributions are found to be significantly augmented. In addition, for higher IR laser intensities, we observe for low electron energies peaks separated by the IR photon energy in one electron momentum direction along the laser polarization axis; in the opposite direction, we find structured peaks that are spaced by twice the IR photon energy. Possible physical mechanisms for such asymmetric, low-energy structures in the ionized electron momentum distribution are proposed. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schrödinger equation including atomic potentials appropriate for the H and He atoms.

  4. THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS

    SciTech Connect

    Kriek, Mariska; Conroy, Charlie; Labbe, Ivo; Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel B.; Muzzin, Adam; Franx, Marijn; Quadri, Ryan F.; Illingworth, Garth D.; Rudnick, Gregory

    2010-10-10

    Stellar population synthesis (SPS) models are a key ingredient of many galaxy evolution studies. Unfortunately, the models are still poorly calibrated for certain stellar evolution stages. Of particular concern is the treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, as different implementations lead to systematic differences in derived galaxy properties. Post-starburst galaxies are a promising calibration sample, as TP-AGB stars are thought to be most prominently visible during this phase. Here, we use post-starburst galaxies in the NEWFIRM medium-band survey to assess different SPS models. The available photometry allows the selection of a homogeneous and well-defined sample of 62 post-starburst galaxies at 0.7 {approx_lt} z {approx_lt} 2.0, from which we construct a well-sampled composite spectral energy distribution (SED) over the range 1200-40000 A. The SED is well fit by the Bruzual and Charlot SPS models, while the Maraston models do not reproduce the rest-frame optical and near-infrared parts of the SED simultaneously. When the fitting is restricted to {lambda} < 6000 A, the Maraston models overpredict the near-infrared luminosity, implying that these models give too much weight to TP-AGB stars. Using the flexible SPS models by Conroy et al. and assuming solar metallicity, we find that the contribution of TP-AGB stars to the integrated SED is a factor of {approx}3 lower than predicted by the latest Padova TP-AGB models. Whether this is due to lower bolometric luminosities, shorter lifetimes, and/or heavy dust obscuration of TP-AGB stars remains to be addressed. Altogether, our data demand a low contribution from TP-AGB stars to the SED of post-starburst galaxies.

  5. X-ray photoelectron spectroscopy study of energy-band alignments of ZnO on buffer layer Lu2O3

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Pan, Xinhua; Xu, Chenxiao; Huang, Jingyun; Ye, Zhizhen

    2016-02-01

    Lu2O3 was used as the buffer layer of the epitaxy of ZnO film on Si substrate by plasma-assisted molecular beam epitaxy. X-ray photoelectron spectroscopy was used to determine the band alignment at ZnO/Lu2O3 interface. The conduction band offset (CBO) and valence band offset (VBO) of the ZnO/Lu2O3 heterojunction are calculated to be 1.77 eV and 0.66 eV, respectively, with a type-I band alignment. And the ratio of CBO and VBO (ΔEc / ΔEv) is estimated to be about 2.68. The large ΔEv and ΔEc reveal that Lu2O3 is an ideal barrier layer in Si-based ZnO optoelectronic devices.

  6. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  7. CSF oligoclonal banding

    MedlinePlus

    ... the cerebrospinal fluid (CSF). CFS is the clear fluid that flows in the space around the spinal cord and brain. Oligoclonal bands are proteins called immunoglobulins. The ... system. Oligoclonal bands may be a sign of multiple sclerosis.

  8. Towards Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping

    PubMed Central

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-01-01

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and band-gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band-gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices such as complementary inverters. PMID:21985035

  9. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  10. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  11. Unusual Changes in Electronic Band-Edge Energies of the Nanostructured Transparent n-Type Semiconductor Zr-Doped Anatase TiO2 (Ti1-xZrxO2; x < 0.3).

    PubMed

    Mieritz, Daniel G; Renaud, Adèle; Seo, Dong-Kyun

    2016-07-01

    By the establishment of highly controllable synthetic routes, electronic band-edge energies of the n-type transparent semiconductor Zr-doped anatase TiO2 have been studied holistically for the first time up to 30 atom % Zr, employing powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen gas sorption measurements, UV/vis spectroscopies, and Mott-Schottky measurements. The materials were produced through a sol-gel synthetic procedure that ensures good compositional homogeneity of the materials, while introducing nanoporosity in the structure, by achieving a mild calcination condition. Vegard's law was discovered among the homogeneous samples, and correlations were established between the chemical compositions and optical and electronic properties of the materials. Up to 20% Zr doping, the optical energy gap increases to 3.29 eV (vs 3.19 eV for TiO2), and the absolute conduction band-edge energy increases to -3.90 eV (vs -4.14 eV). The energy changes of the conduction band edge are more drastic than what is expected from the average electronegativities of the compounds, which may be due to the unnatural coordination environment around Zr in the anatase phase. PMID:27332108

  12. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  13. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  14. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect

    Hudait, Mantu K.; Zhu Yan

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  15. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  16. Possible chiral bands in {sup 194}Tl

    SciTech Connect

    Masiteng, P. L.; Ramashidzha, T. M.; Maliage, S. M.; Sharpey-Schafer, J. F.; Vymers, P. A.; Lawrie, E. A.; Lawrie, J. J.; Bark, R. A.; Mullins, S. M.; Murray, S. H. T.; Kau, J.; Komati, F.; Lindsay, R.; Matamba, I.; Mutshena, P.; Zhang, Y.

    2011-10-28

    High spin states in {sup 194}Tl, excited through the {sup 181}Ta({sup 18}O,5n) fusion evaporation reaction, were studied using the AFRODITE array at iThemba LABS. Candidate chiral bands built on the {pi}h{sub 9/2} x {nu}i{sub 13/2}{sup 1} configuration were found. Furthermore these bands were observed through a band crossing caused by the excitation of a {nu}i{sub 13/2} pair. Above the band crossing the excitation energies remain close, suggesting that chirality may persist for the four quasiparticle configuration too.

  17. Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate results

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Periasamy, Ammasi

    2010-03-01

    Förster resonance energy transfer (FRET) microscopy is commonly used to monitor protein interactions with filter-based imaging systems, which require spectral bleedthrough (or cross talk) correction to accurately measure energy transfer efficiency (E). The double-label (donor+acceptor) specimen is excited with the donor wavelength, the acceptor emission provided the uncorrected FRET signal and the donor emission (the donor channel) represents the quenched donor (qD), the basis for the E calculation. Our results indicate this is not the most accurate determination of the quenched donor signal as it fails to consider the donor spectral bleedthrough (DSBT) signals in the qD for the E calculation, which our new model addresses, leading to a more accurate E result. This refinement improves E comparisons made with lifetime and spectral FRET imaging microscopy as shown here using several genetic (FRET standard) constructs, where cerulean and venus fluorescent proteins are tethered by different amino acid linkers.

  18. Dark Bands on Europa

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dark crisscrossing bands on Jupiter's moon Europa represent widespread disruption from fracturing and the possible eruption of gases and rocky material from the moon's interior in this four-frame mosaic of images from NASA's Galileo spacecraft. These and other features suggest that soft ice or liquid water was present below the ice crust at the time of disruption. The data do not rule out the possibility that such conditions exist on Europa today. The pictures were taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996. Many of the dark bands are more than 1,600 kilometers (1,000 miles) long, exceeding the length of the San Andreas fault of California. Some of the features seen on the mosaic resulted from meteoritic impact, including a 30- kilometer (18.5 mile) diameter crater visible as a bright scar in the lower third of the picture. In addition, dozens of shallow craters seen in some terrains along the sunset terminator zone (upper right shadowed area of the image) are probably impact craters. Other areas along the terminator lack craters, indicating relatively youthful surfaces, suggestive of recent eruptions of icy slush from the interior. The lower quarter of the mosaic includes highly fractured terrain where the icy crust has been broken into slabs as large as 30 kilometers (18.5 miles) across. The mosaic covers a large part of the northern hemisphere and includes the north pole at the top of the image. The sun illuminates the surface from the left. The area shown is centered on 20 degrees north latitude and 220 degrees west longitude and is about as wide as the United States west of the Mississippi River. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  19. Search for superdeformed bands in {sup 154}Dy

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Khoo, T.L.

    1995-08-01

    The island of superdeformation in the vicinity of the doubly magic {sup 152}Dy yrast superdeformed (SD) band is thought to be well understood in the framework of cranked mean field calculations. In particular, the calculations suggested that in {sup 154}Dy there should be no yrast or near yrast SD minimum in the 40-60 h spin range, where SD bands in this mass region are thought to be {sup 153}Dy nucleus, it is populated. However, with the presence of five SD bands in the neighboring necessary to ascertain if the addition of one single neutron diminishes the importance of shell effects to the extent that superdeformation can no longer be sustained. In an experiment utilizing the increased resolving power of the early implementation phase of Gammasphere, the reaction {sup 122}Sn({sup 36}S,4n) at 165 MeV was employed to populate high spin states in {sup 154}Dy. In a four-day run with 36 detectors, over one billion triple and higher fold coincidence events were recorded. One new SD band was identified and was assigned to {sup 154}Dy. From comparisons with the Im{sup (2)} moments of inertia of the SD bands in {sup 152}Dy and {sup 153}Dy, a configuration based on (514)9/2{sup 2} neutrons coupled to the {sup 152}Dy SD core was proposed. One unexpected and as yet unexplained feature of this new SD band is that the transition energies are almost identical to those of an excited SD band in {sup 153}Dy. It is also worth noting that the feeding of the yrast states is similar to that achieved by the deexcitation from the ensemble of all entry states in the reaction. This observation emphasizes the statistical nature of the decay-out process. A paper reporting these results was accepted for publication.

  20. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  1. The Study of Energy Band Gap of Al{sub x}In{sub y}Ga{sub 1-x-y}N Quaternary Alloys Using UV-VIS Spectroscopy

    SciTech Connect

    Abid, M. A.; Hassan, H. Abu; Hassan, Z.; Ng, S. S.; Raof, N. H. Abd.; Bakhori, S. K. Mohd

    2010-07-07

    Optical characterizations have been performed on high-quality quaternary Al{sub x}In{sub y}Ga{sub 1-x-y}N thin films using UV-VIS spectroscopy at room temperature. The Al{sub x}In{sub y}Ga{sub 1-x-y}N films were grown on c-plane (0001) sapphire substrates with AlN as buffer layers using molecular beam epitaxy (MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y = 0.1. The UV-VIS measurements indicated that the energy band gap of the quaternary films increases with increasing Al composition from 0.05 to 0.2. This trend is expected since the incorporation of Al increases the energy band gap of ternary In0.1Ga0.90N (3.004eV). We have also investigated the bowing parameter of the variation of energy band gaps and found it to be very sensitive on Al content. A value of b=7 eV has been obtained for our quaternary Al{sub x}In{sub y}Ga{sub 1-x-y}N alloys.

  2. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  3. Intermediate Band Solar Cell with Extreme Broadband Spectrum Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Datas, A.; López, E.; Ramiro, I.; Antolín, E.; Martí, A.; Luque, A.; Tamaki, R.; Shoji, Y.; Sogabe, T.; Okada, Y.

    2015-04-01

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ˜6000 nm . To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidences indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  4. DFT Conformation and Energies of Amylose Fragments at Atomic Resolution Part 2: “Band-flip” and “Kink” Forms of Alpha-Maltotetraose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Part 2 of this series of DFT optimization studies of '-maltotetraose, we present results at the B3LYP/6-311++G** level of theory for conformations denoted “band-flips” and “kinks”. Recent experimental X-ray studies have found examples of amylose fragments with conformations distorted from the us...

  5. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles.

    PubMed

    Vijayaraghavan, G V; Basheer Ahamed, M

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689nm. PMID:26803748

  6. Theoretical characterization of the minimum energy path for hydrogen atom addition to N2 - Implications for the unimolecular lifetime of HN2

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Duchovic, Ronald J.; Rohlfing, Celeste Mcmichael

    1989-01-01

    Results are reported from CASSCF externally contracted CI ab initio computations of the minimum-energy path for the addition of H to N2. The theoretical basis and numerical implementation of the computations are outlined, and the results are presented in extensive tables and graphs and characterized in detail. The zero-point-corrected barrier for HN2 dissociation is estimated as 8.5 kcal/mol, and the lifetime of the lowest-lying quasi-bound vibrational state of HN2 is found to be between 88 psec and 5.8 nsec (making experimental observation of this species very difficult).

  7. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, G. V.; Basheer Ahamed, M.

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689 nm.

  8. Quasiparticle band structure of HgSe

    SciTech Connect

    Rohlfing, M.; Louie, S.G.

    1998-04-01

    Motivated by a recent discussion about the existence of a fundamental gap in HgSe [Phys. Rev. Lett. {bold 78}, 3165 (1997)], we calculate the quasiparticle band structure of HgSe within the GW approximation for the electron self-energy. The band-structure results show that HgSe is a semimetal, which is in agreement with most experimental data. We observe a strong wave-vector dependence of the self-energy of the lowest conduction band, leading to an increased dispersion and a small effective mass. This may help to interpret recent photoemission spectroscopy measurements. {copyright} {ital 1998} {ital The American Physical Society}

  9. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    SciTech Connect

    Singh, A.; Huisman, S. R.; Ctistis, G. Mosk, A. P.; Pinkse, P. W. H.; Korterik, J. P.; Herek, J. L.

    2015-01-21

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  10. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    NASA Astrophysics Data System (ADS)

    Singh, A.; Ctistis, G.; Huisman, S. R.; Korterik, J. P.; Mosk, A. P.; Herek, J. L.; Pinkse, P. W. H.

    2015-01-01

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  11. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  12. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  13. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  14. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  15. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  16. Functionalisation of graphene by edge-halogenation and radical addition using polycyclic aromatic hydrocarbon models: edge electron density-binding energy relationship

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2015-04-01

    Structures and properties of functionalised graphene were investigated using several derivatives of some small polycyclic aromatic hydrocarbons (PAHs) taken as finite size models employing unrestricted density functional theory. The functionalisation reactions included fluorination or chlorination of all the edge carbon sites, addition of H, F or Cl atom, OH or OOH group at the different sites and addition of OH or OOH group at the different sites of the edge-halogenated PAHs. σ-inductive effects of fluorine and chlorine in the edge-fluorinated and edge-chlorinated PAHs, respectively, were found to affect electron density and molecular electrostatic potential (MEP) distributions significantly. σ-holes were located at the MEP surfaces along the CH and CCl bonds of the unmodified and edge-chlorinated PAHs, respectively. The H and F atoms and the OH group were found to add to all the carbon sites of PAHs exothermically, while addition of the Cl atom and the OOH group was found to be exothermic at a few carbon sites and endothermic at the other carbon sites. Enhanced electron densities at the edge carbon sites of the PAHs and binding energies of adducts of H and F atoms and the OH group at these sites were found to be linearly correlated.

  17. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  18. Effective single-band Hubbard model for the cuprates: Coulomb interactions and apical oxygen

    NASA Astrophysics Data System (ADS)

    Feiner, L. F.; Jefferson, J. H.; Raimondi, R.

    1995-02-01

    Starting with the three-band d-p model representing the high- Tc cuprates, we make a systematic reduction to an effective single-band model using a previously developed cell-perturbation method. In particular, we consider the effect of Coulomb repulsions on oxygen ( Up) and between copper and oxygen ( Vpd), and show that the resulting net Coloumb interaction between doped holes on neighbouring cells can be attractive due to locally enhanced pd hybridization, while this cannot occur for electrons. Extending to a five-band model, by including d 3 z2- r2 and apex p z orbitals, we show that there is, in addition to the usual Zhang-Rice singlet, a two-hole cell state which can be low in energy (depending on the proximity of the apicals), and may lead to a breakdown of the effective single-band model.

  19. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  20. Bulk band gaps in divalent hexaborides

    SciTech Connect

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  1. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels.

    PubMed

    Ferreira, H C; Hannas, M I; Albino, L F T; Rostagno, H S; Neme, R; Faria, B D; Xavier, M L; Rennó, L N

    2016-08-01

    Three experiments were conducted to evaluate the effect of β-mannanase BM: supplementation on the performance, metabolizable energy, amino acid digestibility, and immune function of broilers. A total of 1,600 broilers were randomly distributed in a 4 × 2 factorial arrangement (4 nutritional levels × 0 or 500 g/ton BM), with 10 replicates and 20 broilers per pen. The same design was used in the energy and digestibility experiments with 8 and 6 replicates, respectively, and 6 broilers per pen. The nutritional levels : NL : were formulated to meet the nutritional requirements of broilers : NL1 : ; reductions of 100 kcal metabolizable energy : NL2 : ; 3% of the total amino acids (NL3); and 100 kcal metabolizable energy and 3% total amino acids (NL4) from NL1. The serum immunoglobulin (Ig) concentration was determined in two broilers per pen, and these broilers were slaughtered to determine the relative weight of spleen, thymus, and bursa of Fabricius. Throughout the experiment, the lower nutritional levels reduced (P < 0.05) body weight gain : BWG : and increased (P < 0.05) feed conversion : FCR : for the NL4 treatment. The BM increased (P < 0.05) the BWG values and improved (P < 0.05) the FCR of the broilers. The apparent metabolizable energy corrected for nitrogen balance (AMEn) values were reduced (P < 0.05) for NL2 and NL3. The BM increased (P < 0.05) the AMEn values and reduced (P < 0.05) the excreted nitrogen. NL3 and NL4 reduced (P < 0.05) the true ileal digestibility coefficients (TIDc) of the amino acids cystine and glycine, and BM increased (P < 0.05) the TIDc for all amino acids. The addition of BM reduced (P < 0.05) the relative weights of the spleen and bursa. NL2 increased (P < 0.05) the Ig values, whereas BM reduced (P < 0.05) the serum IgA, IgG, and IgM values of the broilers. This study indicates that using suboptimal nutrient levels leads to losses in production parameters, whereas BM-supplemented diets were effective in improving performance

  2. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels

    PubMed Central

    Ferreira, H. C.; Hannas, M. I.; Albino, L. F. T.; Rostagno, H. S.; Neme, R.; Faria, B. D.; Xavier, M. L.; Rennó, L. N.

    2016-01-01

    Three experiments were conducted to evaluate the effect of β-mannanase (BM) supplementation on the performance, metabolizable energy, amino acid digestibility, and immune function of broilers. A total of 1,600 broilers were randomly distributed in a 4 × 2 factorial arrangement (4 nutritional levels × 0 or 500 g/ton BM), with 10 replicates and 20 broilers per pen. The same design was used in the energy and digestibility experiments with 8 and 6 replicates, respectively, and 6 broilers per pen. The nutritional levels (NL) were formulated to meet the nutritional requirements of broilers (NL1); reductions of 100 kcal metabolizable energy (NL2); 3% of the total amino acids (NL3); and 100 kcal metabolizable energy and 3% total amino acids (NL4) from NL1. The serum immunoglobulin (Ig) concentration was determined in two broilers per pen, and these broilers were slaughtered to determine the relative weight of spleen, thymus, and bursa of Fabricius. Throughout the experiment, the lower nutritional levels reduced (P < 0.05) body weight gain (BWG) and increased (P < 0.05) feed conversion (FCR) for the NL4 treatment. The BM increased (P < 0.05) the BWG values and improved (P < 0.05) the FCR of the broilers. The apparent metabolizable energy corrected for nitrogen balance (AMEn) values were reduced (P < 0.05) for NL2 and NL3. The BM increased (P < 0.05) the AMEn values and reduced (P < 0.05) the excreted nitrogen. NL3 and NL4 reduced (P < 0.05) the true ileal digestibility coefficients (TIDc) of the amino acids cystine and glycine, and BM increased (P < 0.05) the TIDc for all amino acids. The addition of BM reduced (P < 0.05) the relative weights of the spleen and bursa. NL2 increased (P < 0.05) the Ig values, whereas BM reduced (P < 0.05) the serum IgA, IgG, and IgM values of the broilers. This study indicates that using suboptimal nutrient levels leads to losses in production parameters, whereas BM-supplemented diets were effective in improving performance, energy

  3. RF modulation studies on an S band pulse compressor

    NASA Astrophysics Data System (ADS)

    Guan, Shu; Feng-Li, Zhao; Shi-Lun, Pei; Ou-Zheng, Xiao

    2016-03-01

    An S band SLED-type pulse compressor has been manufactured by the Institute of High Energy Physics, Beijing, trying to reach 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. To improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output are considered, and RF modulation studies on the S-band SLED are presented in this paper. Furthermore, a method is developed using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can verify the modulation theory. In addition, the experimental setup was constructed and the flat-top output obtained in low power tests. Both amplitude modulation and phase modulation methods can give flat-top output, and the average power gain for both methods is almost the same. Supported by National Natural Science Foundation of China (11475201)

  4. Chiral Bands and Triaxiality

    SciTech Connect

    Petrache, C.M.

    2004-02-27

    The results obtained with the GASP array in the A=130 mass region are reviewed, emphasizing the discovery excited highly-deformed bands and their decay out, the study of the odd-odd Pr nuclei up to high spins, the discovery of stable triaxial bands in Nd nuclei close to the N=82 shell closure. The very recent studies of nuclei near the proton drip line are described. A discussion of the origin of the various doublet bands observed in odd-odd nuclei of the A=130 mass region is presented.

  5. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo

    PubMed Central

    Primak, Andrew N.; Giraldo, Juan Carlos Ramirez; Eusemann, Christian D.; Schmidt, Bernhard; Kantor, B.; Fletcher, Joel G.; McCollough, Cynthia H.

    2010-01-01

    Purpose To investigate the effect on radiation dose and image quality of the use of additional spectral filtration for dual-energy CT (DECT) imaging using dual-source CT (DSCT). Materials and Methods A commercial DSCT scanner was modified by adding tin filtration to the high-kV tube, and radiation output and noise measured in water phantoms. Dose values for equivalent image noise were compared among DE-modes with and without tin filtration and single-energy (SE) mode. To evaluate DECT material discrimination, the material-specific DEratio for calcium and iodine were determined using images of anthropomorphic phantoms. Data were additionally acquired in 38 and 87 kg pigs, and noise for the linearly mixed and virtual non-contrast (VNC) images compared between DE-modes. Finally, abdominal DECT images from two patients of similar sizes undergoing clinically-indicated CT were compared. Results Adding tin filtration to the high-kV tube improved the DE contrast between iodine and calcium as much as 290%. Pig data showed that the tin filtration had no effect on noise in the DECT mixed images, but decreased noise by as much as 30% in the VNC images. Patient VNC-images acquired using 100/140 kV with added tin filtration had improved image quality compared to those generated with 80/140 kV without tin filtration. Conclusion Tin filtration of the high-kV tube of a DSCT scanner increases the ability of DECT to discriminate between calcium and iodine, without increasing dose relative to SECT. Furthermore, use of 100/140 kV tube potentials allows improved DECT imaging of large patients. PMID:20966323

  6. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    PubMed

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles. PMID:24949706

  7. Semiconductor band gap localization via Gaussian function

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Brown, G. J.; Xi, H.

    2012-10-01

    To determine the band gap of bulk semiconductors with transmission spectroscopy alone is considered as an extremely difficult task because in the higher energy range, approaching and exceeding the band gap energy, the material is opaque yielding no useful data to be recorded. In this paper, by investigating the transmission of industrial GaSb wafers with a thickness of 500 µm, we demonstrate how these obstacles of transmission spectroscopy can be overcome. The key is the transmission spectrums’ derivative, which coincides with the Gaussian function. This understanding can be used to transfer Beers’ law in an integral form opening the pathway of band gap determinations based on mathematical parameters only. The work also emphasizes the correlation between the thermal band gap variation and Debye temperature.

  8. Intervalence-band and band-to-band transitions in CuGaTe2 single crystal

    NASA Astrophysics Data System (ADS)

    Rincón, C.; Wasim, S. M.; Marín, G.

    2003-09-01

    A study of the temperature dependence of the heavy-hole-band-split-off-band Ehs and of the heavy-hole-band-conduction-band EGA transitions in single crystal of p-type CuGaTe2 was made from the analysis of optical absorption spectra. Ehs and EGA were found to vary from 0.72 to 0.70 eV and 1.36 to 1.25 eV, respectively, between 10 and 300 K. It is found that the variation of EGA with T is mainly governed by the contribution of optical phonons with a characteristic energy ɛeff≈14 meV. From the analysis of Ehs(T) and EGA(T), the temperature dependence of the split-off-band-conduction-band transition energy EGC is also determined. It was found to vary from 2.08 to 1.95 eV in the temperature range from 10 to 300 K. A relatively low value of the characteristic phonon energy, ɛeff≈11 meV, obtained in this case, indicates that the major contribution to the shift of EGC versus T originates from acoustic phonons.

  9. Highly Deformed Rotational Bands in ^65Zn

    NASA Astrophysics Data System (ADS)

    Yu, C.-H.; Baktash, C.; Paul, S. D.; Radford, D. C.; Cameron, J. A.; Haslip, D. S.; Lampman, T.; Svensson, C. E.; Waddington, J. C.; Wilson, J. N.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Rudolph, D.; Eberth, J.; Lee, I. Y.; Macchiavelli, A. O.

    1998-04-01

    High spin states of ^65Zn were populated using the ^40Ca(^29Si, 4p) reaction at a beam energy of 130 MeV. The experiment was performed at the LBL 88" cyclotron using the Gammasphere in conjunction with the Microball. A total of about 88 million 4-proton gated events were collected from the experiment. Two highly deformed rotational bands were established in ^65Zn. Among the two bands, band 1 is more strongly populated and has only one signature. Band 2 is much weaker and has two signatures connected by M1 transitions. These highly deformed rotational bands are consistent with the excitation of the g_9/2 orbitals, which previously were associated(C.E. Svensson et al.,) Phys. Rev. Lett. 79, 1233 (1997). with the superdeformed band in ^62Zn. Lifetimes were also extracted for these bands in ^65Zn using the Centroid Shift Method. Average Qt values of the two bands were determined and will be compared with the Q_t's of the neighboring nuclei.

  10. Electron currents associated with an auroral band

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  11. Laparoscopic gastric banding

    MedlinePlus

    ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ... panel on weight loss surgery: executive report update. Obesity . 2009;17:842-62. PMID: 19396063 www.ncbi. ...

  12. Laparoscopic gastric banding

    MedlinePlus

    ... lining), heartburn , or stomach ulcers Infection in the port, which may need antibiotics or surgery Injury to ... may not be able to reach the access port to tighten or loosen the band (you would ...

  13. CSF oligoclonal banding - slideshow

    MedlinePlus

    ... presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy ... Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous system (CNS) and collect waste products, as well as ...

  14. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  15. Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Lu, Jing; Wu, Chenxiao; Yang, Zhongxue; Chen, Han; Song, Weijie; Li, Peiqiang; Yin, Hongzong

    2015-10-01

    Co-doped MoS2 NPs (30 nm in diameter) was prepared by hydrothermal method and used for photoelectrocatalytic reduction of CO2. Compared with MoS2, the novel catalyst Co-doped MoS2 NPs obtained the valence band and conduction band locating at 0.89 V and -0.52 V, which leaded to the high efficient photocatalytic reduction performance. In the aspects of electrocatalysis, resistance reduces by 85 KΩ, the conductivity of the target material was enhanced greatly, the reduction overpotential for CO2 decreases from -0.82 V to -0.64 V, which lead to a large improvement on electrocatalytic activity finally. Thus, the Co-doped MoS2 NPs have both excellent photocatalytic performance and excellent electrocatalytic performance. The main CO2 reduction product is methanol, and the yield of which reaches 35 mmol L-1 at 350 min. The results have guiding significance for the photoelectric catalyst design, which also have theoretical significance for the photoelectrocatalytic reduction of CO2.

  16. Narrow-band tunable alexandrite laser with passive Q switching

    SciTech Connect

    Tyryshkin, I S; Ivanov, N A; Khulugurov, V M

    1998-06-30

    An alexandrite laser with a self-injection of narrow-band radiation into its cavity was developed. A Fabry - Perot interferometer and a diffraction grating were used as dispersive components in an additional cavity. The cavity was switched by an LiF crystal with F{sub 3}{sup -} colour centres. The laser generated a single pulse of {approx} 180 ns duration and of 1.5 mJ energy, and with a spectrum 5 x 10{sup -3} cm{sup -1} wide. The laser emitted in the spectral range 720 - 780 nm. (lasers, active media)

  17. Exploring the thermodynamics of a rubber band

    NASA Astrophysics Data System (ADS)

    Roundy, David; Rogers, Michael

    2013-01-01

    We describe an upper-division experiment in thermal physics where students measure the tension of a rubber band as a function of temperature and length and use a Maxwell relation to find the change in internal energy and entropy for an isothermal stretch. This allows students to experimentally check the predictions of the entropic spring model for elastomers and observe that the entropy does indeed decrease as a rubber band is stretched.

  18. Dipole Bands in {sup 196}Hg

    SciTech Connect

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  19. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  20. Development of softcopy environment for primary color banding visibility assessment

    NASA Astrophysics Data System (ADS)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy

  1. Analysis of energy states of two-dimensional electron gas in pseudomorphically strained InSb high-electron-mobility transistors taking into account the nonparabolicity of the conduction band

    NASA Astrophysics Data System (ADS)

    Nishio, Yui; Sato, Takato; Hirayama, Naomi; Iida, Tsutomu; Takanashi, Yoshifumi

    2016-08-01

    We propose a high electron mobility transistor with a pseudomorphically strained InSb channel (InSb-PHEMT) having an InSb composite channel layer in which the Al y In1‑ y Sb sub-channel layer is inserted between the InSb channel and the Al x In1‑ x Sb barrier layers to increase the conduction-band offset (ΔE C) at the heterointerface between the InSb channel and the Al x In1‑ x Sb barrier layers. The energy states for the proposed InSb-PHEMTs are calculated using our analytical method, taking account of the nonparabolicity of the conduction band. For the proposed InSb-PHEMTs, putting the sub-channel layers into the channel is found to be effective for obtaining a sufficiently large ΔE C (∼0.563 eV) to restrain electrons in the channel and increase the sheet concentration of two-dimensional electron gas to as high as 2.5 × 1012 cm‑2, which is comparable to that of InAs-PHEMTs. This also leads to a large transconductance of PHEMTs. In the proposed InSb-PHEMTs, electrons are strongly bound to the channel layer compared with InAs-PHEMTs, despite the effective mass at the conduction band (0.0139 m 0) of InSb being smaller than that of InAs and ΔE C for the InSb-PHEMTs being 25% smaller than that for the InAs-PHEMTs. This is because the bandgap energy of InSb is about one-half that of InAs, and hence, the nonparabolicity parameter of InSb is about twice as large as that of InAs.

  2. The energy band structure of A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors

    SciTech Connect

    Zabidi, Noriza A.; Azhan, Muhd. Z.; Rosli, A. N.; Shrivastava, Keshav N.

    2014-03-05

    We study the band structure of antiferromagnetic A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors by using first-principles electronic structure calculations which is density functional theory. In the vicinity of iron-vacancy, we identify the valence electrons of A{sub x}Fe{sub 2}Se{sub 2} will be filled up to the Fermi level and no semiconducting gap is observed. Hence, the A{sub x}Fe{sub 2}Se{sub 2} is a metallic instead of semiconducting which leads to superconductivity in the orbital-selective Mott phase. Similarly, there is non-vanishing density of states at the Fermi level.

  3. Development of a reusable, low-shock clamp band separation system for small spacecraft release applications

    NASA Astrophysics Data System (ADS)

    Dowen, David; Christiansen, Scott; Arulf, Orjan

    2001-09-01

    In small spacecraft, the proximity of sensitive components to release systems has led to the need for low-shock spacecraft release systems. Marmon band systems are often desirable for their flight history, structural capability, and reliability. Until recently, only pyrotechnically released clamp bands were readily available. The clamp band system described in ths paper reduces shock in two ways: it eliminates shock typically associated with pyrotechnic release devices as well as utilizing a release device that reduces the shock associated with the rapid release of the preload strain energy. Patented Fast Acting Shockless Separation Nut (FASSN) technology is utilized to convert strain energy stored in the system into rotational energy of a flywheel. Early FASSN devices were designed for discrete point applications and were somewhat large and massive. Additional development of the FASSN device has reduced the size and weight to enable the use of the technology in a medium sized (23 to 60 cm diameter) clamp band system. This paper describes the overall design, performance, and initial test results for the FASSN-based, non-pyrotechnic, low-shock clamp band release system.

  4. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  5. Simple Calculation of Power Conversion Efficiency of PC61BM and PC71 BM Based Organic Solar Cells--Good Agreement with Experiments in Donor Materials with Different Band Gap Energies.

    PubMed

    Otsura, Takanori; Nakatsuka, Emi; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    The power conversion efficiencies (PCEs) as a function of band gap energies and the lowest unoccupied molecular orbital (LUMO) levels of donor materials are studied in bulk-heterojunction organic solar cells (OSCs) fabricated from donor materials and fullerene acceptors. The PCEs of [6,6]-pheynl-C61-butyric acid methyl ester (PC61BM) and [6,6]-pheynl-C71-butyric acid methyl ester (PC71 BM) based OSCs blended with donor materials under the Air Mass 1.5 (AM1.5) spectrum are calculated. In the calculation, the short circuit current densities are determined by band gap energies of donor materials and the open circuit voltages are derived from the difference between the highest occupied molecular orbital (HOMO) levels of donor materials and LUMO levels of PC61BM and PC71 BM. The calculation is in good agreement with the experiments. The PCEs under a fluorescent lamp are also calculated. The calculated PCEs of PC71 BM based OSCs under a fluorescent lamp are higher than those under the AM1.5 spectrum by a factor of 2. The PCEs of thieno [3,4-b] thiophene and benzodithiophene (PTB7):PC71BM based OSCs are studied under the AM1.5 spectrum and a fluorescent lamp spectrum and are consistent with the calculation. PMID:27451630

  6. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  7. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    SciTech Connect

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.; Zubair, M.; Nadeem, K.; Khurram, A. A.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix. The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.

  8. Two-band superconductor magnesium diboride

    NASA Astrophysics Data System (ADS)

    Xi, X. X.

    2008-11-01

    This review focuses on the most important features of the 40 K superconductor MgB2—the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher Tc superconductors.

  9. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  10. Synthesizing folded band chaos.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics. PMID:17500950

  11. Band structure of 235U

    NASA Astrophysics Data System (ADS)

    Ward, D.; Macchiavelli, A. O.; Clark, R. M.; Cline, D.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Görgen, A.; Hayes, A. B.; Lane, G. J.; Lee, I.-Y.; Nakatsukasa, T.; Schmidt, G.; Stephens, F. S.; Svensson, C. E.; Teng, R.; Vetter, K.; Wu, C. Y.

    2012-12-01

    Over a period of several years we have performed three separate experiments at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron in which 235U (thick target) was Coulomb-excited. The program involved stand-alone experiments with Gammmasphere and with the 8pi Spectrometer using 136Xe beams at 720 MeV, and a CHICO-Gammasphere experiment with a 40Ca beam at 184 MeV. In addition to extending the known negative-parity bands to high spin, we have assigned levels in some seven positive-parity bands which are in some cases (e.g., [631]1/2, [624]7/2, and [622]5/2) strongly populated by E3 excitation. The CHICO data have been analyzed to extract E2 and E3 matrix elements from the observed yields. Additionally, many M1 matrix elements could be extracted from the γ-ray branching ratios. A number of new features have emerged, including the unexpected attenuation of magnetic transitions between states of the same Nilsson multiplet, the breakdown of Coriolis staggering at high spin, and the effect of E3 collectivity on Coriolis interactions.

  12. Multiple triaxial bands in 138Nd

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.; Ragnarsson, I.; Ma, Hai-Liang; Leguillon, R.; Zerrouki, T.; Bazzacco, D.; Lunardi, S.

    2015-02-01

    High-spin states in 138Nd were investigated by using the 48Ca+94Zr reaction and γ -ray coincidences were acquired with the GASP spectrometer. A rich level scheme was developed including 14 new bands of quadrupole transitions at very high spins. Linking transitions connecting 11 high-spin bands to low-energy states have been observed. Calculations based on the cranked Nilsson-Strutinsky formalism have been used to assign configurations to the observed bands. The main result of these calculations is that all 14 bands exhibit a stable triaxial deformation up to the highest observed spins, giving strong support to the existence of a triaxial minimum with normal deformation and positive asymmetry parameter in nuclei with a few holes in the N =82 shell closure.

  13. Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Khan, Hamna; Gahfoor, Bilal; Mehmood, Malik Sajjad; Ahmad, Manzoor; Yasin, Tariq; Ikram, Masroor

    2015-12-01

    Muller matrix spectro-polarimeter has been used to study the absorption behavior of pristine and e-beam irradiated (30, 65,100 kGy) ultra-high molecular weight polyethylene (UHMWPE) over the visible spectral range i.e. 400-800 nm. As a result, significant changes occur in the absorption behavior of irradiated samples due to radiation induced physical and chemical changes. To analyze these (radiation induced) changes in polymer matrix, Urbach edge method is employed for the calculation of optical activation energy. In addition to this, direct and indirect energy band gaps along the number of carbon atoms in C=C unsaturation have been determined by using modified Urbach formula and Tauc's equation, respectively. The results obtained during study reveal that Urbach energy decreases with radiation treatment and has a lower value for 100 kGy sample i.e. Eu=71.63 meV. The values of direct and indirect energy band gaps are also following the decreasing trend with e-beam irradiation. Moreover, indirect energy gaps are found to have lower values as compared to direct energy gaps. The number of carbon atoms in clusters (as estimated from modified Tauc's equation) has been found to vary from ∼6 to 8 for direct energy band gaps and from ∼9 to 11 for indirect energy band gaps.

  14. Wide-Band KB Optics for Spectro-Microscopy Imaging Applications in the 6-13 keV X-ray Energy Range

    SciTech Connect

    Ziegler, E.; De Panfilis, S.; Peverini, L.; Vaerenbergh, P. van; Rocca, F.

    2007-01-19

    We present a Kirkpatrick-Baez optics (KB) system specially optimized to operate in the 6-13 keV X-ray range, where valuable characteristic lines are present. The mirrors are coated with aperiodic laterally graded (Ru/B4C)35 multilayers to define a 15% energy bandpass and to gain flux as compared to total reflection mirrors. For any X-ray energy selected the shape of each mirror can be optimized with a dynamical bending system so as to concentrate the X-ray beam into a micrometer-size spot. Once the KB mirrors are aligned at the X-ray energy corresponding to the barycenter of the XAS spectrum to be performed they remain in a steady state during the micro-XAS scans to minimize beam displacements. Results regarding the performance of the wideband KB optics and of the spectro-microscopy setup are presented, including beam stability issues.

  15. Completely Flat Band in a Crystal of Finite Thickness

    NASA Astrophysics Data System (ADS)

    Hirashima, Dai S.

    2016-04-01

    Conditions for the existence of a completely flat band in a crystal of finite thickness are clarified. Furthermore, the condition for the localization of the flat band states near the surfaces is also discussed. It is also found that a completely flat band can appear in a crystal where a lattice point has multiple orbital states. In addition to the known results for honeycomb and diamond lattices, a localized completely flat band is found in a crystal of the wurtzite structure of finite thickness. A completely flat band is also found in many other crystals, but it is extended in the direction perpendicular to the surface.

  16. C{sub 6}H{sub 6}/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    SciTech Connect

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-28

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  17. Intense laser field and conduction band-edge nonparabolicity effects on hydrogenic impurity states of InGaN QW

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou

    2015-09-01

    In this paper, hydrogenic impurity ground-state binding energy in unstrained wurtzite (In, Ga)N symmetric quantum well is investigated. The heterostructure is considered under the action of an intense laser field (ILF) incorporating an additional internal probe as well as the conduction band-edge nonparabolicity effect (CBENP). The variational approach is used within the framework of single band effective-mass approximation with two-parametric 1S-hydrogenic trial wavefunction. The competition effect between internal and external perturbations is also shown. Our results reveal that the binding energy is the largest for the well width around the effective Bohr radius and is strongly influenced by both parameters. Moreover, the principle effect of ILF (CBENP) is to reduce (enhance) the binding energy. It is found that the lift of the conduction band-edge can be easily eliminated by adjusting the ILF-parameter.

  18. Vortex in holographic two-band superfluid/superconductor

    NASA Astrophysics Data System (ADS)

    Wu, Mu-Sheng; Wu, Shang-Yu; Zhang, Hai-Qing

    2016-05-01

    We construct numerically static vortex solutions in a holographic model of two-band superconductor with an interband Josephson coupling in both the superfluid and superconductor regime. We investigate the effects of the interband coupling on the order parameter of each superconducting band in the vortex solution, and we find that it is different for each of the two bands. We compute also the free energy, critical magnetic field, magnetic penetration length and coherence lengths for the two bands, and we study their dependence on the interband coupling and temperature. Interestingly, we find that the coherence lengths of the two bands are close to identical.

  19. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  20. Multi-Band-SWIFT

    PubMed Central

    Corum, Curtis A.; Garwood, Michael

    2015-01-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials. PMID:25557859

  1. Colloquium: Topological band theory

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  2. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  3. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  4. Band parameters of 2D semiconductor heterostructures determined by micro-ARPES

    NASA Astrophysics Data System (ADS)

    Nguyen, Paul; Wilson, Neil; Rivera, Pasqual; Seyler, Kyle; Barinov, Alexey; Balakrishnan, Geetha; Xu, Xiaodong; Cobden, David

    Heterostructures made by stacking monolayers of different 2D materials can have unique properties, such as hosting long-lived polarized interlayer excitons. Understanding these depends on knowledge of the band parameters of both the separate monolayers and the hetero-bilayer. Interlayer hybridization can also produce distinct electronic structure dependent on the relative monolayer crystal orientation. The most powerful technique for determining such properties is angle-resolved photoemission (ARPES), which can now be applied to micron-scale samples at the Spectromicroscopy Elettra Trieste beamline. Using this new facility, combined with careful sample design, we have studied heterostructures of WSe2, MoSe2, WS2 and graphene. We determined band offsets, effective masses, and spin-orbit splittings with an energy resolution <50 meV. Interestingly, the bands near the gamma-point in hetero-bilayers oriented near zero degrees are not a superposition of those in the isolated monolayers, but exhibit an additional higher band. However, the valence band edge remains at the K-point, which together with the band offsets is consistent with measurements of strong luminescence from interlayer excitons in MoSe2/WSe2.

  5. Band offsets of a ruthenium gate on ultrathin high-{kappa} oxide films on silicon

    SciTech Connect

    Rangan, Sylvie; Bersch, Eric; Bartynski, Robert Allen; Garfunkel, Eric; Vescovo, Elio

    2009-02-15

    Valence-band and conduction-band edges of ultrathin oxides (SiO{sub 2}, HfO{sub 2}, Hf{sub 0.7}Si{sub 0.3}O{sub 2}, and Al{sub 2}O{sub 3} grown on silicon) and their shifts upon sequential metallization with ruthenium have been measured using synchrotron-radiation-excited x-ray, ultraviolet, and inverse photoemissions. From these techniques, the offsets between the valence-band and conduction-band edges of the oxides, and the ruthenium metal gate Fermi edge have been directly measured. In addition the core levels of the oxides and the ruthenium have been characterized. Upon deposition, Ru remains metallic and no chemical alteration of the underlying oxide gates, or interfacial SiO{sub 2} in the case of the high-{kappa} thin films, can be detected. However a clear shift of the band edges is measured for all samples due to the creation of an interface dipole at the ruthenium-oxide interface. Using the energy gap, the electron affinity of the oxides, and the ruthenium work function that have been directly measured on these samples, the experimental band offsets are compared to those predicted by the induced gap states model.

  6. Band Offsets of a Ruthenium Gate on Ultrathin High-k Oxide Films on Silicon

    SciTech Connect

    Rangan, S.; Bersch, W; Bartynski, R; Garfunkel, E; Vescovo, E

    2009-01-01

    Valence-band and conduction-band edges of ultrathin oxides and their shifts upon sequential metallization with ruthenium have been measured using synchrotron-radiation-excited x-ray, ultraviolet, and inverse photoemissions. From these techniques, the offsets between the valence-band and conduction-band edges of the oxides, and the ruthenium metal gate Fermi edge have been directly measured. In addition the core levels of the oxides and the ruthenium have been characterized. Upon deposition, Ru remains metallic and no chemical alteration of the underlying oxide gates, or interfacial SiO{sub 2} in the case of the high-? thin films, can be detected. However a clear shift of the band edges is measured for all samples due to the creation of an interface dipole at the ruthenium-oxide interface. Using the energy gap, the electron affinity of the oxides, and the ruthenium work function that have been directly measured on these samples, the experimental band offsets are compared to those predicted by the induced gap states model.

  7. Synthesis and characterization of a mixture of CoFe2O4 and MgFe2O4 from layered double hydroxides: Band gap energy and magnetic responses

    NASA Astrophysics Data System (ADS)

    Agú, Ulises A.; Oliva, Marcos I.; Marchetti, Sergio G.; Heredia, Angélica C.; Casuscelli, Sandra G.; Crivello, Mónica E.

    2014-11-01

    A mixture of nanocrystals of cobalt ferrite and magnesium ferrite was obtained from Layered Double Hydroxides (LDH) through a co-precitation method with a theoretical molar ratio M2+:Fe3+=3:1, where M2+represents Mg2+ and/or Co2+. The molar ratios between Co2+:Fe3+ were 0.0 (0Co), 0.2 (5Co), and 0.4 (10Co). In order to assess the effect on the properties of the LDH and their oxides, the molar percentages were 0, 5 and 10%. Two different synthesis methods were evaluated; (i) ageing at room temperature (rt), and (ii) hydrothermal ageing at 200 °C in autoclave (ht), both methods needed 15 h of ageing. Then, these LDH were calcined in air atmosphere at 550 °C for 10 h. The calcined materials were characterized by X-ray diffraction (XRD), thermogravymetric analysis (TGA), temperature-programmed reduction (TPR), infrared spectroscopy with Fourier transform (FTIR), Diffuse Reflectance UV-visible spectroscopy (UV-vis-DRS), Mössbauer spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). The magnetic response was analyzed using a vibrating sample magnetometer (VSM). The band gap energy of the iron oxides was determined through the UV-vis-DRS analysis. Through these studies it was possible to identify the presence of a mixture of cobalt ferrite and magnesium ferrite. Samples did not show hematite and cobalt oxides, but the presence of MgO in the periclase phase was determined. This magnesium oxide promoted a good dispersion of the ferrites. Moreover, when a single ferrite phase of Co or Mg was formed, a diminution of the crystal size with consequent enlarged values of band gap energy was observed. Thus, materials synthesized by room temperature ageing promoted the superparamagnetic behaviour of samples, attributed to the content of the cobalt ferrite structure in nanocrystals. In regard to the estimated band gap energy, all samples exhibited low levels. These results indicate that these solids would be suitable for photocatalysts use in all

  8. Comparative study of the two-phonon Raman bands of silicene and graphene

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Lambin, Philippe

    2016-06-01

    We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy.

  9. Europa Triple Band

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This picture of Europa, a moon of Jupiter, was obtained on February 20, 1997, by the Solid State Imaging system onboard the Galileo spacecraft during its sixth orbit around Jupiter. The area is centered at 9.3 degrees north latitude, 275.7 degrees west longitude, on the trailing hemisphere of Europa. As Europa moves in its orbit around Jupiter, the trailing hemisphere is the portion which is always on the moon's backside opposite to its direction of motion. The area depicted is about 32 kilometers by 40 kilometers (20 miles by 25 miles). Resolution is 54 meters (59 yards). The Sun illuminates the scene from the right (east).

    A section of a triple band crosses the upper left of the picture and extends for hundreds of miles across the surface. Triple bands derive their name from their appearance at lower resolution as a narrow bright band flanked by a pair of darker bands. At the high resolution of this picture, however, the triple band is much more complex and is composed of a system of ridges 6 kilometers (4 miles) across. Some ridges reach heights of about 180 meters (200 yards). Other features include a hill in the center of the picture about 480 meters (500 yards) high. Two mounds about 6 kilometers across (4 miles) are seen in the bottom of the picture. The ridges, hills and mounds probably all represent uplifts of the icy crust of Europa by processes originating from the interior.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  10. High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core “DSB” response specific to clastogenic treatments

    PubMed Central

    Missirian, Victor; Conklin, Phillip A.; Culligan, Kevin M.; Huefner, Neil D.; Britt, Anne B.

    2014-01-01

    Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as “collateral” damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe26+ high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5–24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the “DSB response” were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing “extended night.” This response was not apparent in gamma-irradiated plants. PMID:25136344

  11. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The... activity to submit additional information....

  12. Band structure engineering in organic semiconductors.

    PubMed

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  13. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  14. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    SciTech Connect

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  15. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  16. Micmac Strategic Energy Planning Initiative

    SciTech Connect

    Fred Corey

    2007-02-02

    In February 2005 the Aroostook Band of Micmacs submitted a grant application to the U.S. Department of Energy’s (DOE) Tribal First Steps Program. The purpose of the application was to request funding and technical assistance to identify and document Tribal energy issues, develop a Tribal energy vision, evaluate potential energy opportunities, and to develop an action plan for future Tribal energy activities. The grant application was subsequently funded by DOE, and the Aroostook Band of Micmacs hired an energy consultant to assist with completion of the project. In addition to identification and documentation of Tribal energy issues, and the development of a Tribal energy vision, the potential for wind energy development on Tribal land, and residential energy efficiency issues were thoroughly evaluated.

  17. Topics in topological band systems

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen

    The discovery of integer quantum Hall effect and its subsequent theoretical formulation heralded a new paradigm of thinking in condensed matter physics, which has by now blossomed into the rapidly growing field of topological phases. In this work we investigate several mutually related topics in the framework of topological band theory. In Chapter 2, we study solutions to boundary states on a lattice and see how they are related to the bulk topology. To elicit a real space manifestation of the non-trivial topology, the presence of a physical edge is not strictly necessary. We study two other possibilities, namely the entanglement spectrum associated with an imaginary spatial boundary, and the localization centers of Wannier functions, in Chapters 3,4, and 5. Topological classification through discrete indices is so far possible only for systems described by pure quantum states---in the existing scheme, quantization is lost for systems in mixed states. In Chapter 6, we present a program through which discrete topological indices can be defined for topological band systems at finite temperature, based on Uhlmann's parallel transport of density matrices. The potential of topologocal insulators in realistic applications lies in the existence of Dirac nodes on its surface spectrum. Dirac physics, however, is not exclusive to TI surfaces. In a recently discovered class of materials known as Weyl semimetals, energy nodes which emit linear dispersions also occur in the bulk material. In Chapter 7, we study the possibility of resonance states induced by localized impurities near the nodal energy in Weyl semimetals, which will help us in understanding the stability of density-of-state suppression at the energy nodes. Finally, in Chapter 8, we apply the topological characterization developed for noninteracting particles to a class of interacting spin models in 3D, which are generalizations of Kitaev's honeycomb model, and identify several exotic quantum phases such as spin

  18. A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties.

    PubMed

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2015-01-01

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. In addition, this new allotrope displays large carrier mobility (~10(4) cm/V · s) at room temperature and a low mass density (1.71 g/cm(3)), making it a promising material for optoelectronic applications. PMID:26395926

  19. A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2015-09-01

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. In addition, this new allotrope displays large carrier mobility (~104 cm/V · s) at room temperature and a low mass density (1.71 g/cm3), making it a promising material for optoelectronic applications.

  20. A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties

    PubMed Central

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2015-01-01

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. In addition, this new allotrope displays large carrier mobility (~104 cm/V · s) at room temperature and a low mass density (1.71 g/cm3), making it a promising material for optoelectronic applications. PMID:26395926

  1. Band anticrossing in InGaPN alloys induced by N-related localized states

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Hwang, J. S.

    2006-11-01

    Temperature-dependent photoreflectance measurements are employed to characterize the electronic band structure of InGaPN grown on GaAs substrates. In addition to the fundamental band gap, the upper subband E+ is observed as predicted by the band anticrossing (BAC) model. By eliminating the contributions of the epitaxial-strain and atomic-ordering effects in InGaPN and also assigning the localized state energy EN introduced by an isolated N to be 2.040eV at 293K, the interaction potential V is determined as 1.449±0.170eV. The incorporation of a temperature-dependent EN level into the BAC model fits the experimental data better than assuming EN to be a constant. This contrasts with previously published results and so provides a different view of the temperature dependence of the EN level in InGaPN.

  2. Band gap and electronic structure of MgSiN{sub 2}

    SciTech Connect

    Quirk, J. B. Råsander, M.; McGilvery, C. M.; Moram, M. A.; Palgrave, R.

    2014-09-15

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN{sub 2} is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN{sub 2} (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN{sub 2} is 6.2 eV. MgSiN{sub 2} has an additional direct gap of 6.3 eV at the Γ point.

  3. Band structure and fermi surface of Electron-Doped C{sub 60} Monolayers

    SciTech Connect

    Yang, W.L.; Brouet, V.; Zhou, X.J.; Choi, Hyoung J.; Louie, Steven G.; Cohen, Marvin L.; Kellar, S.A.; Bogdanov, P.V.; Lanzara, A.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z-X.

    2003-11-06

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  4. Band structure and Fermi surface of electron-doped C60 monolayers.

    PubMed

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions. PMID:12690192

  5. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell. PMID:18764346

  6. Orff Techniques to Freshen Up Band Rehearsal

    ERIC Educational Resources Information Center

    Misenhelter, Dale

    2004-01-01

    Experienced band directors know they need teaching strategies and activities that are not only innovative but also provide creative and engaging breaks in the routine for students. In addition, expectations based on the National Standards suggest new approaches to many of the performance-polishing strategies directors have come to rely on.…

  7. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically...

  8. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically...

  9. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically...

  10. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically...

  11. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  12. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  13. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  14. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  15. The S-Band 1.6 Cell RF Gun Correlated Energy Spread Dependence on pi and 0 Mode Relative Amplitude

    SciTech Connect

    Schmerge, J.F.; Castro, J.; Clendenin, J.E.; Dowell, D.H.; Gierman, S.M.; Loos, H.; /SLAC

    2006-02-24

    The {pi} mode or accelerating mode in a 1.6 cell rf gun is normally the only mode considered in rf gun simulations. However, due to the finite Q there is a small but measurable 0 mode present even at steady state. The {pi} mode by definition has a 180{sup o} phase shift between cells but this phase shift for the total field is several degrees different. This results in a correlated energy spread exiting the gun. A comparison of simulation and experiment will be shown.

  16. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  17. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  18. Thermochemical Properties and Bond Dissociation Energies for Fluorinated Methanol, CH3-xFxOH, and Fluorinated Methyl Hydroperoxides, CH3-xFxOOH: Group Additivity.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-09-01

    Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that

  19. Taking the band function too far: a tale of two α's

    NASA Astrophysics Data System (ADS)

    Burgess, J. Michael; Ryde, Felix; Yu, Hoi-Fung

    2015-08-01

    The long standing problem of identifying the emission mechanism operating in gamma-ray bursts (GRBs) has produced a myriad of possible models that have the potential of explaining the observations. Generally, the empirical Band function is fit to the observed gamma-ray data and the fit parameters that are used to infer which radiative mechanisms are at work in GRB outflows. In particular, the distribution of the Band function's low-energy power-law index, α, has led to the so-called synchrotron `line-of-death' (LOD) which is a statement that the distribution cannot be explained by the simplest of synchrotron models alone. As an alternatively fitting model, a combination of a blackbody in addition to the Band function is used, which in many cases provide a better or equally good fit. It has been suggested that such fits would be able to alleviate the LOD problem for synchrotron emission in GRBs. However, these conclusions rely on the Band function's ability to fit a synchrotron spectrum within the observed energy band. In order to investigate if this is the case, we simulate synchrotron and synchrotron+blackbody spectra and fold them through the instrumental response of the Fermi Gamma-ray Burst Monitor (GBM). We then perform a standard data analysis by fitting the simulated data with both Band and Band+blackbody models. We find two important results: the synchrotron LOD is actually more severe than the original predictions: αLOD ˜ -0.8. Moreover, we find that intrinsic synchrotron+blackbody emission is insufficient to account for the entire observed α distribution. This implies that some other emission mechanism(s) are required to explain a large fraction of observed GRBs.

  20. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable. PMID:25933339