Science.gov

Sample records for additional energy cost

  1. Cost of energy evaluation

    NASA Technical Reports Server (NTRS)

    Hasbrouck, T. M.

    1979-01-01

    The estimated cost per kilowatt hour, the wind resources in the utilities service area, and the reliability of the units are considered in computing the cost of energy of the wind turbine generator system.

  2. Cost Estimation of Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Piili, Heidi; Happonen, Ari; Väistö, Tapio; Venkataramanan, Vijaikrishnan; Partanen, Jouni; Salminen, Antti

    Laser additive manufacturing (LAM) is a layer wise fabrication method in which a laser beam melts metallic powder to form solid objects. Although 3D printing has been invented 30 years ago, the industrial use is quite limited whereas the introduction of cheap consumer 3D printers, in recent years, has familiarized the 3D printing. Interest is focused more and more in manufacturing of functional parts. Aim of this study is to define and discuss the current economic opportunities and restrictions of LAM process. Manufacturing costs were studied with different build scenarios each with estimated cost structure by calculated build time and calculating the costs of the machine, material and energy with optimized machine utilization. All manufacturing and time simulations in this study were carried out with a research machine equal to commercial EOS M series equipment. The study shows that the main expense in LAM is the investment cost of the LAM machine, compared to which the relative proportions of the energy and material costs are very low. The manufacturing time per part is the key factor to optimize costs of LAM.

  3. A Study of Additional Costs of Second Language Instruction.

    ERIC Educational Resources Information Center

    McEwen, Nelly

    A study was conducted whose primary aim was to identify and explain additional costs incurred by Alberta, Canada school jurisdictions providing second language instruction in 1980. Additional costs were defined as those which would not have been incurred had the second language program not been in existence. Three types of additional costs were…

  4. Minimizing fan energy costs

    SciTech Connect

    Monroe, R.C.

    1985-05-27

    Minimizing fan energy costs and maximizing fan efficiency is the subject of this paper. Blade design itself can cause poor flow distribution and inefficiency. A basic design criterion is that a blade should produce uniform flow over the entire plane of the fan. Also an inherent problem with the axial fan is swirl -- the tangential deflection of exit-flow caused by the effect of torque. Swirl can be prevented with an inexpensive hub component. Basic efficiency can be checked by means of the fan's performance curve. Generally, fewer blades translate into higher axial-fan efficiency. A crowded inboard area creates hub turbulence which lessens efficiency. Whether the pitch of fan blades is fixed or variable also affects energy consumption. Power savings of 50% per year or more can be realized by replacing fixed-pitch, continuously operating fans with fans whose blade pitch or speed is automatically varied.

  5. Cutting Energy Costs.

    ERIC Educational Resources Information Center

    Rittner-Heir, Robbin M.

    2003-01-01

    Describes school-district energy-conservation efforts including teaching students to save energy, retrofitting schools, hiring energy consulting companies, and activating the sleep function on computer monitors. Also describes the federal Energy Star program (www.energystar.gov). (PKP)

  6. Renewable Energy Cost Optimization Spreadsheet

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  7. The Energy Cost of Automobiles

    ERIC Educational Resources Information Center

    Berry, R. Stephen; Fels, Margaret F.

    1973-01-01

    Presents two respective comparisons between ideal and real energy cost for the manufacture of a new automobile and between free energy savings from processing the old automobile into low and high grade scraps. Suggests the wasted thermodynamic potential should be considered in making decisions about energy savings. (CC)

  8. Yearly Energy Costs for Buildings

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  9. New cement additive improves slurry properties and saves cost

    SciTech Connect

    Pollard, R.; Hibbeler, J.; DiLullo, G.; Shotton, E.A.

    1994-12-31

    A new cement additive has been developed which improves slurry performance and reduces cost. The additive is a vitrified aggregate of calcium-magnesium aluminosilicates with potential cementitious reactivity, hereafter abbreviated CMAS. CMAS has been used successfully on oil and gas wells throughout Indonesia. The purpose of this paper is to illustrate the technical enhancements and cost effectiveness of slurries incorporating CMAS. Laboratory data is presented and working mechanisms are defined to highlight CMAS`s positive effect on; compressive strength, fluid loss control, free water control, gas migration control, resistance to strength retrogression and aggressive fluids. Finally, case studies and an economic analysis are presented to show the cost savings for actual well applications.

  10. 48 CFR 246.470-1 - Assessment of additional costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Assessment of additional costs. 246.470-1 Section 246.470-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  11. Cost effective energy conservation measures

    SciTech Connect

    Mashburn, W.H.

    1997-06-01

    Determining the cost effectiveness of energy conservation measures (ECM`s) consists of more than determining simple payback or life cycle costing. If strategic energy planning is involved, then establishment of an energy management program is of major importance. Training incorporated into the energy auditing process enhances the audit by involving knowledgeable employees, as well an increasing the chance of implementation of measures identified and reported. Involving employees in the process gives them ownership, and greatly improves the implementation rate. Once a company gets turned on to saving energy, it spreads like wildfire through the plant. Consultants who incorporate training as part of their audit will enhance their marketability. This paper discusses training techniques as a part of the auditing process, and lists major potential ECM`s that the author has found to have a high priority.

  12. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  13. Saving Green on Energy Costs

    ERIC Educational Resources Information Center

    Tacke, Diane L.

    2006-01-01

    In recent years, colleges and universities have begun efforts to reduce their energy costs, an initiative that can not only save an institution money, but also strengthen relationships across campus. Board leadership has been central to this endeavor in setting goals, prioritizing projects, and financing those projects. Using her experiences with…

  14. Computer-based electric energy cost management

    SciTech Connect

    Grant, D.C.; Gallant, R.W.

    1988-01-01

    Control over electrical energy operating costs and their associated administrative overheads can be greatly improved by using a computer to manage electric service contracts. The electrical power supervision system (EPSS) is particularly effective for oil and gas producers whose electric loads are both diversified and distributed over several geographic areas. The system allows for centralized control under a trained specialist who ensures that for each production facility the contract terms and electrical costs are optimized. In addition, this approach to electric energy management effectively reduces corporate overheads by automating invoice payment procedures and enhancing lines of communication with the electric utilities.

  15. Identification of cost effective energy conservation measures

    NASA Technical Reports Server (NTRS)

    Bierenbaum, H. S.; Boggs, W. H.

    1978-01-01

    In addition to a successful program of readily implemented conservation actions for reducing building energy consumption at Kennedy Space Center, recent detailed analyses have identified further substantial savings for buildings representative of technical facilities designed when energy costs were low. The techniques employed for determination of these energy savings consisted of facility configuration analysis, power and lighting measurements, detailed computer simulations and simulation verifications. Use of these methods resulted in identification of projected energy savings as large as $330,000 a year (approximately two year break-even period) in a single building. Application of these techniques to other commercial buildings is discussed

  16. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  17. 48 CFR 352.216-70 - Additional cost principles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... needed to support the bids, proposals, and applications. (2) B & P costs of the current accounting period are allowable as indirect costs. (3) B & P costs of past accounting periods are unallowable in the current period. However, if the organization's established practice is to treat these costs by some...

  18. Estimating the additional cost of disability: beyond budget standards.

    PubMed

    Wilkinson-Meyers, Laura; Brown, Paul; McNeill, Robert; Patston, Philip; Dylan, Sacha; Baker, Ronelle

    2010-11-01

    Disabled people have long advocated for sufficient resources to live a life with the same rights and responsibilities as non-disabled people. Identifying the unique resource needs of disabled people relative to the population as a whole and understanding the source of these needs is critical for determining adequate levels of income support and for prioritising service provision. Previous attempts to identify the resources and costs associated with disability have tended to rely on surveys of current resource use. These approaches have been criticised as being inadequate for identifying the resources that would be required to achieve a similar standard of living to non-disabled people and for not using methods that are acceptable to and appropriate for the disabled community. The challenge is therefore to develop a methodology that accurately identifies these unique resource needs, uses an approach that is acceptable to the disabled community, enables all disabled people to participate, and distinguishes 'needs' from 'wants.' This paper describes and presents the rationale for a mixed methodology for identifying and prioritising the resource needs of disabled people. The project is a partnership effort between disabled researchers, a disability support organisation and academic researchers in New Zealand. The method integrates a social model of disability framework and an economic cost model using a budget standards approach to identify additional support, equipment, travel and time required to live an 'ordinary life' in the community. A survey is then used to validate the findings and identify information gaps and resource priorities of the community. Both the theoretical basis of the approach and the practical challenges of designing and implementing a methodology that is acceptable to the disabled community, service providers and funding agencies are discussed. PMID:20933315

  19. 48 CFR 3452.216-70 - Additional cost principles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scientific, cost and other data needed to support the bids, proposals and applications. Bid and proposal... practice is to treat these costs by some other method, they may be accepted if they are found to...

  20. 48 CFR 3452.216-70 - Additional cost principles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... scientific, cost, and other data needed to support the bids, proposals, and applications. Bid and proposal... practice is to treat these costs by some other method, they may be accepted if they are found to...

  1. 48 CFR 352.216-70 - Additional cost principles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Federal contracts, grants, and agreements, including the development of scientific, cost, and other data... method, they may be accepted if they are found to be reasonable and equitable. (4) B & P costs do...

  2. 48 CFR 352.216-70 - Additional cost principles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... include independent research and development (IR & D) costs covered by the following paragraph, or pre-award costs covered by paragraph 36 of Attachment B to OMB Circular A-122. (b) IR & D costs. (1) IR & D...-Federal contracts, grants, or other agreements. (2) IR & D shall be allocated its proportionate share...

  3. 48 CFR 352.216-70 - Additional cost principles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... include independent research and development (IR & D) costs covered by the following paragraph, or pre-award costs covered by paragraph 36 of Attachment B to OMB Circular A-122. (b) IR & D costs. (1) IR & D...-Federal contracts, grants, or other agreements. (2) IR & D shall be allocated its proportionate share...

  4. 48 CFR 352.216-70 - Additional cost principles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... include independent research and development (IR & D) costs covered by the following paragraph, or pre-award costs covered by paragraph 36 of Attachment B to OMB Circular A-122. (b) IR & D costs. (1) IR & D...-Federal contracts, grants, or other agreements. (2) IR & D shall be allocated its proportionate share...

  5. Energy cost of creating quantum coherence

    NASA Astrophysics Data System (ADS)

    Misra, Avijit; Singh, Uttam; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2016-05-01

    We consider physical situations where the resource theories of coherence and thermodynamics play competing roles. In particular, we study the creation of quantum coherence using unitary operations with limited thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of the unitary process. We also find the maximal achievable coherence under the constraint on the available energy. Additionally, we compare the maximal coherence and the maximal total correlation that can be created under unitary transformations with the same available energy at our disposal. We find that when maximal coherence is created with limited energy, the total correlation created in the process is upper bounded by the maximal coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the maximal coherence and maximal total correlation simultaneously with a limited energy cost.

  6. 2010 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  7. 2010 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  8. Energy Cost Reduction for Automotive Service Facilities.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    This handbook on energy cost reduction for automotive service facilities consists of four sections. The importance and economic benefits of energy conservation are discussed in the first section. In the second section six energy cost reduction measures are discussed: relamping interior areas; relamping and reducing interior lighting; setting back…

  9. 2014 Cost of Wind Energy Review

    SciTech Connect

    Mone, Christopher; Stehly, Tyler; Maples, Ben; Settle, Edward

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  10. 2013 Cost of Wind Energy Review

    SciTech Connect

    Mone, C.; Smith, A.; Maples, B.; Hand, M.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  11. Reducing energy costs in nursing homes

    SciTech Connect

    Not Available

    1981-01-01

    The handbook presents ideas and techniques for energy conservation in nursing homes. Case studies were developed of nursing homes located in different parts of the US. The typical nursing home assessed was proprietary, of intermediate-care level, medicaid-certified, and had less than 200 beds. Specific energy conservation measures were analyzed to determine the energy and dollar savings that could be realized. These include reducing heat loss through the building shell; reducing hot water costs; recovering the heat generated by dryers; reducing lighting costs; reducing heating and cooling costs, and analyzing fuels and fuel rates. A case for converting electric clothes dryers to gas was analyzed. (MCW)

  12. Energy and Educational Facilities: Costs and Conservation.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    An analysis of energy costs and conservation in educational facilities in the United States is presented in this report. Tables and text give dollar figures for energy expenditures in education since the first oil embargo. Energy conservation through facilities management and through facilities modification is stressed. Recommendations are…

  13. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  14. Environmental impacts and costs of energy.

    PubMed

    Rabl, Ari; Spadaro, Joseph V

    2006-09-01

    Environmental damage is one of the main justifications for continued efforts to reduce energy consumption and to shift to cleaner sources such as solar energy. In recent years there has been much progress in the analysis of environmental damages, in particular thanks to the ExternE (External Costs of Energy) Project of the European Commission. This article presents a summary of the methodology and key results for the external costs of the major energy technologies. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, No(x), and SO(2)) from fossil fuels impose significant public health costs, comparable to the cost of global warming from CO(2) emissions. The total external costs are relatively low for natural gas (in the range of about 0.5-1 eurocents/kWh for most EU countries), but much higher for coal and lignite (in the range of about 2-6 eurocents/kWh for most EU countries). By contrast, the external costs of nuclear, wind, and photovoltaics are very low. The external costs of hydro are extremely variable from site to site, and the ones of biomass depend strongly on the specific technologies used and can be quite large for combustion. PMID:17119229

  15. Environmental impacts and costs of energy.

    PubMed

    Rabl, Ari; Spadaro, Joseph V

    2006-09-01

    Environmental damage is one of the main justifications for continued efforts to reduce energy consumption and to shift to cleaner sources such as solar energy. In recent years there has been much progress in the analysis of environmental damages, in particular thanks to the ExternE (External Costs of Energy) Project of the European Commission. This article presents a summary of the methodology and key results for the external costs of the major energy technologies. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, No(x), and SO(2)) from fossil fuels impose significant public health costs, comparable to the cost of global warming from CO(2) emissions. The total external costs are relatively low for natural gas (in the range of about 0.5-1 eurocents/kWh for most EU countries), but much higher for coal and lignite (in the range of about 2-6 eurocents/kWh for most EU countries). By contrast, the external costs of nuclear, wind, and photovoltaics are very low. The external costs of hydro are extremely variable from site to site, and the ones of biomass depend strongly on the specific technologies used and can be quite large for combustion.

  16. Energy cost of walking with hip joint impairment.

    PubMed

    Gussoni, M; Margonato, V; Ventura, R; Veicsteinas, A

    1990-05-01

    The energy cost of walking was measured in 12 patients (age 39-73 years) with hip joint impairment and 10 healthy controls during unassisted walking (2-6 km.h-1) on a level treadmill surface and on a 5% incline. The energy cost of locomotion in most patients increased up to 50% and 70% during level-surface and uphill walking, respectively. This difference between patients and controls was probably due to the increased external mechanical work. The energy cost of walking, although related to pain experienced during walking but not to hip joint range of motion or to joint status evaluated radiographically, provides an additional variable when defining the conditions of disability and functional impairment in individuals with this pathological condition. [Gussoni M, Margonato V, Ventura R, et al: Energy cost of walking with hip joint impairment.

  17. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  18. Affordable housing: Reducing the energy cost burden

    SciTech Connect

    Lee, A.D.; Chin, R.I.; Marden, C.L.

    1995-01-01

    Residential energy expenditures are a key determinant of housing affordability, particularly for lower Income households. For years, federal, state and local governments and agencies have sought to defray energy expenses and Increase residential energy efficiency for low Income households through legislative and regulatory actions and programs. Nevertheless, household energy costs continue to place a major burden on lower Income families. This issue paper was written to help formulate national energy policy by providing the United States Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE) with Information to help define the affordable housing issue; Identify major drivers, key factors, and primary stakeholders shaping the affordable housing issue; and review how responding to this Issue may impact EE`s goals and objectives and Influence the strategic direction of the office. Typically, housing affordability is an Issue associated with lower income households. This issue paper adopts this perspective, but it is important to note that reducing energy utility costs can make {open_quotes}better{close_quote} housing affordable to any household regardless of income. As energy efficiency is improved throughout all sectors of the economy, special consideration must be given to low income households. Of all households, low income households are burdened the most by residential energy costs; their residences often are the least energy-efficient and have the greatest potential for efficiency improvements, but the occupants have the fewest resources to dedicate to conservation measures. This paper begins with a definition of {open_quotes}affordability{close_quotes} as it pertains to total housing costs and summarizes several key statistics related to housing affordability and energy use by lower income households.

  19. Flexibility: The Key to Cutting Energy Costs.

    ERIC Educational Resources Information Center

    Stern, Joanne

    This speech provides concrete ways for school districts to save on energy costs, based on the general concept of flexibility in energy systems. These methods have been successfully implemented in the Salem (Oregon) school district. The first idea is to set up a weekly, rather than annual, bidding system to increase fuel price options. This…

  20. 2011 Cost of Wind Energy Review

    SciTech Connect

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  1. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect

    Walker, A.

    2008-05-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  2. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  3. Health costs of a reduced energy supply.

    PubMed

    McCarroll, J R

    1983-10-01

    Health effects associated with electricity production, especially air pollution from fossil fuel combustion, have received much attention in the past 30 years. Virtually no attention has been paid to the health costs of a reduced or overpriced energy supply although these are real and formidable. Stringent regulations mandating control technology on stack emissions and/or burning of low sulfur fuels have been promulgated which cost the American public billions of dollars. These have indeed alleviated some health problems, but pressures to further tighten regulations offer little chance of further health benefits commensurate with their cost and are most likely to produce a new series of problems. PMID:6653529

  4. Optimizing Data Centre Energy and Environmental Costs

    NASA Astrophysics Data System (ADS)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  5. The High Cost of Saving Energy Dollars.

    ERIC Educational Resources Information Center

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  6. How To Attack Rising Energy Costs.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Presents manufacturer and engineer suggestions on how schools can solve their rising energy costs in the face of more demanding classroom needs placing greater demands of Heating and air conditioning ventilation systems. The use of CO2 sensors, boiler technology and two-pipe systems are explored. (GR)

  7. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    SciTech Connect

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  8. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  9. Potential reduction of DSN uplink energy cost

    NASA Technical Reports Server (NTRS)

    Dolinsky, S.; Degroot, N. F.

    1982-01-01

    DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.

  10. Larger Turbines and the Future Cost of Wind Energy (Poster)

    SciTech Connect

    Lantz, E.; Hand, M.

    2011-03-01

    The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

  11. Generating clean energy at high efficiency and low cost

    NASA Astrophysics Data System (ADS)

    Chang, Yan P.

    1991-06-01

    This paper is related to thermal energy conversion with particular attention to the utilization of thermal energy from environmental fluids according to concepts in equilibrium and nonequilibrium thermodynamics. The first step is to prove that a single fluid heat source can produce useful work, so that thermal energy of environmental fluids is not at 'dead state.' An ocean thermal energy conversion (OTEC) system can be easily constructed at higher efficiency and lower cost than existing OTEC systems. An atmosphere thermal energy conversion (ATEC) system of high efficiency and low cost is more sophisticated. It requires open or closed counter-clockwise cycles comprising isothermal compressible flow with or without heat transfer. Combination of one of such ATEC System and a cyclic system, and supplementation of fossil or nuclear fission fuel as an additional heat source are discussed for particular applications.

  12. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  13. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  14. 20 CFR 404.278 - Additional cost-of-living increase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Additional cost-of-living increase. 404.278 Section 404.278 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Cost-Of-Living Increases §...

  15. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  16. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  17. 7 CFR 1710.253 - Engineering and cost studies-addition of generation capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Engineering and cost studies-addition of generation... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.253 Engineering... engineering and cost studies as specified by RUS. The studies shall cover a period from the beginning of...

  18. The energy costs of wading in water

    PubMed Central

    Halsey, Lewis G.; Tyler, Christopher J.; Kuliukas, Algis V.

    2014-01-01

    ABSTRACT Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as befits searching for cryptic or hidden foods within a patch. The present study brings together data on the rate of oxygen consumption during wading by humans from previous studies, and augments these with new data for wading in shallower depths, with slower and more tortuous walking, to obtain a better understanding both of the absolute costs of wading in typical scenarios of aquatic foraging and of how the cost of wading varies as a function of water depth and speed of locomotion. Previous and present data indicate that, at low speeds, wading has a similar energetic cost to walking on land, particularly at lower water depths, and only at higher speeds is the cost of wading noticeably more expensive than when water is absent. This is probably explained by the relatively small volume of water that must be displaced during locomotion in shallow waters coupled with the compensating support to the limbs that the water affords. The support to the limbs/body provided by water is discussed further, in the context of bipedal locomotion by non-human primates during wading. PMID:24907372

  19. Potential cost savings from investments in energy-conserving irrigation systems

    SciTech Connect

    Patton, W.P.; Wilfert, G.L.; Harrer, B.J.; Clark, M.A.; Sherman, K.L.

    1982-10-01

    A comparative analysis is presented of the levelized costs of selected irrigation systems, with an emphasis on the costs and benefits of energy savings. The net economic benefits are evaluated, measured as energy cost savings minus additional capital and operating costs, of some energy-conserving systems. Energy use in irrigation and descriptions of both the conventional and the energy-saving technologies involved in the analysis are discussed. The approach used in the analysis is outlined, and comparative analysis results are discussed. Detailed cost information is presented by state. (LEW)

  20. Energy cost and optimisation in breath-hold diving.

    PubMed

    Trassinelli, M

    2016-05-01

    diminished by reducing the volume of gas-filled body parts in divers close to neutral buoyancy. This provides a possible additional explanation for the observed exhalation of air before diving in phocid seals to minimise dive energy cost. Until now the only explanation for this phenomenon has been a reduction in the risk of decompression sickness.

  1. Energy cost and optimisation in breath-hold diving.

    PubMed

    Trassinelli, M

    2016-05-01

    diminished by reducing the volume of gas-filled body parts in divers close to neutral buoyancy. This provides a possible additional explanation for the observed exhalation of air before diving in phocid seals to minimise dive energy cost. Until now the only explanation for this phenomenon has been a reduction in the risk of decompression sickness. PMID:26896829

  2. Energy-efficient lubricants reduce plant energy costs

    SciTech Connect

    Scharf, C.; Lockett, A.

    1997-09-01

    This article describes how specially formulated synthetic lubricants can improve gear drive efficiency, extend maintenance cycles and enhance equipment durability. Energy-efficient synthetic gear oils, formulated to optimize viscometric and friction characteristics, can significantly reduce the power-consumption requirements of gear-driven equipment, while enhancing gear drive durability and significantly lowering energy costs. Unfortunately energy-efficient lubricants are not widely understood and appreciated.

  3. 42 CFR 413.355 - Additional payment: QIO photocopy and mailing costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.355 Additional payment: QIO photocopy and mailing costs. An additional payment is made to a skilled nursing facility in accordance with § 476.78 of...

  4. 42 CFR 413.355 - Additional payment: QIO photocopy and mailing costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.355 Additional payment: QIO photocopy and mailing costs. An additional payment is made to a skilled nursing facility in accordance with § 476.78 of...

  5. 42 CFR 413.355 - Additional payment: QIO photocopy and mailing costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.355 Additional payment: QIO photocopy and mailing costs. An additional payment is made to a skilled nursing facility in accordance with § 476.78 of...

  6. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  7. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  8. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  9. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  10. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  11. Energy Costs of Catfish Space Use as Determined by Biotelemetry

    PubMed Central

    Slavík, Ondřej; Horký, Pavel; Závorka, Libor

    2014-01-01

    Animals use dispersed resources within their home range (HR) during regular day-to-day activities. The high-quality area intensively used by an individual, where critical resources are concentrated, has been designated as the core area (CA). This study aimed to describe how animals utilize energy in the HR and CA assuming that changes would occur according to the size of the used areas. We observed energetic costs of space use in the largest European freshwater predator catfish, Silurus glanis, using physiological sensors. Catfish consumed significantly more energy within the CA compared to the rest of the HR area. In addition, energetic costs of space use within a large area were lower. These results generally indicate that utilization of larger areas is related to less demanding activities, such as patrolling and searching for new resources and mates. In contrast, fish occurrence in small areas appears to be related to energetically demanding use of spatially limited resources. PMID:24896256

  12. Energy cost of youth obesity exercise modes.

    PubMed

    Thiel, C; Vogt, L; Claussnitzer, G; Banzer, W

    2011-02-01

    The purpose of this study was to assess the energy expenditure (EE) of different exercise intervention modes commonly employed in youth obesity programs. Individual heart rate (HR) - EE relationships were obtained in 20 obese adolescents (13.6±1.4 years, BMI 31.8±4.1 kg·m(-2), peak VO(2) 30.1±4.9 ml·kg(-1)·min(-1)) attending inpatient comprehensive multidisciplinary intervention and EE was calculated from HR during different exercise therapy modes. Per week, a cumulative EE above baseline of 7 829±2 229 kJ·week(-1) was induced by 7.5 h of structured exercise intervention. EE [kJ·kg(-1)·h(-1)] of walking (14.0±2.9) differed significantly from swimming (19.9±5.9), water games (18.0±4.4), 65-85 W cycle ergometry (19.6±3.7), strength/stability circuit (18.9±3.7), small group games/relays (19.0±5.4) and team sports (20.6±7.0) (p<0.05). Since the energy cost of all exercise modes except walking was comparable, priority should be given to the adolescents' preferences to promote long-term activity behaviour change. PMID:21110288

  13. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  14. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  15. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1 The Design... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  16. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  17. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  18. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  19. Report on Cost-Effectiveness and Energy Svaings from Application of Low-Cost Wireless Sensing

    SciTech Connect

    Kintner-Meyer, Michael CW; Skorpik, James R.; Reid, Larry D.

    2004-12-02

    This report characterizes commercially available wireless technologies that are already being used in building applications or that are suitable for use in commercial buildings. The discussion provides an overview of fundamental concepts of radial broadcasting systems, as well as mesh networks, and will highlight the opportunities and challenges in their integration into existing wired control networks. This report describes two demonstration projects of wireless sensors and their integration into existing control networks and discusses their cost per sensor, their ease of installation, and their reliability. It also describes the load control strategies implemented as a consequence of having the additional data provided by the wireless sensors and provides estimates of the resulting energy and cost savings. The report concludes with presentation of some general future prospects for wireless technologies in buildings applications.

  20. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  1. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    SciTech Connect

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious; Carver, Keith; England, Roger

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  2. SideRack: A Cost-Effective Addition to Commercial Zebrafish Housing Systems

    PubMed Central

    Burg, Leonard; Gill, Ryan; Balciuniene, Jorune

    2014-01-01

    Abstract Commercially available aquatic housing systems provide excellent and relatively trouble-free hardware for rearing and housing juvenile as well as adult zebrafish. However, the cost of such systems is quite high and potentially prohibitive for smaller educational and research institutions. The need for tank space prompted us to experiment with various additions to our existing Aquaneering system. We also noted that high water exchange rates typical in commercial systems are suboptimal for quick growth of juvenile fish. We devised a housing system we call “SideRack,” which contains 20 large tanks with air supply and slow water circulation. It enables cost-effective expansion of existing fish facility, with a key additional benefit of increased growth and maturation rates of juvenile fish. PMID:24611601

  3. Cost-Sensitive Boosting: Fitting an Additive Asymmetric Logistic Regression Model

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Jie; Mao, Yao-Bin; Wang, Zhi-Quan; Xiang, Wen-Bo

    Conventional machine learning algorithms like boosting tend to equally treat misclassification errors that are not adequate to process certain cost-sensitive classification problems such as object detection. Although many cost-sensitive extensions of boosting by directly modifying the weighting strategy of correspond original algorithms have been proposed and reported, they are heuristic in nature and only proved effective by empirical results but lack sound theoretical analysis. This paper develops a framework from a statistical insight that can embody almost all existing cost-sensitive boosting algorithms: fitting an additive asymmetric logistic regression model by stage-wise optimization of certain criterions. Four cost-sensitive versions of boosting algorithms are derived, namely CSDA, CSRA, CSGA and CSLB which respectively correspond to Discrete AdaBoost, Real AdaBoost, Gentle AdaBoost and LogitBoost. Experimental results on the application of face detection have shown the effectiveness of the proposed learning framework in the reduction of the cumulative misclassification cost.

  4. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  5. The Cost of an Additional Disability-Free Life Year for Older Americans: 1992–2005

    PubMed Central

    Cai, Liming

    2013-01-01

    Objective To estimate the cost of an additional disability-free life year for older Americans in 1992–2005. Data Source This study used 1992–2005 Medicare Current Beneficiary Survey, a longitudinal survey of Medicare beneficiaries with a rotating panel design. Study Design This analysis used multistate life table model to estimate probabilities of transition among a discrete set of health states (nondisabled, disabled, and dead) for two panels of older Americans in 1992 and 2002. Health spending incurred between annual health interviews was estimated by a generalized linear mixed model. Health status, including death, was simulated for each member of the panel using these transition probabilities; the associated health spending was cross-walked to the simulated health changes. Principal Findings Disability-free life expectancy (DFLE) increased significantly more than life expectancy during the study period. Assuming that 50 percent of the gains in DFLE between 1992 and 2005 were attributable to increases in spending, the average discounted cost per additional disability-free life year was $71,000. There were small differences between gender and racial/ethnic groups. Conclusions The cost of an additional disability-free life year was substantially below previous estimates based on mortality trends alone. PMID:22670874

  6. Cost of photovoltaic energy systems as determined by balance-of-system costs

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  7. Reduce Operating Costs with an EnergySmart School Project

    ERIC Educational Resources Information Center

    US Department of Energy, 2008

    2008-01-01

    Energy costs are a school district's second highest expenditure after personnel. Public schools currently spend more than $8 billion per year for energy. School energy expenditures rose, on average, 20 percent per year between 2000 and 2002--and the costs continue to rise. Natural gas prices alone increased 14 percent annually between 2003 and…

  8. Energy Submetering: The Key to Cost-Effective Conservation.

    ERIC Educational Resources Information Center

    Turner, W. D.; McBride, John R.

    1999-01-01

    Examines the monitoring results from two large-scale metering and energy information projects: Texas LoanSTAR Program; and the Texas A & M Campus Project. Data suggest implementing an energy metering system is cost effective, particularly if the system can be coupled with skilled engineering applications such as energy cost allocation and building…

  9. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook

    EIA Publications

    2016-01-01

    This paper presents average values of levelized costs for generating technologies entering service in 2018, 2022, and 2040 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2016 (AEO2016) Reference case.

  10. Energy, greenhouse gas, and cost reductions for municipal recycling systems.

    PubMed

    Chester, Mikhail; Martin, Elliot; Sathaye, Nakul

    2008-03-15

    Curbside recycling programs can be more cost-effective than landfilling and lead to environmental benefits from the recovery of materials. Significant reductions in energy and emissions are derived from the decrease of energy-intensive production with virgin materials. In many cities, competing priorities can lead to limited consideration given to system optimal collection and processing strategies that can drive down costs and increase revenue while simultaneously reducing system energy consumption and greenhouse gas (GHG) emissions. We evaluate three alterations to a hypothetical California city's recycling network to discern the conditions under which the changes.constitute system improvements to cost, energy, and emissions. The system initially operates with a collection zoning scheme that does not mitigate the impact of seasonal variations in consumer tonnage. In addition, two collection organizations operate redundantly, collecting recyclables from different customer types on the same street network. Finally, the system is dual stream, meaning recyclables are separated at the curbside. In some scenarios, this practice can limit the consumer participation rate leading to lower collection quantities. First, we evaluate a "business as usual" (BAU) scenario and find that the system operates at a $1.7 M/yr loss but still avoids a net 18.7 GJ and 1700 kg of greenhouse gas equivalent (GGE) per ton of material recycled. Second, we apply an alternative zoning scheme for collection that creates a uniform daily pickup demand throughout the year reducing costs by $0.2 M/yr, energy by 30 MJ/ton, and GHG emissions by 2 kg GGE/ton. Next, the two collection organizations are consolidated into a single entity further reducing vehicle fleet size and weekly vehicle miles traveled resulting in savings from BAU of $0.3 M/yr, 100 MJ/ton, and 8 kg GGE/ton. Lastly, we evaluate a switch to a single-stream system (where recyclables are commingled). We showthat single-stream recycling

  11. Decreasing geothermal energy conversion costs with advanced materials

    SciTech Connect

    Kukacka, L.E.

    1988-03-01

    If the Geothermal Technology Division (GTD) is to meet its programmatic objectives in hydrothermal fluid production and energy conversion, it is essential that new materials of construction be available. Level III Program Objectives include (1) reducing the costs associated with lost circulation episodes by 30% by 1992, (2) reducing the costs of deep wells and directionally dried wells by 10% by 1992, (3) reducing well-cementing problems for typical hydrothermal wells by 20% by 1991, and (4) the development of a corrosion-resistant and low-fouling heat exchanger tube material costing no more than three times the cost of carbon steel tubes by 1991. The Brookhaven National Laboratory (BNL) materials program is focused on meeting these objectives. Currently, work is in progress on (1) high temperature chemical systems for lost circulation control, (2) advanced high temperature (300/sup 0/C), lightweight (approx. 1.1 g/cc), CO/sub 2/-resistant well cementing materials, (3) thermally conductive composites for heat exchanger tubing, and (4) ultra high temperature (600/sup 0/C) cements for magma wells. In addition, high temperature elastomer technology developed earlier in the program is being transferred for use in the Geothermal Drilling Organization programs on drill pipe protectors, rotating head seals, and blow-out preventors. Recent accomplishments and the current status of work in each subtask are summarized in the paper.

  12. Creating abundance: America's least-cost energy strategy

    SciTech Connect

    Sant, R.W.; Bakker, D.W.; Naill, R.F.

    1984-01-01

    This book is a lengthy essay describing the American accomplishments in taming the energy problem, although still untapped opportunities are noted. Contents: The concept of energy services. Lowering the energy cost in industry. Alternatives to traditional fuels. Two abundant energy futures. Some myths about energy. Index.

  13. Draft Submission; Social Cost of Energy Generation

    SciTech Connect

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  14. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  15. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  16. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  17. Green Energy in New Construction: Maximize Energy Savings and Minimize Cost

    ERIC Educational Resources Information Center

    Ventresca, Joseph

    2010-01-01

    People often use the term "green energy" to refer to alternative energy technologies. But green energy doesn't guarantee maximum energy savings at a minimum cost--a common misconception. For school business officials, green energy means getting the lowest energy bills for the lowest construction cost, which translates into maximizing green energy…

  18. 76 FR 57982 - Building Energy Codes Cost Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page 56413 in the issue of Tuesday, September 13, 2011 make the...

  19. Put the Heat on Cutting Energy Costs.

    ERIC Educational Resources Information Center

    Steller, Arthur W.; Pell, Carroll J.

    1985-01-01

    The school board establishes a commitment to efficient energy management through its policies and budget priorities. Such a policy should include a statement of purpose, assign accountability for improving energy efficiency, and ensure that mandated standards are maintained. To permanently prevent energy waste, a gradual change to a comprehensive…

  20. Economics of solar energy: Short term costing

    NASA Astrophysics Data System (ADS)

    Klee, H.

    The solar economics based on life cycle costs are refuted as both imaginary and irrelevant. It is argued that predicting rates of inflation and fuel escalation, expected life, maintenance costs, and legislation over the next ten to twenty years is pure guesswork. Furthermore, given the high mobility level of the U.S. population, the average consumer is skeptical of long run arguments which will pay returns only to the next owners. In the short term cost analysis, the house is sold prior to the end of the expected life of the system. The cash flow of the seller and buyer are considered. All the relevant factors, including the federal tax credit and the added value of the house because of the solar system are included.

  1. 25 CFR 170.602 - If a tribe incurs unforeseen construction costs, can it get additional funds?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sufficient additional funds are awarded. (See 25 CFR 900.130(e).) Miscellaneous Provisions ... 25 Indians 1 2013-04-01 2013-04-01 false If a tribe incurs unforeseen construction costs, can it... Funding Process § 170.602 If a tribe incurs unforeseen construction costs, can it get additional...

  2. 77 FR 24940 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ...: Representative Average Unit Costs of Energy'', dated March 10, 2011, 76 FR 13168. May 29, 2012, the cost figures... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2... after-tax costs found in this notice. The representative average unit after-tax costs for...

  3. Reported Energy and Cost Savings from the DOE ESPC Program

    SciTech Connect

    Shonder, John A; Slattery, Bob S; Atkin, Erica

    2012-01-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

  4. How to produce personality neuroscience research with high statistical power and low additional cost.

    PubMed

    Mar, Raymond A; Spreng, R Nathan; Deyoung, Colin G

    2013-09-01

    Personality neuroscience involves examining relations between cognitive or behavioral variability and neural variables like brain structure and function. Such studies have uncovered a number of fascinating associations but require large samples, which are expensive to collect. Here, we propose a system that capitalizes on neuroimaging data commonly collected for separate purposes and combines it with new behavioral data to test novel hypotheses. Specifically, we suggest that groups of researchers compile a database of structural (i.e., anatomical) and resting-state functional scans produced for other task-based investigations and pair these data with contact information for the participants who contributed the data. This contact information can then be used to collect additional cognitive, behavioral, or individual-difference data that are then reassociated with the neuroimaging data for analysis. This would allow for novel hypotheses regarding brain-behavior relations to be tested on the basis of large sample sizes (with adequate statistical power) for low additional cost. This idea can be implemented at small scales at single institutions, among a group of collaborating researchers, or perhaps even within a single lab. It can also be implemented at a large scale across institutions, although doing so would entail a number of additional complications.

  5. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  6. Electrical energy and cost savings potential at DOD facilities

    SciTech Connect

    Konopacki, S.; Akbari, H.; Lister, L.; DeBaille, L.

    1996-06-01

    The US Department of Defense (DOD) has been mandated to reduce energy consumption and costs by 20% from 1985 to 2000 and by 30% from 1985 to 2005. Reduction of electrical energy consumption at DOD facilities requires a better understanding of energy consumption patterns and energy and financial savings potential. This paper utilizes two independent studies--EDA (End-Use Disaggregation Algorithm) and MEIP (Model Energy Installation Program)--and whole-installation electricity use data obtained from a state utility to estimate electrical energy conservation potential (ECP) and cost savings potential (CSP) at the Fort Hood, Texas, military installation and at DOD nationwide. At Fort Hood, the authors estimated an annual electricity savings of 62.2 GWh/yr (18%), a peak demand savings of 10.1 MW (14%), and an annual energy cost savings of $6.5 million per year. These savings could be attained with an initial investment of $41.1 million, resulting in a simple payback of 6.3 years. Across the DOD, they estimated an annual electricity savings of 4,900 GWh/yr, a peak demand savings of 694 MW, and an annual energy cost savings of $316 million per year. The estimated cost savings is 16% of the total nationwide DOD 1993 annual energy costs. These savings could be attained with an initial investment of $1.23 billion, resulting in a simple payback of 3.9 years.

  7. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    NASA Technical Reports Server (NTRS)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  8. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  9. Ford Cleveland: Inside-out Analysis Identifies Energy Cost Savings Opportunities at Metal Casting Plant

    SciTech Connect

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of $3.28 million per year. In addition, two long-term projects were identified that together would represent another $9.5 million in cost savings.

  10. Using Mother Nature to Subdue Energy Costs.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1997-01-01

    Describes a Kansas City elementary school's successful energy conservation via its environmental design that includes the use of ground source heat pumps and computer energy management systems. Also discusses how this design concept contributes to the educational experience of the school's students. (GR)

  11. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy, Department... FURTHER INFORMATION CONTACT: Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency...

  12. 76 FR 64931 - Building Energy Codes Cost Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... on September 13, 2011. 76 FR 56413. The original comment period closed on October 13, 2011. The... Federal Register (76 FR 56413) to request information on how the Department may improve the methodology it... of Energy Efficiency and Renewable Energy Building Energy Codes Cost Analysis AGENCY: Office...

  13. Clean energy deployment: addressing financing cost

    NASA Astrophysics Data System (ADS)

    Ameli, Nadia; Kammen, Daniel M.

    2012-09-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low-middle income range facing financial constraints.

  14. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    SciTech Connect

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

    2004-01-20

    In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

  15. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  16. Costs and energy efficiency of a dual-mode system

    NASA Technical Reports Server (NTRS)

    Heft, R. C.

    1977-01-01

    The life cycle costs of a dual mode system for both public and semiprivate ownership are examined, and the costs in terms of levelized required revenue per passenger mile are presented. The energy use of the dual mode vehicle is analyzed by means of a detailed vehicle simulation program for the control policy and guideway system. Several different propulsion systems are considered.

  17. Sprag-type clutches cut energy costs

    SciTech Connect

    Rusnack, J.P.

    1982-08-01

    The sprag-type clutch transmits torque only in one direction and releases (over-runs) when input rotation is reversed or when the output overspeeds the input. The typical sprag-type clutch has a cylindrical inner race, a cylindrical outer race, sprags in the space between races, and an energizing spring to retain sprags. The versatile sprag-type clutch can save energy in a variety of applications by reducing the number of drive components, keeping sizes of components to a minimum, and by allowing the use of the most energy-efficient electric motors. Control applications, loading and unloading and tackling roll-over problems are discussed.

  18. Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

  19. Reactors Save Energy, Costs for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  20. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  1. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  2. Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market

    NASA Astrophysics Data System (ADS)

    Gillenwater, Michael Wayne

    In the United States, electricity consumers are told that they can "buy" electricity from renewable energy projects, versus fossil fuel-fired facilities, through participation in a voluntary green power program. The marketing messages communicate to consumers that their participation and premium payments for a green label will cause additional renewable energy generation and thereby allow them to claim they consume electricity that is absent pollution as well as reduce pollutant emissions. Renewable Energy Certificates (RECs) and wind energy are the basis for the majority of the voluntary green power market in the United States. This dissertation addresses the question: Do project developers respond to the voluntary REC market in the United States by altering their decisions to invest in wind turbines? This question is investigated by modeling and probabilistically quantifying the effect of the voluntary REC market on a representative wind power investor in the United States using data from formal expert elicitations of active participants in the industry. It is further explored by comparing the distribution of a sample of wind power projects supplying the voluntary green power market in the United States against an economic viability model that incorporates geographic factors. This dissertation contributes the first quantitative analysis of the effect of the voluntary REC market on project investment. It is found that 1) RECs should be not treated as equivalent to emission offset credits, 2) there is no clearly credible role for voluntary market RECs in emissions trading markets without dramatic restructuring of one or both markets and the environmental commodities they trade, and 3) the use of RECs in entity-level GHG emissions accounting (i.e., "carbon footprinting") leads to double counting of emissions and therefore is not justified. The impotence of the voluntary REC market was, at least in part, due to the small magnitude of the REC price signal and lack of

  3. Starship Sails Propelled by Cost-Optimized Directed Energy

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  4. Reliability, energy, and cost effects of wind-powered generation integrated with a conventional generating system

    SciTech Connect

    VanKuiken, J.C.; Buehring, W.A.; Huber, C.C.; Hub, K.A.

    1980-01-01

    The purpose of this investigation is to examine the potential impacts of incorporating wind turbines, without the aid of energy-storage devices, into a conventional electrical generating system. This study focuses on the contribution to generating-system reliability of wind turbines, and the methods used to calculate these benefits. In addition, a simple cost model was developed to estimate ranges of breakeven costs for wind turbines based on the sum of fuel cost savings, variable operation and maintenance (0 and M) cost savings, and reliability benefits of the wind turbines.

  5. 75 FR 13123 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ...: Representative Average Unit Costs of Energy'', dated June 3, 2009, 74 FR 26675. Effective April 19, 2010, the... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2...-tax costs found in this notice. The representative average unit after-tax costs for...

  6. Sound Stabilizes Locomotor-Respiratory Coupling and Reduces Energy Cost

    PubMed Central

    Hoffmann, Charles P.; Torregrosa, Gérald; Bardy, Benoît G.

    2012-01-01

    A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC) is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-)stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences. PMID:23028849

  7. Reducing Building HVAC Costs with Site-Recovery Energy

    ERIC Educational Resources Information Center

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  8. Assessing the Costs and Benefits of the Superior Energy Performance Program

    SciTech Connect

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  9. An evaluation of the US Department of Energy`s reducing swimming pool energy costs initiative

    SciTech Connect

    Jones, R.W.; Irwin, R.

    1997-06-01

    The US Department of Energy`s Reduce Swimming Pool Energy Costs (RSPEC) initiative developed and distributed a set of consumer-oriented fact sheets and the Energy Smart Pools software package to over 1300 pool owners, builders, and product manufacturers and retailers since the fall of 1994. The purpose was to promote the adoption of cost-effective energy efficiency and renewable energy measures in swimming pools. An evaluation request for feedback was recently sent to all who had received the materials to determine the impact of the program. With a minimal government investment, the RSPEC program has generated significant sales of pool energy efficiency and renewable energy technologies resulting in significant energy savings. These are very conservative numbers since they are based only on the fourteen percent of RSPEC program participants who returned the evaluations. Results are also from only one year of use. Results will continue to multiply as savings accumulate over the years, more pool industry people receive the RSPEC materials, and more energy efficiency and renewable energy products are sold.

  10. 78 FR 32224 - Availability of Version 3.1.2 of the Connect America Fund Phase II Cost Model; Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...; Additional Discussion Topics in Connect America Cost Model Virtual Workshop AGENCY: Federal Communications... issues in the ongoing virtual workshop. DATES: Comments are due on or before June 18, 2013. If you... comments. Virtual Workshop: In addition to the usual methods for filing electronic comments, the...

  11. Environmental residuals and capital costs of energy recovery from municipal sludge and feedlot manure

    SciTech Connect

    Ballou, S W; Dale, L; Johnson, R; Chambers, W; Mittelhauser, H

    1980-09-01

    The capital and environmental cost of energy recovery from municipal sludge and feedlot manure is analyzed. Literature on waste processing and energy conversion and interviews with manufacturers were used for baseline data for construction of theoretical models using three energy conversion processes: anaerobic digestion, incineration, and pyrolysis. Process characteristics, environmental impact data, and capital costs are presented in detail for each conversion system. The energy recovery systems described would probably be sited near large sources of sludge and manure, i.e., metropolitan sewage treatment plants and large feedlots in cattle-raising states. Although the systems would provide benefits in terms of waste disposal as well as energy production, they would also involve additional pollution of air and water. Analysis of potential siting patterns and pollution conflicts is needed before energy recovery systems using municipal sludge can be considered as feasible energy sources.

  12. The energy situation. [emphasizing various energy sources, costs, and environmental effects

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Energy reserves from the principal energy sources other than petroleum and natural gas are summarized. It was found that energy sources are being consumed at rates which exceed the ability to replace them through new discoveries and technology improvements. The costs and implications to environment for using coal and nuclear energy are discussed. Tables are presented on energy consumption, cost of reclamation, and water power capacity.

  13. Energy cost of vessel disturbance to Kittlitz's Murrelets Brachyramphus brevirostris

    USGS Publications Warehouse

    Agness, Alison M.; Marshall, Kristin N.; Piatt, John F.; Ha, James C.; VanBlaricom, Glenn R.

    2013-01-01

    We evaluated the energy cost of vessel disturbance for individual Kittlitz’s Murrelets Brachyramphus brevirostris in Glacier Bay National Park and Preserve in Alaska, USA. We used Monte Carlo simulations to model the daily energy expense associated with flight from vessels by both breeding and non-breeding birds and evaluated risk based on both the magnitude of costs incurred and the degree to which the costs may be chronic. We used two scenarios of vessel disturbance for average- and peak-vessel traffic. Because they are more likely to fly away from vessels, non-breeding birds had a greater increase in energy expenditure when disturbed (up to 30% increase under the average scenario and >50% increase under the peak scenario) than breeders (up to 10% and 30% increases under the average and peak scenarios, respectively). Likewise, non-breeding birds were more likely to experience chronic increases in energy expense (i.e. a greater percentage of days with an increase in energy expenditure) than breeding birds. Our modeling results indicated that breeding and non-breeding birds were both susceptible to fitness consequences (e.g. reduced reproductive success and survival) resulting from the energy cost.

  14. The real cost of solar energy in a hybrid system

    SciTech Connect

    Nava, P.

    1996-12-31

    A key figure used to characterize the economic viability of a power project is the LEC (Levelized Electricity Generation Costs). The models (performance model, O and M model, investment cost model, economic model) which feed information into the calculation are briefly described. Examples are given in order to show the high LEC dependency on configuration, location and annual fuel load hours. Then, more in detail, a methodology is sketched how to separate the fuel and the solar related cost in a hybrid system. Using this methodology, the average LEC, the solar related LEC and the fuel related LEC are presented for different plant configurations under varying assumptions of fuel costs. In addition, the level of grant for the solar boiler is calculated which results in equivalent costs for the solar based and fuel based kWh`s.

  15. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  16. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  17. Energy cost, mechanical work, and efficiency of hemiparetic walking.

    PubMed

    Detrembleur, C; Dierick, F; Stoquart, G; Chantraine, F; Lejeune, T

    2003-10-01

    The energy cost of walking (C) in nine chronic hemiparetic patients was calculated by measuring the total mechanical work (Wtot) done by the muscles and the efficiency of this work production (eta). The energy cost was twice normal in slow walkers and 1.3 times greater in fast walkers. The increase in C was proportional to the increase in Wtot and eta was normal at around 20%, despite an increase in muscle tone and muscle co-contractions. This type of approach gives a greater understanding into how segmental impairments increase Wtot and C and contribute to a patient's disability.

  18. Gelatin/graphene systems for low cost energy storage

    SciTech Connect

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore; Neitzert, Heinz C.

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  19. Gelatin/graphene systems for low cost energy storage

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Neitzert, Heinz C.; Iannace, Salvatore

    2014-05-01

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  20. Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

  1. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  2. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data....

  3. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data....

  4. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data....

  5. Energy life cycle cost analysis: Guidelines for public agencies

    SciTech Connect

    1995-03-01

    The State of Washington encourages energy-efficient building designs for public agencies. The Washington State Energy Office (WSEO) supports this goal by identifying advances in building technology and sharing this information with the design community and public administrators responsible for major construction projects. Many proven technologies can reduce operating costs-and save energy-to an extent that justifies some increases in construction costs. WSEO prepared these Energy Life Cycle Cost Analysis (ELCCA) guidelines for the individuals who are responsible for preparing ELCCA submittals for public buildings. Key terms and abbreviations are provided in Appendix A. Chapters 1 and 2 serve as an overview-providing background, defining energy life cycle cost analysis, explaining which agencies and projects are affected by the ELCCA requirements, and identifying changes to the guidelines that have been made since 1990. They explain {open_quotes}what needs to happen{close_quotes} and {open_quotes}why it needs to happen.{close_quotes} Chapters 3 to 7 provide the {open_quotes}how to,{close_quotes} the instructions and forms needed to prepare ELCCA submittals.

  6. Tampering with the turbulent energy cascade with polymer additives

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; da Silva, Carlos; Pinho, Fernando

    2014-11-01

    We show that the strong depletion of the viscous dissipation in homogeneous viscoelastic turbulence reported by previous authors does not necessarily imply a depletion of the turbulent energy cascade. However, for large polymer relaxation times there is an onset of a polymer-induced kinetic energy cascade which competes with the non-linear energy cascade leading to its depletion. Remarkably, the total energy cascade flux from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the non-linear energy cascade flux in Newtonian turbulence. The authors acknowledge the funding from COMPETE, FEDER and FCT (Grant PTDC/EME-MFE/113589/2009).

  7. Zero-Cost Estimation of Zero-Point Energies.

    PubMed

    Császár, Attila G; Furtenbacher, Tibor

    2015-10-01

    An additive, linear, atom-type-based (ATB) scheme is developed allowing no-cost estimation of zero-point vibrational energies (ZPVE) of neutral, closed-shell molecules in their ground electronic states. The atom types employed correspond to those defined within the MM2 molecular mechanics force field approach. The reference training set of 156 molecules cover chained and branched alkanes, alkenes, cycloalkanes and cycloalkenes, alkynes, alcohols, aldehydes, carboxylic acids, amines, amides, ethers, esters, ketones, benzene derivatives, heterocycles, nucleobases, all the natural amino acids, some dipeptides and sugars, as well as further simple molecules and ones containing several structural units, including several vitamins. A weighted linear least-squares fit of atom-type-based ZPVE increments results in recommended values for the following atoms, with the number of atom types defined in parentheses: H(8), D(1), B(1), C(6), N(7), O(3), F(1), Si(1), P(2), S(3), and Cl(1). The average accuracy of the ATB ZPVEs is considerably better than 1 kcal mol(-1), that is, better than chemical accuracy. The proposed ATB scheme could be extended to many more atoms and atom types, following a careful validation procedure; deviation from the MM2 atom types seems to be necessary, especially for third-row elements. PMID:26398318

  8. Energy conversion/power plant cost-cutting

    SciTech Connect

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  9. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed Central

    Wohlfahrt, Georg; Widmoser, Peter

    2013-01-01

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  10. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed

    Wohlfahrt, Georg; Widmoser, Peter

    2013-02-15

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements.

  11. 78 FR 12271 - Wireline Competition Bureau Seeks Additional Comment In Connect America Cost Model Virtual Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Virtual Workshop AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: In this... Site: http://fjallfoss.fcc.gov/ecfs2/ . Follow the instructions for submitting comments. Virtual...://www.fcc.gov/blog/wcb-cost-model-virtual-workshop-2012 . People with Disabilities: Contact the FCC...

  12. Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

  13. Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

  14. Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

  15. Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

  16. Energy Drain by Computers Stifles Efforts at Cost Control

    ERIC Educational Resources Information Center

    Keller, Josh

    2009-01-01

    The high price of storing and processing data is hurting colleges and universities across the country. In response, some institutions are embracing greener technologies to keep costs down and help the environment. But compared with other industries, colleges and universities have been slow to understand the problem and to adopt energy-saving…

  17. NECAP - NASA's Energy Cost Analysis Program. Operations manual

    NASA Technical Reports Server (NTRS)

    Miner, D. L.

    1982-01-01

    The use of the NASA'S ENERGY COST ANALYSIS PROGRAM (NECAP) is described. Supplementary information on new capabilities and program options is also provided. The Control Data Corporation (CDC) NETWORK OPERATING SYSTEM (NOS) is discussed. The basic CDC NOS instructions which are required to successfully operate NECAP are provided.

  18. Energy Cost and Consumption Audit Program. 1975-76 Report.

    ERIC Educational Resources Information Center

    Energy Task Force, Washington, DC.

    Results reported in this document were obtained from a questionnaire distributed to higher education business officers and physical plant directors requesting information on total campus and individual building energy cost and consumption for the fiscal year July 1, 1975, through June 30, 1976. Usable reports were received from 330 (22 percent) of…

  19. Government regulation and public opposition create high additional costs for field trials with GM crops in Switzerland.

    PubMed

    Bernauer, Thomas; Tribaldos, Theresa; Luginbühl, Carolin; Winzeler, Michael

    2011-12-01

    Field trials with GM crops are not only plant science experiments. They are also social experiments concerning the implications of government imposed regulatory constraints and public opposition for scientific activity. We assess these implications by estimating additional costs due to government regulation and public opposition in a recent set of field trials in Switzerland. We find that for every Euro spent on research, an additional 78 cents were spent on security, an additional 31 cents on biosafety, and an additional 17 cents on government regulatory supervision. Hence the total additional spending due to government regulation and public opposition was around 1.26 Euros for every Euro spent on the research per se. These estimates are conservative; they do not include additional costs that are hard to monetize (e.g. stakeholder information and dialogue activities, involvement of various government agencies). We conclude that further field experiments with GM crops in Switzerland are unlikely unless protected sites are set up to reduce these additional costs.

  20. Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy

    SciTech Connect

    Kane, S.M.; Kroll, P.; Nilo, B.

    1982-12-01

    The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

  1. A cost-effective target supply for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Brown, L. C.; Frey, D. T.; Gallix, R.; Gibson, C. R.; Maxwell, J. L.; Nobile, A.; Olson, C.; Petzoldt, R. W.; Raffray, R.; Rochau, G.; Schroen, D. G.; Tillack, M.; Rickman, W. S.; Vermillion, B.

    2004-12-01

    A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today's inertial confinement fusion experiments are estimated to cost about US2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about 0.25-0.30 for each injected target (corresponding to ~10% of the 'electricity value' in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of 'nth-of-a-kind' plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.

  2. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    SciTech Connect

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  3. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  4. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  5. Replacement Energy Cost Analysis Package (RECAP): User`s guide. Revision 1

    SciTech Connect

    VanKuiken, J.C.; Willing, D.L.

    1994-07-01

    A microcomputer program called the Replacement Energy Cost Analysis Package (RECAP) has been developed to assist the US Nuclear Regulatory Commission (NRC) in determining the replacement energy costs associated with short-term shutdowns or deratings of one or more nuclear reactors. The calculations are based on the seasonal, unit-specific cost estimates for 1993--1996 previously published in NRC Report NUREG/CR--4012, Vol. 3 (1992), for all 112 US reactors. Because the RECAP program is menu-driven, the user can define specific case studies in terms of such parameters as the units to be included, the length and timing of the shutdown or derating period, the unit capacity factors, and the reference year for reporting cost results. In addition to simultaneous shutdown cases, more complicated situations, such as overlapping shutdown periods or shutdowns that occur in different years, can be examined through the use of a present-worth calculation option.

  6. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  7. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  8. Expert elicitation survey on future wind energy costs

    NASA Astrophysics Data System (ADS)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-10-01

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24–30% reductions by 2030 and 35–41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  9. Removing energy from a beverage influences later food intake more than the same energy addition.

    PubMed

    McCrickerd, K; Salleh, N B; Forde, C G

    2016-10-01

    Designing reduced-calorie foods and beverages without compromising their satiating effect could benefit weight management, assuming that consumers do not compensate for the missing calories at other meals. Though research has demonstrated that compensation for overfeeding is relatively limited, the extent to which energy reductions trigger adjustments in later food intake is less clear. The current study tested satiety responses (characterised by changes in appetite and later food intake) to both a covert 200 kcal reduction and an addition of maltodextrin to a soymilk test beverage. Twenty-nine healthy male participants were recruited to consume three sensory-matched soymilk beverages across four non-consecutive study days: a medium energy control (ME: 300 kcal) and a lower energy (LE: 100 kcal) and higher energy (HE: 500 kcal) version. The ME control was consumed twice to assess individual consistency in responses to this beverage. Participants were unaware of the energy differences across the soymilks. Lunch intake 60 min later increased in response to the LE soymilk, but was unchanged after consuming the HE version. These adjustments accounted for 40% of the energy removed from the soymilk and 13% of the energy added in. Rated appetite was relatively unaffected by the soymilk energy content. No further adjustments were noted for the rest of the day. These data suggest that adult men tested were more sensitive to calorie dilution than calorie addition to a familiar beverage.

  10. Removing energy from a beverage influences later food intake more than the same energy addition.

    PubMed

    McCrickerd, K; Salleh, N B; Forde, C G

    2016-10-01

    Designing reduced-calorie foods and beverages without compromising their satiating effect could benefit weight management, assuming that consumers do not compensate for the missing calories at other meals. Though research has demonstrated that compensation for overfeeding is relatively limited, the extent to which energy reductions trigger adjustments in later food intake is less clear. The current study tested satiety responses (characterised by changes in appetite and later food intake) to both a covert 200 kcal reduction and an addition of maltodextrin to a soymilk test beverage. Twenty-nine healthy male participants were recruited to consume three sensory-matched soymilk beverages across four non-consecutive study days: a medium energy control (ME: 300 kcal) and a lower energy (LE: 100 kcal) and higher energy (HE: 500 kcal) version. The ME control was consumed twice to assess individual consistency in responses to this beverage. Participants were unaware of the energy differences across the soymilks. Lunch intake 60 min later increased in response to the LE soymilk, but was unchanged after consuming the HE version. These adjustments accounted for 40% of the energy removed from the soymilk and 13% of the energy added in. Rated appetite was relatively unaffected by the soymilk energy content. No further adjustments were noted for the rest of the day. These data suggest that adult men tested were more sensitive to calorie dilution than calorie addition to a familiar beverage. PMID:27356202

  11. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  12. Economic evaluations of solar thermal energy systems using a levelized energy cost approach

    SciTech Connect

    Williams, T.A.; Dirks, J.A.

    1985-11-01

    This paper discusses a Levelized Energy Cost (LEC) approach to economic evaluations of solar thermal power plants. Levelized Energy Costs are life cycle costs that include a plant's capital cost, total operation and maintenance cost, taxes, interest, and return on investment. A LEC approach provides an economically correct treatment of these costs and allows an evaluation of alternative solar thermal power systems. In this paper, general economic principals relating to LEC calculations such as the time value of money, discount rate, net present value, and annualized cost are defined and explained. The use of LEC analyses in choosing between alternatives is discussed. Then the simplified approach for calculating an LEC using the standard economic assumptions for solar thermal applications is presented. Finally, a way to easily carry out the LEC calculation on a microcomputer is given.

  13. Socioeconomic Status, Energy Cost, and Nutrient Content of Supermarket Food Purchases

    PubMed Central

    Appelhans, Bradley M.; Milliron, Brandy-Joe; Woolf, Kathleen; Johnson, Tricia J.; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Ventrelle, Jennifer C.

    2013-01-01

    Background The relative affordability of energy-dense versus nutrient-rich foods may promote socioeconomic disparities in dietary quality and obesity. Although supermarkets are the largest food source in the American diet, the associations between SES and the cost and nutrient content of freely chosen food purchases have not been described. Purpose To investigate relationships of SES with the energy cost ($/1000 kcal) and nutrient content of freely chosen supermarket purchases. Methods Supermarket shoppers (n=69) were recruited at a Phoenix AZ supermarket in 2009. The energy cost and nutrient content of participants’ purchases were calculated from photographs of food packaging and nutrition labels using dietary analysis software. Data were analyzed in 2010–2011. Results Two SES indicators, education and household income as a percentage of the federal poverty guideline (FPG), were associated with the energy cost of purchased foods. Adjusting for covariates, the amount spent on 1000 kcal of food was $0.26 greater for every multiple of the FPG, and those with a baccalaureate or postbaccalaureate degree spent an additional $1.05 for every 1000 kcal of food compared to those with no college education. Lower energy cost was associated with higher total fat and less protein, dietary fiber, and vegetables per 1000 kcal purchased. Conclusions Low-SES supermarket shoppers purchase calories in inexpensive forms that are higher in fat and less nutrient-rich. PMID:22424253

  14. Cost effectiveness of the 1995 model energy code in Massachusetts

    SciTech Connect

    Lucas, R.G.

    1996-02-01

    This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.

  15. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    PubMed Central

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  16. Annual energy usage reduction and cost savings of a school: end-use energy analysis.

    PubMed

    Roslizar, Aiman; Alghoul, M A; Bakhtyar, B; Asim, Nilofar; Sopian, K

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m(2)/year, but can theoretically be reduced to 40.19 kWh/mm(2)/year. PMID:25485294

  17. The energy cost of water independence: the case of Singapore.

    PubMed

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.

  18. The energy cost of water independence: the case of Singapore.

    PubMed

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency. PMID:25225924

  19. Healthcare-associated Staphylococcus aureus bloodstream infection: length of stay, attributable mortality, and additional direct costs.

    PubMed

    Primo, Mariusa Gomes Borges; Guilarde, Adriana Oliveira; Martelli, Celina M Turchi; Batista, Lindon Johnson de Abreu; Turchi, Marília Dalva

    2012-01-01

    This study aimed to determine the excess length of stay, extra expenditures, and attributable mortality to healthcare-associated S. aureus bloodstream infection (BSI) at a teaching hospital in central Brazil. The study design was a matched (1:1) case-control. Cases were defined as patients >13 years old, with a healthcare-associated S. aureus BSI. Controls included patients without an S. aureus BSI, who were matched to cases by gender, age (± 7 years), morbidity, and underlying disease. Data were collected from medical records and from the Brazilian National Hospital Information System (Sistema de Informações Hospitalares do Sistema Único de Saúde - SIH/SUS). A Wilcoxon rank sum test was performed to compare length of stay and costs between cases and controls. Differences in mortality between cases and controls were compared using McNemar's tests. The Mantel-Haenzel stratified analysis was performed to compare invasive device utilization. Data analyses were conducted using Epi Info 6.0 and Statistical Package for Social Sciences (SPSS 13.0). 84 case-control pairs matched by gender, age, admission period, morbidity, and underlying disease were analyzed. The mean lengths of hospital stay were 48.3 and 16.2 days for cases and controls, respectively (p<0.01), yielding an excess hospital stay among cases of 32.1 days. The excess mortality among cases compared to controls that was attributable to S. aureus bloodstream infection was 45.2%. Cases had a higher risk of dying compared to controls (OR 7.3, 95% CI 3.1-21.1). Overall costs of hospitalization (SIH/SUS) reached US$ 123,065 for cases versus US$ 40,247 for controls (p<0.01). The cost of antimicrobial therapy was 6.7 fold higher for cases compared to controls. Healthcare-associated S. aureus BSI was associated with statistically significant increases in length of hospitalization, attributable mortality, and economic burden. Implementation of measures to minimize the risk of healthcare-associated bacterial

  20. Cost analysis of DAWT innovative wind energy systems

    NASA Astrophysics Data System (ADS)

    Foreman, K. M.

    The results of a diffuser augmented wind turbine (DAWT) preliminary design study of three constructional material approaches and cost analysis of DAWT electrical energy generation are presented. Costs are estimated assuming a limited production run (100 to 500 units) of factory-built subassemblies and on-site final assembly and erection within 200 miles of regional production centers. It is concluded that with the DAWT the (busbar) cost of electricity (COE) can range between 2.0 and 3.5 cents/kW-hr for farm and REA cooperative end users, for sites with annual average wind speeds of 16 and 12 mph respectively, and 150 kW rated units. No tax credit incentives are included in these figures. For commercial end users of the same units and site characteristics, the COE ranges between 4.0 and 6.5 cents/kW-hr.

  1. Municipal Rebate Programs for Environmental Retrofits: An Evaluation of Additionality and Cost-Effectiveness

    ERIC Educational Resources Information Center

    Bennear, Lori S.; Lee, Jonathan M.; Taylor, Laura O.

    2013-01-01

    When policies incentivize voluntary activities that also take place in the absence of the incentive, it is critical to identify the additionality of the policy--that is, the degree to which the policy results in actions that would not have occurred otherwise. Rebate programs have become a common conservation policy tool for local municipalities…

  2. Energy cost and energy sources during a simulated firefighting activity.

    PubMed

    Perroni, Fabrizio; Tessitore, Antonio; Cortis, Cristina; Lupo, Corrado; D'artibale, Emanuele; Cignitti, Lamberto; Capranica, Laura

    2010-12-01

    This study aimed to 1) analyze the energy requirement (VO2eq) and the contribution of the aerobic (VO2ex), anaerobic alactic (VO2al), and anaerobic lactic (VO2la-) energy sources of a simulated intervention; 2) ascertain differences in mean VO2 and heart rate (HR) during firefighting tasks; and 3) verify the relationship between time of job completion and the fitness level of firefighters. Twenty Italian firefighters (age = 32 ± 6 yr, VO2peak = 43.1 ± 4.9 mL·kg·min) performed 4 consecutive tasks (i.e., child rescue; 250-m run; find an exit; 250-m run) that required a VO2eq of 406.26 ± 73.91 mL·kg (VO2ex = 86 ± 5%; VO2al = 9 ± 3%; VO2la- = 5 ± 3%). After 30 minutes, the recovery HR (108 ± 15 beats·min) and VO2 (8.86±2.67mL·kg·min) were higher (p < 0.0001) than basal values (HR = 66 ± 8 beats·min; VO2 = 4.57 ± 1.07 mL·kg·min), indicating that passive recovery is insufficient in reducing the cardiovascular and thermoregulatory strain of the previous workload. Differences (p < 0.001) between tasks emerged for mean VO2 and HR, with a lack of significant correlation between the time of job completion and the firefighters' aerobic fitness. These findings indicate that unpredictable working conditions highly challenge expert firefighters who need adequate fitness levels to meet the requirements of their work. Practically, to enhance the fitness level of firefighters, specific interval training programs should include a wide variety of tasks requiring different intensities and decision-making strategies.

  3. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  4. Geothermal energy: a proven resource with costly potential

    SciTech Connect

    Not Available

    1980-08-01

    The commercial use of geothermal energy to generate electricity has been spreading across the country since the California Geyser site was developed in 1960. Petroleum companies see geothermal power generation as a way to broaden their own base. The binary-cycle technology to use hydrothermal resources will be ready by 1985. Power generation from geothermal heat will be costly even though the resource itself is free and renewable; but the economics will improve as fossil-fuel prices increase. (DCK)

  5. Low-cost additive improved silage quality and anaerobic digestion performance of napiergrass.

    PubMed

    Lianhua, Li; Feng, Zhen; Yongming, Sun; Zhenhong, Yuan; Xiaoying, Kong; Xianyou, Zhou; Hongzhi, Niu

    2014-12-01

    Effects of molasses-alcoholic wastewater on the ensiling quality of napiergrass were investigated at ambient temperature, and its anaerobic digestion performance was assessed at mesophilic temperature. Results showed that the molasses-alcoholic wastewater had positive effect on silage quality and anaerobic digestion performance. Lower pH values of 5.20-5.28, lower NH3-N contents of 32.65-36.60 g/kg and higher lactic acid contents of 56-61 mg/kg FM were obtained for the silage samples with molasses-alcoholic wastewater addition. Higher specific biogas yield of 273 mL/g VS was obtained for the sample with 11% molasses-alcoholic wastewater added. Therefore 11% molasses-alcoholic wastewater addition was recommended.

  6. Compressed air systems. A guidebook on energy and cost savings

    SciTech Connect

    Not Available

    1984-03-30

    This guidebook shows how energy can be saved in compressed air systems. It discusses basic compressed air systems which are typical of those found in industry and describes them and the engineering practices behind them. Energy conservation recommendations follow. These recommendations cover equipment selection, design, maintenance, and operation. Included is information which will help the reader to make economic evaluations of various engineering and equipment alternatives as they affect operations and costs. The appendices include some modern computer based approaches to predicting pressure drop for designing compressed air distribution systems. Also included is a bibliography providing leads for further and more detailed technical information on these and related subjects.

  7. High-Energy-Density Cost-Effective Graphene Supercapacitors

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Ying Mu, Ying; Hedayat, Nader; Solovyov, Vyacheslav; Sensor CAT at Stony Brook Team

    We introduce a cost-effective graphene platelet composite material as a replacement of an expensive reduced graphene oxide for electrodes in high energy density supercapacitors. We have tested a low size supercapacitor prototypes with the graphene platelets electrodes and newly developed polymer-gel Li + ion electrolyte. We discuss the ways how to increase the capacitance and the energy densities of the supercapacitor significantly. A working prototype for testing the concept of the high voltage supercapacitor has been developed as well. The first test done up to 10 V showed excellent performance of the multy-cell multi-layer high voltage test assembly.

  8. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGES

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  9. The metabolic energy cost of action potential velocity

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Sangrey, Thomas; Levy, William

    2006-03-01

    Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.

  10. The concepts of energy, environment, and cost for process design

    SciTech Connect

    Abu-Khader, M.M.; Speight, J.G.

    2004-05-01

    The process industries (specifically, energy and chemicals) are characterized by a variety of reactors and reactions to bring about successful process operations. The design of energy-related and chemical processes and their evolution is a complex process that determines the competitiveness of these industries, as well as their environmental impact. Thus, we have developed an Enviro-Energy Concept designed to facilitate sustainable industrial development. The Complete Onion Model represents a complete methodology for chemical process design and illustrates all of the requirements to achieve the best possible design within the accepted environmental standards. Currently, NOx emissions from industrial processes continue to receive maximum attention, therefore the issue problem of NOx emissions from industrial sources such as power stations and nitric acid plants is considered. The Selective Catalytic Reduction (SCR) is one of the most promising and effective commercial technologies. It is considered the Best Available Control Technology (BACT) for NOx reduction. The solution of NOx emissions problem is either through modifying the chemical process design and/or installing an end-of-pipe technology. The degree of integration between the process design and the installed technology plays a critical role in the capital cost evaluation. Therefore, integrating process units and then optimizing the design has a vital effect on the total cost. Both the environmental regulations and the cost evaluation are the boundary constraints of the optimum solution.

  11. Use of low-cost aluminum in electric energy production

    NASA Astrophysics Data System (ADS)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  12. Coordination Pattern Adaptability: Energy Cost of Degenerate Behaviors

    PubMed Central

    Seifert, Ludovic; Komar, John; Crettenand, Florent; Millet, Grégoire

    2014-01-01

    This study investigated behavioral adaptability, which could be defined as a blend between stability and flexibility of the limbs movement and their inter-limb coordination, when individuals received informational constraints. Seven expert breaststroke swimmers performed three 200-m in breaststroke at constant submaximal intensity. Each trial was performed randomly in a different coordination pattern: ‘freely-chosen’, ‘maximal glide’ and ‘minimal glide’. Two underwater and four aerial cameras enabled 3D movement analysis in order to assess elbow and knee angles, elbow-knee pair coordination, intra-cyclic velocity variations of the center of mass, stroke rate and stroke length and inter-limb coordination. The energy cost of locomotion was calculated from gas exchanges and blood lactate concentration. The results showed significantly higher glide, intra-cyclic velocity variations and energy cost under ‘maximal glide’ compared to ‘freely-chosen’ instructional conditions, as well as higher reorganization of limb movement and inter-limb coordination (p<0.05). In the ‘minimal glide’ condition, the swimmers did not show significantly shorter glide and lower energy cost, but they exhibited significantly lower deceleration of the center of mass, as well as modified limb movement and inter-limb coordination (p<0.05). These results highlight that a variety of structural adaptations can functionally satisfy the task-goal. PMID:25255016

  13. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Renewable Energy Forrestal Building, Mail Station EE-2J 1000 Independence Avenue SW., Washington, DC 20585... Energy, Office of General Counsel Forrestal Building, Mail Station GC-72, 1000 Independence Avenue SW...: Representative Average Unit Costs of Energy'', dated April 26, 2012, 77 FR 24940. On April 22, 2013, the...

  14. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2011-01-01 2011-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  15. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  16. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2012-01-01 2012-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  17. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2010-01-01 2010-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  18. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  19. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2010-01-01 2010-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  20. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  1. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  2. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1 Determine the... 10 Energy 3 2014-01-01 2014-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  3. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2013-01-01 2013-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  4. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1 Each floor... 10 Energy 3 2014-01-01 2014-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  5. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  6. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2013-01-01 2013-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  7. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2011-01-01 2011-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  8. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2012-01-01 2012-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  9. Additional reductions in Medicare spending growth will likely require shifting costs to beneficiaries.

    PubMed

    Chernew, Michael E

    2013-05-01

    Policy makers have considerable interest in reducing Medicare spending growth. Clarity in the debate on reducing Medicare spending growth requires recognition of three important distinctions: the difference between public and total spending on health, the difference between the level of health spending and rate of health spending growth, and the difference between growth per beneficiary and growth in the number of beneficiaries in Medicare. The primary policy issue facing the US health care system is the rate of spending growth in public programs, and solving that problem will probably require reforms to the entire health care sector. The Affordable Care Act created a projected trajectory for Medicare spending per beneficiary that is lower than historical growth rates. Although opportunities for one-time savings exist, any long-term savings from Medicare, beyond those already forecast, will probably require a shift in spending from taxpayers to beneficiaries via higher beneficiary premium contributions (overall or via means testing), changes in eligibility, or greater cost sharing at the point of service.

  10. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data. (a... 10 Energy 3 2011-01-01 2011-01-01 false Establishing energy or water cost data. 436.17 Section 436... shall establish water costs in the base year by multiplying the total units of water used in the...

  11. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data. (a... 10 Energy 3 2013-01-01 2013-01-01 false Establishing energy or water cost data. 436.17 Section 436... shall establish water costs in the base year by multiplying the total units of water used in the...

  12. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  13. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-05-01

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled by CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.

  14. Examining the energy cost and intensity level of prenatal yoga

    PubMed Central

    Peters, Nathan Anthony; Schlaff, Rebecca A

    2016-01-01

    Context: A popular form of pregnancy physical activity (PA) is prenatal yoga. However, little is known about the intensity and energy cost of this practice. Aims: To examine the energy cost and intensity level of prenatal yoga. Methods: Pregnant women in a prenatal yoga class (n = 19) wore a Sense Wear Armband during eleven 60 min classes each, and self-reported demographic variables, height and weight, prepregnancy weight, and PA behaviors and beliefs. Sense Wear Armband data included kilocalories, metabolic equivalent (MET) values, and time spent in various intensities. Descriptive statistics and frequencies were utilized to describe energy expenditure and intensity. Results: Energy expenditure averaged 109 ± 8 kcals, and the average MET value was 1.5 ± 0.02. On average, 93% and 7% of classes were sedentary and moderate intensity PA, respectively. Conclusions: Time spent in a prenatal yoga class was considered to be primarily a sedentary activity. Future research should utilize larger samples, practice type, and skill level to increase generalizability. PMID:26865776

  15. Energy cost of ambulation in healthy and disabled Filipino children.

    PubMed

    Luna-Reyes, O B; Reyes, T M; So, F Y; Matti, B M; Lardizabal, A A

    1988-11-01

    The energy expenditures (Ee) for locomotion by nondisabled and disabled Filipino children aged 7 to 13 were determined and compared using indirect calorimetry. Forty-one controls (20 boys and 21 girls) ambulated at a comfortable pace; 16 children (eight boys and eight girls) with lower extremity poliomyelitis of varying severity ambulated by (1) wheelchair propulsion, (2) bilateral axillary crutches, (3) unilateral lower extremity ankle-foot orthoses or knee-ankle-foot orthoses, and (4) unassisted. Disabled children, regardless of their mode of ambulation, had to expend significantly more energy to ambulate than normal children (p less than 0.05). Wheelchair propulsion cost 16% more energy than the normal gait; crutch ambulation cost 41% more than the control. Children using unilateral braces sacrificed speed to attain near-normal Ee. When they ambulated without orthoses, their Ee increased by 109% over the control. In ascending order, the least energy was expanded by normal ambulation followed by disabled ambulation with unilateral brace, disabled propelling a wheelchair, disabled ambulation with bilateral axillary crutches, and disabled ambulation without brace. Efficiency of locomotion was reflected in the values obtained for Ee in terms of kcal x 10(-3)/kg/m, as demonstrated by the lower Ee but slower ambulation of children with braces, as compared to the nondisabled children.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  17. Impact of Financial Structure on the Cost of Solar Energy

    SciTech Connect

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  18. Advanced vehicles: Costs, energy use, and macroeconomic impacts

    NASA Astrophysics Data System (ADS)

    Wang, Guihua

    Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.

  19. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  20. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929

  1. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use

    SciTech Connect

    National Academies,; Lee, Russell

    2010-01-01

    Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.

  2. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  3. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff.

  4. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. PMID:26048700

  5. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  6. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  7. 10 CFR 455.102 - Energy conservation measure cost-share credit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cost-share for an energy conservation measure grant in that building: (a) A non-Federally funded... 10 Energy 3 2010-01-01 2010-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND...

  8. 10 CFR 455.102 - Energy conservation measure cost-share credit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS... Energy conservation measure cost-share credit. To the extent a State provides in its State Plan, DOE...

  9. 10 CFR 455.102 - Energy conservation measure cost-share credit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS... Energy conservation measure cost-share credit. To the extent a State provides in its State Plan, DOE...

  10. Low cost composite structures for superconducting magnetic energy storage systems

    SciTech Connect

    Rix, C. ); McColskey, D. ); Acree, R. )

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  11. Low cost composite structures for superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Rix, Craig; McColskey, David; Acree, Robert

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) program, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  12. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  13. Rain increases the energy cost of bat flight.

    PubMed

    Voigt, Christian C; Schneeberger, Karin; Voigt-Heucke, Silke L; Lewanzik, Daniel

    2011-10-23

    Similar to insects, birds and pterosaurs, bats have evolved powered flight. But in contrast to other flying taxa, only bats are furry. Here, we asked whether flight is impaired when bat pelage and wing membranes get wet. We studied the metabolism of short flights in Carollia sowelli, a bat that is exposed to heavy and frequent rainfall in neotropical rainforests. We expected bats to encounter higher thermoregulatory costs, or to suffer from lowered aerodynamic properties when pelage and wing membranes catch moisture. Therefore, we predicted that wet bats face higher flight costs than dry ones. We quantified the flight metabolism in three treatments: dry bats, wet bats and no rain, wet bats and rain. Dry bats showed metabolic rates predicted by allometry. However, flight metabolism increased twofold when bats were wet, or when they were additionally exposed to rain. We conclude that bats may not avoid rain only because of sensory constraints imposed by raindrops on echolocation, but also because of energetic constraints.

  14. Cost-of-Service Segmentation of Energy Consumers

    SciTech Connect

    Albert, A; Rajagopal, R

    2014-11-01

    Uncertainty in consumption is a key challenge at energy utility companies, which are faced with balancing highly stochastic demand with increasingly volatile supply characterized by significant penetration rates of intermittent renewable sources. This paper proposes a methodology to quantify uncertainty in consumption that highlights the dependence of the cost-of-service with volatility in demand. We use a large and rich dataset of consumption time series to provide evidence that there is a substantial degree of high-level structure in the statistics of consumption across users which may be partially explained by certain characteristics of the users. To uncover this structure, we propose a new technique for extracting typical statistical signatures of consumption-energy demand distributions (EDDs)-that is based on clustering distributions using a fast, approximated algorithm. We next study the factors influencing the choice of consumption signature and identify certain types of appliances and behaviors related to appliance operation that are most predictive. Finally, we comment on how structure in consumption statistics may be used to target residential energy efficiency programs to achieve greatest impact in curtailing cost of service.

  15. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  16. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    SciTech Connect

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

  17. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    SciTech Connect

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  18. Significance of electric energy costs to industrial firms in Arkansas

    SciTech Connect

    Taylor, P.; Hirsch, M.S.

    1985-06-27

    The authors report their findings from a research project undertaken to determine the significance of expenditures for electric energy for manufacturing and other industrial establishments in Arkansas and the impact of those expenditures on competitive position and on potential expansions and relocations. On the basis of questionnaire responses, Arkansas industrial location advantages included an available labor pool and a prevailing work ethic, market proximity, good weather and environment, and low electric power costs, although these were offset by future uncertainties. The study identified uncertainty associated with electric rates as one of several negative locational factors. 2 tables.

  19. Effect of stride frequency on the energy cost of walking in obese teenagers.

    PubMed

    Delextrat, Anne; Matthew, Dionne; Cohen, Daniel D; Brisswalter, Jeanick

    2011-02-01

    The aim of this study was to compare the energy cost of obese and non-obese teenagers while walking at their preferred speed and different stride frequencies. Twelve obese and twelve non-obese teenagers walked continuously on the treadmill at their most comfortable speed for 6 periods of 4 min each. Each period corresponded to a specific stride frequency: preferred (PSF), force-driven harmonic oscillator (FDHO), PSF+10%, PSF+20%, PSF-10% and PSF-20%. Cardiorespiratory parameters were collected between the 3rd and 4th minute of each stage, and used to calculate the energy cost of walking (EC). The main results showed a significantly higher cost of walking expressed relative to lean body mass. In addition, a U-shaped relationship between EC and stride frequency was shown in both groups, with PSF and FDHO leading to a significantly lower value compared to all other frequencies. This showed first, that FDHO is a good predictor of PSF and minimal energy cost of walking in both groups, and second, that excess body fat does not affect the relationship between energy expenditure and stride frequency. Walking at lower or higher than preferred frequencies could be used as an exercise mode to promote weight loss in obese teenagers.

  20. Identifying Low Cost Energy Improvements for School Buildings: An Energy Audit Manual.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Energy and Economic Development, St. Paul.

    This manual is a guide for performing energy audits in school buildings using low- and no-cost measures found effective in Minnesota. The manual helps school maintenance and administrative personnel conduct walk-through inspections of school buildings, focusing on the energy efficiency of their equipment and operations. The measures recommended…

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  2. The free energy cost of accurate biochemical oscillations

    PubMed Central

    Cao, Yuansheng; Wang, Hongli; Ouyang, Qi; Tu, Yuhai

    2015-01-01

    Oscillation is an important cellular process that regulates timing of different vital life cycles. However, in the noisy cellular environment, oscillations can be highly inaccurate due to phase fluctuations. It remains poorly understood how biochemical circuits suppress phase fluctuations and what is the incurred thermodynamic cost. Here, we study three different types of biochemical oscillations representing three basic oscillation motifs shared by all known oscillatory systems. In all the systems studied, we find that the phase diffusion constant depends on the free energy dissipation per period following the same inverse relation parameterized by system specific constants. This relationship and its range of validity are shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyze the fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this general relationship and testable predictions are also presented. PMID:26566392

  3. New-generation gas turbine helping brewery lighten energy costs

    SciTech Connect

    Brezonick, M.

    1994-10-01

    In nearly any manufacturing industry, the loss of electrical power can have a severe impact on the manufacturing process. The case of Labatt's Ontario Breweries in particular, the loss of electrical service puts a crimp in the brewmaster's art by forcing the company to dump large quantities of it's Labatt's Blue. To solve the problem, the company has installed a gas-turbine-drive cogeneration system to guard against brownout. The new 501-KB7 was developed from the well-established 501-KB5 turbine. It has improved power output over the 501-KB7 design, up from 4025 to 5225 kw, a higher 13.5:1 pressure ratio, and a 32% increased in airflow (20.4 kg/s). The Labatt's installation which became operational in 1993 reduced the Breweries energy cost because of 501-KB7 turbine's higher energy output. 3 figs.

  4. The free-energy cost of accurate biochemical oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Yuansheng; Wang, Hongli; Ouyang, Qi; Tu, Yuhai

    2015-09-01

    Oscillations within the cell regulate the timing of many important life cycles. However, in this noisy environment, oscillations can be highly inaccurate owing to phase fluctuations. It remains poorly understood how biochemical circuits suppress these phase fluctuations and what is the incurred thermodynamic cost. Here, we study three different types of biochemical oscillation, representing three basic oscillation motifs shared by all known oscillatory systems. In all the systems studied, we find that the phase diffusion constant depends on the free-energy dissipation per period, following the same inverse relation parameterized by system-specific constants. This relationship and its range of validity are shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyse fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this general relationship and testable predictions are also presented.

  5. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  6. Cost and performance baseline for fossil energy plants

    SciTech Connect

    2007-05-15

    The objective of this report is to present performance and cost data for fossil energy power systems, specifically integrated gasification combined cycle (IGCC), pulverized coal (PC), and natural gas combined cycle (NGCC) plants, in a consistent technical and economic manner that accurately reflects current market conditions for plants starting operation in 2010. This is Volume 2 of the three-volume report. Twelve different power plant design configurations were analyzed. These include six IGCC cases utilizing the General Electric Energy (GEE), ConocoPhillips (CoP), and Shell gasifiers each with and without CO{sub 2} capture, and six cases representing conventional technologies: PC-subcritical, PC-supercritical, and NGCC plants both with and without CO{sub 2} capture. Cases 7 and 8 were originally included in this study and involve production of synthetic natural gas (SNG) and the repowering of an existing NGCC facility using SNG. The two SNG cases were subsequently moved to Volume 2 of this report resulting in the discontinuity of case numbers (1-6 and 9-14). Chapter 2 provides the basis for technical, environmental and cost evaluations. Chapter 3 describes the IGCC technologies modeled and presents the results for the six IGCC cases. Chapter 4 describes the PC technologies modeled and presents the results for the four PC cases. Chapter 5 described the NGCC technologies modeled and presents the results for the two NGCC cases. Chapter 6 contains the reference list. 64 refs., 253 exhibits.

  7. [Energy cost of running during a specific transition in duathlon].

    PubMed

    Vallier, Jean-Marc; Mazure, Cyrille; Hausswirth, Christophe; Bernard, Thierry; Brisswalter, Jeanick

    2003-10-01

    The aim of the present study was to investigate the variability of the energy cost of running (Cr) during a simulated duathlon performed in outdoor conditions by elite duathletes. This duathlon consisted of 5 km of running, 30 km of cycling, and 5 km of running. The main result was the lack of significant difference in Cr between the two running bouts (210 +/- 10 mL d'O2.km-1.kg-1 vs. 217 +/- 10 mL d'O2.km-1.kg-1). This result is different from those observed during a triathlon, where an increase of energy cost of running bout has been reported. Furthermore, during a short-distance duathlon performed by well-trained subjects, none of the physiological (ventilation alteration, metabolic changes, or dehydration) or biomechanical factors that are classically evoked in triathlon research to explain Cr variability seem to be affected by the run-cycle-run transition. These results seem to minimize the negative effect of the cycle-to-run transition during a short-duration event in well-trained subjects. PMID:14710519

  8. Abating air pollution at negative cost via energy efficiency

    SciTech Connect

    Lovins, A.B. )

    1989-11-01

    Advanced techniques for energy end-use efficiency can pay for very large direct and indirect reductions in emissions, usually with money left over. This permits much more complete abatements than are often analyzed, and not at a cost but at a large profit. The order of economic priority, however, is also the order of environmental priority. Choosing the best buys first maximizes abatement per dollar; Choosing anything else first thus reduces abatement per dollar. To achieve the largest, fastest abatement therefore requires that the Chinese-restaurant-menu approach to energy investments-buying one option from Column A, one from Column B, etc., until all constituencies are satisfied-give way to the least-cost approach that is now the expressed (if less often the observed) policy of utility regulations in more than 40 states. The powerful supply-curve method of identifying priorities is therefore valid only if pollution prevention is considered together with, and allowed to precede and even to displace as well as augment, the more traditional end-of-pipe technologies.

  9. The energy cost of running increases with the distance covered.

    PubMed

    Brueckner, J C; Atchou, G; Capelli, C; Duvallet, A; Barrault, D; Jousselin, E; Rieu, M; di Prampero, P E

    1991-01-01

    The net energy cost of running per unit of body mass and distance (Cr, ml O2.kg-1.km-1) was determined on ten amateur runners before and immediately after running 15, 32 or 42 km on an indoor track at a constant speed. The Cr was determined on a treadmill at the same speed and each run was performed twice. The average value of Cr, as determined before the runs, amounted to 174.9 ml O2.kg-1.km-1, SD 13.7. After 15 km, Cr was not significantly different, whereas it had increased significantly after 32 or 42 km, the increase ranging from 0.20 to 0.31 ml O2.kg-1.km-1 per km of distance (D). However, Cr before the runs decreased, albeit at a progressively smaller rate, with the number of trials (N), indicating an habituation effect (H) to treadmill running. The effects of D alone were determined assuming that Cr increased linearly with D, whereas H decreased exponentially with increasing N, i.e. Cr = Cr0 + a D + He-bN. The Cr0, the "true" energy cost of running in nonfatigued subjects accustomed to treadmill running, was assumed to be equal to the average value of Cr before the run for N equal to or greater than 7 (171.1 ml O2.kg-1.km-1, SD 12.7; n = 30).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1893899

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  11. A Better Way to Store Energy for Less Cost

    SciTech Connect

    Darmon, Jonathan M.; Weiss, Charles J.; Hulley, Elliott B.; Helm, Monte L.; Bullock, R. Morris

    2013-01-01

    Representing the Center for Molecular Electrocatalysis (CME), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CME to understand, design and develop molecular electrocatalysts for solar fuel production and use.

  12. 7 CFR 1700.34 - Assistance to High Energy Cost Rural Communities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Assistance to High Energy Cost Rural Communities... Assistance to High Energy Cost Rural Communities. RUS, through the Electric Program, makes grants and loans to assist high energy cost rural communities. The Assistant Administrator, Electric Program,...

  13. 7 CFR 1700.34 - Assistance to High Energy Cost Rural Communities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Assistance to High Energy Cost Rural Communities... Assistance to High Energy Cost Rural Communities. RUS, through the Electric Program, makes grants and loans to assist high energy cost rural communities. The Assistant Administrator, Electric Program,...

  14. 7 CFR 1700.34 - Assistance to High Energy Cost Rural Communities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Assistance to High Energy Cost Rural Communities... Assistance to High Energy Cost Rural Communities. RUS, through the Electric Program, makes grants and loans to assist high energy cost rural communities. The Assistant Administrator, Electric Program,...

  15. Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate - Effect of halide additives

    NASA Astrophysics Data System (ADS)

    Desmonda, Christa; Kar, Sudeshna; Tai, Yian

    2016-03-01

    In this study, we report the simple fabrication of an active substrate assisted by gold nanostructures (AuNS) for application in surface-enhanced Raman scattering (SERS) using copier paper, which is a biodegradable and cost-effective material. As cellulose is the main component of paper, it can behave as a reducing agent and as a capping molecule for the synthesis of AuNS on the paper substrate. AuNS can be directly generated on the surface of the copier paper by addition of halides. The AuNS thus synthesized were characterized by ultraviolet-visible spectroscopy, SEM, XRD, and XPS. In addition, the SERS effect of the AuNS-paper substrates synthesized by using various halides was investigated by using rhodamine 6G and melamine as probe molecules.

  16. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  17. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  18. Massachusetts Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Massachusetts homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Massachusetts homeowners will save $10,848 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $621 for the 2012 IECC.

  19. Iowa Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.

  20. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  1. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  2. Texas Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Texas homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Texas homeowners will save $3,456 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $259 for the 2012 IECC.

  3. The 50 percent solution to reducing energy costs.

    PubMed

    Whitson, B Alan

    2012-11-01

    Hospitals can use a five-step process to achieve energy savings: Define a minimum acceptable ROI or hurdle rate. Seek incentives, rebates, and tax benefits. Set a 10-year investment horizon for all project portfolios. Create a system for tracking and reporting the operational and financial performance of the project portfolios. At the end of the year, return 50 percent of the savings to the facilities department and use the rest to fund additional projects. PMID:23173371

  4. The 50 percent solution to reducing energy costs.

    PubMed

    Whitson, B Alan

    2012-11-01

    Hospitals can use a five-step process to achieve energy savings: Define a minimum acceptable ROI or hurdle rate. Seek incentives, rebates, and tax benefits. Set a 10-year investment horizon for all project portfolios. Create a system for tracking and reporting the operational and financial performance of the project portfolios. At the end of the year, return 50 percent of the savings to the facilities department and use the rest to fund additional projects.

  5. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  6. Early treatment revisions by addition or switch for type 2 diabetes: impact on glycemic control, diabetic complications, and healthcare costs

    PubMed Central

    Schwab, Phil; Saundankar, Vishal; Bouchard, Jonathan; Wintfeld, Neil; Suehs, Brandon; Moretz, Chad; Allen, Elsie; DeLuzio, Antonio

    2016-01-01

    Background The study examined the prevalence of early treatment revisions after glycosylated hemoglobin (HbA1c) ≥9.0% (75 mmol/mol) and estimated the impact of early treatment revisions on glycemic control, diabetic complications, and costs. Research design and methods A retrospective cohort study of administrative claims data of plan members with type 2 diabetes and HbA1c ≥9.0% (75 mmol/mol) was completed. Treatment revision was identified as treatment addition or switch. Glycemic control was measured as HbA1c during 6–12 months following the first qualifying HbA1c ≥9.0% (75 mmol/mol) laboratory result. Complications severity (via Diabetes Complication Severity Index (DCSI)) and costs were measured after 12, 24, and 36 months. Unadjusted comparisons and multivariable models were used to examine the relationship between early treatment revision (within 90 days of HbA1c) and outcomes after controlling for potentially confounding factors measured during a 12-month baseline period. Results 8463 participants were included with a mean baseline HbA1c of 10.2% (75 mmol/mol). Early treatment revision was associated with greater reduction in HbA1c at 6–12 months (−2.10% vs −1.87%; p<0.001). No significant relationship was observed between early treatment revision and DCSI at 12, 24, or 36 months (p=0.931, p=0.332, and p=0.418). Total costs, medical costs, and pharmacy costs at 12, 24, or 36 months were greater for the early treatment revision group compared with the delayed treatment revision group (all p<0.05). Conclusions The findings suggest that in patients with type 2 diabetes mellitus, treatment revision within 90 days of finding an HbA1c ≥9.0% is associated with a greater level of near-term glycemic control and higher cost. The impact on end points such as diabetic complications may not be realized over relatively short time frames. PMID:26925237

  7. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  8. Comparison of costs for automobile energy conservation vs synthetic fuel production

    SciTech Connect

    Gorman, R.; Heitner, K. L.

    1980-01-01

    This preliminary analysis suggests that there are a large number of potential technical options for reducing energy consumption in automobiles. Furthermore, the cost to the user of purchasing these conservation options is less than the discounted cost of purchasing the additional fuel required if the conservation option is not chosen. There is a significant cost savings even if fuel costs remain at current levels. These savings would increase if fuel prices continue to rise or if more costly than synthetic fuels, at least for another 15 to 20 years. Cost-effective conservation could enable new vehicles to reach 40 to 50 mpg corporate average fuel economy by the year 2000. It is clear that the potential for making these changes exists, but better data are needed to evaluate many of these options and to ensure the development and implementation of those that are desirable. Specifically, there is a need for more applied research in government and industry laboratories. Key areas for this work are discussed here for: (1) optimized engine designs, and (2) efficient vehicle body structures. 10 references, 10 figures, 3 tables.

  9. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  10. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  11. The energy costs of insulators in biochemical networks.

    PubMed

    Barton, John P; Sontag, Eduardo D

    2013-03-19

    Complex networks of biochemical reactions, such as intracellular protein signaling pathways and genetic networks, are often conceptualized in terms of modules--semiindependent collections of components that perform a well-defined function and which may be incorporated in multiple pathways. However, due to sequestration of molecular messengers during interactions and other effects, collectively referred to as retroactivity, real biochemical systems do not exhibit perfect modularity. Biochemical signaling pathways can be insulated from impedance and competition effects, which inhibit modularity, through enzymatic futile cycles that consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption. We test this hypothesis through a combined theoretical and computational analysis of a simplified physical model of covalent cycles, using two innovative measures of insulation, as well as a possible new way to characterize optimal insulation through the balancing of these two measures in a Pareto sense. Our results indicate that indeed better insulation requires more energy. While insulation may facilitate evolution by enabling a modular plug-and-play interconnection architecture, allowing for the creation of new behaviors by adding targets to existing pathways, our work suggests that this potential benefit must be balanced against the metabolic costs of insulation necessarily incurred in not affecting the behavior of existing processes. PMID:23528097

  12. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  14. 76 FR 56413 - Building Energy Codes Cost Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... calculate three metrics. Life-cycle cost. Simple payback period. Cash flow. Life-cycle cost (LCC) is the... jurisdictions considering adoption of new codes. These metrics are discussed further below. Life-Cycle Cost Life... Technology (NIST).\\21\\ \\19\\ ASTM International. ``Practice for Measuring Life-Cycle Costs of Buildings...

  15. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  16. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  17. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  18. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  19. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol....

  20. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    PubMed

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%.

  1. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  2. Low cost energy storage flywheels from structural sheet molding compound

    NASA Astrophysics Data System (ADS)

    Kay, J. F.

    Compression molded structural sheet molding compound (SMC) composed of S-2 Glass and polyester resin has been used to fabricate energy storage flywheel rotors. This technique has the potential of low cost, high throughput production of rotors for the automobile industry. An isophthalic polyester resin and chopped S-2 Glass were used to mold flat, constant cross section discs 53.3 cm (21 innches) in diameter, 2.54 cm (1.0 inches) thick, and 49.5 kg (22.5 pounds) in weight. Materials characterizations have shown a tensile strength of 337 MPa (49 ksi) for the S-2 Glass reinforced rotors, which would allow the rotor to store 28.6 watt-hours per kilogram (13 watt-hours per pound) at 330 hertz when a filament wound carbon fiber/epoxy ring is fitted around the SMC core. A dynamic test of an SMC flywheel has shown an energy storage density of 27.7 watt-hours per kilogram (12.6 watt-hours per pound) at 330 hertz.

  3. The development of empirical models to evaluate energy use and energy cost in wastewater collection

    NASA Astrophysics Data System (ADS)

    Young, David Morgan

    This research introduces a unique data analysis method and develops empirical models to evaluate energy use and energy cost in wastewater collection systems using operational variables. From these models, several Best Management Processes (BMPs) are identified that should benefit utilities and positively impact the operation of existing infrastructure as well as the design of new infrastructure. Further, the conclusions generated herein display high transferability to certain manufacturing processes. Therefore, it is anticipated that these findings will also benefit pumping applications outside of the water sector. Wastewater treatment is often the single largest expense at the local government level. Not surprisingly, significant research effort has been expended on examining the energy used in wastewater treatment. However, the energy used in wastewater collection systems remains underexplored despite significant potential for energy savings. Estimates place potential energy savings as high as 60% within wastewater collection; which, if applied across the United States equates to the energy used by nearly 125,000 American homes. Employing three years of data from Renewable Water Resources (ReWa), the largest wastewater utility in the Upstate of South Carolina, this study aims to develop useful empirical equations that will allow utilities to efficiently evaluate the energy use and energy cost of its wastewater collection system. ReWa's participation was motivated, in part, by their recent adoption of the United States Environmental Protection Agency "Effective Utility Strategies" within which exists a focus on energy management. The study presented herein identifies two primary variables related to the energy use and cost associated with wastewater collection: Specific Energy (Es) and Specific Cost (Cs). These two variables were found to rely primarily on the volume pumped by the individual pump stations and exhibited similar power functions for the three year

  4. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use

    NASA Astrophysics Data System (ADS)

    National Research Council

    2011-11-01

    The U.S. Congress directed the U.S. Department of the Treasury to arrange for a review by the National Academy of Sciences to define and evaluate the health, environmental, security, and infrastructural external costs and benefits associated with the production and consumption of energy--costs and benefits that are not or may not be fully incorporated into the market price of energy, into the federal tax or fee, or into other applicable revenue measures related to production and consumption of energy. In response, the National Research Council established the Committee on Health, Environmental, and Other External Costs and Benefits of Energy Production and Consumption, which prepared the report summarized in this chapter. The report estimates dollar values for several major components of these costs. The damages the committee was able to quantify were an estimated $120 billion in the U.S. in 2005, a number that reflects primarily health damages from air pollution associated with electricity generation and motor vehicle transportation. The figure does not include damages from climate change, harm to ecosystems, effects of some air pollutants such as mercury, and risks to national security, which the report examines but does not monetize.

  5. Cost Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect

    Fairey, Philip

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous United States. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  6. The social costs of solar energy: A study of photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Neff, T. L.

    An extensive analysis of the social costs of photovoltaic energy systems shows that there are potentially significant hazards associated with the manufacture and use of such technologies as large-crystal silicon, cadmium sulfide, and gallium arsenide solar cell arrays. The categories of applications considered were (1) decentralized residential installations, (2) decentralized neighborhood, commercial or industrial installations, and (3) central station plants. Summary and conclusion statements are presented for occupational health, public health, environmental impacts, labor, materials and energy impacts, and implications for technological development. It is thought in overview that there are reasons for optimism about the ability of photovoltaics to improve the balance of social costs and benefits in the energy sector.

  7. Bread Basket: a gaming model for estimating home-energy costs

    SciTech Connect

    Not Available

    1982-01-01

    An instructional manual for answering the twenty variables on COLORADO ENERGY's computerized program estimating home energy costs. The program will generate home-energy cost estimates based on individual household data, such as total square footage, number of windows and doors, number and variety of appliances, heating system design, etc., and will print out detailed costs, showing the percentages of the total household budget that energy costs will amount to over a twenty-year span. Using the program, homeowners and policymakers alike can predict the effects of rising energy prices on total spending by Colorado households.

  8. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  9. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    SciTech Connect

    Hart, Philip R.; Liu, Bing

    2015-01-31

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs and savings over time.

  10. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  11. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    PubMed

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at

  12. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    PubMed

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at

  13. 7 CFR 1700.58 - Assistance to high energy cost rural communities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Assistance to high energy cost rural communities....58 Assistance to high energy cost rural communities. (a) Administrator: The authority to approve the following is reserved to the Administrator: (1) Allocation of appropriated funds among high energy...

  14. 7 CFR 1700.58 - Assistance to high energy cost rural communities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Assistance to high energy cost rural communities....58 Assistance to high energy cost rural communities. (a) Administrator: The authority to approve the following is reserved to the Administrator: (1) Allocation of appropriated funds among high energy...

  15. Energy Cost of Walking in Boys Who Differ in Adiposity but Are Matched For Body Mass.

    ERIC Educational Resources Information Center

    Ayub, Beatriz Volpe; Bar-Or, Oded

    2003-01-01

    Compared the energy cost of treadmill walking in pairs of obese and lean adolescent boys matched for total body mass. Results found no intergroup differences in the net energy cost at the two lower speeds, but obese boys expended more energy at a higher speed. Heart rate was considerably higher in obese boys. Body mass, rather than adiposity, was…

  16. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization. PMID:26461069

  17. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  18. Low-Cost Flexible Electrochromic Film for Energy Efficient Buildings

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: ITN is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN’s roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

  19. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  20. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring

    PubMed Central

    2014-01-01

    Background Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. Results We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms?1 (murres) and 10.6 ms?1 (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Conclusions Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved. PMID:26019870

  1. Assessing the mechanical energy costs of various tissue reshaping mechanisms.

    PubMed

    Brodland, G Wayne; Veldhuis, Jim H

    2012-11-01

    Early-stage embryos must reshape the tissues of which they are made into organs and other life-sustaining structures; and if non-mammalian embryos fail to complete these tasks before the energy provided by their yolk runs out, they die. The aim of this study is to use a cell-level computational model to investigate the energetic cost of a variety of mechanisms that can drive an in-plane reshaping pattern known as convergent extension--a motif in which a tissue narrows in one in-plane direction and expands in another. Mechanisms considered include oriented lamellipodia, directed mitosis, stress fibers, and anisotropic external tension. Both isolated patches of tissue and actively contracting tissues that deform adjacent passive areas are considered. The cell-level finite element model used here assumes that the cell membrane and its associated proteins generate a net tension γ along each cell-cell interface and that the cytoplasm and its embedded networks and structures have an effective viscosity μ. Work costs are based exclusively on mechanical considerations such as edge lengths and tensions, and because a traditional mechanical efficiency cannot be calculated, mechanisms are compared on the basis of the work they must do to the tissue to cause a specified rate of in-plane reshaping. Although the model contains a number of simplifications compared to real embryonic tissues, it is able to show that the work requirements for tissue reshaping by mitoses and by lamellipodia are of the same order. Lamellipodia are energetically most effective when their tensions are approximately twice as large as the interfacial tensions in the surrounding cells. The model also shows that stress fibers or other direct stretch or compression mechanisms are at least five times more efficient for tissue reshaping than are mitoses or lamellipodia and that the work needed to deform a typical cellular tissue is more than thirty times greater than if it did not contain cell boundaries

  2. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  3. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives.

    PubMed

    Polettini, A; Pomi, R; Trinci, L; Muntoni, A; Lo Mastro, S

    2004-09-01

    An experimental work was carried out to investigate the feasibility of application of a sintering process to mixtures composed of Municipal Solid Waste Incinerator (MSWI) fly ash and low-cost additives (waste from feldspar production and cullet). The proportions of the three constituents were varied to adjust the mixture compositions to within the optimal range for sintering. The material was compacted in cylindrical specimens and treated at 1100 and 1150 degrees C for 30 and 60 min. Engineering and environmental characteristics including weight loss, dimensional changes, density, open porosity, mechanical strength, chemical stability and leaching behavior were determined for the treated material, allowing the relationship between the degree of sintering and both mixture composition and treatment conditions to be singled out. Mineralogical analyses detected the presence of neo-formation minerals from the pyroxene group. Estimation of the extent of metal loss from the samples indicated that the potential for volatilization of species of Pb, Cd and Zn is still a matter of major concern when dealing with thermal treatment of incinerator ash. PMID:15268956

  4. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives.

    PubMed

    Polettini, A; Pomi, R; Trinci, L; Muntoni, A; Lo Mastro, S

    2004-09-01

    An experimental work was carried out to investigate the feasibility of application of a sintering process to mixtures composed of Municipal Solid Waste Incinerator (MSWI) fly ash and low-cost additives (waste from feldspar production and cullet). The proportions of the three constituents were varied to adjust the mixture compositions to within the optimal range for sintering. The material was compacted in cylindrical specimens and treated at 1100 and 1150 degrees C for 30 and 60 min. Engineering and environmental characteristics including weight loss, dimensional changes, density, open porosity, mechanical strength, chemical stability and leaching behavior were determined for the treated material, allowing the relationship between the degree of sintering and both mixture composition and treatment conditions to be singled out. Mineralogical analyses detected the presence of neo-formation minerals from the pyroxene group. Estimation of the extent of metal loss from the samples indicated that the potential for volatilization of species of Pb, Cd and Zn is still a matter of major concern when dealing with thermal treatment of incinerator ash.

  5. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2016-05-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs.

  6. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes.

    PubMed

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  7. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  8. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  9. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  10. Sensitivity to Energy Technology Costs: A Multi-model comparison analysis

    SciTech Connect

    Bosetti, Valentina; Marangoni, Giacomo; Borgonovo, Emanuele; Anadon, Laura Diaz; Barron, Robert W.; McJeon, Haewon C.; Politis, Savvas; Friley, Paul

    2015-05-01

    In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with CCS to produce negative emissions.

  11. Midrapidity inclusive densities in high energy pp collisions in additive quark model

    NASA Astrophysics Data System (ADS)

    Shabelski, Yu. M.; Shuvaev, A. G.

    2016-08-01

    High energy (CERN SPS and LHC) inelastic pp (pbar{p}) scattering is treated in the framework of the additive quark model together with Pomeron exchange theory. We extract the midrapidity inclusive density of the charged secondaries produced in a single quark-quark collision and investigate its energy dependence. Predictions for the π p collisions are presented.

  12. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  13. How Schools Can Control the Increasing Cost of Energy.

    ERIC Educational Resources Information Center

    Levy, Hans F.

    In a nontechnical way, this small book outlines the present use of energy in schools, what forms of energy will be available in the foreseeable future, how energy is presently wasted in educational facilities, and how energy can be conserved now and in the future. The school administrator can control the energy consumption in his schools and this…

  14. Caveat Emptor: Calculating All the Costs of Energy.

    ERIC Educational Resources Information Center

    Zinberg, Dorothy S.

    This paper examines the energy problem. Specific topics discussed include the recent history of oil and gas consumption in the United States, conservation, coal, solar energy, and nuclear energy. While solutions to the energy problem differ, there is an urgent need for broad, public debate. Ultimately, the decisions made regarding energy will be…

  15. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  16. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  17. A New Curriculum: Energy Outsourcing Brings Cost and Efficiency Benefits.

    ERIC Educational Resources Information Center

    Dickerman, Robert N.

    2002-01-01

    Considers the value of colleges and universities upgrading their energy infrastructure and using outsourcing energy management functions to save money and gain greater control of energy operations without substantial investments in staff and resources. (GR)

  18. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  19. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  20. United States biomass energy: An assessment of costs and infrastructure for alternative uses of biomass energy crops as an energy feedstock

    NASA Astrophysics Data System (ADS)

    Morrow, William Russell, III

    . Each linear program minimizes required bioenergy distribution and infrastructure costs. Truck and rail are the only two transportation modes allowed as they are the most likely bioenergy transportation modes. Switchgrass is chosen as a single bioenergy feedstock. All resulting costs are presented in units which reflect current energy markets price norms (¢/kWh, $/gal). The use of a common metric, carbon-dioxide emissions, allows a comparison of the two proposed uses. Additional analysis is provided to address aspects of each proposed use which are not reflected by a carbon-dioxide reduction metric. (Abstract shortened by UMI.)

  1. Improving Classroom Performance in Underachieving Preadolescents: The Additive Effects of Response Cost to a School-Home Note System.

    ERIC Educational Resources Information Center

    McCain, Alyson P.; Kelley, Mary Lou

    1994-01-01

    Compared the effectiveness of a school-home note with and without response cost on the disruptive and on-task behavior of three preadolescents. Inclusion of response cost was associated with marked improvements in attentiveness and stabilization of disruptive behavior as compared with that obtained with a traditional school-home note. (LKS)

  2. A Low-Cost Electronic Solar Energy Control

    ERIC Educational Resources Information Center

    Blade, Richard A.; Small, Charles T.

    1978-01-01

    Describes the design of a low-cost electronic circuit to serve as a differential thermostat, to control the operation of a solar heating system. It uses inexpensive diodes for sensoring temperature, and a mechanical relay for a switch. (GA)

  3. Reducing Energy Cost and Greenhouse Gas Emission in the Corporate Sector, a Delphi Study

    ERIC Educational Resources Information Center

    Kramer, Maxim L.

    2013-01-01

    The study is titled "Reducing energy cost and GreenHouse Gas emission in the corporate sector, A Delphi Study". The study applied the Delphi methodology and focused on the Green IT solutions that can help the modern corporate organizations with less than 1000 employees to decrease their energy costs and GHG emissions. The study presents…

  4. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    SciTech Connect

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  5. 7 CFR 1700.58 - Assistance to high energy cost rural communities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Assistance to high energy cost rural communities. 1700.58 Section 1700.58 Agriculture Regulations of the Department of Agriculture (Continued) RURAL....58 Assistance to high energy cost rural communities. (a) Administrator: The authority to approve...

  6. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    EPA Science Inventory

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  7. Geothermal exploration in a cost-competitive international energy market

    SciTech Connect

    Combs, J.

    1997-12-31

    The cost of exploration for, and confirmation of, an economic geothermal reservoir can be reduced by at least fifty percent (50%) with the use of diagnostic exploration surveys and slimhole technology. Although many technical papers and text-books on geothermal exploration have been published during the past twenty-five years, the goal of the present paper is to present the elements of a cost effective exploration paradigm for the identification, delineation and verification of economically viable geothermal reservoirs. The high cost of drilling large-diameter geothermal wells will usually justify the use, on a given prospect, of basically all of the exploration tools that will be discussed. Furthermore, with the use of slim holes in geothermal exploration to identify and evaluate the productive capacity of the geothermal reservoir, the high cost of large-diameter exploration wells will also be eliminated. However, in nearly every case, the cost of geothermal exploration represents a minor share of the total geothermal power project costs and the elimination of one non-productive geothermal well will almost always offset the exploration budget.

  8. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  9. Projections of costs, financing, and additional resource requirements for low- and lower middle-income country immunization programs over the decade, 2011-2020.

    PubMed

    Gandhi, Gian; Lydon, Patrick; Cornejo, Santiago; Brenzel, Logan; Wrobel, Sandra; Chang, Hugh

    2013-04-18

    The Decade of Vaccines Global Vaccine Action Plan has outlined a set of ambitious goals to broaden the impact and reach of immunization across the globe. A projections exercise has been undertaken to assess the costs, financing availability, and additional resource requirements to achieve these goals through the delivery of vaccines against 19 diseases across 94 low- and middle-income countries for the period 2011-2020. The exercise draws upon data from existing published and unpublished global forecasts, country immunization plans, and costing studies. A combination of an ingredients-based approach and use of approximations based on past spending has been used to generate vaccine and non-vaccine delivery costs for routine programs, as well as supplementary immunization activities (SIAs). Financing projections focused primarily on support from governments and the GAVI Alliance. Cost and financing projections are presented in constant 2010 US dollars (US$). Cumulative total costs for the decade are projected to be US$57.5 billion, with 85% for routine programs and the remaining 15% for SIAs. Delivery costs account for 54% of total cumulative costs, and vaccine costs make up the remainder. A conservative estimate of total financing for immunization programs is projected to be $34.3 billion over the decade, with country governments financing 65%. These projections imply a cumulative funding gap of $23.2 billion. About 57% of the total resources required to close the funding gap are needed just to maintain existing programs and scale up other currently available vaccines (i.e., before adding in the additional costs of vaccines still in development). Efforts to mobilize additional resources, manage program costs, and establish mutual accountability between countries and development partners will all be necessary to ensure the goals of the Decade of Vaccines are achieved. Establishing or building on existing mechanisms to more comprehensively track resources and

  10. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    SciTech Connect

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  11. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    SciTech Connect

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  12. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Representative Average Unit Energy Costs K... CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. K Appendix K to Part 305—Representative Average Unit...

  13. 25 CFR 171.555 - What additional costs will I incur if I am granted a Payment Plan?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AND WATER IRRIGATION OPERATION AND MAINTENANCE Financial Matters: Assessments, Billing, and... following costs: (a) An administrative fee to process your Payment Plan, as required by 31 CFR 901.9....

  14. 25 CFR 171.555 - What additional costs will I incur if I am granted a Payment Plan?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND WATER IRRIGATION OPERATION AND MAINTENANCE Financial Matters: Assessments, Billing, and... following costs: (a) An administrative fee to process your Payment Plan, as required by 31 CFR 901.9....

  15. 25 CFR 171.555 - What additional costs will I incur if I am granted a Payment Plan?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND WATER IRRIGATION OPERATION AND MAINTENANCE Financial Matters: Assessments, Billing, and... following costs: (a) An administrative fee to process your Payment Plan, as required by 31 CFR 901.9....

  16. 25 CFR 171.555 - What additional costs will I incur if I am granted a Payment Plan?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND WATER IRRIGATION OPERATION AND MAINTENANCE Financial Matters: Assessments, Billing, and... following costs: (a) An administrative fee to process your Payment Plan, as required by 31 CFR 901.9....

  17. 25 CFR 171.555 - What additional costs will I incur if I am granted a Payment Plan?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND WATER IRRIGATION OPERATION AND MAINTENANCE Financial Matters: Assessments, Billing, and... following costs: (a) An administrative fee to process your Payment Plan, as required by 31 CFR 901.9....

  18. Minnesota wood energy scale-up project 1994 establishment cost data

    SciTech Connect

    Downing, M.; Pierce, R.; Kroll, T.

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  19. Omitted Costs, Inflated Benefits: Renewable Energy Policy in Ontario

    ERIC Educational Resources Information Center

    Gallant, Parker; Fox, Glenn

    2011-01-01

    The government of Ontario has adopted wind energy development as an alternative energy source. It enacted the Green Energy and Economy Act, May 2009, with the intention to fast track the approval process regarding industrial wind turbines. The Act legislated a centralized decision making process while removing local jurisdictional authority.…

  20. Energy Cost during Prolonged Walking vs Jogging Exercise.

    ERIC Educational Resources Information Center

    Thomas, Tom R.; Londeree, Ben R.

    1989-01-01

    This study of nine young men compared the energy expended, substrates used, and perception of effort from brisk walking and jogging at the same target heart rates. Jogging utilized more total energy and fat energy than walking and was perceived as less strenuous. Oxygen pulse was higher during jogging. (Author/SM)

  1. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-04-02

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities for energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.

  2. Tomorrow`s energy today for cities and counties: Cogeneration powers up cost-competitive energy

    SciTech Connect

    1995-11-01

    Cities and counties build many multi-million dollar facilities, and supplying energy to run these facilities is a long-term obligation for a community. Cogeneration offers local governments an opportunity to reduce the cost of providing electricity, heating, and cooling to their buildings. Sometimes cogeneration is combined with district heating and cooling systems. This kind of cogeneration results in system efficiencies as high as 70%--about twice the efficiency of a conventional power plant that produces only electricity! The article describes cogeneration combined with district cooling in Trenton, NJ, and cogeneration on a small scale in San Jose, California.

  3. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.

  4. Money to burn. The high costs of energy subsidies

    SciTech Connect

    Kosmo, M.

    1987-01-01

    Although many countries have reduced petroleum subsidies substantially since 1981 or so, such subsidies still persist, especially in the oil-exporting countries. Moreover, subsidies to electricity, natural gas, and coal are even more pervasive. As for both microeconomic and macroeconomic effects, Kosmo shows that the putative benefits of subsidies - economic stimulation, enhanced trade performance, and inflation control - aren't the true effects. Indeed, subsidies tend to increase unemployment (as energy is substituted for labor) and encourage over-investment in energy-intensive industries at the expense of other sectors. At the same time, they have little impact on overall trade balances, inflation, or the lot of the poor. Energy subsidies also translate into foregone revenues and the inefficient use of energy. Of course, the ill effects of energy subsidies cannot be rooted out overnight without traumatizing a nation's economy, even if politics permitted. But Money to Burn. does point the way to a politically and economically acceptable transition to the next energy era, one based on sharp increases in energy efficiency in rich and poor countries alike. Chapters are devoted to the following: Energy Pricing Policy: Hwat is at Stake; Current Fuel-Pricing Trends; Macroeconomic Effects of Energy Subsidies; and Microeconomic Effects of Energy Subsidies. 83 references, 11 figure, 14 tables.

  5. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    SciTech Connect

    Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

    1980-07-01

    This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

  6. Rightsizing HVAC Systems to Reduce Capital Costs and Save Energy

    ERIC Educational Resources Information Center

    Sebesta, James

    2010-01-01

    Nearly every institution is faced with the situation of having to reduce the cost of a construction project from time to time through a process generally referred to as "value engineering." Just the mention of those words, however, gives rise to all types of connotations, thoughts, and memories (usually negative) for those in the facilities…

  7. A novel approach to reduce greenhouse energy costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiance, temperature, and carbon dioxide (CO2) are three environmental parameters growers can control during greenhouse production to alter crop growth, quality, and timing. Significant costs are incurred every year, especially during winter and early-spring production, to heat and light the gre...

  8. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    SciTech Connect

    Slattery, Bob S.

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  9. Free energy calculation of water addition coupled to reduction of aqueous RuO4-

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Blumberger, Jochen; Ohno, Takahisa; Sprik, Michiel

    2007-05-01

    Free energy calculations were carried out for water addition coupled reduction of aqueous ruthenate, RuO4-+H2O +e-→[RuO3(OH)2]2-, using Car-Parrinello molecular dynamics simulations. The full reaction is divided into the reduction of the tetrahedral monoanion, RuO4-+e-→RuO42-, followed by water addition, RuO42-+H2O →[RuO3(OH)2]2-. The free energy of reduction is computed from the fluctuations of the vertical energy gap using the MnO4-+e -→MnO42- reaction as reference. The free energy for water addition is estimated using constrained molecular dynamics methods. While the description of this complex reaction, in principle, involves multiple reaction coordinates, we found that reversible transformation of the reactant into the product can be achieved by control of a single reaction coordinate consisting of a suitable linear combination of atomic distances. The free energy difference of the full reaction is computed to be -0.62eV relative to the normal hydrogen electrode. This is in good agreement with the experimental value of -0.59eV, lending further support to the hypothesis that, contrary to the ruthenate monoanion, the dianion is not tetrahedral but forms a trigonal-bipyramidal dihydroxo complex in aqueous solution. We construct an approximate two-dimensional free energy surface using the coupling parameter for reduction and the mechanical constraint for water addition as variables. Analyzing this surface we find that in the most favorable reaction pathway the reduction reaction precedes water addition. The latter takes place via the protonated complex [RuO3(OH)]- and subsequent transport of the created hydroxide ion to the fifth coordination site of Ru.

  10. Protecting child health and nutrition status with ready-to-use food in addition to food assistance in urban Chad: a cost-effectiveness analysis

    PubMed Central

    2013-01-01

    Background Despite growing interest in use of lipid nutrient supplements for preventing child malnutrition and morbidity, there is inconclusive evidence on the effectiveness, and no evidence on the cost-effectiveness of this strategy. Methods A cost effectiveness analysis was conducted comparing costs and outcomes of two arms of a cluster randomized controlled trial implemented in eastern Chad during the 2010 hunger gap by Action contre la Faim France and Ghent University. This trial assessed the effect on child malnutrition and morbidity of a 5-month general distribution of staple rations, or staple rations plus a ready-to-use supplementary food (RUSF). RUSF was distributed to households with a child aged 6–36 months who was not acutely malnourished (weight-for-height > = 80% of the NCHS reference median, and absence of bilateral pitting edema), to prevent acute malnutrition in these children. While the addition of RUSF to a staple ration did not result in significant reduction in wasting rates, cost-effectiveness was assessed using successful secondary outcomes of cases of diarrhea and anemia (hemoglobin <110 g/L) averted among children receiving RUSF. Total costs of the program and incremental costs of RUSF and related management and logistics were estimated using accounting records and key informant interviews, and include costs to institutions and communities. An activity-based costing methodology was applied and incremental costs were calculated per episode of diarrhea and case of anemia averted. Results Adding RUSF to a general food distribution increased total costs by 23%, resulting in an additional cost per child of 374 EUR, and an incremental cost per episode of diarrhea averted of 1,083 EUR and per case of anemia averted of 3,627 EUR. Conclusions Adding RUSF to a staple ration was less cost-effective than other standard intervention options for averting diarrhea and anemia. This strategy holds potential to address a broad array of health and

  11. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  12. Audit of the management and cost of the Department of Energy`s protective forces

    SciTech Connect

    Not Available

    1994-07-01

    The Department of Energy`s safeguards and security program is designed to provide appropriate, efficient, and effective protection of the Department`s nuclear weapons, nuclear materials, facilities, and classified information. These items must be protected against theft, sabotage, espionage, and terrorist activity, with continuing emphasis on protection against the insider threat. The purpose of the audit was to determine if protective forces were efficiently managed and appropriately sized in light of the changing missions and current budget constraints. The authors found that the cost of physical security at some sites had grown beyond those costs incurred when the site was in full production. This increase was due to a combination of factors, including concerns about the adequacy of physical security, reactions to the increase in terrorism in the early 1980s with the possibility of hostile attacks, and the selection of security system upgrades without adequate consideration of cost effectiveness. Ongoing projects to upgrade security systems were not promptly reassessed when missions changed and levels of protection were not determined in a way which considered the attractiveness of the material being protected. The authors also noted several opportunities for the Department to improve the operational efficiency of its protective force operations, including, eluminating overtime paid to officers prior to completion of the basic 40-hour workweek, paying hourly wages of unarmed guards which are commensurate with their duties, consolidating protective force units, transferring law enforcement duties to local law agencies, eliminating or reducing paid time to exercise, and standardizing supplies and equipment used by protective force members.

  13. The Energy Smart Guide to Campus Cost Savings.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    Rebuild America is a program of the U.S. Department of Energy that focuses on energy-savings solutions as community solutions. It works with K-12 schools, colleges and universities, state and local governments, public and multifamily housing, and commercial buildings. This guide focuses on colleges and universities. Each chapter spells out options…

  14. Green Lights Project Results in Lower Energy Costs.

    ERIC Educational Resources Information Center

    Berridge, Robert; Kwartin, Bruce

    1992-01-01

    An Environmental Protection Agency program encourages energy conservation on campuses by consulting with colleges and universities willing to reduce energy used in lighting. Full program implementation in these and other organizations can create significant savings in demand for electricity and help fight global warming and acid rain. (MSE)

  15. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

  16. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect

    Erdemir, Ali

    2013-09-26

    emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and

  17. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  18. Activation energies for addition of O/3P/ to simple olefins.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1972-01-01

    Description of relative rate measurements for the addition of O(3P) to C2H4, C2F4, C3H6, and C4H8-1 in liquid argon at 87.5 K. The data strongly indicate that the activation energies for the addition of O(3P) to the double bonds of propylene and butene-1 are identical, probably to within 0.1 kcal/mole. It is very doubtful that differences in pre-exponential factors or other factors such as solvent effects, could invalidate this conclusion. A similar argument holds for the C2H4 and C2F4 reactions. Furthermore, the experiments suggest that the activation energy for addition of O(3P) to the double bond of butene-1 is about 0.1 kcal/mole.

  19. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect

    Ayers, Katherine; Dalton, Luke; Roemer, Andy; Carter, Blake; Niedzwiecki, Mike; Manco, Judith; Anderson, Everett; Capuano, Chris; Wang, Chao-Yang; Zhao, Wei

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  20. Low free energy cost of very long loop insertions in proteins

    PubMed Central

    Scalley-Kim, Michelle; Minard, Philippe; Baker, David

    2003-01-01

    Long insertions into a loop of a folded host protein are expected to have destabilizing effects because of the entropic cost associated with loop closure unless the inserted sequence adopts a folded structure with amino- and carboxy-termini in close proximity. A loop entropy reduction screen based on this concept was used in an attempt to retrieve folded sequences from random sequence libraries. A library of long random sequences was inserted into a loop of the SH2 domain, displayed on the surface of M13 phage, and the inserted sequences that did not disrupt SH2 function were retrieved by panning using beads coated with a phosphotyrosine containing SH2 peptide ligand. Two sequences of a library of 2 × 108 sequences were isolated after multiple rounds of panning, and were found to have recovery levels similar to the wild-type SH2 domain and to be relatively intolerant to further mutation in PCR mutagenesis experiments. Surprisingly, although these inserted sequences exhibited little nonrandom structure, they do not significantly destabilize the host SH2 domain. Additional insertion variants recovered at lower levels in the panning experiments were also found to have a minimal effect on the stability and peptide-binding function of the SH2 domain. The additional level of selection present in the panning experiments is likely to involve in vivo folding and assembly, as there was a rough correlation between recovery levels in the phage-panning experiments and protein solubility. The finding that loop insertions of 60–80 amino acids have minimal effects on SH2 domain stability suggests that the free energy cost of inserting long loops may be considerably less than polymer theory estimates based on the entropic cost of loop closure, and, hence, that loop insertion may have provided an evolutionary route to multidomain protein structures. PMID:12538883

  1. Commissioning: A Highly Cost-Effective Building Energy Management Strategy

    SciTech Connect

    Mills, Evan

    2011-01-06

    Quality assurance and optimization are essential elements of any serious technological endeavor, including efforts to improve energy efficiency. Commissioning is an important tool in this respect. The aim of commissioning new buildings is to ensure that they deliver-if not exceed-the performance and energy savings promised by their design. When applied to existing buildings, one-time or repeated commissioning (often called retrocommissioning) identifies the almost inevitable drift in energy performance and puts the building back on course, often surpassing the original design intent. In both contexts, commissioning is a systematic, forensic approach to improving performance, rather than a discrete technology.

  2. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Representative Average Unit Energy Costs K... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  3. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Representative Average Unit Energy Costs K... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  4. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Representative Average Unit Energy Costs K... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  5. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Representative Average Unit Energy Costs K... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  6. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  7. Financial Quality Control of In-Patient Chemotherapy in Germany: Are Additional Payments Cost-Covering for Pharmaco-Oncological Expenses?

    PubMed Central

    Jacobs, Volker R.; Mallmann, Peter

    2011-01-01

    Summary Background Cost-covering in-patient care is increasingly important for hospital providers in Germany, especially with regard to expensive oncological pharmaceuticals. Additional payments (Zusatzentgelte; ZE) on top of flat rate diagnose-related group (DRG) reimbursement can be claimed by hospitals for in-patient use of selected medications. To verify cost coverage of in-patient chemotherapies, the costs of medication were compared to their revenues. Method From January to June 2010, a retrospective cost-revenue study was performed at a German obstetrics/gynecology university clinic. The hospital's pharmacy list of inpatient oncological therapies for breast and gynecological cancer was checked for accuracy and compared with the documented ZEs and the costs and revenues for each oncological application. Results N = 45 in-patient oncological therapies were identified in n = 18 patients, as well as n = 7 bisphosphonate applications; n = 11 ZEs were documented. Costs for oncological medication were € 33,752. The corresponding ZE revenues amounted to only € 13,980, resulting in a loss of € 19,772. All in-patient oncological therapies performed were not cost-covering. Data discrepancy, incorrect documentation and cost attribution, and process aborts were identified. Conclusions Routine financial quality control at the medicine-pharmacy administration interface is implemented, with monthly comparison of costs and revenues, as well as admission status. Non-cost-covering therapies for in-patients should be converted to out-patient therapies. Necessary adjustments of clinic processes are made according to these results, to avoid future losses. PMID:21673822

  8. Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand.

    PubMed

    Hansen, Martin N; Sommer, Sven G; Madsen, Niels P

    2003-01-01

    Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected.

  9. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  10. Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)

    NASA Astrophysics Data System (ADS)

    Malghan, D.; Mehta, V. K.; Goswami, R.

    2013-12-01

    For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also

  11. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    NASA Astrophysics Data System (ADS)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  12. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    SciTech Connect

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  13. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  14. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    SciTech Connect

    Spackman, Peter R.; Karton, Amir

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  15. Non-pairwise additivity of the leading-order dispersion energy

    SciTech Connect

    Hollett, Joshua W.

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained in terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is −0.11 kJ mol{sup −1} well{sup −1}, which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.

  16. Metabolic adaptation to decreases in energy intake due to changes in the energy cost of low energy expenditure regimen.

    PubMed

    Garby, L

    1990-01-01

    terms of their external manifestations: performance of tasks and associated costs (energy expenditure). A change in efficiency is defined as a change in cost for given tasks. Performances can be defined such that they are both reproducible and of physiological relevance and costs can be measured. There are several complications associated with this approach to operational definition, the most important being the effect on energy expenditure of changes (or differences) in body composition. (3) The FAO approach to estimation of prevalence of undernutrition is based on measurements of energy expenditure for given tasks. This approach requires knowledge of the extent of metabolic adaptation.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2408254

  17. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  18. System engineering and energy costs of small and medium wind turbines

    SciTech Connect

    Tu, P K.C.

    1985-07-01

    A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

  19. System engineering and energy cost analysis of small and medium wind turbines

    NASA Astrophysics Data System (ADS)

    Tu, P. K. C.

    1985-07-01

    A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

  20. Impacts of rural energy costs and availabilities in Kenya

    SciTech Connect

    Jama, M.A.

    1987-01-01

    This study sought to examine energy-consumption patterns in a cross section of rural households in Kenya and to analyze how these use patterns relate to socio-economic, demographic, institutional, and energy market factors. The models specified were demands for fuelwood, charcoal, kerosene, commercial heat energy, and aggregate energy. For fuelwood, a probit analysis was utilized to determine the conditional probability of fuelwood consumption and a least-squares regression to determine quantity consumed. Ordinary regression was used to estimate demand for the other fuels. The research indicates that household incomes, family size, improved ceramic stoves, other fuels, and occupation are the most influential variables on consumption of various fuels. The quantities of fuelwood, charcoal, and kerosene consumed are not very responsive to changes in income. Aggregate energy is income-inelastic and a normal good, while woodfuel and kerosene are inferior products. The model indicates that redirection of a 10% increase in income, so that only the low-income households benefit, would cause only a small, 1% increase in fuelwood consumption.

  1. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    NASA Astrophysics Data System (ADS)

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO3) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO4) additive on the combustion behavior of these energetic films. Without KClO4 the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO4 increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO4. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO4 concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO4 promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO4 adding energy to the reaction and promoting propagation.

  2. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    DOE PAGES

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO₃) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO₄) additive on the combustion behavior of these energetic films. Without KClO₄ the film exhibits thermalmore » instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO₄ increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO₄. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO₄ concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO₄ promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO₄ adding energy to the reaction and promoting propagation.« less

  3. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    SciTech Connect

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-15

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO{sub 3}) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO{sub 4}) additive on the combustion behavior of these energetic films. Without KClO{sub 4} the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO{sub 4} increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO{sub 4}. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO{sub 4} concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO{sub 4} promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO{sub 4} adding energy to the reaction and promoting propagation.

  4. EPA evaluation of the SYNERGY-1 fuel additive under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report

    SciTech Connect

    Syria, S.L.

    1981-06-01

    This document announces the conclusions of the EPA evaluation of the 'SYNERGY-1' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. This additive is intended to improve fuel economy and exhaust emission levels of two and four cycle gasoline fueled engines.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  6. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...

  7. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...

  8. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...

  9. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...

  10. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  11. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    SciTech Connect

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  12. Glycolytic strategy as a tradeoff between energy yield and protein cost

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Liebermeister, Wolfram; Milo, Ron

    2013-01-01

    Contrary to the textbook portrayal of glycolysis as a single pathway conserved across all domains of life, not all sugar-consuming organisms use the canonical Embden–Meyerhoff–Parnass (EMP) glycolytic pathway. Prokaryotic glucose metabolism is particularly diverse, including several alternative glycolytic pathways, the most common of which is the Entner–Doudoroff (ED) pathway. The prevalence of the ED pathway is puzzling as it produces only one ATP per glucose—half as much as the EMP pathway. We argue that the diversity of prokaryotic glucose metabolism may reflect a tradeoff between a pathway’s energy (ATP) yield and the amount of enzymatic protein required to catalyze pathway flux. We introduce methods for analyzing pathways in terms of thermodynamics and kinetics and show that the ED pathway is expected to require several-fold less enzymatic protein to achieve the same glucose conversion rate as the EMP pathway. Through genomic analysis, we further show that prokaryotes use different glycolytic pathways depending on their energy supply. Specifically, energy-deprived anaerobes overwhelmingly rely upon the higher ATP yield of the EMP pathway, whereas the ED pathway is common among facultative anaerobes and even more common among aerobes. In addition to demonstrating how protein costs can explain the use of alternative metabolic strategies, this study illustrates a direct connection between an organism’s environment and the thermodynamic and biochemical properties of the metabolic pathways it employs. PMID:23630264

  13. Glycolytic strategy as a tradeoff between energy yield and protein cost.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Liebermeister, Wolfram; Milo, Ron

    2013-06-11

    Contrary to the textbook portrayal of glycolysis as a single pathway conserved across all domains of life, not all sugar-consuming organisms use the canonical Embden-Meyerhoff-Parnass (EMP) glycolytic pathway. Prokaryotic glucose metabolism is particularly diverse, including several alternative glycolytic pathways, the most common of which is the Entner-Doudoroff (ED) pathway. The prevalence of the ED pathway is puzzling as it produces only one ATP per glucose--half as much as the EMP pathway. We argue that the diversity of prokaryotic glucose metabolism may reflect a tradeoff between a pathway's energy (ATP) yield and the amount of enzymatic protein required to catalyze pathway flux. We introduce methods for analyzing pathways in terms of thermodynamics and kinetics and show that the ED pathway is expected to require several-fold less enzymatic protein to achieve the same glucose conversion rate as the EMP pathway. Through genomic analysis, we further show that prokaryotes use different glycolytic pathways depending on their energy supply. Specifically, energy-deprived anaerobes overwhelmingly rely upon the higher ATP yield of the EMP pathway, whereas the ED pathway is common among facultative anaerobes and even more common among aerobes. In addition to demonstrating how protein costs can explain the use of alternative metabolic strategies, this study illustrates a direct connection between an organism's environment and the thermodynamic and biochemical properties of the metabolic pathways it employs.

  14. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    SciTech Connect

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  15. [Cost and energy density of diet in Brazil, 2008-2009].

    PubMed

    Ricardo, Camila Zancheta; Claro, Rafael Moreira

    2012-12-01

    This study aimed to evaluate the relationship between the cost and energy density of diet consumed in Brazilian households. Data from the Brazilian Household Budget Survey (POF 2008/2009) were used to identify the main foods and their prices. Similar items were grouped, resulting in a basket of 67 products. Linear programming was applied for the composition of isoenergetic baskets, minimizing the deviation from the average household diet. Restrictions were imposed on the inclusion of items and the energy contribution of the various food groups. A reduction in average cost of diet was applied at intervals of R$0.15 to the lowest possible cost. We identified an inverse association between energy density and cost of diet (p < 0.05), and at the lowest possible cost we obtained the maximum value of energy density. Restrictions on the diet's cost resulted in the selection of diets with higher energy density, indicating that cost of diet may lead to the adoption of inadequate diets in Brazil.

  16. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    EPA Science Inventory

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  17. Meters to answer needs for low-cost EFM, energy measurement. [Electronic Flow Measurement

    SciTech Connect

    Not Available

    1994-03-07

    Research supported by the Gas Research Institute, Chicago, will produce two commercial measurements devices by mid-year. One is a low-cost, compact electronic flow measurement (EFM) system for orifice flow monitoring and custody transfer; the other, an instrument for measuring natural-gas energy and volume flow in pipelines. The paper describes a low-cost EFM, field testing, a total-energy meter, theory of operation, and improvements.

  18. Upgraded Lighting System Leads to Energy and Cost Savings at Augusta Newsprint Company

    SciTech Connect

    Not Available

    2002-03-01

    New metal halide light fixtures have replaced the 1960s-era mercury vapor light fixtures at Augusta Newsprint Company's facility in Augusta, Georgia. The results have included increased lighting levels, decreased maintenance costs, and reduced energy demand. Annual energy savings total nearly $65,000; with a total installed cost of $100,000, the project will pay for itself in 1.5 years.

  19. Energy level formula for the Morse oscillator with an additional kinetic coupling potential

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Chen, Bo-zhan; Fan, Yue

    1996-02-01

    Based on the <η| representation which is the common eigenstate of the relative position x1 - x2 and the total momentum P1 + P2 of two particles we derive the energy level formula for a Morse oscillator with an additional kinetic coupling potential. The <η| representation seems to provide a direct and convenient approach for solving certain dynamical problems for two-body systems.

  20. Reducing the energy cost of human walking using an unpowered exoskeleton.

    PubMed

    Collins, Steven H; Wiggin, M Bruce; Sawicki, Gregory S

    2015-06-11

    With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion. Metabolic energy used during walking can be partly replaced by power input from an exoskeleton, but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human-machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour. PMID:25830889

  1. Reducing the energy cost of human walking using an unpowered exoskeleton.

    PubMed

    Collins, Steven H; Wiggin, M Bruce; Sawicki, Gregory S

    2015-06-11

    With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion. Metabolic energy used during walking can be partly replaced by power input from an exoskeleton, but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human-machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour.

  2. Energy and costs scoping study for plasma pyrolysis thermal processing system

    SciTech Connect

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system.

  3. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  4. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-28

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  5. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    DOE PAGES

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  6. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  7. Energy and life-cycle cost analysis of a six-story office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  8. Efficiency versus cost — A fundamental design conflict in energy science

    NASA Astrophysics Data System (ADS)

    Ohler, C.

    2013-06-01

    An essential design conflict in energy technology is the trade-off between efficiency and cost. The lecture introduces concepts that deal with this trade-off and discusses real world examples. Among the many definitions of efficiency, exergetic efficiency is the most rigorous and often the most adequate for analyzing the efficiency of a process. Exergy is the maximum work obtainable from a system as it comes into equilibrium with its environment. Exergetic efficiency is illustrated here with the heating of buildings. The right concept to analyze the trade-off between efficiency and the initial capital cost of equipment is the net present value analysis. We discuss two examples, overhead power lines and energy storage. Electrothermal energy storage is a new energy storage technology that builds on both concepts, optimization of exergetic efficiency and balancing of initial cost with that efficiency. Finally, non-technical barriers for energy efficiency are mentioned.

  9. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  10. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  11. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  12. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    SciTech Connect

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  13. Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Virginia Construction Code

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Virginia homeowners. Moving to the 2012 IECC from the current Virginia Construction Code is cost effective over a 30-year life cycle. On average, Virginia homeowners will save $5,836 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $388 for the 2012 IECC.

  14. Energy-efficient evaporators can cut operating costs for wastewater treatment, reuse

    SciTech Connect

    Kersey, D.

    1996-05-01

    High-efficiency evaporators can substantially lower the costs of recycling water, separating and reducing waste, and reclaiming industrial byproducts. Although capital costs run higher than conventional, stream-driven systems, energy efficient designs can allow users to recoup those costs over time and provide significant, ongoing utility savings. This is especially true in applications in which evaporation requirements are more than 75,000 pounds per hour, and steam costs exceed $3 per 1,000 pounds. In conventional, multistage evaporators, vapor resulting from wastewater evaporation is reused as a heating agent to effect further evaporation, but fresh steam must be added continuously to the system to maintain adequate temperature and pressure--two factors critical to evaporation. In contrast, three energy-efficient designs maintain temperature and pressure by recycling otherwise wasted resources, thereby greatly reducing or eliminating steam costs and other utility expenses.

  15. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  16. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  17. Processes and energy costs for mining lunar Helium-3

    NASA Technical Reports Server (NTRS)

    Sviatoslavsky, I. N.

    1988-01-01

    Preliminary investigations show that obtaining He-3 from the moon is technically feasible and economically viable. With the exception of beneficiation, the proposed procedures are state of the art. Mass of equipment needed from earth is of some concern, but resupply will eventually be ameliorated by the use of titanium from indigenous ilmenite. A complete energy payback from a D/He-3 fusion reactor utilizing lunar He-3 is approx. 80, providing ample incentive for commercial investment is forthcoming. Byproducts will be of great value to the resupply of a permanent lunar base and enhancement of space exploration.

  18. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema

    Ramesh, Ramamoorthy

    2016-07-12

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    SciTech Connect

    Ramesh, Ramamoorthy

    2010-02-04

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  1. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  2. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.

    PubMed

    Lavoie, Michel; Raven, John A; Levasseur, Maurice

    2016-04-01

    Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton.

  3. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.

    PubMed

    Lavoie, Michel; Raven, John A; Levasseur, Maurice

    2016-04-01

    Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. PMID:27037589

  4. Estimation of costs for applications of remediation technologies for the Department of Energy`s Programmatic Environmental Impact Statement

    SciTech Connect

    Villegas, A.J.; Hansen, R.I.; Humphreys, K.K.; Paananen, J.M.; Gildea, L.F.

    1994-03-01

    The Programmatic Environmental impact Statement (PEIS) being developed by the US Department of Energy (DOE) for environmental restoration (ER) and waste management (WM) activities expected to be carried out across the DOE`s nationwide complex of facilities is assessing the impacts of removing, transporting, treating, storing, and disposing of waste from these ER and WM activities. Factors being considered include health and safety impacts to the public and to workers, impacts on the environment, costs and socio-economic impacts, and near-term and residual risk during those ER and WM operations. The purpose of this paper is to discuss the methodology developed specifically for the PEIS to estimate costs associated with the deployment and application of individual remediation technologies. These individual costs are used in developing order-of-magnitude cost estimates for the total remediation activities. Costs are developed on a per-unit-of-material-to-be-treated basis (i.e., $/m{sup 3}) to accommodate remediation projects of varying sizes. The primary focus of this cost-estimating effort was the development of capital and operating unit cost factors based on the amount of primary media to be removed, handled, and treated. The unit costs for individual treatment technologies were developed using information from a variety of sources, mainly from periodicals, EPA documentation, handbooks, vendor contacts, and cost models. The unit cost factors for individual technologies were adjusted to 1991 dollars.

  5. Integrating Land Conservation and Renewable Energy Goals in California: Assessing Land Use and Economic Cost Impacts Using the Optimal Renewable Energy Build-Out (ORB) Model.

    NASA Astrophysics Data System (ADS)

    Wu, G. C.; Schlag, N. H.; Cameron, D. R.; Brand, E.; Crane, L.; Williams, J.; Price, S.; Hernandez, R. R.; Torn, M. S.

    2015-12-01

    There is a lack of understanding of the environmental impacts and economic costs of potential renewable energy (RE) siting decisions that achieve ambitious RE targets. Such analyses are needed to inform policy recommendations that minimize potential conflicts between conservation and RE development. We use the state of California's rapid development of utility-scale RE as a case study to examine how possible land use constraints impact the total electricity land area, areas with conservation value, water use, and electricity cost of ambitious RE portfolios. We developed the Optimal Renewable energy Build-out (ORB) model, and used it in conjunction with the Renewable Portfolio Standard (RPS) Calculator, a RE procurement and transmission planning tool used by utilities within California, to generate environmentally constrained renewable energy potential and assess the cost and siting-associated impacts of wind, solar photovoltaic, concentrating solar power (CSP), and geothermal technologies. We find that imposing environmental constraints on RE development achieves lower conservation impacts and results in development of more fragmented land areas. With increased RE and environmental exclusions, generation becomes more widely distributed across the state, which results in more development on herbaceous agricultural vegetation, grasslands, and developed & urban land cover types. We find land use efficiencies of RE technologies are relatively inelastic to changes in environmental constraints, suggesting that cost-effective substitutions that reduce environmental impact and achieve RE goals is possible under most scenarios and exclusion categories. At very high RE penetration that is limited to in-state development, cost effectiveness decreases substantially under the highest level of environmental constraint due to the over-reliance on solar technologies. This additional cost is removed once the in-state constraint is lifted, suggesting that minimizing both negative

  6. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  7. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    NASA Astrophysics Data System (ADS)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  8. Section 502(e) guidance providing credit toward energy efficiency goals for cost-effective projects where source energy use declines but site energy use increases

    SciTech Connect

    None, None

    2004-10-01

    Outlines how Section 502(e) of Executive Order 13123 requires the Secretary of Energy to “issue guidance for providing credit toward energy efficiency goals for cost-effective projects where source energy use declines but site energy use increases."

  9. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  10. External loading does not change energy cost and mechanics of rollerski skating.

    PubMed

    Millet, G; Perrey, S; Candau, R; Belli, A; Borrani, F; Rouillon, J D

    1998-08-01

    The purpose of this study was to examine the effects of external loading on the energy cost and mechanics of roller ski skating. A group of 13 highly skilled male cross-country skiers roller skied at 19.0 ( SD 0.1) km x h(-1) without additional load and with loads of 6% and 12% body mass (mb). Oxygen uptake (VO2), knee and ankle joint kinematics, roller-ski electromyogram (EMG) of the vastus lateralis and gastrocnemius lateralis muscles, and roller ski velocity were recorded during the last 40 s of each 4-min period of roller skiing. One-way repeated measures ANOVA revealed that the VO2 expressed relative to total mass (mtot), joint kinetics, eccentric-to-concentric ratio of the integrated EMG, velocity changes within a cycle, and cycle rate did not change significantly with load. The subsequent analysis of the effect of load on each resistance opposing motion suggested that the power to sustain changes in translational kinetic energy, potential energy, and overcoming rolling resistance increased proportionately with the load. The lack of a significant change in VO2/mtot with external loading was associated with a lack of marked change in external mechanical power relative to mtot. The existence of an EMG signal during the eccentric phase prior to the thrust (concentric phase), as well as the lack of significant delay between the two phases, showed that a stretch-shortening cycle (SSC) occurs in roller ski skating. Taken together, the present results would suggest that external loading up to 12% mb does not increase storage and release of elastic energy of lower limb muscles during SSC in roller ski skating.

  11. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  12. Cost of Wind Energy in the United States: Trends from 2007 to 2012 (Presentation)

    SciTech Connect

    Hand, M.

    2015-01-01

    This presentation provides an overview of recent technology trends observed in the United States including project size, turbine size, rotor diameter, hub height, annual average wind speed, and annual energy production. It also highlights area where system analysis is required to fully understand how these technology trends relate to the cost of wind energy.

  13. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  14. Method for computing marginal costs associated with on-site energy technologies

    SciTech Connect

    Bright, R.; Davitian, H.

    1980-08-01

    A method for calculating long-run marginal costs for an electric utility is described. The method is especially suitable for computing the marginal costs associated with the use of small on-site energy technologies, i.e., cogenerators, solar heating and hot water systems, wind generators, etc., which are interconnected with electric utilities. In particular, both the costs a utility avoids when power is delivered to it from a facility with an on-site generator and marginal cost to the utility of supplementary power sold to the facility can be calculated. A utility capacity expansion model is used to compute changes in the utility's costs when loads are modified by the use of the on-site technology. Changes in capacity-related costs and production costs are thus computed in an internally consistent manner. The variable nature of the generation/load pattern of the on-site technology is treated explicitly. The method yields several measures of utility costs that can be used to develop rates based on marginal avoided costs for on-site technologies as well as marginal cost rates for conventional utility customers.

  15. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect

    2010-10-01

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  16. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.

    PubMed

    Trancik, Jessika E; Cross-Call, Daniel

    2013-06-18

    Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals.

  17. Strong polarization-induced reduction of addition energies in single-molecule nanojunctions.

    PubMed

    Kaasbjerg, Kristen; Flensberg, Karsten

    2008-11-01

    We address polarization-induced renormalization of molecular levels in solid-state based single-molecule transistors and focus on an organic conjugate molecule where a surprisingly large reduction of the addition energy has been observed. We have developed a scheme that combines a self-consistent solution of a quantum chemical calculation with a realistic description of the screening environment. Our results indeed show a large reduction, and we explain this to be a consequence of both (a) a reduction of the electrostatic molecular charging energy and (b) polarization induced level shifts of the HOMO and LUMO levels. Finally, we calculate the charge stability diagram and explain at a qualitative level general features observed experimentally.

  18. A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy

    SciTech Connect

    Post, R F

    2009-09-24

    Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that

  19. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    PubMed Central

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  20. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  1. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  2. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    PubMed Central

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  3. An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards

    NASA Astrophysics Data System (ADS)

    Lessans, Mark D.

    Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.

  4. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    SciTech Connect

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2013-09-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  5. The Cost and Benefit of Bulk Energy Storage in the Arizona Power Transmission System

    NASA Astrophysics Data System (ADS)

    Ruggiero, John

    This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

  6. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology.

    PubMed

    Warahena, Aruna S K; Chuah, Yew Khoy

    2009-08-01

    Thermal oxidation of VOC is extremely energy intensive, and necessitates high efficiency heat recovery from the exhaust heat. In this paper, two independent parameters heat recovery factor (HRF) and equipment cost factor (ECF) are introduced. HRF and ECF can be used to evaluate separately the merits of energy efficiency and cost effectiveness of VOC oxidation systems. Another parameter equipment cost against heat recovery (ECHR) which is a function of HRF and ECF is introduced to evaluate the merit of different systems for the thermal oxidation of VOC. Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). Application examples are presented to show the use and the importance of these parameters. An application examples show that TO has a lower ECF while RTO has a higher HRF. However when analyzed using ECHR, RTO would be of advantage economically in longer periods of use. The analytical models presented can be applied in similar environmental protection systems.

  7. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  8. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  9. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO{sub 2} TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 {mu}s and 80 {mu}s are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay.

  10. Colorado Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-04

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Colorado homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Colorado homeowners will save $1,528 over 30 years under the 2009 IECC, with savings still higher at $5,435 under the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2009 and 2 years with the 2012 IECC. Average annual energy savings are $119 for the 2009 IECC and $392 for the 2012 IECC.

  11. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    SciTech Connect

    Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

    2014-04-09

    , distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

  12. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  13. The energy costs of sexual dimorphism in mole-rats are morphological not behavioural

    PubMed Central

    Scantlebury, M; Speakman, J.R; Bennett, N.C

    2005-01-01

    Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large. PMID:16519235

  14. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  15. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  16. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost effectiveness.

  17. Energy and cost analysis of commercial building shell characteristics and operating schedules

    SciTech Connect

    Johnson, W.S.; Pierce, F.E.

    1980-04-01

    Eight prototypical commercial buildings were considered, and estimates of the energy savings realized from various conservation measures are presented. For each of four building types (hospital, office, educational, and retail) two building designs representative of both pre- and post-embargo construction were analyzed. The ongoing program at Oak Ridge National Laboratory aims to develop an engineering-economic model to forecast annual energy use in the US commercial sector. This particular study was undertaken to define relationships among energy-conservation measures, energy savings, and capital costs. Buildings were modeled and analyzed using NECAP (NASA Energy-Cost Analysis Program) based on hourly weather data in Kansas City (selected as typical of the entire country). Energy-conservation measures considered include night and weekend thermostat setback, reduction in ventilation, reduction in lighting, window alterations (shading, dual panes, and size reduction), economizer cycle, reset of supply temperature based on zone demand, and improvements in equipment efficiencies. Results indicate energy savings as a function of the capital cost of each energy-conservation measure for each of the eight buildings considered.

  18. Case studies of energy information systems and related technology: Operational practices, costs, and benefits

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

    2003-09-02

    Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

  19. Energy information systems (EIS): Technology costs, benefit, and best practice uses

    SciTech Connect

    Granderson, Jessica; Lin, Guanjing; Piette, Mary Ann

    2013-11-26

    Energy information systems are the web-based software, data acquisition hardware, and communication systems used to store, analyze, and display building energy data. They often include analysis methods such as baselining, benchmarking, load profiling, and energy anomaly detection. This report documents a large-scale assessment of energy information system (EIS) uses, costs, and energy benefits, based on a series of focused case study investigations that are synthesized into generalizable findings. The overall objective is to provide organizational decision makers with the information they need to make informed choices as to whether or not to invest in an EIS--a promising technology that can enable up to 20 percent site energy savings, quick payback, and persistent low-energy performance when implemented as part of best-practice energy management programs.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  1. Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists

    PubMed Central

    Savage, Amy M.; Rudgers, Jennifer A.

    2013-01-01

    Background and Aims In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Methods Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. Key Results The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. Conclusions It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These

  2. Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect

    Fairey, P.; Parker, D.

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  3. The sea urchin embryo as a model for studying efflux transporters: Roles and energy cost

    PubMed Central

    Epel, David; Cole, Bryan; Hamdoun, Amro; Thurber, Rebecca Vega

    2011-01-01

    We describe the use of the sea urchin as a model for studying efflux transporters and estimating energy cost for the cytotoxin protective system provided by these transporters. The unfertilized egg has low transport activity, which increases to a new steady state shortly after fertilization. Activity results from p-glycoprotein (p-gp) and MRP type transporters which protect the embryo from cytotoxic drugs that can disrupt cell division or induce apoptosis. The energy cost is estimated from a novel use of calcein-AM as a substrate; keeping 0.25 μM substrate levels out of the cell utilizes only 0.023% of steady state respiration. PMID:16740304

  4. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  5. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  6. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    NASA Astrophysics Data System (ADS)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  7. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    NASA Astrophysics Data System (ADS)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  8. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system. PMID:27398277

  9. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  10. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are

  11. Estimates of the cost and energy consumption of aluminum-air electric vehicles

    SciTech Connect

    Cooper, J.F.

    1980-11-01

    Economic costs and primary energy consumption are estimated for general purpose electric vehicles using aluminium-air propulsion batteries within the time frame of the 1990's (earliest possible date of introduction). Critical assumptions were: aluminum production at efficiencies at least as high as those of the best currently operating industrial installations; competitive performance automobiles with gasoline or diesel fuel economies at least as high as those of the best currently-available vehicles-13.5 to 19.3 tonne-km/liter (35 to 50 gross ton-miles/gal-fuel); and aluminum-air battery discharge efficiencies at least as high as those obtained with electrodes available prior to the start of the present alloy development program. For an aluminum-air fuel economy of 36 tonne/km/kg-Al (optimized low-gallium alloys), a total refueling cost of 5.6 cents/km (1979$) was estimated for a 1.27 tonne vehicle. This is equivalent to $2 to 3/gal for automobiles of the same weight with fuel economies of 13.5 to 19.3 tonne-km/liter. Critical to the cost estimate is the assumption of anode slab production directly from the product of a reduction cell by low cost casting and shearing operations. The total primary energy consumption was estimated to be 1.3 to 1.7 kWh/km (coal) for the electric vehicle, which corresponds roughly to the energy cost of the automobiles using liquid fuels synthesized from coal. The energy consumption is 30 to 70% greater than the reference automobile using petroleum-derived gasoline. The cost of the battery (including air-electrodes) was estimated to be about $30/kW including 30% markup over producer's cost; or $36/kW, if electrodes are used with 0.25 mg/cm/sup 2/ Pt loadings. (LCL)

  12. Energy costs & performance of transtibial amputees & non-amputees during walking & running.

    PubMed

    Mengelkoch, L J; Kahle, J T; Highsmith, M J

    2014-12-01

    This study compared energy costs and performance differences of walking and running for transtibial amputee (TTA) and matched non-amputee runners. TTA were tested with 3 prosthetic feet: traditional foot, SACH; general purpose, energy storing and return (ESAR) foot, Renegade; running-specific ESAR foot, Nitro. During walking, VO2 and gait efficiency (GE) were similar between prosthetic feet. VO2 was increased (21-33%) and GE was decreased for TTA compared to controls. Self-selected walking speed (SSWS) was slower for SACH (4-6%) compared to Renegade and Nitro but SSWS for TTA was slower (16-22%) than controls. During running, VO2 was increased (8-18%) and GE was decreased using SACH and Renegade, compared to Nitro. During running, VO2 was greater (9-38%), GE was decreased and SSRS was slower (17-30%) for TTA, than controls. VO2 peak was similar for controls and TTA using Nitro, but peak running speed was slower for TTA. In conclusion, during walking energy costs are mostly similar between prosthetic feet, but ESAR feet likely provide faster SSWS for TTA. During running, energy costs and performance are improved for TTA using Nitro. Nonetheless, for all prosthetic feet conditions, TTA demonstrated an energy cost and performance disadvantage during walking and running compared to non-amputee runners.

  13. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  14. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  15. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  16. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    NASA Astrophysics Data System (ADS)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  17. Cost Effective Simulation of the Hybrid Solar/wind and Diesel Energy System in Rural Area

    NASA Astrophysics Data System (ADS)

    Sim, Ee. Y.; Barsoum, Nader

    2008-10-01

    This paper describes the optimization of a hybrid energy system model. Currently in Sarawak, people living in the rural areas still depend on diesel generators to generate electricity. This increases the demand for fossil fuel, creates noise pollution and toxic gas is emitted to the environment. Hence, hybrid energy systems were introduced to replace this conventional energy system as well as improving the living standard in the villages. In this paper, several hybrid energy system configurations were investigated in order to find out the most cost effective hybrid system through Hybrid Optimization Model for Electric Renewability (Homer) software. Homer simulates, optimizes, and analyzes the sensitivity variables for each of the system configurations.

  18. Financial options for energy efficiency: A program to reduce the energy cost burden on low income residents

    SciTech Connect

    Not Available

    1983-01-01

    A significant proportion of New Orleans' residents have incomes below poverty level and often rent living quarters in houses which were built over eighty years ago. Original building designs often included passive cooling elements such as high ceilings, functioning transoms, shutters, overhangs and proper site orientation. Subsequent modifications which include installation of air conditioning, lowered ceilings and security devices have negated many of the effects of the original passive design features. Infiltration is also a significant problem during both heating and cooling seasons. Increasing utility costs coupled with recent reductions in energy cost assistance programs impose a severe stress on residents with lower incomes. A potential solution to these increasing cost burdens was to combine simple physical weatherization techniques with more efficiency in the use of energy in the home. This project sought to demonstrate the effectiveness of low cost and no cost weatherization techniques in New Orleans and to illustrate that such investments can be recovered in a short period of time through reduced energy bills.

  19. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  20. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.

    PubMed

    Chappell, Mark A; Garland, Theodore; Rezende, Enrico L; Gomes, Fernando R

    2004-10-01

    The energetics of terrestrial locomotion are of considerable interest to ecologists and physiologists, but nearly all of our current knowledge comes from animals undergoing forced exercise. To explore patterns of energy use and behavior during voluntary exercise, we developed methods allowing nearly continuous measurements of metabolic rates in freely behaving small mammals, with high temporal resolution over periods of several days. We used this approach to examine relationships between ambient temperature (Ta), locomotor behavior and energy costs in the deer mouse, a small mammal that routinely encounters a large range of temperatures in its natural habitat. We tested for individual consistency in running behavior and metabolic traits, and determined how locomotor costs vary with speed and Ta. Because of the importance of thermoregulatory costs in small mammals, we checked for substitution of exercise heat for thermostatic heat production at Ta below the thermal neutral zone and determined the fraction of the daily energy budget comprising exercise costs. Locomotor behavior was highly variable among individuals but had high repeatability, at least over short intervals. We found few temperature-related changes in speed or distance run, but Ta strongly affected energy costs. Partial substitution of exercise heat for thermogenic heat occurred at low Ta. This reduced energy expenditure during low-temperature running by 23-37%, but running costs comprised a fairly minor fraction of the energy budget, so the daily energy savings via substitution were much smaller. Deer mice did not adjust running speed to maximize metabolic economy, as they seldom used the high speeds that provide the lowest cost of transport. The highest voluntary speeds (4-5 km h(-1)) were almost always below the predicted maximal aerobic speed, and were much less than the species' maximal sprint speed. Maximum voluntarily attained rates of oxygen consumption (VO2) were highest at low Ta, but rarely

  1. Stringent test for non-additive, non-interacting, kinetic energy functionals

    NASA Astrophysics Data System (ADS)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    Partition Density Functional Theory (PDFT) provides an ideal framework for testing and developing new approximations to the non-additive and non-interacting kinetic energy functional (Tsnadd [ {nα } ]), understood as a functional of the set of fragment ground-state densities. We present our progress on both of these fronts: (1) Systematic comparison of the performance of various existing approximations to Tsnadd [ {nα } ] ; and (2) Development of new approximations. We find that a re-parametrization of the GGA enhancement factor employed for the construction of Tsnadd [ {nα } ] through the conjointness conjecture captures essential features of the functional derivatives of Tsnadd [ {nα } ] . A physically-motivated two-orbital approximation for Tsnadd [ {nα } ] is shown to outperform most other approximations for the case of He2, and an intriguing one-parameter formula makes this approximation accurate for all noble-gas diatomics.

  2. Tracking Costs

    ERIC Educational Resources Information Center

    Erickson, Paul W.

    2010-01-01

    Even though there's been a slight reprieve in energy costs, the reality is that the cost of non-renewable energy is increasing, and state education budgets are shrinking. One way to keep energy and operations costs from overshadowing education budgets is to develop a 10-year energy audit plan to eliminate waste. First, facility managers should…

  3. Effect of electrolyte addition to rehydration drinks consumed after severe fluid and energy restriction.

    PubMed

    James, Lewis J; Shirreffs, Susan M

    2015-02-01

    This study examined the effect of electrolyte addition to drinks ingested after severe fluid and energy restriction (FER). Twelve subjects (6 male and 6 female) completed 3 trials consisting of 24-hour FER (energy intake: 21 kJ·kg body mass; water intake: 5 ml·kg body mass), followed by a 2-hour rehydration period and a 4-hour monitoring period. During rehydration, subjects ingested a volume of drink equal to 125% of the body mass lost during FER in 6 aliquots, once every 20 minutes. Drinks were a sugar-free lemon squash (P) or the P drink with the addition of 50 mmol·L sodium chloride (Na) or 30 mmol·L potassium chloride (K). Total void urine samples were given before and after FER and every hour during rehydration and monitoring. Over all trials, FER produced a 2.1% reduction in body mass and negative sodium (-67 mmol), potassium (-48 mmol), and chloride (-84 mmol) balances. Urine output after drinking was 1627 (540) ml (P), 1391 (388) ml (K), and 1150 (438) ml (Na), with a greater postdrinking urine output during P than Na (p ≤ 0.05). Ingestion of drink Na resulted in a more positive sodium balance compared with P or K (p < 0.001), whereas ingestion of drink K resulted in a more positive potassium balance compared with P or Na (p < 0.001). These results demonstrate that after 24-hour FER, ingestion of a high sodium drink results in an increased sodium balance that augments greater drink retention compared with a low electrolyte placebo drink.

  4. Effect of electrolyte addition to rehydration drinks consumed after severe fluid and energy restriction.

    PubMed

    James, Lewis J; Shirreffs, Susan M

    2015-02-01

    This study examined the effect of electrolyte addition to drinks ingested after severe fluid and energy restriction (FER). Twelve subjects (6 male and 6 female) completed 3 trials consisting of 24-hour FER (energy intake: 21 kJ·kg body mass; water intake: 5 ml·kg body mass), followed by a 2-hour rehydration period and a 4-hour monitoring period. During rehydration, subjects ingested a volume of drink equal to 125% of the body mass lost during FER in 6 aliquots, once every 20 minutes. Drinks were a sugar-free lemon squash (P) or the P drink with the addition of 50 mmol·L sodium chloride (Na) or 30 mmol·L potassium chloride (K). Total void urine samples were given before and after FER and every hour during rehydration and monitoring. Over all trials, FER produced a 2.1% reduction in body mass and negative sodium (-67 mmol), potassium (-48 mmol), and chloride (-84 mmol) balances. Urine output after drinking was 1627 (540) ml (P), 1391 (388) ml (K), and 1150 (438) ml (Na), with a greater postdrinking urine output during P than Na (p ≤ 0.05). Ingestion of drink Na resulted in a more positive sodium balance compared with P or K (p < 0.001), whereas ingestion of drink K resulted in a more positive potassium balance compared with P or Na (p < 0.001). These results demonstrate that after 24-hour FER, ingestion of a high sodium drink results in an increased sodium balance that augments greater drink retention compared with a low electrolyte placebo drink. PMID:25162651

  5. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?

    PubMed Central

    Martin, Lynn B; Scheuerlein, Alex; Wikelski, Martin

    2003-01-01

    The activation of an immune response is beneficial for organisms but may also have costs that affect fitness. Documented immune costs include those associated with acquisition of special nutrients, as well as immunopathology or autoimmunity. Here, we test whether an experimental induction of the immune system with a non-pathological stimulant can elevate energy turnover in passerine birds. We injected phytohaemagglutinin (PHA), a commonly used mitogen that activates the cell-mediated immune response, into the wing web of house sparrows, Passer domesticus. We then examined energetic costs resulting from this immune activity and related those costs to other physiological activities. We found that PHA injection significantly elevated resting metabolic rate (RMR) of challenged sparrows relative to saline controls. We calculated the total cost of this immune activity to be ca. 4.20 kJ per day (29% RMR), which is equivalent to the cost of production of half of an egg (8.23 kJ egg(-1)) in this species. We suggest that immune activity in wild passerines increases energy expenditure, which in turn may influence important life-history characteristics such as clutch size, timing of breeding or the scheduling of moult. PMID:12590753

  6. Energy and cost analysis model to evaluate the combustion of food processing wastes

    SciTech Connect

    Sargent, S.A.

    1984-01-01

    Technical and economic factors pertinent to conversion of food processing wastes into recoverable energy were investigated. Combustion characteristics for a variety of wastes were defined, leading to the selection of components for an in-plant waste handling system for use in conjunction with each of three boiler systems representing pile burning, fluidized-bed combustion and suspension-firing technologies. Life cyle costing techniques were chosen to determine the total costs of the handling/combustion systems that would be incurred over a fixed payback period. Energy and cost calculations were incorporated into an interactive computer model for analysis of individual food processing firms. The model prompts the user for input regarding the processing plant schedule, operating and loan parameters, and fossil and waste fuel characteristics. Projected annual savings in fuel and disposal costs are compared with average annual costs to determine the breakeven point for cost-effective investment. The model was validated with conservative parameters representing two sizes of Michigan apple juice processors. Apple pomace was substituted for natural gas and number2 fuel oil.

  7. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?

    PubMed

    Martin, Lynn B; Scheuerlein, Alex; Wikelski, Martin

    2003-01-22

    The activation of an immune response is beneficial for organisms but may also have costs that affect fitness. Documented immune costs include those associated with acquisition of special nutrients, as well as immunopathology or autoimmunity. Here, we test whether an experimental induction of the immune system with a non-pathological stimulant can elevate energy turnover in passerine birds. We injected phytohaemagglutinin (PHA), a commonly used mitogen that activates the cell-mediated immune response, into the wing web of house sparrows, Passer domesticus. We then examined energetic costs resulting from this immune activity and related those costs to other physiological activities. We found that PHA injection significantly elevated resting metabolic rate (RMR) of challenged sparrows relative to saline controls. We calculated the total cost of this immune activity to be ca. 4.20 kJ per day (29% RMR), which is equivalent to the cost of production of half of an egg (8.23 kJ egg(-1)) in this species. We suggest that immune activity in wild passerines increases energy expenditure, which in turn may influence important life-history characteristics such as clutch size, timing of breeding or the scheduling of moult.

  8. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    NASA Astrophysics Data System (ADS)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  9. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  10. Cost and size estimates for an electrochemical bulk energy storage concept

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Wright, L. O.

    1975-01-01

    Preliminary capital cost and size estimates were made for an electrochemical bulk energy storage concept for a redox-flow-cell system. Preliminary calculations showed that the redox-flow-cell system has great promise as a bulk energy storage system for power load leveling. The size of the system was estimated to be less than 2 percent of the size of a comparable pumped hydroelectric storage plant.

  11. Nutrient-dense food groups have high energy costs: an econometric approach to nutrient profiling.

    PubMed

    Maillot, Matthieu; Darmon, Nicole; Darmon, Michel; Lafay, Lionel; Drewnowski, Adam

    2007-07-01

    Consumers wishing to replace some of the foods in their diets with more nutrient-dense options need to be able to identify such foods on the basis of nutrient profiling. The present study used nutrient profiling to rank 7 major food groups and 25 subgroups in terms of their contribution to dietary energy, diet quality, and diet cost for 1332 adult participants in the French National INCA1 Study. Nutrient profiles were based on the presence of 23 qualifying nutrients, expressed as the percentage of nutrient adequacy per 8 MJ, and 3 negative or disqualifying nutrients, expressed as the percentage of the maximal recommended values for saturated fatty acids, added sugar, and sodium per 1.4 kg. Calculated cost of energy (euro/8 MJ) was based on the mean retail price of 619 foods in the nutrient composition database. The meat and the fruit and vegetables food groups had the highest nutritional quality but were associated with highest energy costs. Sweets and salted snacks had the lowest nutritional quality but were also one of the least expensive sources of dietary energy. Starches and grains were unique because they were low in disqualifying nutrients yet provided low-cost dietary energy. Within each major food group, some subgroups had a higher nutritient-to-price ratio than others. However, the fact that food groups with the more favorable nutrient profiles were also associated with higher energy costs suggests that the present structure of food prices may be a barrier to the adoption of food-based dietary guidelines, at least by low-income households.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  13. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics.

    PubMed

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems. PMID:27176426

  14. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  15. Low energy stage study. Volume 4: Cost benefits analysis and recommendations. [orbital launching of space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The costs and benefits of existing/planned systems, new propulsion concepts, and adaptations of existing/planned systems (as supported by Orbiter interface requirements and operations requirements) were quantified. Scenarios of these propulsion approaches were established which accommodate the low energy regime as defined by the new low energy payload mission model. These scenarios were screened on a cost and then a benefits basis. A propulsion approach comprising existing/planned systems and a new propulsion concept were selected as the most cost effective approach to accommodate the model payloads and the low energy regime they represent. Key cost drivers and sensitivity trends were identified. All costs were derived in 1977 dollars.

  16. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    NASA Astrophysics Data System (ADS)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  17. Direct calculation of average and marginal costs from the productive structure of an energy system

    SciTech Connect

    Lazzaretto, A.; Macor, A.

    1995-09-01

    Most of the thermoeconomic accounting and optimization methods for energy systems are based upon a definition of the productive purpose for each component. On the basis of this definition, a productive structure of the system can be defined in which the interactions among the components are described by their fuel product. The aim of this work is to calculate marginal and average unit costs of the exergy flows starting from their definitions by a direct inspection of the productive structure. As a main result, it is noticed that the only differences between marginal and average unit cost equations are located in the capital cost terms of input-output cost balance equations of the components. The method is illustrated using a cogenerative stream power plant and a combined gas-steam power plant.

  18. Solar energy for process heat: Design/cost studies of four industrial retrofit applications

    NASA Technical Reports Server (NTRS)

    French, R. L.; Bartera, R. E.

    1978-01-01

    Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.

  19. Cost and size estimates for an electrochemical bulk energy storage concept

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Wright, L. O.

    1975-01-01

    Preliminary capital cost and size estimates were made for an electrochemical bulk energy storage concept. The electrochemical system considered was an electrically rechargeable flow cell with a redox couple. On the basis of preliminary capital cost estimates, size estimates, and several other important considerations, the redox-flow-cell system emerges as having great promise as a bulk energy storage system for power load leveling. The size of this system would be less than 2 percent of that of a comparable pumped hydroelectric plant. The capital cost of a 10-megawatt, 60- and 85-megawatt-hour redox system is estimated to be $190 to $330 per kilowatt. The other important features of the redox system contributing to its load leveling application are its low adverse environmental impact, its high efficiency, its apparent absence of electrochemically-related cycle life limitations, and its fast response.

  20. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.