Sample records for additional energy required

  1. 10 CFR 20.2302 - Additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Additional requirements. 20.2302 Section 20.2302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2302 Additional requirements. The Commission may, by rule, regulation, or order, impose...

  2. 10 CFR 20.2302 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Additional requirements. 20.2302 Section 20.2302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2302 Additional requirements. The Commission may, by rule, regulation, or order, impose...

  3. 10 CFR 20.2302 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Additional requirements. 20.2302 Section 20.2302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2302 Additional requirements. The Commission may, by rule, regulation, or order, impose...

  4. 10 CFR 55.7 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Additional requirements. 55.7 Section 55.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) OPERATORS' LICENSES General Provisions § 55.7 Additional requirements. The Commission may, by rule, regulation, or order, impose upon any licensee such requirements, in addition to...

  5. 10 CFR 55.7 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Additional requirements. 55.7 Section 55.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) OPERATORS' LICENSES General Provisions § 55.7 Additional requirements. The Commission may, by rule, regulation, or order, impose upon any licensee such requirements, in addition to...

  6. 10 CFR 70.74 - Additional reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Additional reporting requirements. 70.74 Section 70.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear...

  7. 48 CFR 252.204-7010 - Requirement for Contractor To Notify DoD if the Contractor's Activities are Subject to Reporting...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atomic Energy Agency Additional Protocol. 252.204-7010 Section 252.204-7010 Federal Acquisition... Atomic Energy Agency Additional Protocol. As prescribed in 204.470-3, use the following clause....-International Atomic Energy Agency Additional Protocol (JAN 2009) (a) If the Contractor is required to report...

  8. 48 CFR 252.204-7010 - Requirement for Contractor To Notify DoD if the Contractor's Activities are Subject to Reporting...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atomic Energy Agency Additional Protocol. 252.204-7010 Section 252.204-7010 Federal Acquisition... Atomic Energy Agency Additional Protocol. As prescribed in 204.470-3, use the following clause....-International Atomic Energy Agency Additional Protocol (JAN 2009) (a) If the Contractor is required to report...

  9. 48 CFR 252.204-7010 - Requirement for Contractor to Notify DoD if the Contractor's Activities are Subject to Reporting...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atomic Energy Agency Additional Protocol. 252.204-7010 Section 252.204-7010 Federal Acquisition... Atomic Energy Agency Additional Protocol. As prescribed in 204.470-3, use the following clause....-International Atomic Energy Agency Additional Protocol (JAN 2009) (a) If the Contractor is required to report...

  10. 48 CFR 252.204-7010 - Requirement for Contractor to Notify DoD if the Contractor's Activities are Subject to Reporting...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atomic Energy Agency Additional Protocol. 252.204-7010 Section 252.204-7010 Federal Acquisition... Atomic Energy Agency Additional Protocol. As prescribed in 204.470-3, use the following clause....-International Atomic Energy Agency Additional Protocol (JAN 2009) (a) If the Contractor is required to report...

  11. How might renewable energy technologies fit in the food-water-energy nexus?

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various metrics exist for defining land use impacts of energy technologies, with little consensus on how much total land is impacted or is necessary. Here we characterize the land use requirements of energy technologies by comparing various metrics from different studies, providing ranges of the potential land impact from alternative energy scenarios. Land use requirements for energy needs under these scenarios are compared with projected land use requirements for agriculture to support a growing population. The water implications of various energy and food scenarios are analyzed to provide insights into potential regional impacts or conflicts between sectors.

  12. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically authorized...

  13. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically authorized...

  14. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically authorized...

  15. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically authorized...

  16. 10 CFR 725.13 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Additional information. 725.13 Section 725.13 Energy DEPARTMENT OF ENERGY PERMITS FOR ACCESS TO RESTRICTED DATA Applications § 725.13 Additional information. The... and before the termination of the permit, require additional information in order to enable the Chief...

  17. 18 CFR 154.400 - Additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Additional requirements. 154.400 Section 154.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT RATE SCHEDULES AND TARIFFS Limited Rate Changes § 154...

  18. 18 CFR 154.400 - Additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Additional requirements. 154.400 Section 154.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT RATE SCHEDULES AND TARIFFS Limited Rate Changes § 154...

  19. 18 CFR 154.400 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Additional requirements. 154.400 Section 154.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT RATE SCHEDULES AND TARIFFS Limited Rate Changes § 154...

  20. 18 CFR 154.400 - Additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Additional requirements. 154.400 Section 154.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT RATE SCHEDULES AND TARIFFS Limited Rate Changes § 154...

  1. 18 CFR 154.400 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Additional requirements. 154.400 Section 154.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT RATE SCHEDULES AND TARIFFS Limited Rate Changes § 154...

  2. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  3. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  4. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  5. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  6. Energy Sprawl Is the Largest Driver of Land Use Change in United States.

    PubMed

    Trainor, Anne M; McDonald, Robert I; Fargione, Joseph

    2016-01-01

    Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production) in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2-31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation.

  7. Energy Sprawl Is the Largest Driver of Land Use Change in United States

    PubMed Central

    McDonald, Robert I.

    2016-01-01

    Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production) in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2–31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation. PMID:27607423

  8. National energy conservation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A set of energy conservation actions that cut across all sectors of the economy were analyzed so that all actions under consideration be analyzed systematically and as a whole. The actions considered were as follows: (1) roll back the price of newly discovered oil, (2) freeze gasoline production for 3 years at 1972 levels, (3) mandate automobile mileage improvements, (4) require industry to improve energy efficiency, (5) require manufacture of household appliances with greater efficiency, (6) force conversion of many power plants from gas and oil to coal. The results showed that considerable gas and oil would be saved by forcing switches to coal. However, the large scale switch to coal was shown to require greatly increased outputs from many other industries that in turn require more energy. It was estimated that nearly 2.5 quads of additional coal were needed to produce these additional requirements. Also, the indirect requirements would create more jobs.

  9. Learning about Renewable Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to renewable energy, discussing: (1) the production of electricity from sunlight; (2) wind power; (3) hydroelectric power; (4) geothermal energy; and (5) biomass. Also provided are nine questions to answer (based on the readings), four additional questions to answer (which require additional information), and…

  10. 10 CFR 70.65 - Additional content of applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Additional content of applications. 70.65 Section 70.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear...

  11. 24 CFR 201.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mortgages or deeds of trust covering the home and lot. Solar energy system means any addition, alteration or... utilize wind or solar energy to reduce the energy requirements of that structure from other energy sources...

  12. 24 CFR 201.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mortgages or deeds of trust covering the home and lot. Solar energy system means any addition, alteration or... utilize wind or solar energy to reduce the energy requirements of that structure from other energy sources...

  13. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  14. Estimating the energetic cost of feeding excess dietary nitrogen to dairy cows

    USDA-ARS?s Scientific Manuscript database

    Feeding N in excess of requirements could require the use of additional energy to synthesize and excrete urea, however, the amount energy required is unclear. Little progress has been made on this topic in recent decades so an extension of work published in 1970 was conducted to quantify the effect ...

  15. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  16. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  17. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  18. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  19. 10 CFR 30.2 - Resolution of conflict.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Resolution of conflict. 30.2 Section 30.2 Energy NUCLEAR... Provisions § 30.2 Resolution of conflict. The requirements of this part are in addition to, and not in substitution for, other requirements of this chapter. In any conflict between the requirements in this part and...

  20. Energy Requirements in Critically Ill Patients.

    PubMed

    Ndahimana, Didace; Kim, Eun-Kyung

    2018-04-01

    During the management of critical illness, optimal nutritional support is an important key for achieving positive clinical outcomes. Compared to healthy people, critically ill patients have higher energy expenditure, thereby their energy requirements and risk of malnutrition being increased. Assessing individual nutritional requirement is essential for a successful nutritional support, including the adequate energy supply. Methods to assess energy requirements include indirect calorimetry (IC) which is considered as a reference method, and the predictive equations which are commonly used due to the difficulty of using IC in certain conditions. In this study, a literature review was conducted on the energy metabolic changes in critically ill patients, and the implications for the estimation of energy requirements in this population. In addition, the issue of optimal caloric goal during nutrition support is discussed, as well as the accuracy of selected resting energy expenditure predictive equations, commonly used in critically ill patients.

  1. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    PubMed

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  2. Integrated Autopilot/Autothrottle Based on a Total Energy Control Concept: Design and Evaluation of Additional Autopilot Modes

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1988-01-01

    An integrated autopilot/autothrottle system was designed using a total energy control design philosophy. This design ensures that the system can differentiate between maneuvers requiring a change in thrust to accomplish a net energy change, and those maneuvers which only require elevator control to redistribute energy. The system design, the development of the system, and a summary of simulation results are defined.

  3. Hot working behavior of selective laser melted and laser metal deposited Inconel 718

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sizova, Irina

    2018-05-01

    The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.

  4. Green Acquisition Gap Analysis of the United States Air Force Operational Contracting Organizations

    DTIC Science & Technology

    2011-12-01

    alternative sources, and changing the culture,” and that “for the last several years … the Air Force has led the way in this area.” Furthermore...less-toxic alternatives . Abstract Metrics • Increase renewable energy and renewable energy generation on agency property; • Pursue opportunities...agencies to purchase energy- efficient (Energy Star) products and requires increased use of alternative fuels. In addition, this regulation requires

  5. 10 CFR 36.83 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In addition to the reporting requirements in other parts of NRC regulations, the licensee shall report the...

  6. 10 CFR 36.83 - Reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In addition to the reporting requirements in other parts of NRC regulations, the licensee shall report the...

  7. 10 CFR 36.83 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In addition to the reporting requirements in other parts of NRC regulations, the licensee shall report the...

  8. 10 CFR 36.83 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In addition to the reporting requirements in other parts of NRC regulations, the licensee shall report the...

  9. 10 CFR 35.310 - Safety instruction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Safety instruction. 35.310 Section 35.310 Energy NUCLEAR... Required § 35.310 Safety instruction. In addition to the requirements of § 19.12 of this chapter, (a) A licensee shall provide radiation safety instruction, initially and at least annually, to personnel caring...

  10. 16 CFR 305.21 - Test data records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Additional Requirements § 305.21 Test data records. (a) Test data shall be kept on file by the manufacturer of a covered product...

  11. 16 CFR 305.21 - Test data records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Additional Requirements § 305.21 Test data records. (a) Test data shall be kept on file by the manufacturer of a covered product...

  12. 16 CFR 305.21 - Test data records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Additional Requirements § 305.21 Test data records. (a) Test data shall be kept on file by the manufacturer of a covered product...

  13. 16 CFR 305.21 - Test data records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Additional Requirements § 305.21 Test data records. (a) Test data shall be kept on file by the manufacturer of a covered product...

  14. 10 CFR 35.310 - Safety instruction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Safety instruction. 35.310 Section 35.310 Energy NUCLEAR... Required § 35.310 Safety instruction. In addition to the requirements of § 19.12 of this chapter, (a) A licensee shall provide radiation safety instruction, initially and at least annually, to personnel caring...

  15. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues.

    PubMed

    Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue

    2018-03-01

    Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Green Acquisition Gap Analysis of the United States Air Force Operational Contracting Organizations

    DTIC Science & Technology

    2011-11-10

    reducing demand, increasing supply through renewable and alternative sources, and changing the culture,” and that “for the last several years … the...less toxic alternatives . Abstract Metrics This section presents the abstract metrics identified in EO 13514.  Increase renewable energy and...purchase energy- efficient (Energy Star) products and requires increased use of alternative fuels. In addition, this regulation requires an overall

  17. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs.

    PubMed

    Mullis, Rebecca A; Witzel, Angela L; Price, Joshua

    2015-01-01

    Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was [Formula: see text] or two times the calculated resting energy requirement ([Formula: see text]). No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854) was seen between the number of searches a dog performs and their energy requirement. Based on this study's population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council's (NRC) maintenance energy requirement of [Formula: see text] (National Research Council (NRC), 1974) and the [Formula: see text] reported for young laboratory beagles (Rainbird & Kienzle, 1990). Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc.) have similar energy requirements.

  18. 25 CFR 215.17 - Additional information required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Additional information required. 215.17 Section 215.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING... application, must file one certified copy of articles of incorporation and, if a foreign corporation, evidence...

  19. 25 CFR 215.17 - Additional information required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interested in lead and zinc mining leases, or land under the jurisdiction of the Quapaw Indian Agency, and... 25 Indians 1 2010-04-01 2010-04-01 false Additional information required. 215.17 Section 215.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING...

  20. 10 CFR 431.174 - Additional requirements applicable to Voluntary Independent Certification Program participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.174 Additional... commercial HVAC and WH product, as described in § 431.176, and that complies with all requirements imposed by...

  1. Midinfrared radiation energy harvesting device

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  2. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  3. Preliminary methodology to assess the national and regional impact of U.S. wind energy development on birds and bats

    USGS Publications Warehouse

    Diffendorfer, James E.; Beston, Julie A.; Merrill, Matthew D.; Stanton, Jessica C.; Corum, Margo D.; Loss, Scott R.; Thogmartin, Wayne E.; Johnson, Douglas H.; Erickson, Richard A.; Heist, Kevin W.

    2015-01-01

    Components of the methodology are based on simplifying assumptions and require information that, for many species, may be sparse or unreliable. These assumptions are presented in the report and should be carefully considered when using output from the methodology. In addition, this methodology can be used to recommend species for more intensive demographic modeling or highlight those species that may not require any additional protection because effects of wind energy development on their populations are projected to be small.

  4. 40 CFR 72.81 - Permit modifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance deadline extension; and (5) Changes in a thermal energy plan that result in any addition or... replacement of thermal energy. (c)(1) Permit modifications shall follow the permit issuance requirements of...

  5. 40 CFR 72.81 - Permit modifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance deadline extension; and (5) Changes in a thermal energy plan that result in any addition or... replacement of thermal energy. (c)(1) Permit modifications shall follow the permit issuance requirements of...

  6. 40 CFR 72.81 - Permit modifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance deadline extension; and (5) Changes in a thermal energy plan that result in any addition or... replacement of thermal energy. (c)(1) Permit modifications shall follow the permit issuance requirements of...

  7. 40 CFR 72.81 - Permit modifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance deadline extension; and (5) Changes in a thermal energy plan that result in any addition or... replacement of thermal energy. (c)(1) Permit modifications shall follow the permit issuance requirements of...

  8. 40 CFR 72.81 - Permit modifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance deadline extension; and (5) Changes in a thermal energy plan that result in any addition or... replacement of thermal energy. (c)(1) Permit modifications shall follow the permit issuance requirements of...

  9. 30 CFR 285.503 - What are the rent and operating fee requirements for a commercial lease?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for a commercial lease? 285.503 Section 285.503 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES.... (3) You must pay the rent for a project easement in addition to the lease rent, as provided in § 285...

  10. Energy requirements of adult dogs: a meta-analysis.

    PubMed

    Bermingham, Emma N; Thomas, David G; Cave, Nicholas J; Morris, Penelope J; Butterwick, Richard F; German, Alexander J

    2014-01-01

    A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75)·day(-1). The corresponding allometric equation was 81.5 kcal·kgBW(-0.9)·day(-1) (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed.

  11. Energy Requirements of Adult Dogs: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Thomas, David G.; Cave, Nicholas J.; Morris, Penelope J.; Butterwick, Richard F.; German, Alexander J.

    2014-01-01

    A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg0.75 body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal.kgBW−0.75.day−1. The corresponding allometric equation was 81.5 kcal.kgBW−0.93.day−1 (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed. PMID:25313818

  12. Energy conservation through sealing technology

    NASA Technical Reports Server (NTRS)

    Stair, W. K.; Ludwig, L. P.

    1978-01-01

    Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.

  13. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  14. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  15. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  16. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  17. 10 CFR 35.2647 - Records of additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... remote afterloader units. 35.2647 Section 35.2647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2647 Records of additional technical requirements for mobile remote afterloader units. (a) A licensee shall retain a record of each check for mobile remote afterloader units...

  18. Optical coherence tomography for an in-vivo study of posterior-capsule-opacification types and their influence on the total-pulse energy required for Nd:YAG capsulotomy: a case series.

    PubMed

    Hawlina, Gregor; Perovšek, Darko; Drnovšek-Olup, Brigita; MoŽina, Janez; Gregorčič, Peter

    2014-11-18

    Posterior capsule opacification (PCO) is the most common post-operative complication associated with cataract surgery and is mostly treated with Nd:YAG laser capsulotomy. Here, we demonstrate the use of high-resolution spectral-domain optical coherence tomography (OCT) as a technique for PCO analysis. Additionally, we evaluate the influence of PCO types and the distance between the intraocular lens (IOL) and the posterior capsule (PC), i.e., the IOL/PC distance, on the total-pulse energy required for the Nd:YAG laser posterior capsulotomy. 47 eyes with PCO scheduled for the Nd:YAG procedure were examined and divided into four categories: fibrosis, pearl, mixed type and late-postoperative capsular bag distension syndrome. Using custom-made computer software for OCT image analysis, the IOL/PC distances in two dimensions were measured. The IOL/PC distances were compared with those of a control group of 15 eyes without PCO. The influence of the different PCO types and the IOL/PC distance on the total-pulse energy required for the Nd:YAG procedure was analyzed. The total-pulse energy required for a laser capsulotomy differs significantly between PCO types (p = 0.005, Kruskal-Wallis test). The highest energy was required for the fibrosis PCO type, followed by mixed, pearl and late-postoperative capsular bag distension syndrome. The IOL/PC distance also significantly influenced the total-pulse energy required for laser capsulotomy (p = 0.028, linear regression). Lower total-pulse energy was expected for a larger IOL/PC distance. Our study indicates that the PCO types and the IOL/PC distance influence the total-pulse energy required for Nd:YAG capsulotomy. The presented OCT method has the potential to become an additional tool for PCO characterization. Our results are important for a better understanding of the photodisruptive mechanisms in Nd:YAG capsulotomy.

  19. 25 CFR 224.65 - How may a tribe assume additional activities under a TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...? 224.65 Section 224.65 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.65 How may a tribe assume...

  20. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    NASA Astrophysics Data System (ADS)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  1. Fluctuations in energy loss and their implications for dosimetry and radiobiology

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Steigerwalt, J. E.

    1972-01-01

    Serious consideration of the physics of energy deposition indicates that a fundamental change in the interpretation of absorbed dose is required at least for considerations of effects in biological systems. In addition, theoretical approaches to radiobiology and microdosimetry seem to require statistical considerations incorporating frequency distributions of the magnitude of the event sizes within the volume of interest.

  2. 18 CFR 33.10 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 33.10 Additional information. The Director of the Office of Energy Market Regulation, or his designee, may, by letter, require the applicant to submit additional information as is needed for analysis of an... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Additional information...

  3. 18 CFR 33.10 - Additional information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 33.10 Additional information. The Director of the Office of Energy Market Regulation, or his designee, may, by letter, require the applicant to submit additional information as is needed for analysis of an... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Additional information...

  4. 18 CFR 33.10 - Additional information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 33.10 Additional information. The Director of the Office of Energy Market Regulation, or his designee, may, by letter, require the applicant to submit additional information as is needed for analysis of an... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Additional information...

  5. [Effect of biologically active food additives on energy metabolism and human body weight].

    PubMed

    Gapparov, M M

    1999-01-01

    Review is devoted to analysis of human energy requirements depending on age, sex, occupational and living condition. Special attention was paid to importance of strict balance in organism between consumption and expense of energy. Modern views on mechanism of action food supplements as additional instrument of regulation of energy metabolism for correction of surplus body weight is given. Review is the first attempt of systematisation of biologically active food supplements according to their mechanism of action both on nutrition processes and on biochemical mechanisms of assimilation and utilisation of macronutrients, in particular of fats and carbohydrates.

  6. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...

  7. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...

  8. 10 CFR 70.65 - Additional content of applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Additional content of applications. 70.65 Section 70.65... Material § 70.65 Additional content of applications. (a) In addition to the contents required by § 70.22.... (b) The integrated safety analysis summary must be submitted with the license or renewal application...

  9. 40 CFR 600.509-08 - Voluntary submission of additional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... data in addition to the data required by the Administrator. (b) Additional fuel economy data may be...

  10. 40 CFR 600.509-08 - Voluntary submission of additional data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... data in addition to the data required by the Administrator. (b) Additional fuel economy data may be...

  11. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less

  12. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by methanogens in these sediment systems for sustained metabolism are about half that previously thought necessary. Lowered energy requirements would imply that a correspondingly greater proportion of the planetary subsurface could represent viable habitat for microorganisms.

  13. Modeling the costs and benefits associated with the evolution of endothermy using a robotic python.

    PubMed

    Brashears, J Alex; Hoffman, Ty C M; DeNardo, Dale F

    2017-07-01

    Endothermy provides considerable benefits to an organism but requires large energy investment. To understand potential driving forces that would lead to the evolution of endothermy, it is important to understand the energy costs and potential benefits of intermediate steps between ectothermy and homeothermic endothermy as well as the influences of environmental conditions on energetic costs. However, efforts to examine intermediate conditions are greatly limited by the predominant natural dichotomy between ectothermy and endothermy. Facultative endothermy by brooding pythons provides a fortunate study system where endothermy is beneficial but not essential. As one cannot control the extent of energy investment in heat production by a female python, we created an artificial snake with controllable heating capability. This enabled us to determine the energetic costs of maintaining a clutch at a preferred temperature, and to determine the relative thermal benefit of limited energy-producing capability (i.e. 50% of the required energy to maintain the preferred developmental temperature). We manipulated the pseudoserpent's clutch size (5, 10, 15 eggs), diel ambient temperature cycle (2, 4, 6°C) and insulation (with and without) at each of these power levels: unlimited power, half required power and no power. We found no significant effect of clutch size on either power requirements or developmental temperature. Energy requirements increased with the amplitude of the diel cycle and decreased with the addition of insulation, while the quality of the thermal environment decreased with the amplitude of the diel cycle. Interestingly, the quality of the thermal environment also decreased with the addition of insulation. We discuss these results within the context of the reproductive model of the evolution of endothermy. © 2017. Published by The Company of Biologists Ltd.

  14. Estimating the energetic cost of feeding excess dietary nitrogen to dairy cows.

    PubMed

    Reed, K F; Bonfá, H C; Dijkstra, J; Casper, D P; Kebreab, E

    2017-09-01

    Feeding N in excess of requirement could require the use of additional energy to metabolize excess protein, and to synthesize and excrete urea; however, the amount and fate of this energy is unknown. Little progress has been made on this topic in recent decades, so an extension of work published in 1970 was conducted to quantify the effect of excess N on ruminant energetics. In part 1 of this study, the results of previous work were replicated using a simple linear regression to estimate the effect of excess N on energy balance. In part 2, mixed model methodology and a larger data set were used to improve upon the previously reported linear regression methods. In part 3, heat production, retained energy, and milk energy replaced the composite energy balance variable previously proposed as the dependent variable to narrow the effect of excess N. In addition, rumen degradable and undegradable protein intakes were estimated using table values and included as covariates in part 3. Excess N had opposite and approximately equal effects on heat production (+4.1 to +7.6 kcal/g of excess N) and retained energy (-4.2 to -6.6 kcal/g of excess N) but had a larger negative effect on milk gross energy (-52 to -68 kcal/g of excess N). The results suggest that feeding excess N increases heat production, but more investigation is required to determine why excess N has such a large effect on milk gross energy production. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Energy harvesting for dielectric elastomer sensing

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Illenberger, Patrin; O'Brien, Ben M.

    2016-04-01

    Soft and stretchy dielectric elastomer (DE) sensors can measure large strains on robotic devices and people. DE strain measurement requires electric energy to run the sensors. Energy is also required for information processing and telemetering of data to phone or computer. Batteries are expensive and recharging is inconvenient. One solution is to harvest energy from the strains that the sensor is exposed to. For this to work the harvester must also be wearable, soft, unobtrusive and profitable from the energy perspective; with more energy harvested than used for strain measurement. A promising way forward is to use the DE sensor as its own energy harvester. Our study indicates that it is feasible for a basic DE sensor to provide its own power to drive its own sensing signal. However telemetry and computation that are additional to this will require substantially more power than the sensing circuit. A strategy would involve keeping the number of Bluetooth data chirps low during the entire period of energy harvesting and to limit transmission to a fraction of the total time spent harvesting energy. There is much still to do to balance the energy budget. This will be a challenge but when we succeed it will open the door to autonomous DE multi-sensor systems without the requirement for battery recharge.

  16. 10 CFR 75.11 - Location information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Location information. 75.11 Section 75.11 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Facility and Location Information § 75.11 Location information. (a) As required by the Additional Protocol...

  17. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  18. Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.

    2005-03-01

    This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A numbermore » of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.« less

  19. 10 CFR 20.2301 - Applications for exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Applications for exemptions. 20.2301 Section 20.2301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2301 Applications for exemptions. The Commission may, upon application by a licensee or upon...

  20. 10 CFR 20.2301 - Applications for exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Applications for exemptions. 20.2301 Section 20.2301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2301 Applications for exemptions. The Commission may, upon application by a licensee or upon...

  1. 10 CFR 20.2301 - Applications for exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Applications for exemptions. 20.2301 Section 20.2301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Exemptions and Additional Requirements § 20.2301 Applications for exemptions. The Commission may, upon application by a licensee or upon...

  2. 10 CFR 75.11 - Location information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Location information. 75.11 Section 75.11 Energy NUCLEAR... and Location Information § 75.11 Location information. (a) As required by the Additional Protocol, each applicant, licensee, or certificate holder shall submit location information to the Commission as...

  3. Electrochemistry and Storage Panel Report

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  4. Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Wanke, R.; Hassink, G. W. J.; Stephanos, C.; Rastegar, I.; Braun, W.; Mannhart, J.

    2016-06-01

    Mobile energy converters require, in addition to high conversion efficiency and low cost, a low mass. We propose to utilize thermoelectronic converters that use 2D-materials such as graphene for their gate electrodes. Deriving the ultimate limit for their specific energy output, we show that the positive energy output is likely close to the fundamental limit for any conversion of heat into electric power. These converters may be valuable as electric power sources of spacecraft, and with the addition of vacuum enclosures, for power generation in electric planes and cars.

  5. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  6. Design, construction, operation and costs of a modern small-scale fuel-alcohol plant

    NASA Astrophysics Data System (ADS)

    Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.

    1982-01-01

    The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.

  7. Renewable energy delivery systems and methods

    DOEpatents

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  8. 10 CFR 75.11 - Location information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to manage IAEA access to the location to protect health and safety or to protect classified... 10 Energy 2 2012-01-01 2012-01-01 false Location information. 75.11 Section 75.11 Energy NUCLEAR... and Location Information § 75.11 Location information. (a) As required by the Additional Protocol...

  9. 10 CFR 35.652 - Radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation surveys. 35.652 Section 35.652 Energy NUCLEAR... Units, and Gamma Stereotactic Radiosurgery Units § 35.652 Radiation surveys. (a) In addition to the survey requirement in § 20.1501 of this chapter, a person licensed under this subpart shall make surveys...

  10. 10 CFR 35.652 - Radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation surveys. 35.652 Section 35.652 Energy NUCLEAR... Units, and Gamma Stereotactic Radiosurgery Units § 35.652 Radiation surveys. (a) In addition to the survey requirement in § 20.1501 of this chapter, a person licensed under this subpart shall make surveys...

  11. 10 CFR 35.652 - Radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation surveys. 35.652 Section 35.652 Energy NUCLEAR... Units, and Gamma Stereotactic Radiosurgery Units § 35.652 Radiation surveys. (a) In addition to the survey requirement in § 20.1501 of this chapter, a person licensed under this subpart shall make surveys...

  12. 10 CFR 35.652 - Radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation surveys. 35.652 Section 35.652 Energy NUCLEAR... Units, and Gamma Stereotactic Radiosurgery Units § 35.652 Radiation surveys. (a) In addition to the survey requirement in § 20.1501 of this chapter, a person licensed under this subpart shall make surveys...

  13. 10 CFR 35.652 - Radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation surveys. 35.652 Section 35.652 Energy NUCLEAR... Units, and Gamma Stereotactic Radiosurgery Units § 35.652 Radiation surveys. (a) In addition to the survey requirement in § 20.1501 of this chapter, a person licensed under this subpart shall make surveys...

  14. 10 CFR 35.410 - Safety instruction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Safety instruction. 35.410 Section 35.410 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.410 Safety instruction. In addition to the requirements of § 19.12 of this chapter, (a) The licensee shall provide radiation safety...

  15. 10 CFR 70.73 - Renewal of licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Renewal of licenses. 70.73 Section 70.73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear Material § 70.73 Renewal of...

  16. 30 CFR 585.601 - When am I required to submit my plans to BOEM?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...? 585.601 Section 585.601 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conduct additional reviews, including NEPA analysis, if significant new information becomes available...

  17. 30 CFR 285.601 - When am I required to submit my plans to MMS?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...? 285.601 Section 285.601 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... additional reviews, including NEPA analysis, if significant new information becomes available after you...

  18. 75 FR 2565 - Northern States Power Company, LLC; Monticello Nuclear Generating Plant Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... turbine, and components containing radioactive materials. Based on the licensee's evaluation, the annual... savings and still require additional generating capacity. Alternative energy sources such as wind energy.../adams.html . Persons who do not have access to ADAMS or who encounter problems in accessing the...

  19. 7 CFR 1709.124 - Grant award procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES RUS High Energy Cost Grant Program § 1709.124 Grant... additional information in order to complete the required environmental review under 7 CFR 1794 and to meet... must concur with any changes proposed to the letter of conditions by the applicant before the...

  20. 7 CFR 1709.124 - Grant award procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES RUS High Energy Cost Grant Program § 1709.124 Grant... additional information in order to complete the required environmental review under 7 CFR 1794 and to meet... must concur with any changes proposed to the letter of conditions by the applicant before the...

  1. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  2. Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1975-01-01

    The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.

  3. An Investigation Utilizing an Electrical Analogue of Cyclic Deicing of a Hollow Steel Propeller with an External Blade Shoe

    NASA Technical Reports Server (NTRS)

    Neel, Carr B., Jr.

    1952-01-01

    A study has been made of the heat requirement for the cyclic de-icing of hollow steel propellers fitted with external blade heating shoes. Solutions to the equations for the heat flow in cyclic heating of propellers were obtained, using an electrical analogy. The study showed how the energy requirement for propeller de-icing with existing blade shoes could be decreased, and illustrated the effect of blade-shoe design on the energy requirement. It was demonstrated, for example, that by increasing the heating intensity and decreasing the heating period from those currently used the energy requirement could be decreased in the order of 60 percent. ' In addition, ft was shown that heating requirements could be decreased further, by as much as 60 percent, through proper design of the shoes. The' investigation also showed the energy requirement to increase with decreasing liquid-water content and air temperature. Uncertainties as to the exact values of convective heat-transfer coefficient prevailing over the surface of the blade and ice layer resulted in uncertainties of approximately proportional magnitude in the values of required heating intensity.

  4. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  5. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  6. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  7. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  8. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  9. Advanced Lithium-ion Batteries with High Specific Energy and Improved Safety for Nasa's Missions

    NASA Technical Reports Server (NTRS)

    West, William; Smart, Marshall; Soler, Jess; Krause, Charlie; Hwang, Constanza; Bugga, Ratnakumar

    2012-01-01

    High Energy Materials ( Cathodes, anodes and high voltage and safe electrolyte are required to meet the needs of the future space missions. A. Cathodes: The layered layered composites of of Li2MnO3 and LiMO2 are promising Power capability of the materials, however requires further improvement. Suitable morphology is critical for good performance and high tap (packing) density. Surface coatings help in the interfacial kinetics and stability. B. Electrolytes: Small additions of Flame Retardant Additives improves flammability without affecting performance (Rate and cycle life). 1.0 M in EC+EMC+TPP was shown to have good performance against the high voltage cathode; Performance demonstrated in large capacity prototype MCMB- LiNiCoO2 Cells. Formulations with higher proportions are looking promising. Still requires further validation through abuse tests (e.g., on 18650 cells).

  10. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE PAGES

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; ...

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  11. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  12. Battery electric vehicles - implications for the driver interface.

    PubMed

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  13. Pricing strategies in inelastic energy markets: can we use less if we can't extract more?

    NASA Astrophysics Data System (ADS)

    Voinov, Alexey; Filatova, Tatiana

    2014-03-01

    Limited supply of nonrenewable energy resources under growing energy demand creates a situation when a marginal change in the quantity supplied or demanded causes non-marginal swings in price levels. The situation is worsened by the fact that we are currently running out of cheap energy resources at the global scale while adaptation to climate change requires extra energy costs. It is often argued that technology and alternative energy will be a solution. However, alternative energy infrastructure also requires additional energy investments, which can further increase the gap between energy demand and supply. This paper presents an explorative model that demonstrates that a smooth transition from an oil-based economy to alternative energy sources is possible only if it is started well in advance while fossil resources are still abundant. Later the transition looks much more dramatic and it becomes risky to rely entirely on technological solutions. It becomes increasingly likely that in addition to technological solutions that can increase supply we will need to find ways to decrease demand and consumption. We further argue that market mechanisms can be just as powerful tools to curb demand as they have traditionally been for stimulating consumption. We observe that individuals who consume more energy resources benefit at the expense of those who consume less, effectively imposing price externalities on the latters. We suggest two transparent and flexible methods of pricing that attempt to eliminate price externalities on energy resources. Such pricing schemes stimulate less consumption and can smooth the transition to renewable energy.

  14. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  15. State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)

    EIA Publications

    2010-01-01

    To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).

  16. Increase in capacitance by subnanometer pores in carbon

    DOE PAGES

    Jackel, Nicolas; Simon, Patrice; Gogotsi, Yury G.; ...

    2016-11-21

    Electrical double-layer capacitors (EDLCs, also known as supercapacitors or ultracapacitors) store energy by electrosorption of ions at the electrode/electrolyte interface. In addition, to achieve a high-energy storage capacity, electrodes with a high surface area and well-developed pore structure in the range from several Angstroms to several tens of nanometers are required.

  17. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77, a...

  18. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77, a...

  19. Two Balls' Collision of Mass Ratio 3:1

    ERIC Educational Resources Information Center

    Ogawara, Yasuo; Hull, Michael M.

    2018-01-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborativemore » national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.« less

  1. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  2. Scaling of Liquid DT Layer Capsules to an ICF Burning Plasma

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Peterson, R. R.; Haines, B. M.; Yi, S. A.; Bradley, P. A.; Zylstra, A. B.; Kline, J. L.; Leeper, R. J.; Batha, S. H.

    2017-10-01

    Recent experiments at the NIF demonstrated cryogenic liquid DT layer ICF implosions. Unlike DT ice layer implosions, DT liquid layer designs can operate with low-to-moderate convergence ratio (12

  3. 10 CFR 431.175 - Additional requirements applicable to non-Voluntary Independent Certification Program participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.175 Additional... manufacturer that is not a VICP participant with respect to a particular type of commercial HVAC and WH product...

  4. Additive manufacturing of permanent magnets

    DOE PAGES

    Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; ...

    2016-10-28

    Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstandmore » demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.« less

  5. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogucz, Edward A.

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  7. Operational Benefits of Meeting California's Energy Storage Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less

  8. Energy and thermal regulation during bed rest and spaceflight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1989-01-01

    This paper presents data available from bed-rest and flight studies on the energy metabolism and thermoregulatory parameters and their changes during long-duration space missions which may influence requirements of astronauts for food and water. It is calculated, on the basis of 3100 kcal and 2.2 l water a day, with 1 h/day moderate exercise, that the requirements for a 2-yr flight would be 2,263,000 kcal and 1606 l water for each astronaut. One daily 5-h-long extravehicular sortie would require an additional 529,250 kcal and 1,095 l of water per year. Changes in the efficiency of work or metabolism would affect these nutritional requirements for long spaceflights. Factors that would increase food and water requirements are discussed.

  9. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

    PubMed Central

    Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.

    2016-01-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117

  10. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  11. Thermal energy storage with geothermal triplet for space heating and cooling

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now focusses on energy balance and energy loss in the subsurface, well design requirements, working/operational conditions of each well, as well as building system components like the influence of weather conditions on performance of system components. At EGU we like to present and discuss the results of this research. references • Dekker, L.d., 2016. Bepalende factoren voor goed functionerende WKO, kennisplatform bodemenergie. • Graaf, A.d., Heijer, R., Postma, S., 2016. Evaluatie Wijzigingsbesluit bodemenergiesystemen. Buro 38 in commision of ministry of Intrastructure and environment, Cothen. • Kamp, H., 2015. Warmtevisie, ministry of economic affairs, Den Haag. • Ministry-of-Economic-affairs, 2016. Energieagenda, Naar een CO₂-arme energievoorziening. Ministry of Economic affairs, Den Haag.

  12. Energy Implications of Seawater Desalination (Invited)

    NASA Astrophysics Data System (ADS)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to rise during droughts, when runoff, and thus power production, is constrained and electricity demands are high. Additionally, electricity prices are projected to rise in many regions to maintain and replace aging transmission and distribution infrastructure, install advanced metering infrastructure, comply with once-through cooling regulations, meet new demand growth , and increase renewable energy production. While rising electricity prices will affect the price of all water sources, they will have a greater impact on those that are the most energy intensive, like desalination. The high energy requirements of seawater desalination also raise concerns about greenhouse gas emissions. In 2006, California lawmakers passed the Global Warming Solutions Act, or Assembly Bill 32, which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. Thus, the state has committed itself to a program of steadily reducing its greenhouse gas emissions in both the short- and long-term, which includes cutting current emissions and preventing future emissions associated with growth. Desalination - through increased energy use - can cause an increase in greenhouse gas emissions, further contributing to the root cause of climate change and running counter to the state's greenhouse gas reduction goals.

  13. 78 FR 66201 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    .... NREL commented that storage tanks do not make a complete water heating system, so an energy factor is.... Unfired storage tanks are not complete water- heating systems and require additional equipment in the... water-heating system is so dependent upon other components of the system that use of the uniform...

  14. Ak-Chin Indian Community Biomass Feasiiblity Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

    2005-12-31

    Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

  15. Comparison of Energy and Nutrient Contents of Commercial and Noncommercial Enteral Nutrition Solutions

    PubMed Central

    Jolfaie, Nahid Ramezani; Rouhani, Mohammad Hossein; Mirlohi, Maryam; Babashahi, Mina; Abbasi, Saeid; Adibi, Peiman; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2017-01-01

    Background: Nutritional support plays a major role in the management of critically ill patients. This study aimed to compare the nutritional quality of enteral nutrition solutions (noncommercial vs. commercial) and the amount of energy and nutrients delivered and required in patients receiving these solutions. Materials and Methods: This cross-sectional study was conducted among 270 enterally fed patients. Demographic and clinical data in addition to values of nutritional needs and intakes were collected. Moreover, enteral nutrition solutions were analyzed in a food laboratory. Results: There were 150 patients who fed noncommercial enteral nutrition solutions (NCENS) and 120 patients who fed commercial enteral nutrition solutions (CENSs). Although energy and nutrients contents in CENSs were more than in NCENSs, these differences regarding energy, protein, carbohydrates, phosphorus, and calcium were not statistically significant. The values of energy and macronutrients delivered in patients who fed CENSs were higher (P < 0.001). Energy, carbohydrate, and fat required in patients receiving CENSs were provided, but protein intake was less than the required amount. In patients who fed NCENSs, only the values of fat requirement and intake were not significantly different, but other nutrition delivered was less than required amounts (P < 0.001). CENSs provided the nutritional needs of higher numbers of patients (P < 0.001). In patients receiving CENSs, nutrient adequacy ratio and also mean adequacy ratio were significantly higher than the other group (P < 0.001). Conclusion: CENSs contain more energy and nutrients compared with NCENSs. They are more effective to meet the nutritional requirements of entirely fed patients. PMID:29142894

  16. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  17. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  18. 77 FR 31443 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... dishwashers with a separate soil- sensing cycle, and the normal cycle definition, power supply and detergent... Soiling Requirements 5. Detergent Dosing Specifications E. Incorporation by Reference of an Updated AHAM...: (1) The addition of a method to rate the efficiency of soil-sensing products; (2) the addition of a...

  19. 78 FR 54790 - Revisions to Operational Requirements for the Use of Enhanced Flight Vision Systems (EFVS) and to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ....gov . SUPPLEMENTARY INFORMATION: See the ``Additional Information'' section for information on how to comment on this proposal and how the FAA will handle comments received. The ``Additional Information..., environmental, energy, or federalism impacts that might result from adopting the proposals in this document. The...

  20. 10 CFR 851.12 - Implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY WORKER SAFETY AND HEALTH PROGRAM Program Requirements § 851.12 Implementation. (a) Contractors... taking any additional protective action that is determined to be necessary to protect the safety and health of workers. ...

  1. Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry

    NASA Technical Reports Server (NTRS)

    Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.

    2014-01-01

    Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.

  2. Application of sunlight and lamps for plant irradiation in space bases

    NASA Astrophysics Data System (ADS)

    Sager, J. C.; Wheeler, R. M.

    The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogensis. In addition the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space based plant growth system.

  3. Application of sunlight and lamps for plant irradiation in space bases

    NASA Technical Reports Server (NTRS)

    Sager, J. C.; Wheeler, R. M.

    1992-01-01

    The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogenesis. In addition, the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space-based plant growth system.

  4. Water transport and energy.

    PubMed

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  5. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, Christopher; Piper, Orvane; Hazelip, William

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS)more » which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.« less

  6. Electrochemical disinfection of repeatedly recycled blackwater in a free-standing, additive-free toilet.

    PubMed

    Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R

    2017-11-01

    Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.

  7. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  8. IEEE 1547 Standards Advancing Grid Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, Thomas; Chakraborty, Sudipta; Hoke, Andy

    Technology advances including development of advanced distributed energy resources (DER) and grid-integrated operations and controls functionalities have surpassed the requirements in current standards and codes for DER interconnection with the distribution grid. The full revision of IEEE Standards 1547 (requirements for DER-grid interconnection and interoperability) and 1547.1 (test procedures for conformance to 1547) are establishing requirements and best practices for state-of-the-art DER including variable renewable energy sources. The revised standards will also address challenges associated with interoperability and transmission-level effects, in addition to strictly addressing the distribution grid needs. This paper provides the status and future direction of the ongoingmore » development focus for the 1547 standards.« less

  9. Operational Changes Are Enhancing System Flexibility | Energy Analysis |

    Science.gov Websites

    ) improves system efficiency, reduces the amount of reserves required to balance the system, and enables balance. In addition, expanded balancing footprints can enhance the benefits of faster dispatch, reducing

  10. Motor/generator and electronic control considerations for energy storage flywheels

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1984-01-01

    A spacecraft electric power supply system is described. Requirements of the system are to accelerate a momentum wheel to a fixed maximum speed when solar energy is available and to maintain a constant voltage on the spacecraft bus under varying loads when solar energy is not available. Candidate motor types, pulse width modulated current control systems, and efficiency considerations are discussed. In addition, the Lunar Roving Vehicle motors are described along with their respective efficiencies.

  11. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  13. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    NASA Astrophysics Data System (ADS)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  14. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of freshwater along with the waste heat released from the condenser of air-conditioning system. This additional energy requirement is about 60% of the energy required by a multi stage flash distillation process. The experimental studies were conducted in three phases. In the first phase, electric power from grid as energy source was used to demonstrate the feasibility of the proposed process. These tests showed that freshwater production rate of 0.25 kg/hr can be sustained at evaporation temperatures as low as 40°C with specific energy input of 3,370 kJ/kg, at efficiencies ranging from 65 to 70% during the winter. In the second phase, experiments were conducted utilizing direct solar thermal energy and photovoltaic energy as well. Four different combinations of energy sources were studied. The following results were obtained from these experimental studies: (1) Utilizing direct solar energy produced 4.9 L/d of freshwater with an evaporator area of 1 m2 with an average efficiency of 61%. This yield is two times that can be obtained from a flat solar still. The specific energy requirement for this configuration is 4157 kJ for production of 1 kilogram freshwater; (2) Utilizing direct solar energy with aid of a reflector produced 7.5 L/d of freshwater with an average efficiency more than 80%. The specific energy requirement for this configuration is 3118 kJ for production of 1 kilogram freshwater; (3) Utilizing direct solar energy during sunlight hours and photovoltaic energy during non-sunlight hours produced 12 L/d of freshwater with 1 m2 evaporator area and 6 m2 photovoltaic areas respectively. The specific energy requirement for this configuration is 2926 kJ for production of 1 kilogram freshwater. Finally, the feasibility of this process in reclaiming potable-quality water from the effluent of a domestic wastewater treatment plant was studied. The process was able to achieve the following reductions: total dissolved solids from 727 mg/L to 21 mg/L (97%); nitrates from 2.4 mg/L to <0.1 mg/L (> 95%); ammonia from 23.2 mg/L to < 0.5 mg/L (> 97%); and coliform from 77 to <0 mg/L (100%).

  15. Energy recovery with turboexpander processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, J.

    1985-07-01

    Although the primary function of turboexpanders has been to provide efficient, low-temperature refrigeration, the energy thus extracted has also been an important additional feature. Today, turboexpanders are proven reliable and used widely in the following applications discussed in this article: industrial gases; natural gas (NG) processing; production of liquefied natural gas (LNG); flashing hydrocarbon liquids; NG pressure letdown energy recovery; oilfield cogeneration; and recovery of energy from waste heat. Turboexpander applications for energy conservation resulted because available turboexpanders have the required high-performance capabilities and reliability. At the same time, the development of these energy conservation practices and processes helped furthermore » improve turboexpanders.« less

  16. Nano-Magnets and Additive Manufacturing for Electric Motors

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  17. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  18. Analysis of field test data on residential heating and cooling

    NASA Astrophysics Data System (ADS)

    Talbert, S. G.

    1980-12-01

    The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.

  19. Assessing Energy Requirements in Women With Polycystic Ovary Syndrome: A Comparison Against Doubly Labeled Water.

    PubMed

    Broskey, Nicholas T; Klempel, Monica C; Gilmore, L Anne; Sutton, Elizabeth F; Altazan, Abby D; Burton, Jeffrey H; Ravussin, Eric; Redman, Leanne M

    2017-06-01

    Weight loss is prescribed to offset the deleterious consequences of polycystic ovary syndrome (PCOS), but a successful intervention requires an accurate assessment of energy requirements. Describe energy requirements in women with PCOS and evaluate common prediction equations compared with doubly labeled water (DLW). Cross-sectional study. Academic research center. Twenty-eight weight-stable women with PCOS completed a 14-day DLW study along with measures of body composition and resting metabolic rate and assessment of physical activity by accelerometry. Total daily energy expenditure (TDEE) determined by DLW. TDEE was 2661 ± 373 kcal/d. TDEE estimated from four commonly used equations was within 4% to 6% of the TDEE measured by DLW. Hyperinsulinemia (fasting insulin and homeostatic model assessment of insulin resistance) was associated with TDEE estimates from all prediction equations (both r = 0.45; P = 0.02) but was not a significant covariate in a model that predicts TDEE. Similarly, hyperandrogenemia (total testosterone, free androgen index, and dehydroepiandrosterone sulfate) was not associated with TDEE. In weight-stable women with PCOS, the following equation derived from DLW can be used to determine energy requirements: TDEE (kcal/d) = 438 - [1.6 * Fat Mass (kg)] + [35.1 * Fat-Free Mass (kg)] + [16.2 * Age (y)]; R2 = 0.41; P = 0.005. Established equations using weight, height, and age performed well for predicting energy requirements in weight-stable women with PCOS, but more precise estimates require an accurate assessment of physical activity. Our equation derived from DLW data, which incorporates habitual physical activity, can also be used in women with PCOS; however, additional studies are needed for model validation. Copyright © 2017 Endocrine Society

  20. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate.

    PubMed

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels

    2015-04-14

    The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.

  1. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed officemore » buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.« less

  2. Obturator Artery Injury Resulting in Massive Hemorrhage From a Low-Energy Pubic Ramus Fracture.

    PubMed

    Solarz, Mark K; Kistler, Justin M; Rehman, Saqib

    2017-05-01

    Pelvic ring fractures are common in the elderly population and are usually a result of low-energy trauma, such as falls from standing. In most cases, low-energy pelvic ring injuries can be treated with appropriate analgesia and early mobilization. Arterial injury resulting in hemodynamic instability from a low-energy pelvic ring injury is rare but, given the poor compliance of vessels in the elderly population, possible. These patients must be carefully monitored after the initial injury. The purpose of this report is to describe an elderly patient who sustained a superior pubic ramus fracture and arterial injury following a low-energy fall from standing that required angiographic intervention. Elderly patients who sustain low-energy or pelvic insufficiency fractures are unlike the younger population with high-energy pelvic fractures and hemodynamic collapse. Elderly patients can have a delayed presentation of arterial injury and require careful physical examination and close monitoring. Additionally, the authors provide a review of the literature for low-energy pelvic fractures. [Orthopedics. 2017; 40(3):e546-e548.]. Copyright 2017, SLACK Incorporated.

  3. The effects of CO2 on the negative reactant ions of IMS

    NASA Technical Reports Server (NTRS)

    Spangler, Glenn E.

    1995-01-01

    In the presence of CO2, the negative reactant ions of ion mobility spectrometry (IMS) are ion clusters of CO4(-) and CO3(-). Methyl salicylate is ionized by the CO4(-)(H2O(n))(N2(m)) reactant ions, but not by the CO3(-)(H2O(n))(N2(m)) reactant ions. While the CO4(-) ions are formed by direct association, the CO3(-) ions require additional energy to be formed. The additional energy is provided by either excited neutral gas molecules in a metastable state or UV (ultraviolet) radiation.

  4. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy.

    PubMed

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-10

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  5. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    NASA Astrophysics Data System (ADS)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  6. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    PubMed Central

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  7. Multiplexed Energy Coupler for Rotating Equipment

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang

    2011-01-01

    A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.

  8. Market for ethanol feed joint products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzmark, D.; Gould, B.

    1979-10-01

    This report presents results of econometric estimations and mathematical simulations of markets for joint feed products of motor ethanol. The major issues considered are the nature of current market price relationships, effects on prices, including feed substitutes prices, and effects of demands for increased use of distillers' grains and gluten meal. The econometric section shows that soybean meal was by far the dominant force in the pricing of the two products. However, neither one could be adequately explained without the inclusion of corn in the estimating equations. Later research shows that this was due to the importance of both feedsmore » for metabolizable energy as well as for protein in livestock diets. Current ration formulations would require some discounting of the value of the protein content of the two feeds. Careful siting of the ethanol facilities, and flexible design of the plants so that a maximum number of products may be extracted from the feedstock, seem necessary. Finally, the analysis indicates that substitution in animal diets of these joint products for the corn or milo used originally requires that additional energy be supplied to the animal by some type of forage crop. This implies that additional land may be required for energy production, for such marginal crops as hay and alfalfa, rather than for row crops.« less

  9. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers.

    PubMed

    Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D

    2004-03-15

    Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.

  10. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  11. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logue, Jennifer M; Singer, Brett

    Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effectmore » on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.« less

  13. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  14. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Chun-Yi

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less

  15. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  16. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.

  17. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  18. Flexible patch composed of PZT thin-film on stainless steel foil for energy harvesting from low-frequency human motions

    NASA Astrophysics Data System (ADS)

    Wang, Yin Jie; Chen, Chao Ting; Chen, Jiun Jung; Yeh, Sou Peng; Wu, Wen Jong

    2015-03-01

    To harvest energy from human motion and generate power for the emerging wearable devices, energy harvesters are required to work at very low frequency. There are several studies based on energy harvesting through human gait, which can generate significant power. However, when wearing these kind of devices, additional effort may be required and the user may feel uncomfortable when moving. The energy harvester developed here is composed of a 10 μm PZT thin-film deposited on 50 μm thick stainless steel foil by the aerosol deposition method. The PZT layer and the stainless steel foil are both very thin, thus the patch is highly flexible. The patch can be attached on the skin to harvester power through human motions such as the expansion of the chest region while breathing. The energy harvester will first be tested with a moving stage for power output measurements. The energy density can be determined for different deformation ranges and frequencies. The fabrication processes and testing results will all be detailed in this paper.

  19. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Carl J.

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  20. Direct launch using the electric rail gun

    NASA Technical Reports Server (NTRS)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  1. An Investigation of the Effectiveness of Solar Power on Navy Surface Combatants

    DTIC Science & Technology

    2013-09-01

    addition , this could cause a measureable reduction in the Navy’s environmental impact, especially since solar power can be generated both when the ships...that a relatively small addition in overall ship’s displacement would be required to implement a solar power system. Additionally, the solar cells...as a source of pulse power for large electrical loads such as high - energy weapons or radars. Both these applications are well within the current

  2. Oregon Sustainability Center: Weighing Approaches to Net Zero

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Robinson, Alastair; Settlemyre, Kevin

    2013-10-01

    The Oregon Sustainability Center (OSC) was to represent a unique public/private partnership between the city of Portland, Oregon, state government, higher education, non-profit organizations, and the business community. A unique group of stakeholders partnered with the U.S. Department of Energy (DOE) technical expert team (TET) to collaboratively identify, analyze, and evaluate solutions to enable the OSC to become a high-performance sustainability landmark in downtown Portland. The goal was to build a new, low-energy mixed-use urban high-rise that consumes at least 50 percent less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioningmore » Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.1 In addition, the building design was to incorporate renewable energy sources that would account for the remaining energy consumption, resulting in a net zero building. The challenge for the CBP DOE technical team was to evaluate factors of risk and components of resiliency in the current net zero energy design and analyze that design to see if the same high performance could be achieved by alternative measures at lower costs. In addition, the team was to use a “lens of scalability” to assess whether or not the strategies could be applied to more projects. However, a key component of the required project funding did not pass, and therefore this innovative building design was discontinued while it was in the design development stage.« less

  3. A regenerative fuel cell system for modular space station integrated electrical power.

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1973-01-01

    A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.

  4. Lithium ion batteries and their manufacturing challenges

    DOE PAGES

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  5. Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.

    PubMed

    Pfister, R C; Papanicolaou, N; Yoder, I C

    1988-01-01

    Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.

  6. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  7. Tactical Fuel and Energy Strategy for The Future Modular Force

    DTIC Science & Technology

    2009-05-18

    product of the anaerobic digestion (decomposition without oxygen) of organic matter such as animal manure , sewage, and municipal solid waste. It is...supplement petroleum-based fuels and thereby decrease petroleum-based fuel requirements. The Army can stage itself through additional and increased R&D...Energy situation and to begin to develop flexible options and recommend choices and investments that will yield a balanced strategy. At this stage

  8. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery

    DOE PAGES

    Stolaroff, Joshuah K.; Samaras, Constantine; O'Neill, Emma R.; ...

    2018-02-13

    Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery bymore » small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.« less

  9. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolaroff, Joshuah K.; Samaras, Constantine; O'Neill, Emma R.

    Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery bymore » small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.« less

  10. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.

    PubMed

    Fang, Yongjin; Chen, Zhongxue; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2018-03-01

    Grid-scale energy storage batteries with electrode materials made from low-cost, earth-abundant elements are needed to meet the requirements of sustainable energy systems. Sodium-ion batteries (SIBs) with iron-based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid-scale energy storage systems. Although various iron-based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron-based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure-composition-performance relationships, merits and drawbacks of iron-based electrode materials for SIBs are discussed. Such iron-based electrode materials will be competitive and attractive electrodes for next-generation energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery.

    PubMed

    Stolaroff, Joshuah K; Samaras, Constantine; O'Neill, Emma R; Lubers, Alia; Mitchell, Alexandra S; Ceperley, Daniel

    2018-02-13

    The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.

  12. The choice of the energy embedding law in the design of heavy ionic fusion cylindrical targets

    NASA Astrophysics Data System (ADS)

    Dolgoleva, GV; Zykova, A. I.

    2017-10-01

    The paper considers the numerical design of heavy ion fusion (FIHIF) targets, which is one of the branches of controlled thermonuclear fusion (CTF). One of the important tasks in the targets design for controlled thermonuclear fusion is the energy embedding selection whereby it is possible to obtain “burning” (the presence of thermonuclear reactions) of the working DT region. The work is devoted to the rapid ignition of FIHIF targets by means of an additional short-term energy contribution to the DT substance already compressed by massively more longer by energy embedding. This problem has been fairly well studied for laser targets, but this problem is new for heavy ion fusion targets. Maximum momentum increasing is very technically difficult and expensive on modern FIHIF installations. The work shows that the additional energy embedding (“igniting” impulse) reduces the requirements to the maximum impulse. The purpose of this work is to research the ignition impulse effect on the FIHIF target parameters.

  13. Energy Emergency Management Information System (EEMIS): Functional requirements

    NASA Astrophysics Data System (ADS)

    1980-10-01

    These guidelines state that in order to create the widest practicable competition, the system's requirements, with few exceptions, must be expressed in functional terms without reference to specific hardware or software products, and that wherever exceptions are made a statement of justification must be provided. In addition, these guidelines set forth a recommended maximum threshold limit of annual contract value for schedule contract procurements.

  14. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite. This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation. KEYWORDS: alite, calcium sulfoaluminate, ferrite, low-energy cement, triisopropanolamine.

  15. On- and off-grid operation of hybrid renewable power plants: When are the economics favorable?

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Santana, D.

    2016-12-01

    Hybrid renewable energy conversion systems offer a good alternative to conventional systems in locations where the extension of the electrical grid is difficult or not economical or where the cost of electricity is high. However, stand-alone operation implies net energy output restrictions (limited to exclusively serve the energy demand of a region), capacity oversizing and large storage facilities. In interconnected areas, on the other hand, the operational restrictions of the power stations change significantly and the efficiencies and costs of renewable technologies become more favorable. In this paper, the operation of three main renewable technologies (CSP, PV and wind) is studied assuming both hybrid and individual operation for both autonomous and inter-connected operation. The case study used is a Mediterranean island of ca. 3,000 inhabitants. Each system is optimized to fully cover the energy demand of the community. In addition, in the on-grid operation cases, it is required that the annual energy generated from the renewable sources is net positive (i.e., the island generates at least as much energy as it uses). It is found that when connected to the grid, hybridization of more than one technology is not required to satisfy the energy demand, as expected. Each of the renewable technologies investigated can satisfy the annual energy demand individually, without significant complications. In addition, the cost of electricity generated with the three studied technologies drops significantly for on-grid applications, when compared to off-grid operation. However, when compared to business-as-usual scenarios in both the on- and off-grid cases, both investigated hybrid and single-technology renewable scenarios are found to be economically viable. A sensitivity analysis reveals the limits of the acceptable costs that make the technologies favorable when compared to conventional alternatives.

  16. Required Assets for a Nuclear Energy Applied R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less

  17. Energy—Water Interdependence

    NASA Astrophysics Data System (ADS)

    Moran, E. H.; Tindall, J. A.; Campbell, A. A.

    2010-12-01

    ABSTRACT Energy and water security and sustainability have become a national and global priority. The continued security and economic health of any country depends on a sustainable supply of both energy and water because these two critical natural resources are inexorably linked. The production of energy requires large volumes of water while the treatment and distribution of water is equally dependent upon readily available, low-cost energy. In the U.S. and other countries, irrigated agriculture and thermoelectric generation withdrawals of fresh water are approximately equal however; they are growing due to increasing population. Within the U.S. electricity production requires about 190,000 million gallons of freshwater per day, accounting for over 40 percent of all daily freshwater withdrawals in the U.S. The indirect use of water (home lighting and electric appliances) is approximately equal to its direct use (watering lawns and taking showers). Current trends of water use and availability suggest that meeting future water and energy demands to support continued economic global development will require improved utilization and management of both energy and water resources. Primary concerns include: (1) Increasing populations require more food and energy; this may cause direct competition between the two largest water users for limited water resources (energy and agriculture); (2) Population growth and economic expansion projections indicate the U.S. alone will require an additional 393,000 MW of new generating capacity (equivalent to about 1,000 new 400 MW plants) by the year 2020 - other countries particularly India and China have similar trends; and (3) Potential environmental and ecological restrictions on the use of water for power generation such as the restrictions on cooling water withdrawals and cooling water use for nuclear power plants to protect aquatic species and habitat and the environment may reduce usable supplies. The U.S. and other Nation's abilities to meet the increasing demand for affordable water and energy are being seriously challenged by these emerging issues. This research presents potential solutions for security and sustainability of these systems, which are a pressing global priority.

  18. 26 CFR 1.263(a)-3T - Amounts paid to improve tangible property (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electrical energy. In addition, the turbine contains a series of blades that cause the turbine to rotate when... is not required to treat components, such as the turbine blades, as separate units of property...

  19. 26 CFR 1.263(a)-3T - Amounts paid to improve tangible property (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electrical energy. In addition, the turbine contains a series of blades that cause the turbine to rotate when... is not required to treat components, such as the turbine blades, as separate units of property...

  20. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  1. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  2. Two Balls' Collision of Mass Ratio 3:1

    NASA Astrophysics Data System (ADS)

    Ogawara, Yasuo; Hull, Michael M.

    2018-04-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two balls of equal mass, if a ball hits another ball of three times the mass with equal speed, the results are also interesting, and, like the equal-mass demonstration, both kinetic energy and momentum are critical for understanding the motion.

  3. A multi-model study of energy supply investments in Latin America under climate control policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kober, Tom; Falzon, James; van der Zwaan, Bob

    In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment will be critical to help reach required levels. The economic case for such a transition still remains to be articulated.« less

  4. A multi-model study of energy supply investments in Latin America under climate control policy

    DOE PAGES

    Kober, Tom; Falzon, James; van der Zwaan, Bob; ...

    2016-05-01

    In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment will be critical to help reach required levels. The economic case for such a transition still remains to be articulated.« less

  5. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Keith

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence ofmore » Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.« less

  6. The Potential for Harvesting Energy from the Movement of Trees

    PubMed Central

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695

  7. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less

  8. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  9. Energy Finance Data Warehouse Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    The Office of Energy Policy and Systems Analysis s finance team (EPSA-50) requires a suite of automated applications that can extract specific data from a flexible data warehouse (where datasets characterizing energy-related finance, economics and markets are maintained and integrated), perform relevant operations and creatively visualize them to provide a better understanding of what policy options affect various operators/sectors of the electricity system. In addition, the underlying data warehouse should be structured in the most effective and efficient way so that it can become increasingly valuable over time. This report describes the Energy Finance Data Warehouse (EFDW) framework that hasmore » been developed to accomplish the defined requirement above. We also specifically dive into the Sankey generator use-case scenario to explain the components of the EFDW framework and their roles. An excel-based data warehouse was used in the creation of the energy finance Sankey diagram and other detailed data finance visualizations to support energy policy analysis. The framework also captures the methodology, calculations and estimations analysts used for the calculation as well as relevant sources so newer analysts can build on work done previously.« less

  10. The potential for harvesting energy from the movement of trees.

    PubMed

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node.

  11. Consequences of the cultivation of energy crops for the global nitrogen cycle.

    PubMed

    Bouwman, A F; Van Grinsven, J J M; Eickhout, B

    2010-01-01

    In this paper, we assess the global consequences of implementing first- and second-generation bioenergy in the coming five decades, focusing on the nitrogen cycle. We use a climate mitigation scenario from the Organization for Economic Cooperation and Development's (OECD) Environmental Outlook, in which a carbon tax is introduced to stimulate production of biofuels from energy crops. In this scenario, the area of energy crops will increase from 8 Mha in the year 2000 to 270 Mha (14% of total cropland) and producing 5.6 Pg dry matter per year (12% of energy use) in 2050. This production requires an additional annual 19 Tg of N fertilizer in 2050 (15% of total), and this causes a global emission of 0.7 Tg of N2O-N (8% of agricultural emissions), 0.2 Tg NO-N (6%), and 2.2 Tg of NH3-N (5%). In addition, we project that 2.6 Tg of NO3(-)-N will leach from fields under energy crops. The emissions of N2O may be an important term in the greenhouse gas balance of biofuels produced from energy crops.

  12. Overview of Energy Systems' safety analysis report programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  13. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  14. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  15. Strain Rate Dependency of Fracture Toughness, Energy Release Rate and Geomechanical Attributes of Select Indian Shales

    NASA Astrophysics Data System (ADS)

    Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.

    2016-12-01

    In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.

  16. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  17. The Energy - Water Connection: Can We Sustain Critical Resources and Make them Reliable, Affordable, and Environmentally Sound?(LBNL Summer Lecture Series)

    ScienceCinema

    McMahon, Jim

    2018-05-16

    Summer Lecture Series 2006: Jim McMahon of Berkeley Lab's Environmental Energy Technologies Division (EETD) is head of the Energy Analysis Department in EETD, which provides technical analysis to the Department of Energy on things like energy efficiency appliance standards. McMahon and his colleagues helped the nation save tens of billions of dollars in energy costs since the standards program began. Now his Water-Energy Technology Team (WETT) is applying its expertise to the linked problem of energy and water. Each of us requires more than 500 gallons per person per day for food production, plus an additional 465 gallons to produce household electricity. WETT hopes to mine some of the numerous opportunities to save energy and water by applying new technologies.

  18. Irregular large-scale computed tomography on multiple graphics processors improves energy-efficiency metrics for industrial applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Goodman, Eric L.; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle R.

    2014-09-01

    This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performance-per- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.

  19. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review... holder that it contains RD or FRD information, the level of classification assigned, and the additional... classification level of the document, the following notices shall appear on the front of the document, as...

  20. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review... holder that it contains RD or FRD information, the level of classification assigned, and the additional... classification level of the document, the following notices shall appear on the front of the document, as...

  1. Energy saving and consumption reducing evaluation of thermal power plant

    NASA Astrophysics Data System (ADS)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  2. JPRS Report Science & Technology, Europe

    DTIC Science & Technology

    1991-10-31

    the solar system, the earth, and the conditions for life on earth, • To contribute to the solution of environmental prob- lems through satellite...requiring considerable additional R&D is to be stepped up. • Wind plants require about 10 years’ more R&D work. • Photovoltaics (PV) and solar ...Funding for active and passive solar energy exploita- tion. 5. Transport Sector • Optimizing means of transport (in manufacture and operation

  3. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  4. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knirsch, Fabian; Engel, Dominik; Frincu, Marc

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increasemore » of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.« less

  5. Overmoded W-Band Traveling Wave Tube Amplifier

    DTIC Science & Technology

    2014-11-24

    developing high power tubes for use in that frequency range. In addition , there is a window at 220 GHz which is also an area of large development for...equipment. operation. Figure 1-4 shows electronic warfare applications, which involve disrupting electronic systems with high power microwave and millimeter...requiring gyrotrons to power the high -energy beam and a large transport vehicle. In addition to being difficult to transport, it is currently incapable

  6. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  7. Tail regeneration affects the digestive performance of a Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Sagonas, Kostas; Karambotsi, Niki; Bletsa, Aristoula; Reppa, Aikaterini; Pafilis, Panayiotis; Valakos, Efstratios D.

    2017-04-01

    In caudal autotomy, lizards shed their tail to escape from an attacking predator. Since the tail serves multiple functions, caudal regeneration is of pivotal importance. However, it is a demanding procedure that requires substantial energy and nutrients. Therefore, lizards have to increase energy income to fuel the extraordinary requirements of the regenerating tail. We presumed that autotomized lizards would adjust their digestion to acquire this additional energy. To clarify the effects of tail regeneration on digestion, we compared the digestive performance before autotomy, during regeneration, and after its completion. Tail regeneration indeed increased gut passage time but did not affect digestive performance in a uniform pattern: though protein income was maximized, lipid and sugar acquisition remained stable. This divergence in proteins may be attributed to their particular role in tail reconstruction, as they are the main building blocks for tissue formation.

  8. Model of whooping crane energetics as foundation for development of a method to assess potential take during migration

    USGS Publications Warehouse

    Pearse, Aaron T.; Selbo, Sarena M.

    2012-01-01

    A whooping crane energetic model was developed as a component of a larger effort to ascertain potential take, as defined by the Endangered Species Act, of whooping cranes from proposed development of wind-energy infrastructure in the Great Plains of North America. The primary objectives of this energetic model were to (1) predict extra flight energy that whooping cranes may require to find suitable migration stopover sites if they are unable to use a primary site; and (2) express energy expended as additional time required to replenish lipid reserves used to fuel flight. The energetic model is based on three elements related to energy: expenditure of energy, intake of energy, and constraints to energy intake. The energetic model estimates each element and recognizes interactions among them. This framework will be most useful when integrated into a migration model that predicts incidence of avoidance of wind towers by whooping cranes and distances they might fly to find alternative stopover habitat. This report details work conducted in accordance with the U.S. Geological Survey and U.S. Fish and Wildlife Service Quick Response Program funded in fiscal year 2011 and will serve as a final report.

  9. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  10. Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results

    PubMed Central

    Velayudhan, D. E.; Kim, I. H.; Nyachoti, C. M.

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included. PMID:25557670

  11. Characterization of dietary energy in Swine feed and feed ingredients: a review of recent research results.

    PubMed

    Velayudhan, D E; Kim, I H; Nyachoti, C M

    2015-01-01

    Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included.

  12. Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    PubMed Central

    Kiesecker, Joseph M.; Evans, Jeffrey S.; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R.; Kunz, Thomas H.; Naugle, Dave; Nibbelink, Nathan P.; Niemuth, Neal D.

    2011-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation. PMID:21533285

  13. Development of a Trip Energy Estimation Model Using Real-World Global Positioning System Driving Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Jacob; Wood, Eric W; Zhu, Lei

    A data-driven technique for estimation of energy requirements for a proposed vehicle trip has been developed. Based on over 700,000 miles of driving data, the technique has been applied to generate a model that estimates trip energy requirements. The model uses a novel binning approach to categorize driving by road type, traffic conditions, and driving profile. The trip-level energy estimations can easily be aggregated to any higher-level transportation system network desired. The model has been tested and validated on the Austin, Texas, data set used to build this model. Ground-truth energy consumption for the data set was obtained from Futuremore » Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. The energy estimation model has demonstrated 12.1 percent normalized total absolute error. The energy estimation from the model can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model can also be used to determine more accurate energy consumption of regional or national transportation networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to be tuned to a specific driver or vehicle type.« less

  14. Win-win for wind and wildlife: a vision to facilitate sustainable development.

    PubMed

    Kiesecker, Joseph M; Evans, Jeffrey S; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R; Kunz, Thomas H; Naugle, Dave; Nibbelink, Nathan P; Niemuth, Neal D

    2011-04-13

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.

  15. Fusion energy for space missions in the 21st century: Executive summary

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  16. 10 CFR 431.17 - Determination of efficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... different horsepowers without duplication; (C) The basic models should be of different frame number series... be produced over a reasonable period of time (approximately 180 days), then each unit shall be tested... design may be substituted without requiring additional testing if the represented measures of energy...

  17. Options to improve energy efficiency for educational building

    NASA Astrophysics Data System (ADS)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to identify the most cost effective combinations of energy efficiency strategies. The model analyzes and compares the payback periods of all proposed Energy Performance Measures (EPMs) to determine which has the greatest potential value.

  18. Water Conservation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  19. Droplet ejection and sliding on a flapping film

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Doughramaji, Nicole; Betz, Amy Rachel; Derby, Melanie M.

    2017-03-01

    Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz). Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1-2 mm were observed for flapping films, compared to 3-4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter) were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2) were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  20. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a buildingmore » to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.« less

  1. Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar Z.; O'Murchu, Cian; Mathewson, Alan

    2018-01-01

    Developing a self-sustained leadless pacemaker requires the development of an ultralow-frequency energy harvesting system that can fit within the required dimensions. This paper reports on the design and development of two types of PiezoMEMS energy harvesters that fit within the capsule dimensions and have a low resonant frequency between 20 to 30 Hz, which is required for the application. A bullet-shaped mass was designed to maximize the displacement and enhance power density of the devices. In addition, two types of devices were fabricated and compared (i) a silicon-based cantilever and (ii) a parylene-C-based cantilever with a thin aluminum nitride layer. The silicon device demonstrated higher peak power of 29.8 μW compared with the 6.4 μW for the parylene device. However, due to the low duty cycle of the heart rate and the damping factors of the two materials the average power was significantly higher for the parylene device (2.71 μW) compared with the silicon device (1.22 μW) per cantilever. The results demonstrate that a polymer-based energy harvester can increase the average power due to low damping for an impulse-based vibration application.

  2. Sun/Earth: how to use solar and climatic energies today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1976-01-01

    This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less

  3. Large Energy Development Projects: Lessons Learned from Space and Politics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Harrison H.

    2005-04-15

    The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will providemore » an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components.« less

  4. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  5. Peptide-chaperone-directed transdermal protein delivery requires energy.

    PubMed

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  6. Preliminary Energy Deposition Calculations for GRIST-2 Tests in the TREAT Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, W. O.

    1978-03-01

    Preliminary studies have been made to estimate the energy deposition in GRIST-2 tests irradiated in the proposed TREAT Upgrade reactor. The objective of the GRIST-2 project is to test GCFR (gas cooled fast reactor) fuel under conditions of hypothetical core disruptive accidents (HCDA). Test requirements are (1) an energy deposition in the test of approximately 2500 J/g or higher, (2) a pin-to-pin variation in energy deposition of less than 10% and (3) the variation in the energy deposition across any pin (at a given axial position) should be less than 10%. Calculations performed by EG&G Idaho were made for 7more » and 37-pin tests using one-dimensional transport theory. These yield average energy deposition rates in the test at the axial peak which are in the 5000-5500 J/g range for the 37-pin test and are in the 8500-9000 J/g range for the 7-pin test. These values are obtained with a cadmium thermal neutron filter (TNF) surrounding the test. This hardens the flux to meet the third requirement. The central test pin is fully enriched UO{sub 2}, with the outer pins having lower enrichments to satisfy requirement 2. Addition of the TNF reduces the energy deposition by about 10%. The results in the above calculations are also compared with the Monte Carlo results computed by ANL-West personnel.« less

  7. The energy content of restaurant foods without stated calorie information.

    PubMed

    Urban, Lorien E; Lichtenstein, Alice H; Gary, Christine E; Fierstein, Jamie L; Equi, Ashley; Kussmaul, Carolyn; Dallal, Gerard E; Roberts, Susan B

    2013-07-22

    National recommendations for the prevention and treatment of obesity emphasize reducing energy intake through self-monitoring food consumption. However, little information is available on the energy content of foods offered by nonchain restaurants, which account for approximately 50% of restaurant locations in the United States. To measure the energy content of foods from independent and small-chain restaurants that do not provide stated information on energy content. We used bomb calorimetry to determine the dietary energy content of the 42 most frequently purchased meals from the 9 most common restaurant categories. Independent and small-chain restaurants were randomly selected, and 157 individual meals were analyzed. Area within 15 miles of downtown Boston. A random sample of independent and small-chain restaurants. Dietary energy. All meal categories provided excessive dietary energy. The mean energy content of individual meals was 1327 (95% CI, 1248-1406) kcal, equivalent to 66% of typical daily energy requirements. We found a significant effect of food category on meal energy (P ≤ .05), and 7.6% of meals provided more than 100% of typical daily energy requirements. Within-meal variability was large (average SD, 271 kcal), and we found no significant effect of restaurant establishment or size. In addition, meal energy content averaged 49% greater than those of popular meals from the largest national chain restaurants (P < .001) and in subset analyses contained 19% more energy than national food database information for directly equivalent items (P < .001). National chain restaurants have been criticized for offering meals with excess dietary energy. This study finds that independent and small-chain restaurants, which provide no nutrition information, also provide excessive dietary energy in amounts apparently greater than popular meals from chain restaurants or information in national food databases. A national requirement for accurate calorie labeling in all restaurants may discourage menus offering unhealthy portions and would allow consumers to make informed choices about ordering meals that promote weight gain and obesity.

  8. The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China

    NASA Astrophysics Data System (ADS)

    Weng, Yuqing

    Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.

  9. Activation energy and energy density: a bioenergetic framework for assessing soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Plante, A. F.

    2017-12-01

    The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.

  10. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  11. Pan Am gets big savings at no cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanz, D.

    Pan American World Airways' contract with an energy management control systems distributor enabled the company's terminal and maintenance facilities at JFK airport in New York to shift from housekeeping to major savings without additional cost. Energy savings from a pneumatic control system were split almost equally between Pan Am and Thomas S. Brown Associates (TSBA) Inc., and further savings are expected from a planned computer-controlled system. A full-time energy manager, able to give top priority to energy-consumption problems, was considered crucial to the program's success. Early efforts in light-level reduction and equipment scheduling required extensive persuasion and policing, but successfulmore » energy savings allowed the manager to progress to the more-extensive plants with TSBA.« less

  12. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  13. 32 CFR 2001.24 - Additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Foreign Nuclear Information (TFNI). (1) As permitted under 42 U.S.C. 2162(e), the Department of Energy.... (d) Working papers. A working paper is defined as documents or materials, regardless of the media... retention. Working papers containing classified information shall be dated when created, marked with the...

  14. 32 CFR 2001.24 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Foreign Nuclear Information (TFNI). (1) As permitted under 42 U.S.C. 2162(e), the Department of Energy.... (d) Working papers. A working paper is defined as documents or materials, regardless of the media... retention. Working papers containing classified information shall be dated when created, marked with the...

  15. 32 CFR 2001.24 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Foreign Nuclear Information (TFNI). (1) As permitted under 42 U.S.C. 2162(e), the Department of Energy.... (d) Working papers. A working paper is defined as documents or materials, regardless of the media... retention. Working papers containing classified information shall be dated when created, marked with the...

  16. 32 CFR 2001.24 - Additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Foreign Nuclear Information (TFNI). (1) As permitted under 42 U.S.C. 2162(e), the Department of Energy.... (d) Working papers. A working paper is defined as documents or materials, regardless of the media... retention. Working papers containing classified information shall be dated when created, marked with the...

  17. Energy concern list. [List of 22,900 names of persons, businesses, companies, corporations, etc. engaged in energy-related activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Subsection 603(a) of the Department of Energy Organization Act (P.L. 95-91, August 4, 1977) requires non-exempt employees to disclose the amount and source of income received from energy concerns (as defined in subsection 602(b) of the Act) by themselves, their spouses, or dependents and the identity and value of interests knowingly held in such concerns. In addition, supervisory employees (as defined in subsection 601(a) of the Act) are prohibited by subsection 601(a) of the Act from knowingly receiving compensation from or holding any official relation with any energy concern, or owning stock or bonds of any energy concern, or havingmore » any pecuniary interest therein. Subsection 601(c)(1) of the DOE Organization Act requires that a list of entities determined to be energy concerns be prepared and periodically published. This listing was prepared and is published to comply with that provision of law. The approximately 22,900 names appearing in this list are persons, businesses, companies, corporations and other entities, engaged in energy related activities, as described in section 601(b) of the DOE Organization Act. This list is based on information available as of February 24, 1978.« less

  18. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  19. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order tomore » accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.« less

  20. Production of gluten and germ by ethanol fermentation of raw corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Illinois ethanol fuel industry has grown to be an important part of our state's economy over the past 10 years. It provides an additional market for Illinois' abundant corn production, provides many industrial jobs, and substitutes a home-grown renewable energy resource for imported oil. More than 30 percent of all gasoline sold in Illinois contains 10 percent ethanol. The economics of producing ethanol from corn is strongly affected by the byproduct value and by the energy required in the production process. This document reports on efforts to research a new microbial process that would improve the ethanol fermentation processmore » in both these areas. The new process allows direct fermentation of corn starch to ethanol without the usual requirement of cooking the corn. This reduces the amount of energy needed for production and recovers the protein-containing gluten and oil-containing germ with all of the original food value intact.« less

  1. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    PubMed

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  2. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  3. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.

    PubMed

    Eslamy, Mahdy; Grimmer, Martin; Rinderknecht, Stephan; Seyfarth, Andre

    2013-06-01

    In this paper we investigated on peak power (PP) and energy (ER) requirements for different active ankle actuation concepts that can have both elasticity and damping characteristics. A lower PP or ER requirement is an important issue because it will lead to a smaller motor or battery. In addition to spring, these actuation concepts are assumed to have (passive) damper in series (series elastic-damper actuator SEDA) or parallel (parallel elastic-damper actuator PEDA) to the motor. For SEA (series elastic actuator), SEDA and PEDA, we calculated the required minimum motor PP and ER in different human gaits: normal level walking, ascending and descending the stairs. We found that for level walking and ascending the stairs, the SEA concept, and for descending, the SEDA, were the favorable concepts to reduce required minimum PP and ER in comparison to a DD (direct drive) concept. In SEDA concept, the minimum PP could be reduced to half of what SEA would require. Nevertheless, it was found that spring was always required, however damper showed 'task specific' advantages. As a result, if a simple design perspective is in mind, from PP-ER viewpoint, SEA could be the best compromise to be used for different above-mentioned gaits. For SEDA or PEDA concepts, a controllable damper should be used. In addition, our results show that it is beneficial to select spring stiffness in SEA, based on level walking gait. The PP and ER requirements would increase very slightly for stairs ascending, and to some extent (10.5%) for descending as a consequence of this selection. In contrast, stiffness selection based on stair ascending or descending, increases the PP requirements of level walking more noticeably (17-24%).

  4. Alternate Energy for National Security.

    NASA Astrophysics Data System (ADS)

    Rath, Bhakta

    2010-02-01

    Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )

  5. Mapping the energy footprint of produced water management in New Mexico

    NASA Astrophysics Data System (ADS)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and use of disposal wells. By evaluating components of each management strategy individually, this work illustrates how the energy footprint of regional PW management can be reduced. The advent of UOG recovery in the last decade highlights the need to understand existing water management in the industry, identify opportunities and strategies for improvement, and recognize that these dynamics are likely to change into the future.

  6. Energy requirements of the red kangaroo (Macropus rufus): impacts of age, growth and body size in a large desert-dwelling herbivore.

    PubMed

    Munn, A J; Dawson, T J

    2003-09-01

    Generally, young growing mammals have resting metabolic rates (RMRs) that are proportionally greater than those of adult animals. This is seen in the red kangaroo ( Macropus rufus), a large (>20 kg) herbivorous marsupial common to arid and semi-arid inland Australia. Juvenile red kangaroos have RMRs 1.5-1.6 times those expected for adult marsupials of an equivalent body mass. When fed high-quality chopped lucerne hay, young-at-foot (YAF) kangaroos, which have permanently left the mother's pouch but are still sucking, and recently weaned red kangaroos had digestible energy intakes of 641+/-27 kJ kg(-0.75) day(-1) and 677+/-26 kJ kg(-0.75) day(-1), respectively, significantly higher than the 385+/-37 kJ kg(-0.75) day(-1) ingested by mature, non-lactating females. However, YAF and weaned red kangaroos had maintenance energy requirements (MERs) that were not significantly higher than those of mature, non-lactating females, the values ranging between 384 kJ kg(-0.75) day(-1) and 390 kJ kg(-0.75) day(-1) digestible energy. Importantly, the MER of mature female red kangaroos was 84% of that previously reported for similarly sized, but still growing, male red kangaroos. Growth was the main factor affecting the proportionally higher energy requirements of the juvenile red kangaroos relative to non-reproductive mature females. On a good quality diet, juvenile red kangaroos from permanent pouch exit until shortly after weaning (ca. 220-400 days) had average growth rates of 55 g body mass day(-1). At this level of growth, juveniles had total daily digestible energy requirements (i.e. MER plus growth energy requirements) that were 1.7-1.8 times the MER of mature, non-reproductive females. Our data suggest that the proportionally higher RMR of juvenile red kangaroos is largely explained by the additional energy needed for growth. Energy contents of the tissue gained by the YAF and weaned red kangaroos during growth were estimated to be 5.3 kJ g(-1), within the range found for most young growing mammals.

  7. Salazar on private power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.

    1995-02-01

    The Philipines power market, considered one of the more mature markets in Asia, continues to expand with economic growth. Independent power producers will find opportunities in the next few years as new additions are required. Currently, the government is encouraging private investment and is awaiting feedback from financiers as it considers eliminating its government guarantee. In a recent interview, the Honorable Mariano S. Salazar, secretary of energy, with the Philippines` Department of Energy, discussed the regulatory structure, encouragement of private power and his country`s capital needs.

  8. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    USDA-ARS?s Scientific Manuscript database

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  9. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  10. 30 CFR 285.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I include in my decommissioning notice? 285.908 Section 285.908 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... the impacts previously identified and evaluated; (2) Require any additional Federal permits; or (3...

  11. Coal conversion legislation. Part I. Hearings before the Subcommittee on Energy Production and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session on S. 272, S. 273, and S. 977, March 21 and 29, 1977. [Coal utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The legislation on greater coal utilization before the committee includes S. 272 (requiring, to the extent practicable, electric power plants and major fuel-bearing installations to utilize fuels other than natural gas); S. 273 (requiring, to the extent practicable, new electric power plants and new major fuel-burning installations be constructed to utliize fuels other than natural gas or petroleum); and S. 977 (requiring, to the extent practicable, existing electric power plants and major fuel-burning installations to utilize fuels other than natural gas or petroleum). Statements were heard from seven senators and representatives from the following: American Electric Power Service Corp., Americanmore » Boiler Manufactures Association, National Electric Reliability Council, Virgina Electric and Power Co., Fossil Power Systems, Houston Lighting and Power Co., other electric utility industry representatives, and the Federal Energy Adminstration. Additional material from the Wall Street Journal and the Washington Post is included. (MCW)« less

  12. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Reed, Sasha C.; Smith, William K.; Cleveland, Cory C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    Background/Question/Methods Currently, the United States (U.S.) supplies roughly half the world’s biofuel (secondary bioenergy), with the Energy Independence and Security Act of 2007 (EISA) stipulating an additional three-fold increase in annual production by 2022. Implicit in such energy targets is an associated increase in annual biomass demand (primary bioenergy) from roughly 2.9 to 7.4 exajoules (EJ; 1018 Joules). Yet, many of the factors used to estimate future bioenergy potential are relatively unresolved, bringing into question the practicality of the EISA’s ambitious bioenergy targets. Here, our objective was to constrain estimates of primary bioenergy potential (PBP) for the conterminous U.S. using satellite-derived net primary productivity (NPP) data (measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S) as the most geographically explicit measure of terrestrial growth capacity. Results/Conclusions We show that the annual primary bioenergy potential (PBP) of the conterminous U.S. realistically ranges from approximately 5.9 (± 1.4) to 22.2 (± 4.4) EJ, depending on land use. The low end of this range represents current harvest residuals, an attractive potential energy source since no additional harvest land is required. In contrast, the high end represents an annual harvest over an additional 5.4 million km2 or 75% of vegetated land in the conterminous U.S. While we identify EISA energy targets as achievable, our results indicate that meeting such targets using current technology would require either an 80% displacement of current croplands or the conversion of 60% of total rangelands. Our results differ from previous evaluations in that we use high resolution, satellite-derived NPP as an upper-envelope constraint on bioenergy potential, which removes the need for extrapolation of plot-level observed yields over large spatial areas. Establishing realistically constrained estimates of bioenergy potential seems a critical next step for effectively incorporating bioenergy into future U.S. energy portfolios.

  13. Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, Susan A.; Sandusky, William F.

    2010-12-31

    Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stockmore » is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.« less

  14. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure

    NASA Astrophysics Data System (ADS)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.

    2015-12-01

    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  15. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  16. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  17. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    PubMed

    Maresh, J L; Adachi, T; Takahashi, A; Naito, Y; Crocker, D E; Horning, M; Williams, T M; Costa, D P

    2015-01-01

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size.

  18. Hydropower Baseline Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.« less

  19. Hydropower Baseline Cost Modeling, Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Patrick W.

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.« less

  20. Energy.

    PubMed

    Chambers, David W

    2012-01-01

    Energy is the capacity to do the things we are capable of and desire to accomplish. Most often this is thought of in terms of PEP--personal energy potential--a reservoir of individual vivacity and zest for work. Like a battery, energy can be conceived of as a resource that is alternatively used and replenished. Transitions between activities, variety of tasks, and choices of what to spend energy on are part of energy management. Energy capacity can be thought of at four levels: (a) so little that harm is caused and extraordinary steps are needed for recovery, (b) a deficit that slightly impairs performance but will recover naturally, (c) the typical range of functioning, and (d) a surplus that may or may not be useful and requires continual investment to maintain. "Flow" is the experience of optimal energy use when challenges balance capacity as a result of imposing order on our environment. There are other energy resources in addition to personal vim. Effective work design reduces demands on energy. Money, office design, and knowledge are excellent substitutes for personal energy.

  1. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  2. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  3. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    PubMed Central

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  4. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    PubMed

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  5. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density permore » unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of roof area. Section 5 of the report provides a basic framework for draft code language recommendations based on the analysis of the alternative compliance levels.« less

  7. Energy Analysis and Environmental Impacts of Hybrid Giant Napier (Pennisetum Hydridum) Direct-fired Power Generation in South China

    NASA Astrophysics Data System (ADS)

    Liao, Yanfen; Fang, Hailin; Zhang, Hengjin; Yu, Zhaosheng; Liu, Zhichao; Ma, Xiaoqian

    2017-05-01

    To meet with the demand of energy conservation and emission reduction policies, the method of life cycle assessment (LCA) was used to assess the feasibility of Hybrid Giant Napier (HGN) direct-fired power generation in this study. The entire life cycle is consisted of five stages (cultivation and harvesting, transportation, drying and comminuting, direct-fired power generation, constructing and decommissioning of biomass power plant). Analytical results revealed that to generate 10000kWh electricity, 10.925 t of customized HGN fuel (moisture content: 30 wt%) and 6659.430 MJ of energy were required. The total environmental impact potential was 0.927 PET2010 (person equivalents, targeted, in 2010) and the global warming (GW), acidification (AC), and nutrient (NE) emissions were 339.235 kg CO2-eq, 22.033 kg SO2-eq, and 25.486 kg NOx-eq respectively. The effect of AC was the most serious among all calculated category impacts. The energy requirements and environmental impacts were found to be sensitive to single yield, average transport distance, cutting frequency, and moisture content. The results indicated that HGN direct-fired power generation accorded well with Chinese energy planning; in addition, HGN proved to be a promising contribution to reducing non-renewable energy consumption and had encouraging prospects as a renewable energy plant.

  8. Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, James A.; Cantwell, Brian J.; Hlava, Kevin J.

    2014-02-24

    This report, Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council (WECC), was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). The intent of WECC’s work was to identify planning-level energy corridors that the Department of Energy (DOE) and its affiliates could study in greater detail. Argonne was tasked by DOE to analyze the WECC Proposed Energy Corridors in five topic areas for use in reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. In compliance with Section 368 of the Energy Policy Act of 2005more » (EPAct), the Secretaries of Energy, Agriculture, and the Interior (Secretaries) published a Programmatic Environmental Impact Statement in 2008 to address the proposed designation of energy transport corridors on federal lands in the 11 western states. Subsequently, Records of Decision designating the corridors were issued in 2009 by the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS). The 2012 settlement of a lawsuit, brought by The Wilderness Society and others against the United States, which identified environmental concerns for many of the corridors requires, among other things, periodic reviews of the corridors to assess the need for revisions, deletions, or additions. A 2013 Presidential Memorandum requires the Secretaries to undertake a continuing effort to identify and designate energy corridors. The WECC Proposed Energy Corridors and their analyses in this report provide key information for reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. Load centers and generation hubs identified in the WECC analysis, particularly as they reflect renewable energy development, would be useful in reviewing and potentially updating the designated Section 368 corridor network. Argonne used Geographic Information System (GIS) technology to analyze the proposed energy corridors in the WECC report in five topic areas: Federal land jurisdiction, Existing Section 368 corridors, Existing transmission lines, Previously studied corridor locations, and Protected areas. Analysis methods are explained and tables and maps are provided to describe the results of the analyses in all five topic areas. WECC used a rational approach to connecting the hubs it identified, although there may be opportunities for adapting some of the proposed WECC routes to previously designated Section 368 corridors, for example: The WECC proposed energy corridors are in fact centerlines of proposed routes connecting hubs of various descriptions related to electric energy transmission. Although the centerlines were sited to avoid sensitive areas, infrastructure proposed within actual pathways or corridors defined by the centerlines would sometimes affect lands where such development would not normally be allowed, such as National Parks and Monuments, National Wildlife Refuges, and Wilderness Areas. Many WECC proposed energy corridors are sited along centerlines of existing roads, including Interstate Highways, where in some cases additional width to accommodate energy transmission infrastructure may not be available. Examples include the WECC Proposed Corridor along Interstate 70 through Glenwood Canyon in Colorado, and along U.S. Highway 89 across Glen Canyon Dam in Arizona. Several WECC proposed energy corridors are parallel to designated Section 368 corridors that have already cleared the preliminary steps to right-of-way approval. In many of these cases, the WECC hub connection objectives can be met more efficiently by routing on the designated Section 368 corridors.« less

  9. The Wide-area Energy Management System Phase 2 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less

  10. Design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation

    NASA Astrophysics Data System (ADS)

    Thallmair, Sebastian; Roos, Matthias K.; de Vivie-Riedle, Regina

    2016-06-01

    Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

  11. Design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation.

    PubMed

    Thallmair, Sebastian; Roos, Matthias K; de Vivie-Riedle, Regina

    2016-06-21

    Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

  12. Nutritional assessment of charitable meal programmes serving homeless people in Toronto.

    PubMed

    Tse, Carmen; Tarasuk, Valerie

    2008-12-01

    To assess the potential nutritional contribution of meals provided in a sample of community programmes for homeless individuals, to determine the effect of food donations on meal quality and to develop food-based guidance for meals that would meet adults' total nutrient needs. Toronto, Canada. An analysis of weighed meal records from eighteen programmes. The energy and nutrient contents of meals were compared to requirement estimates to assess contribution to total needs, given that homeless people have limited access to nutritious foods. Mixed linear modelling was applied to determine the relationship between the use of food donations and meal quality. The composition of meals that would meet adults' nutrient requirements was determined by constructing simulated meals, drawing on the selection of foods available to programmes. In all, seventy meals, sampled from eighteen programmes serving homeless individuals. On average, the meals contained 2.6 servings of grain products, 1.7 servings of meat and alternatives, 4.1 servings of vegetables and fruits and 0.4 servings of milk products. The energy and nutrient contents of most meals were below adults' average daily requirements. Most meals included both purchased and donated foods; the vitamin C content of meals was positively associated with the percentage of energy from donations. Increasing portion sizes improved the nutrient contribution of meals, but the provision of more milk products and fruits and vegetables was required to meet adults' nutrient requirements. The meals assessed were inadequate to meet adults' nutrient requirements. Improving the nutritional quality of meals requires additional resources.

  13. Development of hydropower sustainability assessment method in Malaysia context

    NASA Astrophysics Data System (ADS)

    Turan, Faiz Mohd; Johan, Kartina; Atiqah Omar, Nur

    2018-03-01

    Nowadays, sustainability is becoming one of the crucial requirement to business success today. This requirement is strongly supported by Bursa Malaysia. In their webpage, they stated that an entire way to business management, incorporating economic, environmental, social and governance considerations alongside financial ones, will serve as a sound business model that supports business continuity and long term value creation for stakeholders and society at large (Bursa Malaysia website, 21th April 2016). This proved that companies need to take sustainability as one of their aspect performance as well as an energy company. Apart from that, energy companies in Malaysia are facing problems as there is still no systematic assessment of sustainability. Before this, Malaysia energy companies assess their large projects based on Environmental Impact Assessments (EIAs) requirement. However, the EIAs mostly covers the environmental issues related to the projects. The EIAs give less attention to the social aspects and economical aspects. In addition, there are still not many companies comply all the three aspects together. So, this study is to help the energy companies to discover the systematic assessment of sustainability. In developing sustainable project, they need to include many criteria that cover the environmental, economic and social aspects at all stages. Thus, the new version of Systematic Sustainability Assessment (SSA) that apply the Hydropower Sustainability Assessment Protocol (HSAP) is used as a guideline to achieve sustainability in Malaysia energy companies. This tool will guide the energy company on how to assess the sustainability in their project and see the performance of the project.

  14. Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sánchez, H. R.; Pis Diez, R.

    2016-04-01

    Based on the Aλ diagnostic for multireference effects recently proposed [U.R. Fogueri, S. Kozuch, A. Karton, J.M. Martin, Theor. Chem. Acc. 132 (2013) 1], a simple method for improving total atomization energies and reaction energies calculated at the CCSD level of theory is proposed. The method requires a CCSD calculation and two additional density functional theory calculations for the molecule. Two sets containing 139 and 51 molecules are used as training and validation sets, respectively, for total atomization energies. An appreciable decrease in the mean absolute error from 7-10 kcal mol-1 for CCSD to about 2 kcal mol-1 for the present method is observed. The present method provides atomization energies and reaction energies that compare favorably with relatively recent scaled CCSD methods.

  15. Towards representative energy data: the Machiguenga study.

    PubMed

    Montgomery, E

    1978-01-01

    Representative energy data for a human population can be produced by combining randomly sampled time allocation observations with activity-specific energy expenditure measurements. Research to produce representative energy data for adults of a population of Machiguenga Indians has recently been conducted in lowland, southeastern Peru. Marked contrast was found between the sexes for average married adults in energy expended on an average day. Men spent about 3,200 kcals and women, about 1,925; ratio: 1.66 to 1. In general, men tended to work at somewhat more energetic activities and for longer periods than did women. In addition to sex-role-related task differences were contrasts in uses of technological items and in respective work settings. These representative behavior data permit direct estimates of population-level energy requirements for average days, seasons, or for 1 year.

  16. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less

  17. A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design.

    PubMed

    Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke

    2011-10-01

    In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.

  18. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushman, Chris

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and themore » Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.« less

  19. Military Base Off-Taker Opportunities for Tribal Renewable Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nangle, J.

    This white paper surveys DOD installations that could have an increased potential interest in the purchase of energy from renewable energy projects on tribal lands. Identification of likely purchasers of renewable energy is a first step in the energy project development process, and this paper aims to identify likely electricity customers that tribal commercial-scale projects could serve. This white paper builds on a geospatial analysis completed in November 2012 identifying 53 reservations within 10 miles of military bases (DOE 2012). This analysis builds on those findings by further refining the list of potential opportunity sites to 15 reservations (Table ES-1),more » based on five additional factors: 1) The potential renewable resources required to meet the installation energy loads; 2) Proximity to transmission lines; 3) Military installation energy demand; 4) State electricity prices; 5) Local policy and regulatory environment.« less

  20. Material Challenges and Opportunities for Commercial Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2014-01-01

    Significant reduction in carbon dioxide emission for future air transportation system will require adoption of electric propulsion system and more electric architectures. Various options for aircraft electric propulsion include hybrid electric, turboelectric, and full electric system. Realization of electric propulsion system for commercial aircraft applications will require significant increases in power density of electric motors and energy density of energy storage system, such as the batteries and fuel cells. In addition, transmission of MW of power in the aircraft will require high voltage power transmission system to reduce the weight of the power transmission system. Finally, there will be significant thermal management challenges. Significant advances in material technologies will be required to meet these challenges. Technologies of interest include materials with higher electrical conductivity than Cu, high thermal conductivity materials, and lightweight electrically insulating materials with high breakdown voltage, high temperature magnets, advanced battery and fuel cell materials, and multifunctional materials. The presentation will include various challenges for commercial electric aircraft and provide an overview of material improvements that will be required to meet these challenges.

  1. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of the scanning lidars ran a Doppler beam-swinging technique identical to that used by the WindCube lidar while another scanning lidar used a novel six-beam technique that has been presented in the literature as a better alternative for measuring turbulence. In this presentation, turbulence measurements from these techniques are compared to turbulence measured by the WindCube lidar and sonic anemometers on the 60-m meteorological tower. In addition, recommendations are made for lidar measurement campaigns for wind energy applications.

  2. 77 FR 49063 - Energy Conservation Program: Test Procedures for Residential Dishwashers and Cooking Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ...The U.S. Department of Energy (DOE) proposes to amend its test procedures for residential dishwashers to update certain obsolete dishware, flatware and food items, make minor amendments to the definition of the normal cycle, and update the ambient temperature and preconditioning requirements as well as the industry test method referenced in DOE's test procedure. DOE also proposes to add water pressure, drain height, rack position, loading, rinse aid container, and soil preparation specifications to the dishwasher test procedure. DOE additionally proposes to amend the test procedures for both dishwashers and conventional cooking products for the measurement of energy use in fan-only mode.

  3. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  4. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    PubMed

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  6. DMS Advanced Applications for Accommodating High Penetrations of DERs and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Annabelle; Veda, Santosh; Maitra, Arindam

    Efficient and effective management of the electric distribution system requires an integrated approach to allow various systems to work in harmony, including distribution management systems (DMS), distributed energy resources (DERs), distributed energy resources management systems, and microgrids. This study highlights some outcomes from a recent project sponsored by the US Department of Energy, Office of Electricity Delivery and Energy Reliability, including information about (i) the architecture of these integrated systems and (ii) expanded functions of two example DMS applications to accommodate DERs: volt-var optimisation and fault location, isolation, and service restoration. In addition, the relevant DER group functions necessary tomore » support communications between the DMS and a microgrid controller in grid-tied mode are identified.« less

  7. In situ testing of a satellite or other object prior to development

    NASA Technical Reports Server (NTRS)

    Eagen, James H. (Inventor); Vujcich, Michael (Inventor); Scharton, Terry D. (Inventor)

    2002-01-01

    A method and system for testing a test object, such as a satellite, is disclosed. High energy acoustic testing is performed on the object by assembling an acoustical system about the test object rather than transporting the test object to a specially configured acoustic chamber. The acoustic system of the present invention preferably provides and directs acoustic energy directly to the surfaces of the test object rather than providing the test object in a high energy acoustic environment where a substantial amount of the acoustic energy is randomly directed within a chamber having the test object. Additionally, the present invention further provides for mechanical vibration tests concurrently or serially with acoustic testing, wherein the object is not required to be transported.

  8. Energy benchmarking in wastewater treatment plants: the importance of site operation and layout.

    PubMed

    Belloir, C; Stanford, C; Soares, A

    2015-01-01

    Energy benchmarking is a powerful tool in the optimization of wastewater treatment plants (WWTPs) in helping to reduce costs and greenhouse gas emissions. Traditionally, energy benchmarking methods focused solely on reporting electricity consumption, however, recent developments in this area have led to the inclusion of other types of energy, including electrical, manual, chemical and mechanical consumptions that can be expressed in kWh/m3. In this study, two full-scale WWTPs were benchmarked, both incorporated preliminary, secondary (oxidation ditch) and tertiary treatment processes, Site 1 also had an additional primary treatment step. The results indicated that Site 1 required 2.32 kWh/m3 against 0.98 kWh/m3 for Site 2. Aeration presented the highest energy consumption for both sites with 2.08 kWh/m3 required for Site 1 and 0.91 kWh/m3 in Site 2. The mechanical energy represented the second biggest consumption for Site 1 (9%, 0.212 kWh/m3) and chemical input was significant in Site 2 (4.1%, 0.026 kWh/m3). The analysis of the results indicated that Site 2 could be optimized by constructing a primary settling tank that would reduce the biochemical oxygen demand, total suspended solids and NH4 loads to the oxidation ditch by 55%, 75% and 12%, respectively, and at the same time reduce the aeration requirements by 49%. This study demonstrated that the effectiveness of the energy benchmarking exercise in identifying the highest energy-consuming assets, nevertheless it points out the need to develop a holistic overview of the WWTP and the need to include parameters such as effluent quality, site operation and plant layout to allow adequate benchmarking.

  9. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  10. Masters Study in Advanced Energy and Fuels Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands.The application of this Professional Science Masters’ (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team-oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management.« less

  11. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.

    PubMed

    Martins, Silvia A; Sousa, Sergio F

    2013-06-05

    The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.

  12. Estimating Energy Consumption of Mobile Fluid Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Lauren; Zigler, Bradley T.

    This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less

  13. Challenges Surrounding the Injection and Arrival of Targets at LIFE Fusion Chamber Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, R; Spaeth, M; Manes, K

    2010-12-01

    IFE target designers must consider several engineering requirements in addition to the physics requirements for successful target implosion. These considerations include low target cost, high manufacturing throughput, the ability of the target to survive the injection into the fusion chamber and arrive in a condition and physical position consistent with proper laser-target interaction and ease of post-implosion debris removal. This article briefly describes these considerations for the Laser Inertial Fusion-based Energy (LIFE) targets currently being designed.

  14. 30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... board the machine, and combustible machine components; (9) A means to prevent unintentional free and... addition to those in paragraph (a): (1) A means to ensure that no stored hydraulic energy that will cause..., and accelerator pedals, controls which are of automobile orientation; (4) An audible warning device...

  15. 30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... board the machine, and combustible machine components; (9) A means to prevent unintentional free and... addition to those in paragraph (a): (1) A means to ensure that no stored hydraulic energy that will cause..., and accelerator pedals, controls which are of automobile orientation; (4) An audible warning device...

  16. 30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... board the machine, and combustible machine components; (9) A means to prevent unintentional free and... addition to those in paragraph (a): (1) A means to ensure that no stored hydraulic energy that will cause..., and accelerator pedals, controls which are of automobile orientation; (4) An audible warning device...

  17. 78 FR 8273 - Approval of Air Quality Implementation Plans; Navajo Nation; Regional Haze Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... in significant visibility improvement that is well-balanced with the cost of those controls. For a... visibility benefits over time and that there may be changes in energy demand, supply or other developments... encourages a robust public discussion of our proposed BART determination and alternative, the additional...

  18. 40 CFR 144.26 - Inventory requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... “Inventory of Injection Wells,” OMB No. 158-R0170. (b) Additional contents. For EPA administered programs...) Class II enhanced recovery wells; (ii) Class IV wells; (iii) The following Class V wells: (A) Sand or... (40 CFR 146.5 (e)(11)) (C) Geothermal energy recovery wells [§ 146.5(e)(12)]; (D) Brine return flow...

  19. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid.

    PubMed

    Nguyen, Nga T; Mori, Yuki; Matsumoto, Takahiro; Yatabe, Takeshi; Kabe, Ryota; Nakai, Hidetaka; Yoon, Ki-Seok; Ogo, Seiji

    2014-11-11

    We report the decomposition of formic acid to hydrogen and carbon dioxide, catalysed by a NiRu complex originally developed as a [NiFe]hydrogenase model. This is the first example of H2 evolution, catalysed by a [NiFe]hydrogenase model, which does not require additional energy.

  20. Introduction to Digital Logic Systems for Energy Monitoring and Control Systems.

    DTIC Science & Technology

    1985-05-01

    computer were first set down by Charles Babbage in 1830. An additional criteria was proposed by Von Neumann in 1947. These criteria state: (1) An input means...criteria requirements as set down by Babbage and Von Neumann. The computer equipment ("hardware") and internal operating system ("software

  1. 18 CFR 380.7 - Format of an environmental impact statement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... environmental impact statement. 380.7 Section 380.7 Conservation of Power and Water Resources FEDERAL ENERGY... ENVIRONMENTAL POLICY ACT § 380.7 Format of an environmental impact statement. In addition to the requirements for an environmental impact statement prescribed in 40 CFR 1502.10 of the regulations of the Council...

  2. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... will allow Oconee to effectively manage its spent fuel inventory to meet decay heat zoning requirements... thermal stresses, including potential elongation from decay heat and irradiation. In addition, the NRC...] system provides for the horizontal dry storage of canisterized spent fuel assemblies in a concrete...

  3. 76 FR 24062 - Florida Power and Light Company, St. Lucie, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... (d) is again required. Regulatory Guide 5.73, Fatigue Management for Nuclear Power Plant Personnel, endorses the Nuclear Energy Institute (NEI) report NEI 06- 11, revision 1, ``Managing Personnel Fatigue at Nuclear Power Plants,'' with certain clarifications, additions and exceptions. The NRC staff has endorsed...

  4. Energy requirements in nonobese men and women: results from CALERIE123

    PubMed Central

    Redman, Leanne M; Bhapkar, Manju; Das, Sai Krupa; Racette, Susan B; Martin, Corby K; Fontana, Luigi; Wong, William W; Roberts, Susan B; Ravussin, Eric

    2014-01-01

    Background: The energy intake necessary to maintain weight and body composition is called the energy requirement for weight maintenance and can be determined by using the doubly labeled water (DLW) method. Objective: The objective was to determine the energy requirements of nonobese men and women in the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy 2 study. Design: Energy requirements were determined for 217 healthy, weight-stable men and women [aged >21 to <50 y; 70% female, 77% white; body mass index (BMI; in kg/m2) 22 to <28; 52% overweight] over 28 d with 2 consecutive 14-d DLW assessments in addition to serial measures of body weight and fat-free mass and fat mass by dual-energy X-ray absorptiometry. Energy intake and physical activity were also estimated by self-report over ≥6 consecutive d in each DLW period. Results: Total daily energy expenditure (TDEE) was consistent between the 2 DLW studies (TDEE1: 2422 ± 404 kcal/d; TDEE2: 2465 ± 408 kcal/d; intraclass correlation coefficient = 0.90) with a mean TDEE of 2443 ± 397 kcal/d that was, on average, 20% (580 kcal/d) higher in men than in women (P < 0.0001). The regression equation relating mean TDEE to demographics and weight was as follows: TDEE (kcal/d) = 1279 + 18.3 (weight, kg) + 2.3 (age, y) − 338 (sex: 1 = female, 0 = male); R2 = 0.57. When body composition was included, TDEE (kcal/d) = 454 + 38.7 (fat-free mass, kg) − 5.4 (fat mass, kg) + 4.7 (age in y) + 103 (sex: 1 = female, 0 = male); R2 = 0.65. Individuals significantly underreported energy intake (350 kcal/d; 15%), and underreporting by overweight individuals (∼400 kcal/d; 16%) was greater (P < 0.001) than that of normal-weight individuals (∼270 kcal/d; 12%). Estimates of TDEE from a 7-d physical activity recall and measured resting metabolic rate also suggested that individuals significantly underreported physical activity (∼400 kcal/d; 17%; P < 0.0001). Conclusion: These new equations derived over 1 mo during weight stability can be used to estimate the free-living caloric requirements of nonobese adults. This trial was registered at clinicaltrials.gov as NCT00427193. PMID:24257721

  5. Energy requirements in nonobese men and women: results from CALERIE.

    PubMed

    Redman, Leanne M; Kraus, William E; Bhapkar, Manju; Das, Sai Krupa; Racette, Susan B; Martin, Corby K; Fontana, Luigi; Wong, William W; Roberts, Susan B; Ravussin, Eric

    2014-01-01

    The energy intake necessary to maintain weight and body composition is called the energy requirement for weight maintenance and can be determined by using the doubly labeled water (DLW) method. The objective was to determine the energy requirements of nonobese men and women in the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy 2 study. Energy requirements were determined for 217 healthy, weight-stable men and women [aged >21 to <50 y; 70% female, 77% white; body mass index (BMI; in kg/m(2)) 22 to <28; 52% overweight] over 28 d with 2 consecutive 14-d DLW assessments in addition to serial measures of body weight and fat-free mass and fat mass by dual-energy X-ray absorptiometry. Energy intake and physical activity were also estimated by self-report over ≥6 consecutive d in each DLW period. Total daily energy expenditure (TDEE) was consistent between the 2 DLW studies (TDEE1: 2422 ± 404 kcal/d; TDEE2: 2465 ± 408 kcal/d; intraclass correlation coefficient = 0.90) with a mean TDEE of 2443 ± 397 kcal/d that was, on average, 20% (580 kcal/d) higher in men than in women (P < 0.0001). The regression equation relating mean TDEE to demographics and weight was as follows: TDEE (kcal/d) = 1279 + 18.3 (weight, kg) + 2.3 (age, y) - 338 (sex: 1 = female, 0 = male); R(2) = 0.57. When body composition was included, TDEE (kcal/d) = 454 + 38.7 (fat-free mass, kg) - 5.4 (fat mass, kg) + 4.7 (age in y) + 103 (sex: 1 = female, 0 = male); R(2) = 0.65. Individuals significantly underreported energy intake (350 kcal/d; 15%), and underreporting by overweight individuals (~400 kcal/d; 16%) was greater (P < 0.001) than that of normal-weight individuals (~270 kcal/d; 12%). Estimates of TDEE from a 7-d physical activity recall and measured resting metabolic rate also suggested that individuals significantly underreported physical activity (~400 kcal/d; 17%; P < 0.0001). These new equations derived over 1 mo during weight stability can be used to estimate the free-living caloric requirements of nonobese adults. This trial was registered at clinicaltrials.gov as NCT00427193.

  6. Analysis of fluorine addition to the vanguard first stage

    NASA Technical Reports Server (NTRS)

    Tomazic, William A; Schmidt, Harold W; Tischler, Adelbert O

    1957-01-01

    The effect of adding fluorine to the Vanguard first-stage oxidant was anlyzed. An increase in specific impulse of 5.74 percent may be obtained with 30 percent fluorine. This increase, coupled with increased mass ratio due to greater oxidant density, gave up to 24.6-percent increase in first-stage burnout energy with 30 percent fluorine added. However, a change in tank configuration is required to accommodate the higher oxidant-fuel ratio necessary for peak specific impulse with fluorine addition.

  7. Routing to preserve energy in wireless networks

    NASA Astrophysics Data System (ADS)

    Block, Frederick J., IV

    Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.

  8. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  9. A Computational Study on the Ground and Excited States of Nickel Silicide.

    PubMed

    Schoendorff, George; Morris, Alexis R; Hu, Emily D; Wilson, Angela K

    2015-09-17

    Nickel silicide has been studied with a range of computational methods to determine the nature of the Ni-Si bond. Additionally, the physical effects that need to be addressed within calculations to predict the equilibrium bond length and bond dissociation energy within experimental error have been determined. The ground state is predicted to be a (1)Σ(+) state with a bond order of 2.41 corresponding to a triple bond with weak π bonds. It is shown that calculation of the ground state equilibrium geometry requires a polarized basis set and treatment of dynamic correlation including up to triple excitations with CR-CCSD(T)L resulting in an equilibrium bond length of only 0.012 Å shorter than the experimental bond length. Previous calculations of the bond dissociation energy resulted in energies that were only 34.8% to 76.5% of the experimental bond dissociation energy. It is shown here that use of polarized basis sets, treatment of triple excitations, correlation of the valence and subvalence electrons, and a Λ coupled cluster approach is required to obtain a bond dissociation energy that deviates as little as 1% from experiment.

  10. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    PubMed

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  11. Bone Cell Bioenergetics and Skeletal Energy Homeostasis

    PubMed Central

    Riddle, Ryan C.; Clemens, Thomas L.

    2017-01-01

    The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease. PMID:28202599

  12. Accidental Beam Losses and Protection in the LHC

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  13. Estimation of neural energy in microelectrode signals

    NASA Astrophysics Data System (ADS)

    Gaumond, R. P.; Clement, R.; Silva, R.; Sander, D.

    2004-09-01

    We considered the problem of determining the neural contribution to the signal recorded by an intracortical electrode. We developed a linear least-squares approach to determine the energy fraction of a signal attributable to an arbitrary number of autocorrelation-defined signals buried in noise. Application of the method requires estimation of autocorrelation functions Rap(tgr) characterizing the action potential (AP) waveforms and Rn(tgr) characterizing background noise. This method was applied to the analysis of chronically implanted microelectrode signals from motor cortex of rat. We found that neural (AP) energy consisted of a large-signal component which grows linearly with the number of threshold-detected neural events and a small-signal component unrelated to the count of threshold-detected AP signals. The addition of pseudorandom noise to electrode signals demonstrated the algorithm's effectiveness for a wide range of noise-to-signal energy ratios (0.08 to 39). We suggest, therefore, that the method could be of use in providing a measure of neural response in situations where clearly identified spike waveforms cannot be isolated, or in providing an additional 'background' measure of microelectrode neural activity to supplement the traditional AP spike count.

  14. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  15. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    PubMed

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  16. High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.

  17. Optimal Renewable Energy Integration into Refinery with CO2 Emissions Consideration: An Economic Feasibility Study

    NASA Astrophysics Data System (ADS)

    Alnifro, M.; Taqvi, S. T.; Ahmad, M. S.; Bensaida, K.; Elkamel, A.

    2017-08-01

    With increasing global energy demand and declining energy return on energy invested (EROEI) of crude oil, global energy consumption by the O&G industry has increased drastically over the past few years. In addition, this energy increase has led to an increase GHG emissions, resulting in adverse environmental effects. On the other hand, electricity generation through renewable resources have become relatively cost competitive to fossil based energy sources in a much ‘cleaner’ way. In this study, renewable energy is integrated optimally into a refinery considering costs and CO2 emissions. Using Aspen HYSYS, a refinery in the Middle East was simulated to estimate the energy demand by different processing units. An LP problem was formulated based on existing solar energy systems and wind potential in the region. The multi-objective function, minimizing cost as well as CO2 emissions, was solved using GAMS to determine optimal energy distribution from each energy source to units within the refinery. Additionally, an economic feasibility study was carried out to determine the viability of renewable energy technology project implementation to overcome energy requirement of the refinery. Electricity generation through all renewable energy sources considered (i.e. solar PV, solar CSP and wind) were found feasible based on their low levelized cost of electricity (LCOE). The payback period for a Solar CSP project, with an annual capacity of about 411 GWh and a lifetime of 30 years, was found to be 10 years. In contrast, the payback period for Solar PV and Wind were calculated to be 7 and 6 years, respectively. This opens up possibilities for integrating renewables into the refining sector as well as optimizing multiple energy carrier systems within the crude oil industry

  18. NIF Target Designs and OMEGA Experiments for Shock-Ignition Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    2012-10-01

    Shock ignition (SI)footnotetextR. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs require the addition of a high-intensity (˜5 x 10^15 W/cm^2) laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the imploding capsule. Achieving ignition with SI requires the laser spike to generate an ignitor shock with a launching pressure typically in excess of ˜300 Mbar. At the high laser intensities required during the spike pulse, stimulated Raman (SRS) and Brillouin scattering (SBS) could reflect a significant fraction of the incident light. In addition, SRS and the two-plasmon-decay instability can accelerate hot electrons into the shell and preheat the fuel. Since the high-power spike occurs at the end of the pulse when the areal density of the shell is several tens of mg/cm^2, shock-ignition fuel layers are shielded against hot electrons with energies below 150 keV. This paper will present data for a set of OMEGA experiments that were designed to study laser--plasma interactions during the spike pulse. In addition, these experiments were used to demonstrate that high-pressure shocks can be produced in long-scale-length plasmas with SI-relevant intensities. Within the constraints imposed by the hydrodynamics of strong shock generation and the laser--plasma instabilities, target designs for SI experiments on the NIF will be presented. Two-dimensional radiation--hydrodynamic simulations of SI target designs for the NIF predict ignition in the polar-drive beam configuration at sub-MJ laser energies. Design robustness to various 1-D effects and 2-D nonuniformities has been characterized. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  19. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.

    PubMed

    Hittinger, Eric; Azevedo, Inês M L

    2017-11-07

    The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.

  20. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  1. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  2. On Increasing Network Lifetime in Body Area Networks Using Global Routing with Energy Consumption Balancing

    PubMed Central

    Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil

    2012-01-01

    Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987

  3. On increasing network lifetime in body area networks using global routing with energy consumption balancing.

    PubMed

    Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil

    2012-09-26

    Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.

  4. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms123

    PubMed Central

    Mattes, Richard D; Popkin, Barry M

    2009-01-01

    Nonnutritive sweeteners (NNS) are ecologically novel chemosensory signaling compounds that influence ingestive processes and behavior. Only about 15% of the US population aged >2 y ingest NNS, but the incidence is increasing. These sweeteners have the potential to moderate sugar and energy intakes while maintaining diet palatability, but their use has increased in concert with BMI in the population. This association may be coincidental or causal, and either mode of directionality is plausible. A critical review of the literature suggests that the addition of NNS to non-energy-yielding products may heighten appetite, but this is not observed under the more common condition in which NNS is ingested in conjunction with other energy sources. Substitution of NNS for a nutritive sweetener generally elicits incomplete energy compensation, but evidence of long-term efficacy for weight management is not available. The addition of NNS to diets poses no benefit for weight loss or reduced weight gain without energy restriction. There are long-standing and recent concerns that inclusion of NNS in the diet promotes energy intake and contributes to obesity. Most of the purported mechanisms by which this occurs are not supported by the available evidence, although some warrant further consideration. Resolution of this important issue will require long-term randomized controlled trials. PMID:19056571

  5. Effect of vacuum-ultraviolet irradiation on the dielectric constant of low-k organosilicate dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Shohet, J. L.; Ryan, E. T.

    2014-11-17

    Vacuum ultraviolet (VUV) irradiation is generated during plasma processing in semiconductor fabrications, while the effect of VUV irradiation on the dielectric constant (k value) of low-k materials is still an open question. To clarify this problem, VUV photons with a range of energies were exposed on low-k organosilicate dielectrics (SiCOH) samples at room temperature. Photon energies equal to or larger than 6.0 eV were found to decrease the k value of SiCOH films. VUV photons with lower energies do not have this effect. This shows the need for thermal heating in traditional ultraviolet (UV) curing since UV light sources do notmore » have sufficient energy to change the dielectric constant of SiCOH and additional energy is required from thermal heating. In addition, 6.2 eV photon irradiation was found to be the most effective in decreasing the dielectric constant of low-k organosilicate films. Fourier Transform Infra-red Spectroscopy shows that these 6.2 eV VUV exposures removed organic porogens. This contributes to the decrease of the dielectric constant. This information provides the range of VUV photon energies that could decrease the dielectric constant of low-k materials most effectively.« less

  6. Is Carbon Capture and Storage Really Needed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Williams, Kent Alan; Aaron, D

    2010-01-01

    Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') Inmore » this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.« less

  7. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    NASA Astrophysics Data System (ADS)

    Varlamov, Gennadii Borysovich; Romanova, Kateryna Alexandrovna; Nazarova, Iryna; Daschenko, Olga; Kapustiansky, Andry

    2017-12-01

    Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation `Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally `generate' the clean water, which can be used for technical purposes.

  8. U.S. utilities' experiences with the implementation of energy efficiency programs

    NASA Astrophysics Data System (ADS)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  9. Black hole complementarity in gravity's rainbow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    2015-05-01

    To see how the gravity's rainbow works for black hole complementary, we evaluate the required energy for duplication of information in the context of black hole complementarity by calculating the critical value of the rainbow parameter in the certain class of the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could not be allowed below a certain critical value of the rainbow parameter; however, itmore » might be possible above the critical value of the rainbow parameter, so that the consistent formulation in our model requires additional constraints or any other resolutions for the latter case.« less

  10. Fluoroalkylated Silicon-Containing Surfaces - Estimation of Solid Surface Energy

    DTIC Science & Technology

    2010-10-20

    surface tension liquids such as octane (γlv = 21.6 mN/m) and methanol (γlv = 22.7 mN/m), requires an appropriately chosen surface micro/nano-texture in...addition to a low solid surface energy (γsv). 1H,1H,2H,2H- Heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) offers one of...27.5 mN/m), while Girifalco-Good analysis was performed using a set of polar and non-polar liquids with a wider range of liquid surface tension (15.5

  11. Production of solar photovoltaic cells on the Moon

    NASA Technical Reports Server (NTRS)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  12. Analyzing, Evaluating, and Quantifying the Thermal Energy Contributions of the Passive Solar-Heating Elements Incorporated in the Design and Construction of the Plumblee Residence Located in Alamance County, NC

    DTIC Science & Technology

    2004-08-01

    solar energy economically and environmentally more attractive ( Chiras 2002). In addition, the natural sunlight brought in from large, south-facing...heating principles in the design of any style home ( Chiras 2002). The case study home in this report is the residence of Gordon and Janice Plumblee... Chiras 2002). Special attention is required for designing roof I overhangs including gutters. Overhang lengths without gutters vary from 3.5 feet in hot

  13. Gelled-electrolyte batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  14. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans.

    PubMed

    Cannon, Daniel T; White, Ailish C; Andriano, Melina F; Kolkhorst, Fred W; Rossiter, Harry B

    2011-02-01

    The mechanisms determining exercise intolerance are poorly understood. A reduction in work efficiency in the form of an additional energy cost and oxygen requirement occurs during high-intensity exercise and contributes to exercise limitation. Muscle fatigue and subsequent recruitment of poorly efficient muscle fibres has been proposed to mediate this decline. These data demonstrate in humans, that muscle fatigue, generated in the initial minutes of exercise, is correlated with the increasing energy demands of high-intensity exercise. Surprisingly, however, while muscle fatigue reached a plateau, oxygen uptake continued to increase throughout 8 min of exercise. This suggests that additional recruitment of inefficient muscle fibres may not be the sole mechanism contributing to the decline in work efficiency during high-intensity exercise.

  15. Economic comparison of conventional maintenance and electrochemical oxidation to warrant water safety in dental unit water lines.

    PubMed

    Fischer, Sebastian; Meyer, Georg; Kramer, Axel

    2012-01-01

    In preparation for implementation of a central water processing system at a dental department, we analyzed the costs of conventional decentralized disinfection of dental units against a central water treatment concept based on electrochemical disinfection. The cost evaluation included only the costs of annually required antimicrobial consumables and additional water usage of a decentralize conventional maintenance system for dental water lines build in the respective dental units and the central electrochemical water disinfection system, BLUE SAFETY™ Technologies. In total, analysis of costs of 6 dental departments reviled additional annual costs for hygienic preventive measures of € 4,448.37. For the BLUE SAFETY™ Technology, the additional annual total agent consumption costs were € 2.18, accounting for approximately 0.05% of the annual total agent consumption costs of the conventional maintenance system. For both water processing concepts, the additional costs for energy could not be calculated, since the required data was not obtainable from the manufacturers. For both concepts, the investment and maintenance costs were not calculated due to lack of manufacturer's data. Therefore, the results indicate the difference of costs for the required consumables only. Aside of the significantly lower annual costs for required consumables and disinfectants; a second advantage for the BLUE SAFETY™ Technology is its constant and automatic operation, which does not require additional staff resources. This not only safety human resources, but add additionally to cost saving. Since the antimicrobial disinfection capacity of the BLUE SAFETY™ was demonstrated previously and is well known, this technology, which is comparable or even superior in its non-corrosive effect, may be regarded as method of choice for continuous disinfection and prevention of biofilm formation in dental units' water lines.

  16. Economic comparison of conventional maintenance and electrochemical oxidation to warrant water safety in dental unit water lines

    PubMed Central

    Fischer, Sebastian; Meyer, Georg; Kramer, Axel

    2012-01-01

    Background: In preparation for implementation of a central water processing system at a dental department, we analyzed the costs of conventional decentralized disinfection of dental units against a central water treatment concept based on electrochemical disinfection. Methods: The cost evaluation included only the costs of annually required antimicrobial consumables and additional water usage of a decentralize conventional maintenance system for dental water lines build in the respective dental units and the central electrochemical water disinfection system, BLUE SAFETY™ Technologies. Results: In total, analysis of costs of 6 dental departments reviled additional annual costs for hygienic preventive measures of € 4,448.37. For the BLUE SAFETY™ Technology, the additional annual total agent consumption costs were € 2.18, accounting for approximately 0.05% of the annual total agent consumption costs of the conventional maintenance system. For both water processing concepts, the additional costs for energy could not be calculated, since the required data was not obtainable from the manufacturers. Discussion: For both concepts, the investment and maintenance costs were not calculated due to lack of manufacturer's data. Therefore, the results indicate the difference of costs for the required consumables only. Aside of the significantly lower annual costs for required consumables and disinfectants; a second advantage for the BLUE SAFETY™ Technology is its constant and automatic operation, which does not require additional staff resources. This not only safety human resources, but add additionally to cost saving. Conclusion: Since the antimicrobial disinfection capacity of the BLUE SAFETY™ was demonstrated previously and is well known, this technology, which is comparable or even superior in its non-corrosive effect, may be regarded as method of choice for continuous disinfection and prevention of biofilm formation in dental units’ water lines. PMID:22558042

  17. Comparison of measured versus predicted energy requirements in critically ill cancer patients.

    PubMed

    Pirat, Arash; Tucker, Anne M; Taylor, Kim A; Jinnah, Rashida; Finch, Clarence G; Canada, Todd D; Nates, Joseph L

    2009-04-01

    Accurate determination of caloric requirements is essential to avoid feeding-associated complications in critically ill patients. In critically ill cancer patients we compared the measured and estimated resting energy expenditures. All patients admitted to the oncology intensive care unit between March 2004 and July 2005 were considered for inclusion. For those patients enrolled (n = 34) we measured resting energy expenditure via indirect calorimetry, and estimated resting energy expenditure in 2 ways: clinically estimated resting energy expenditure; and the Harris-Benedict basal energy expenditure equation. Clinically estimated resting energy expenditure was associated with underfeeding, appropriate feeding, and overfeeding in approximately 15%, 15%, and 71% of the patients, respectively. The Harris-Benedict basal energy expenditure was associated with underfeeding, appropriate feeding, and overfeeding in approximately 29%, 41%, and 29% of the patients, respectively. The mean measured resting energy expenditure (1,623 +/- 384 kcal/d) was similar to the mean Harris-Benedict basal energy expenditure without the addition of stress or activity factors (1,613 +/- 382 kcal/d, P = .87), and both were significantly lower than the mean clinically estimated resting energy expenditure (1,862 +/- 330 kcal/d, P < or = .003 for both). There was a significant correlation only between mean measured resting energy expenditure and mean Harris-Benedict basal energy expenditure (P < .001), but the correlation coefficient between those values was low (r = 0.587). Underfeeding and overfeeding were common in our critically ill cancer patients when resting energy expenditure was estimated rather than measured. Indirect calorimetry is the method of choice for determining caloric need in critically ill cancer patients, but if indirect calorimetry is not available or feasible, the Harris-Benedict equation without added stress and activity factors is more accurate than the clinically estimated resting energy expenditure.

  18. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    PubMed

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Steady Flow Model for the Differential Emission Measure in the Solar Quiet Region

    NASA Astrophysics Data System (ADS)

    Bong, S.; Chae, J.; Yun, H.; Lee, J.

    2001-05-01

    With high quality UV spectroscopy from the SoHO spacecraft, the physical structure of the solar Transition Region (TR) is of renewed interest. We have investigated the thermodynamic structure of the TR using a one dimensional magnetic tube model constrained to Raymond & Doyle's Differential Emission Measure (DEM) in the average quiet sun. We have included the effect of the expansion of magnetic flux tube and a heating which is required in addition to conductive heat, convective energy and radiative cooling. From the resulting heating and flux tube geometry, we also investigated upflows probable in the transition region. To reproduce the Doppler shift of UV lines measured using SoHO/SUMER (Chae, Yun, & Poland 1998), flux tube needs to expand rapidly above T=105 K at a rate of radius increase up to (7.4x 10-2 km-1)~ r4.1 where r4.1 is the radius at log T = 4.1. To balance the energy, an energy supply by more than (9.3x 104 erg cm-2 s-1)~π r4.12 is required at the region between 1.3x 104 K and 2.5x 104 K regardless of filling factor, suggesting a local heating in the chromosphere. As for upflows, in subsonic flow cases, a model with the same additional energy loss as in a downflow is probable. Also, supersonic flows could be easily made and, in this case, supersonic upflows could carry extra energy to corona without increasing DEM, showing the possibility that upflows play a role in corona heating. This work was supported by the Basic Science Research Institute Program, Ministry of Education (BSRI-98-5408) and by the BK21 Project of the Korean Government.

  20. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.

    2004-12-01

    The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  1. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  2. Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.

    PubMed

    Rincón, Bárbara; Heaven, Sonia; Salter, Andrew M; Banks, Charles J

    2016-10-14

    Anaerobic digestion of wheat was investigated under batch conditions. The article compares the potential net energy yield between a winter wheat (sown in the autumn) and a spring wheat (sown in the spring) grown in the same year and harvested at the same growth stage in the same farm. The spring wheat had a slightly higher biochemical methane potential and required lower energy inputs in cultivation, but produced a lower dry biomass yield per hectare, which resulted in winter wheat providing the best overall net energy yield. The difference was small; both varieties gave a good net energy yield. Spring sowing may also offer the opportunity for growing an additional over-winter catch crop for spring harvest, thus increasing the overall biomass yield per hectare, with both crops being potential digester feedstocks.

  3. The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Westa, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.

    2011-01-01

    NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions. The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems. At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability). A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  4. Nutritional Practices of National Female Soccer Players: Analysis and Recommendations

    PubMed Central

    Martin, Louise; Lambeth, Anneliese; Scott, Dawn

    2006-01-01

    The aim of the study was to establish the nutritional practices and activity patterns of elite female soccer players. The nutritional intake of 16 female England Soccer players was self-reported over a seven-day period. Participants were provided with written and verbal guidelines for the completion of the diaries. Training details were also recorded, and used in combination with BMR predictions to calculate daily energy expenditure. Energy, macronutrient and micronutrient intakes were determined using DietMaster 4.0 software. Results suggest that energy intake was low (1904 ± 366.3 kcal) in relation to previous recommendations for soccer players. Energy expenditure (2153.5 ± 596.2 kcal) was not significantly different (p > 0.05) from intake, suggesting energy balance was achieved. Carbohydrate (53.8 ± 6.8%), protein (16.8 ± 2.1%) and fat (28.8 ± 6.6%) intakes were in line with recommendations. Fluid intake (2466 ± 1350.5ml·day-1) was sufficient to meet baseline recommendations, but would need to be higher to meet the additional requirement of training and competition. With the exception of vitamin A and iron, all micronutrient intakes were higher than the DRI. In conclusion, recommendations for female soccer players are to encourage consumption of carbohydrate-electrolyte beverages to enhance carbohydrate intake and increase fluid intake, and ensure sufficient iron rich foods are included in the diet to meet the DRI. Key points Female soccer players demonstrate a low energy intake in relation to predicted requirements, but were in energy balance in this study. Increased carbohydrate intake may be beneficial to both training and competition performance of elite female soccer players Fluid requirements should be addressed on an individual basis and matched to player requirements. The iron status of female soccer players may be compromised due to insufficient dietary intake to meet the DRV. PMID:24198690

  5. Nutritional practices of national female soccer players: analysis and recommendations.

    PubMed

    Martin, Louise; Lambeth, Anneliese; Scott, Dawn

    2006-01-01

    The aim of the study was to establish the nutritional practices and activity patterns of elite female soccer players. The nutritional intake of 16 female England Soccer players was self-reported over a seven-day period. Participants were provided with written and verbal guidelines for the completion of the diaries. Training details were also recorded, and used in combination with BMR predictions to calculate daily energy expenditure. Energy, macronutrient and micronutrient intakes were determined using DietMaster 4.0 software. Results suggest that energy intake was low (1904 ± 366.3 kcal) in relation to previous recommendations for soccer players. Energy expenditure (2153.5 ± 596.2 kcal) was not significantly different (p > 0.05) from intake, suggesting energy balance was achieved. Carbohydrate (53.8 ± 6.8%), protein (16.8 ± 2.1%) and fat (28.8 ± 6.6%) intakes were in line with recommendations. Fluid intake (2466 ± 1350.5ml·day(-1)) was sufficient to meet baseline recommendations, but would need to be higher to meet the additional requirement of training and competition. With the exception of vitamin A and iron, all micronutrient intakes were higher than the DRI. In conclusion, recommendations for female soccer players are to encourage consumption of carbohydrate-electrolyte beverages to enhance carbohydrate intake and increase fluid intake, and ensure sufficient iron rich foods are included in the diet to meet the DRI. Key pointsFemale soccer players demonstrate a low energy intake in relation to predicted requirements, but were in energy balance in this study.Increased carbohydrate intake may be beneficial to both training and competition performance of elite female soccer playersFluid requirements should be addressed on an individual basis and matched to player requirements.The iron status of female soccer players may be compromised due to insufficient dietary intake to meet the DRV.

  6. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NATHAN HANCOCK

    2013-01-13

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associatedmore » with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.« less

  7. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    NASA Astrophysics Data System (ADS)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  8. An aspect-oriented approach for designing safety-critical systems

    NASA Astrophysics Data System (ADS)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  9. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  10. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  11. Solar Energy for Rural Egypt

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.

  12. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  13. Economics of alternative energy sources.

    PubMed

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  14. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; ...

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  15. Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N.

    1993-12-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactivemore » materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.« less

  16. A composite-flywheel burst-containment study

    NASA Astrophysics Data System (ADS)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  17. A hybrid life cycle inventory of nano-scale semiconductor manufacturing.

    PubMed

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Raoux, Sebastien; Clark, Daniel; Dornfeld, David

    2008-04-15

    The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive, and generate significant waste. It is important to understand and reduce the environmental impacts of semiconductor manufacturing because these devices are ubiquitous components in electronics. Furthermore, the fabrication processes used in the semiconductor industry are finding increasing application in other products, such as microelectromechanical systems (MEMS), flat panel displays, and photovoltaics. In this work we develop a library of typical gate-to-gate materials and energy requirements, as well as emissions associated with a complete set of fabrication process models used in manufacturing a modern microprocessor. In addition, we evaluate upstream energy requirements associated with chemicals and materials using both existing process life cycle assessment (LCA) databases and an economic input-output (EIO) model. The result is a comprehensive data set and methodology that may be used to estimate and improve the environmental performance of a broad range of electronics and other emerging applications that involve nano and micro fabrication.

  18. Energy manager design for microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatchmore » decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.« less

  19. Linear-scaling generation of potential energy surfaces using a double incremental expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    König, Carolin, E-mail: carolink@kth.se; Christiansen, Ove, E-mail: ove@chem.au.dk

    We present a combination of the incremental expansion of potential energy surfaces (PESs), known as n-mode expansion, with the incremental evaluation of the electronic energy in a many-body approach. The application of semi-local coordinates in this context allows the generation of PESs in a very cost-efficient way. For this, we employ the recently introduced flexible adaptation of local coordinates of nuclei (FALCON) coordinates. By introducing an additional transformation step, concerning only a fraction of the vibrational degrees of freedom, we can achieve linear scaling of the accumulated cost of the single point calculations required in the PES generation. Numerical examplesmore » of these double incremental approaches for oligo-phenyl examples show fast convergence with respect to the maximum number of simultaneously treated fragments and only a modest error introduced by the additional transformation step. The approach, presented here, represents a major step towards the applicability of vibrational wave function methods to sizable, covalently bound systems.« less

  20. Design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thallmair, Sebastian; Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, D-80538 München; Roos, Matthias K.

    Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstratedmore » for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.« less

  1. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows.

    PubMed

    Hurley, A M; López-Villalobos, N; McParland, S; Kennedy, E; Lewis, E; O'Donovan, M; Burke, J L; Berry, D P

    2016-01-01

    International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n=709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n=709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with superior energy conversion efficiency (ECE, i.e., NEL divided by NEI; ECE=0.55) compared with the least efficient 10% of test-day records (ECE=0.33). Moreover, REI was positively correlated with energy balance, implying that more negative REI animals (i.e., deemed more efficient) are expected to be, on average, in greater negative energy balance. Many of the correlations among the 14 defined efficiency traits differed from unity, implying that each trait is measuring a different aspect of efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice.

    PubMed

    Demas, G E; Chefer, V; Talan, M I; Nelson, R J

    1997-11-01

    Animals must balance their energy budget despite seasonal changes in both energy availability and physiological expenditures. Immunity, in addition to growth, thermoregulation, and cellular maintenance, requires substantial energy to maintain function, although few studies have directly tested the energetic cost of immunity. The present study assessed the metabolic costs of an antibody response. Adult and aged male C5BL/6J mice were implanted with either empty Silastic capsules or capsules filled with melatonin and injected with either saline or keyhole limpet hemocyanin (KLH). O2 consumption was monitored periodically throughout antibody production using indirect calorimetry. KLH-injected mice mounted significant immunoglobulin G (IgG) responses and consumed more O2 compared with animals injected with saline. Melatonin treatment increased O2 consumption in mice injected with saline but suppressed the increased metabolic rate associated with an immune response in KLH-injected animals. Melatonin had no effect on immune response to KLH. Adult and aged mice did not differ in antibody response or metabolic activity. Aged mice appear unable to maintain sufficient heat production despite comparable O2 production to adult mice. These results suggest that mounting an immune response requires significant energy and therefore requires using resources that could otherwise be allocated to other physiological processes. Energetic trade-offs are likely when energy demands are high (e.g., during winter, pregnancy, or lactation). Melatonin appears to play an adaptive role in coordinating reproductive, immunologic, and energetic processes.

  3. The role of elastic energy in activities with high force and power requirements: a brief review.

    PubMed

    Wilson, Jacob M; Flanagan, Eamonn P

    2008-09-01

    The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.

  4. Emittance measurements in low energy ion storage rings

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  5. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  6. National Defense Authorization Act for Fiscal Year 2014

    DTIC Science & Technology

    2013-06-20

    Administrator ............................................................... 251 Defense environmental cleanup (sec. 3102...415 Department of Energy national security authorizations (sec. 4701) ..... 416 LEGISLATIVE REQUIREMENTS...SR044rm aj et te o n D S K 2T P T V N 1P R O D w ith H E A R IN G 2 and manpower strengths; provide certain additional legislative authority, and

  7. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  8. A Rotating Space Interferometer with Variable Baselines and Low Power Consumption

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.

    1999-01-01

    A new concept is presented here for a large, rotating space interferometer which would achieve full u, v plane coverage with reasonably uniform integration times, yet once set in motion no additional energy would be required to change collector separations, maintain constant baseline rotation rates, or to counteract centrifugal forces on the collectors.

  9. The Experiences of Blacks Who Obtained Doctorates from Predominantly White Institutions

    ERIC Educational Resources Information Center

    Nickelberry, Tressie A.

    2012-01-01

    Being in a doctoral program requires a substantial amount of one's time, energy, and commitment. Doctoral students face many challenges while pursuing their degrees. For example, some may be on financial aid, work full-time, and/or have a family. While doctoral students face many hurdles, Black doctoral students face additional barriers. The…

  10. Multistep process to produce fermentable sugars and lignosulfonates from softwood enzymolysis residues

    Treesearch

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2016-01-01

    The residual solids from enzymatic hydrolysis are usually burned to produce energy and have been explored as a feedstock for various products including activated carbon and lignin based polymers. These products require additional procedures unrelated to the existing biorefinery equipment. In the current study, we proposed successive sulfite treatments to utilize the...

  11. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  12. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associatedmore » analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the beginning of each fiscal year when attachments in Appendix D, including program directives and sampling location/analytical tables, will be reviewed by project personnel and updated. The sampling location/analytical tables in Appendix D, however, may have interim updates according to project direction that are not reflected in this plan. Deviations from location/analytical tables in Appendix D prior to sampling will be documented in project correspondence (e.g., startup letters). If significant changes to other aspects of this plan are required before the annual update, then the plan will be revised as needed.« less

  13. Operating experience with LEAP from the perspective of the computing applications analyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, W.E. III; Horwedel, J.E.; McAdoo, J.W.

    1981-05-01

    The Long-Term Energy Analysis Program (LEAP), which was used for the energy price-quantity projections in the 1978 Annual Report to Congress (ARC '78) and used in an ORNL research program to develop and demonstrate a procedure for evaluating energy-economic modeling computer codes and the important results derived therefrom, is discussed. The LEAP system used in the ORNL research, the mechanics of executing LEAP, and the personnel skills required to execute the system are described. In addition, a LEAP sample problem, subroutine hierarchical flowcharts, and input tables for the ARC '78 energy-economic model are included. Results of a study to testmore » the capability of the LEAP system used in the ORNL research to reproduce the ARC '78 results credited to LEAP are presented.« less

  14. Altitude transitions in energy climbs

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  15. Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues.

    PubMed

    Bertinetti, L; Fischer, F D; Fratzl, P

    2013-12-06

    Generating stresses and strains through water uptake from atmospheric humidity is a common process in nature, e.g., in seed dispersal. Actuation depends on a balance between chemical interactions and the elastic energy required to accomplish the volume change. In order to study the poorly understood chemical interactions, we combine mechanosorption experiments with theoretical calculations of the swelling behavior to estimate the mechanical energy and extract the contribution of the chemical energy per absorbed water molecule. The latter is highest in the completely dry state and stays almost constant at about 1.2 kT for higher hydrations. This suggests that water bound to the macromolecular components of the wood tissues acquires one additional hydrogen bond per eight water molecules, thus providing energy for actuation.

  16. Roles of water molecules in bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Cox, C. S.

    1993-02-01

    In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).

  17. Prospective Study of the Use of Intraoperative Neuromonitoring in Determining Post-Operative Energy Requirements and Physiologic Midline in Spinal Cord Stimulation.

    PubMed

    Collison, Claire; Prusik, Julia; Paniccioli, Steven; Briotte, Michael; Grey, Rachael; Feustel, Paul; Pilitsis, Julie G

    2017-08-01

    Intraoperative neuromonitoring (IONM) through electromyography (EMG) studies has been shown to be a safe, effective way to determine the laterality of the spinal cord and guide electrode placement during spinal cord stimulation (SCS). However, the use of IONM to predict post-operative energy requirements and midline has not been examined and offers a new avenue to streamline programming and device selection. Further, the impact of cerebrospinal fluid (CSF) thickness on intraoperative and post-operative amplitudes is understood but has not been explicitly characterized. A total of 24 patients undergoing SCS implantation for chronic pain had intraoperative EMG studies performed to determine physiologic midline. The intraoperative midline was compared to the midline determined on post-operative day 1 based on paresthesia patterns during programming. For patients who had thoracic leads placed, the amplitudes needed to induce abdominal and extremity lateralization during SCS placement were compared with the intensities needed to induce therapy at post-operative day 1. Additionally, we examined whether CSF thickness, body mass index, diabetes, drug use, and smoking correlated with intraoperative and post-operative amplitudes. Intraoperative EMG was able to predict post-operative paresthesia-based midline in 70.83% of patients. There was a statistically significant relationship between the intraoperative intensity needed to induce extremity lateralization with the post-operative intensity to induce therapy (p = 0.009) as well as the intraoperative intensity needed to stimulate abdominals with the post-operative intensity (p = 0.033). There was also a relationship seen between CSF thickness and the post-operative energy requirements in patients (p = 0.039). EMG accurately predicts post-operative energy requirements and midline in SCS patients. While 29.17% of patients did not have a match between their intraoperative and post-operative midlines, EMG testing was still valuable in guiding electrode placement and providing information to predict post-operative intensities. Additionally, CSF thickness correlated with amplitude settings on the first post-operative day. © 2017 International Neuromodulation Society.

  18. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  19. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  20. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  1. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Lobato, C.; Van Geet, O.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% ofmore » the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.« less

  2. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipman, Tim; Kammen, Dan; McDonell, Vince

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence andmore » Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.« less

  3. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.

  4. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis

    PubMed Central

    Zhang, Rui; Yao, Enjian; Yang, Yang

    2017-01-01

    Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers’ route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers’ risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers’ risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system travel cost effectively when the transportation network is more reliable. PMID:28886167

  5. The impact of manual threshold selection in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan

    2017-04-01

    Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.

  6. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis.

    PubMed

    Zhang, Rui; Yao, Enjian; Yang, Yang

    2017-01-01

    Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers' route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers' risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers' risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system travel cost effectively when the transportation network is more reliable.

  7. Assessment of energy options for Liberia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-11-01

    Under funding from the U.S. Agency for International Development (USAID), the Oak Ridge National Laboratory provided energy planning assistance to the National Energy Committee of the Government of Liberia (GOL), West Africa, during a period of one year ending March 31, 1983. This report outlines the scope of activities of the joint GOL/USAID project and summarizes the major findings by Liberian and U.S. project participants. The study included and examination of current energy use by sector and fuel type, projections of future energy demands, and a preliminary evaluation of a variety of alternative energy resource and technology options for Liberia.more » The primary finding is that Liberia has significant opportunities for the substitution of indigenous energy resources for imported petroleum. The principal candidates are wood energy and hydroelectric power. The major alternatives for wood are gasification technology for small-scale electric and nonelectric applications (e.g., those under about 25-gigajoule/hour input requirements) and wood-fired steam electric generation for larger scale applications where hydroelectric power is unattractive. For major hydroelectric development the principal candidates are the St. Paul River Proposal and the Mano River Proposal. The Mano River Proposal is the smaller of the two and would meet Monrovia area electrical grid requirements and some iron ore mine demand for about the next two decades. An additional important finding of this study is that the Monrovia Petroleum refinery is highly uneconomical and should be closed and petroleum product imported directly. 25 tables.« less

  8. Energy Consumption of Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting formmore » of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.« less

  9. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.

  10. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    NASA Astrophysics Data System (ADS)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  11. Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumeyer, Charles; Goldston, Robert

    Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less

  12. Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario

    DOE PAGES

    Neumeyer, Charles; Goldston, Robert

    2016-04-28

    Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less

  13. Energetics and environmental costs of agriculture in a dry tropical region of India

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Singh, J. S.

    1992-07-01

    The present article, based on a study of five village ecosystems, assesses the energy efficiency of rain-fed agriculture in a dry tropical environment and the impact of agricultural activity on the surrounding natural ecosystems. Agronomic yield is insufficient to meet the food requirement of the human population, hence 11.5%-49.7% of the required amount of food grains are imported from the market. Energy requirements of five studied agroecosystems are subsidized considerably by the surrounding forest in the form of fodder and firewood. Natural ecosystems supply about 80%-95% of fodder needs and 81%-100% of fuelwood needs. The output-input ratio of agriculture indicated that, on average, 4.1 units of energy are expended to obtain one unit of agronomic energy. Of this, 3.9 units are supplied by the natural ecosystem. In addition, 38% of the extracted firewood is marketed. The illegal felling and lopping of trees result in ever-increasing concentric circles of forest destruction around the villages and together with excessive grazing results in savannization. The forests can be conserved by encouraging fuelwood plantations (0.7 ha/ha cultivated land) and developing village pastures (1.6 ha/ha cultivated land) and reducing the livestock numbers. Agricultural production in the region can be stabilized by introducing improved dry farming techniques such as intercropping, planned rainwater management, and adequate use of fertilizers.

  14. Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber

    DOEpatents

    DOUGHTY, FRANK C.; [et al

    2001-05-01

    A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.

  15. The Combustion Performance and Ingredient Ratio of Thermite

    NASA Astrophysics Data System (ADS)

    Jia, Shuan-zhu; Du, Shi-guo; Zhen, Jian-wei; Yang, Xin-hui

    2017-12-01

    Thermite was widely used because of its combustion properties and combustion products. However, due to the combustion heat, ignition performance, burning rate and the ratio of energy conversion of different components of thermite agent are very different. The requirements of the main realization in: (a) Its easy to ignite and not easy to extinguish; (b) Combustion and heat as much as possible High; (c) The burning speed should be appropriate. So the performance of these aspects is always being hot focus. In this paper, four aspects of the improve about combustion heat, ignition performance, burning rate and the ratio of energy conversion were analyzed through the aluminum alloy, the addition of aluminum, the addition of the third party, the change of the particle size and the compaction density. Finaly states the research direction in the future. The future of aluminum heat agent formula research focus will be: (a) A single aluminum heat agent the best proportion of the study; (b) The addition of different additives and additives (c) The exploration of alternatives that are more excellent performance will inevitably become a hot topic to improve the heat of combustion. Aluminum heat agent performance will be much superior, and the application will also be more extensive.

  16. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J; Yuldashev, B; Labov, S

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoringmore » and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.« less

  17. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  18. A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.

    PubMed

    Yun, Danim; Park, Dae Sung; Lee, Kyung Rok; Yun, Yang Sik; Kim, Tae Yong; Park, Hongseok; Lee, Hyunjoo; Yi, Jongheop

    2017-09-22

    The conversion of CO 2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO 2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO 2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (T app =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO 2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min -1 ) than that in conventional heating systems (68.4 kJ min -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma

    PubMed Central

    Inman, Denise M.; Harun-Or-Rashid, Mohammad

    2017-01-01

    Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection. PMID:28424571

  20. Energy-efficient fault tolerance in multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is investigated, where tasks' main copies are executed ASAP while backup copies ALAP to reduce the overlapped execution of main and backup copies of the same task and thus reduce energy consumption. All proposed techniques are evaluated through extensive simulations and compared with other state-of-the-art approaches. The simulation results confirm that the proposed schemes can preserve the system reliability while still achieving substantial energy savings. Finally, for both SS and POED based Energy-Efficient Fault-Tolerant (EEFT) schemes, a series of recovery strategies are designed when more than one (transient and permanent) faults need to be tolerated.

  1. Template for updating regulations in QA manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.G.; Banerjee, B.

    1992-01-01

    Recently, the U.S. Department of Energy (DOE) issued new quality assurance (QA) orders to reflect current policies for conduct and operation of DOE-authorized programs and facilities. Establishing traceability to new QA criteria and requirements from former multidraft orders, QA manuals, and guidance documentation for DOE-funded work can be confusing. Identified critical considerations still must be addressed. Most of the newly stated QA criteria can be cross referenced, where applicable, to former QA plans and manuals. Where additional criteria occur, new procedures may be required, together with revisions in QA plans and manuals.

  2. NESHAP Annual Report for CY 2015 Sandia National Laboratories Tonopah Test Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelo, Stacie

    2016-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  3. DOE requests waiver on double containment for HLW canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobsenz, G.

    1994-02-22

    The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement.

  4. Cases for Additive Manufacturing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; McLemore, Carole; Anderson, Theodore " Ted"

    2012-01-01

    There are thousands of plastic or non-structural metal components on the International Space Station (ISS), any of which could require replacing sometime between resupply missions. While these may not be life critical, it can cause significant delays to flight projects that have to wait several weeks to months to receive a key part one that could have been designed and built on-board the ISS within a few hours. A plastic deposition additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS.

  5. Improved flywheel materials :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs.more » The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).« less

  6. Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lining; Patel, Pralit L.; Yu, Sha

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less

  7. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  8. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  9. Implementing Solar PV Projects on Historic Buildings and in Historic Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Hotchkiss, E.; Walker, A.

    Many municipalities, particularly in older communities of the United States, have a large amount of historic buildings and districts. In addition to preserving these historic assets, many municipalities have goals or legislative requirements to procure a certain amount of energy from renewable sources and to become more efficient in their energy use; often, these requirements do not exempt historic buildings. This paper details findings from a workshop held in Denver, Colorado, in June 2010 that brought together stakeholders from both the solar and historic preservation industries. Based on these findings, this paper identifies challenges and recommends solutions for developing solarmore » photovoltaic (PV) projects on historic buildings and in historic districts in such a way as to not affect the characteristics that make a building eligible for historic status.« less

  10. Additive Manufacturing Consolidation of Low-Cost Water Atomized Steel Powder Using Micro-Induction Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; U

    ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less

  11. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  12. In Vivo Magnetic Stimulation of Rat Sciatic Nerve With Centimeter- and Millimeter-Scale Solenoid Coils.

    PubMed

    Kagan, Zachary B; RamRakhyani, Anil Kumar; Lazzi, Gianluca; Normann, Richard A; Warren, David J

    2016-11-01

    Previous reports of magnetic stimulation of the peripheral nervous system (PNS) used various coil geometries, all with outer diameters larger than 35 mm, and stimulation energies in the 50 J range to evoke neural excitation. Recent reports of central nervous system (CNS) activation used sub-mm-scale solenoid coils with mJ energy levels. The goal of this study was to translate the lower energy levels from the CNS to the PNS via using smaller coils placed in closer proximity to the neural tissue. Such a performance improvement would advance the state of the art of magnetic stimulation and provide a path towards new neuroprosthetic devices. Primarily, we investigated the range of coil outer diameters from 25 mm down to 5 mm to better understand the dependence of coil diameter on energy required for PNS activation. Nine cm- and mm-scale copper solenoid coils, with various resistances, inductances, inner and outer diameters, and heights were compared by quantizing neuromuscular responses to magnetic stimulation via capacitive discharge excitation of rat sciatic nerves in vivo. Additionally, the effects of stimulus duration and coil position were investigated. As opposed to prior work, this study compares a subset of stimulation parameters in an intact nerve preparation, and shows that magnetic stimulation with coils that abut the nerve is a reliable, effective method of neuromuscular stimulation. Although we observed different energies required for neuromuscular activation depending on the coil and excitation parameters used, for the experimental configuration, devices, and stimulus waveform shapes presented in this manuscript, no systematic dependence of PNS activation on coil diameter was found, even for the mm-scale coils investigated herein. However, there was a clear relationship between discharge circuit capacitance and energy required to evoke a neuromuscular response. Coils approximately 12 mm in outer diameter and larger consistently evoked responses, whereas coils 5 mm in outer diameter did not. Furthermore, we observed meaningful neuromuscular excitation when stimulating with energies as low as 20 J. Although this is an improvement over prior work, it is still orders of magnitude greater than the energy required for conventional electrical stimulation, suggesting that these devices are presently not suitable for use in an application requiring continued pulsed stimulation. Nevertheless, these devices are suitable for basic research and as clinical tools that infrequently stimulate, such as in diagnostic applications.

  13. Optimization of HTS superconducting magnetic energy storage magnet volume

    NASA Astrophysics Data System (ADS)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  14. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  15. Directory of Energy Information Administration model abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-11

    This report contains brief statements from the model managers about each model's title, acronym, purpose, and status, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. All models ''active'' through March 1987 are included. The main body of this directory is an alphabetical list of all active EIA models. Appendix A identifies major EIA modeling systems and the models within these systems, and Appendix B identifies active EIA models by type (basic, auxiliary, and developing). A basic model is one designated by the EIA Administrator as being sufficiently important to require sustained supportmore » and public scrutiny. An auxiliary model is one designated by the EIA Administrator as being used only occasionally in analyses, and therefore requires minimal levels of documentation. A developing model is one designated by the EIA Administrator as being under development and yet of sufficient interest to require a basic level of documentation at a future date. EIA also leases models developed by proprietary software vendors. Documentation for these ''proprietary'' models is the responsibility of the companies from which they are leased. EIA has recently leased models from Chase Econometrics, Inc., Data Resources, Inc. (DRI), the Oak Ridge National Laboratory (ORNL), and Wharton Econometric Forecasting Associates (WEFA). Leased models are not abstracted here. The directory is intended for the use of energy and energy-policy analysts in the public and private sectors.« less

  16. The Implications of Deep Mitigation Pathways

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.

    2016-12-01

    The 21st Conference of Parties to the UNFCCC agreement called for limiting climate change to "well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C." A climate target of 1.5°C places a stringent constraint on allowable emissions over the twenty-first century. Roegli et al. (2015) set that constraint at 200-415 GtCO2 between 2011 and 2100 for a likely chance of staying below 1.5°C in 2100. Limiting emissions to these levels requires that global emissions peak and decline over the coming decades, with net negative global emissions by mid-century. This level of decarbonization requires dramatic shifts in the energy and agricultural sectors, and comes at significant economic costs. This talk explores the effect of mitigating climate change to 1.5°C on the economy, energy system, and terrestrial system. We quantify the required deployment of various low carbon technologies, as well as the amount of existing capital that is abandoned in an effort to limit emissions. We show the shifts required in the terrestrial system, including its contribution to carbon sequestration through afforestation and bioenergy. Additionally, we show the implications of deep mitigation pathways on energy, food, and carbon prices. We contrast these results with a reference, no climate policy, world and a 2°C.

  17. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    NASA Astrophysics Data System (ADS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.

  18. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu; Pande, Rajesh S.

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition tomore » this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.« less

  19. Interaction of Technology Adoption Constraints and Multi-level Policy Coherence at the Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Laser, M.; Locke, K. A.; Kapuscinski, A. R.

    2017-12-01

    Policy- and decision-making at the food-energy-water (FEW) nexus entails additional complexities due to the multi-objective nature of FEW socio-technical systems: policies and decisions meant to improve one facet of the nexus might be less beneficial, or even detrimental, to achieving goals for other facets. In addition, implementing policies and decisions may be more difficult due to increasing coordination required among stakeholders across each nexus facet. We highlight these issues in an economic, material/energy flow, and institutional assessment of dairy farms that produce power from anaerobic digestion of cow manure. This socio-technical system is an example of an integrated food-energy system (IFES), which co-produces food and energy. In the case of dairy farms, water is also a significant consideration because cow manure, if improperly managed, can negatively impact water bodies. Our assessment asks the questions (i) of whether or not adopting an IFES improves farm resilience under potential economic and environment futures and (ii) how decisions, policies, and information can best be tailored to the FEW nexus. Our study consists of semi-structured interviews of 60 farms split between the US states of New York and Vermont, both of which have enacted policies to encourage digester adoption. Each interview asks farmers about their material and energy flows, costs, and decision-making process for adopting (or not) an anaerobic digester. In addition, farmers are asked questions about challenges and barriers they might have faced and future drivers of change. Preliminary results highlight important interactions between policy and decision-making. Foremost, an analysis of policy cohesion shows that environmental objectives cross sectors and governance levels, as state-level greenhouse gas mitigation policies interact with federal-level nutrient management policies. This form of potential policy incoherence may introduce additional problems that hinder digester adoption and operation because technology options might be constrained and information needs may be too great for farmer's to consider adopting a digester.

  20. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  1. Hot dry rock geothermal energy: A renewable energy resource that is ready for development now

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Potter, R. M.; Myers, C. W.

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  2. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.

  3. 30 CFR 285.503 - What are the rent and operating fee requirements for a commercial lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... operations term and prior to the commercial generation. (3) You must pay the rent for a project easement in addition to the lease rent, as provided in § 285.507. You must commence rent payments for your project...

  4. User Data Package (UDP) for Packaged Cogeneration Systems (PCS)

    DTIC Science & Technology

    1990-05-01

    Standards for PURPA Compliance ............ ...................... 10 1.3 Selected Commercial, Institutional, and Multi-unit Technically Feasible...percent. The Federal Energy Regulatory Commission (FERC), in accordance with Section 201 of the Public Utility Regulatory Policies Act ( PURPA ) of 1978...percent of the time the engine was running, or if 57 percent of the recovered engine heat were stored. Additional requirements for PURPA efficiency that

  5. Task 10 - technology development integration. Semi-annual report, April 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrikson, J.G.; Daly, D.J.

    1997-05-01

    The Energy and Environmental Research Center (EERC), in conjunction with the Waste Policy Institute (WPI), will identify and integrate new technologies to meet site-specific environmental management (EM) requirements at contaminated sites appropriate to U.S. Department of Energy (DOE) interests. This paper briefly reports overall progress for three activities: technology management, project management, and technology integration. Work performed over the reporting period has focused on providing logistical and administrative support. In addition, six monthly WPI reports to the EERC are included as appendices. The WPI reports contained detailed information for progress in each activity.

  6. Residential End Uses: Historical Efficiency Data and Incremental Installed Costs for Efficiency Upgrades

    EIA Publications

    2017-01-01

    The residential sector comprises equipment consuming various fuels and providing different end-use services. When replacing equipment, consumers may choose to purchase equipment that meets minimum federal equipment efficiency standards, or they may opt for higher-efficiency equipment, such as equipment that meets or exceeds ENERGY STAR® specifications. Consumers may also choose to purchase or retrofit different types of equipment, which may require additional costs (e.g., for ducts, exhaust vents, natural gas lines, or electrical connections) to install. The stock mix of equipment types, efficiency levels, and fuels consumed directly affects total residential sector energy consumption.

  7. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer.

    PubMed

    Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman

    2018-04-11

    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

  8. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  9. ANSI/ASHRAE/IES Standard 90.1-2010 Performance Rating Method Reference Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Supriya; Rosenberg, Michael I.

    This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1- 2010 (Standard 90.1-2010).The PRM is used for rating the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users of the PRM. It should be noted that this document is created independently from ASHRAE and SSPC 90.1 and is not sanctioned nor approved by either ofmore » those entities . Potential users of this manual include energy modelers, software developers and implementers of “beyond code” energy programs. Energy modelers using ASHRAE Standard 90.1-2010 for beyond code programs can use this document as a reference manual for interpreting requirements of the Performance Rating method. Software developers, developing tools for automated creation of the baseline model can use this reference manual as a guideline for developing the rules for the baseline model.« less

  10. Advanced Energy Efficient Roof System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implementmore » more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.« less

  11. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    PubMed Central

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. This technique showed that maintenance energy requirements of double-muscled Belgian Blue beef cows were close to the mean requirements of cows of other beef genotypes. Abstract Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature. PMID:26479139

  12. Cardiorespiratory costs of growth in low birth weight infants.

    PubMed

    Schulze, K; Kashyap, S; Ramakrishnan, R

    1993-02-01

    The energy cost of growth includes two components: the energy stored in new tissues and the energy expended in all energy requiring steps associated with nutrient intake and net tissue accretion. Most of the energy expended in growth is accounted for by the energy cost of tissue anabolism: peptide bonds, lipogenesis, substrate transport, etc. However, to the extent that additional work is required of the heart and lungs for growth-related increases in O2 and CO2 transport, increased energy is also expended in cardiorespiratory work. Indirect estimates of these costs can be gained by examining the effects of diet and weight gain on heart rate and respiratory frequency. We studied 66 healthy low birth weight infants, mean study weight = 2010 g, fed constant intakes of protein (2.25-3.9 g/kg per day) and energy (100-150 kcal/kg per day). These diets led to rates of weight gain ranging from 13.9 to 21.7 g/kg per day, among the diet groups. Bi-weekly 6-h assessments of energy expenditure, heart rate, respiratory frequency and state of sleep were made after full enteral intake was achieved. After adjustment of heart rate for the effect of postnatal age, heart rate during active sleep was related to weight gain (y = 0.97 x + 144, r2 = 0.15), nitrogen-energy ratio of the diet (y = 5.9 x + 139,2 r2 = 0.22), and energy expenditure (y = 0.53 x + 129, r2 = 0.13). Multiple regression analysis revealed that age-adjusted heart rate during active and quiet sleep was significantly related to a combination of the same three variables (r2 = 0.31).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.

    PubMed

    Raman, E Prabhu; Lakkaraju, Sirish Kaushik; Denny, Rajiah Aldrin; MacKerell, Alexander D

    2017-06-05

    Accurate and rapid estimation of relative binding affinities of ligand-protein complexes is a requirement of computational methods for their effective use in rational ligand design. Of the approaches commonly used, free energy perturbation (FEP) methods are considered one of the most accurate, although they require significant computational resources. Accordingly, it is desirable to have alternative methods of similar accuracy but greater computational efficiency to facilitate ligand design. In the present study relative free energies of binding are estimated for one or two non-hydrogen atom changes in compounds targeting the proteins ACK1 and p38 MAP kinase using three methods. The methods include standard FEP, single-step free energy perturbation (SSFEP) and the site-identification by ligand competitive saturation (SILCS) ligand grid free energy (LGFE) approach. Results show the SSFEP and SILCS LGFE methods to be competitive with or better than the FEP results for the studied systems, with SILCS LGFE giving the best agreement with experimental results. This is supported by additional comparisons with published FEP data on p38 MAP kinase inhibitors. While both the SSFEP and SILCS LGFE approaches require a significant upfront computational investment, they offer a 1000-fold computational savings over FEP for calculating the relative affinities of ligand modifications once those pre-computations are complete. An illustrative example of the potential application of these methods in the context of screening large numbers of transformations is presented. Thus, the SSFEP and SILCS LGFE approaches represent viable alternatives for actively driving ligand design during drug discovery and development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows.

    PubMed

    Fiems, Leo O; De Boever, Johan L; Vanacker, José M; De Campeneere, Sam

    2015-02-13

    Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW(0.75)/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature.

  15. A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark

    2018-06-01

    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.

  16. NUNOA: a computer simulator of individuals, families, and extended families of the high-altitude Quechua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.C.; Weinstein, D.A.; Shugart, H.H.

    1980-10-01

    The Quechua Indians of the Peruvian Andes are an example of a human population which has developed special cultural adaptations to deal with hypocaloric stress imposed by a harsh environment. A highly detailed human ecosystem model, NUNOA, which simulates the yearly energy balance of individuals, families, and extended families in a hypothetical farming and herding Quechua community of the high Andes was developed. Unlike most population models which use sets of differential equations in which individuals are aggregated into groups, this model considers the response of each individual to a stochastic environment. The model calculates the yearly energy demand formore » each family based on caloric requirements of its members. For each family, the model simulates the cultivation of seven different crops and the impact of precipitation, temperature, and disease on yield. Herding, slaughter, and market sales of three different animal species are also simulated. Any energy production in excess of the family's energy demand is placed into extended family storage for possible redistribution. A family failing to meet their annual energy demand may slaughter additional herd animals, temporarily migrate from the community, or borrow food from the extended family storage. The energy balance is used in determining births, deaths, marriages, and resource sharing in the Indian community. In addition, the model maintains a record of each individual's ancestry as well as seven genetic traits for use in tracing lineage and gene flow. The model user has the opportunity to investigate the effect of changes in marriage patterns, resource sharing patterns, or subsistence activities on the ability of the human population to survive in the harsh Andean environment. In addition, the user may investigate the impact of external technology on the Indian culture.« less

  17. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    NASA Astrophysics Data System (ADS)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  18. Bakken, Three Forks largest continuous US oil accumulation

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2013-01-01

    The recent reversal of the declining trend of US oil production is largely due to production from unconventional or "continuous" low-permeability reservoirs by use of multistage hydraulic fracturing of horizontal legs of exploration wells. The US currently produces about 7.4 million bo/d, and the increasing trend in domestic production has led to speculation that the US could become energy independent in oil in the near future.The US still imports an additional 11 million bo/d to meet consumption requirements).1 Critical to the discussion of energy independence are estimates of resources contained in low-porosity and low-permeability (or "tight") continuous oil and gas accumulations, which have formed a critical component of national energy policies in recent years.

  19. A PSFI-based analysis on the energy efficiency potential of China’s domestic passenger vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Ren, Huanhuan; Zhao, Dongchang

    2017-01-01

    In this article, China’s domestic passenger vehicles (excluding new energy vehicles) are categorized into two groups: local brand vehicles and vehicles manufactured by joint ventures. Performance-Size-Fuel economy Index (PSFI) will be applied to analyse the speed of technical progress and the future trends of these vehicles. In addition, a forecast on energy efficiency potential of domestic passenger vehicles from 2016 to 2020 will be made based on different Emphasis on Reducing Fuel Consumption (ERFC) scenarios. According to the study, if the process of technical progress continues at its current speed, domestic ICE passenger vehicles will hardly meet Phase IV requirements by 2020 even though companies contribute as much technical progress to fuel consumption reduction as possible.

  20. Dish concentrators for solar thermal energy - Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  1. Good news on skylight performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.

    1983-02-01

    The effects of skylights on heating, cooling and lighting loads are examined using both winter and summer energy analysis. It is concluded that, in mild climates, skylights can save energy in summer and winter; in colder and cloudier climates, there may be a loss of energy in the winter but a savings in summer. The optimum skylight area is discussed for home and commercial applications. Glazing options (single, double, or triple), heat loss, air leakage, and condensation control are considered as well as ratio of glazing area to roof opening area, installation requirements, operation, and cleaning. An example skylight analysismore » is carried out for a Safeway supermarket in Tempe, Arizona. A list of skylight manufacturers and a source of additional information are provided. (MJJ)« less

  2. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  3. Energy scavenging sensors for ultra-low power sensor networks

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  4. ISO 50001 for US Commercial Buildings - Current Status and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingjing; Sheaffer, Paul

    ''ISO 50001: 2011 Energy management systems – Requirements with guidance for use'' is a voluntary International Standard which provides organizations a proven framework to manage energy and continuously improve their energy performance. Implementing ISO 50001 in the commercial building sector has its unique opportunities and challenges in comparison with the industrial sector. The energy footprint of a portfolio of commercial buildings can be just as significant as a large industrial facility in comparison. There are many energy-saving opportunities in commercial buildings that can be addressed without capital investments, and the perceived risks for making energy improvements can be lower thanmore » in the industrial sector. In addition, the energy-consuming systems in commercial buildings are limited in types and have many similarities across buildings, which makes it much easier to standardize many ISO 50001 required processes, 5 procedures and documents to simplify implementation. There are also some sector-unique challenges, such as less familiar with ISO systems and the certification process. Another challenge arises from the complexity in some buildings’ ownership, tenancy, and O&M responsibilities. This whitepaper discusses these opportunities and issues in detail. The paper also recommends the characteristics of organizations in the commercial building sector that can benefit the most from adopting the ISO 50001 standard – namely the “suitable market”. Eight segments (education, food sales, retail, inpatient health care, hospitality, office buildings, laboratories and data centers) within the commercial building sector are highlighted.« less

  5. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  6. Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Department is required by Section 365(c) of Title 3, Part C, of the Energy Policy and Conservation Act (EPCA), 42 U.S.C. 6321-6327, as amended by Title 4, Part B of the Energy Conservation and Production Act (ECPA), to report annually to the President and the Congress on the operation of the State Energy Conservation Program. The report is to include an estimate of the energy conservation achieved, and the degree of state participation and achievement as well as a description of innovative conservation programs undertaken by individual states. Together the EPCA and the ECPA constitute the State Energy Conservationmore » Program (SECP) which has provided the states (any one of the 50 states, the District of Columbia, Puerto Rico, and the Territories and possessions of the United States) with funding to help establish and maintain their capability to plan, design, implement and coordinate a variety of programs and initiatives designed to promote energy conservation and efficiency at state and local levels. All states have operational programs funded under EPCA (no monies have been appropriated under ECPA since FY 1981). In addition, the majority of states have augmented the SECP with oil overcharge funding they have received over the past several years. Each state is required to provide a twenty-percent match for the Federal funds received, and its Base Plan must include the following program measures: (1) mandatory lighting efficiency standards for state public buildings; (2) programs to promote the availability and use of carpool, vanpool, and public transportation; (3) mandatory standards and policies relating to energy efficiency to govern the state procurement practices; (4) mandatory thermal efficiency standards and insulation requirements for new and renovated buildings; and (5) a traffic law or regulation, which permits the operator of a motor vehicle to turn right at a red stop light after stopping. 6 tabs.« less

  7. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gueymard, Christian

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar powermore » plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.« less

  8. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.

    2011-11-01

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the ℓ-summed extended-Wong model of Gupta and collaborators (2009) [1] under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional "barrier modification" effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from 48Ca + 238U, 244Pu, and 248Cm reactions and to fusion-evaporation cross-sections from 58Ni + 58Ni, 64Ni + 64Ni, and 64Ni + 100Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced ℓ-values at below-barrier energies, the near-barrier data point of 48Ca + 248Cm reaction could not be fitted to ℓ-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing "modifications of the barrier", for the best fit to data at all incident center-of-mass energies E's, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of the periodic table. Note that more than one Skyrme force (with identical barrier characteristics) could equally well fit the same data.

  9. Analysis of energy requirement in the irrigation sector and its application in groundwater over-pumping control at a local scale - A case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.

    2017-12-01

    The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.

  10. Effect of calcium formate as an additive on desulfurization in power plants.

    PubMed

    Li, Zhenhua; Xie, Chunfang; Lv, Jing; Zhai, Ruiguo

    2018-05-01

    SO 2 in flue gas needs to be eliminated to alleviate air pollution. As the quality of coal decreases and environmental standard requirements become more stringent, the high-efficiency desulfurization of flue gas faces more and more challenges. As an economical and environmentally friendly solution, the effect of calcium formate as an additive on desulfurization efficiency in the wet flue gas desulfurization (WFGD) process was studied for the first time. Improvement of the desulfurization efficiency was achieved with limited change in pH after calcium formate was added into the reactor, and it was found to work better than other additives tested. The positive effects were further verified in a power plant, which showed that adding calcium formate could promote the dissolution of calcium carbonate, accelerate the growth of gypsum crystals and improve the efficiency of desulfurization. Thus, calcium formate was proved to be an effective additive and can potentially be used to reduce the amount of limestone slurry required, as well as the energy consumption and operating costs in industrial desulfurization. Copyright © 2017. Published by Elsevier B.V.

  11. Lithium-Sulfur Capacitors.

    PubMed

    Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul

    2018-02-21

    Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg -1 and power densities of 72.2-4097.3 W kg -1 , which are the highest reported values for an asymmetric system to date. This approach involved the use of a prelithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

  12. Energy taxes fought by industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, R.

    1993-02-10

    Tax talk is heating up in Washington, and industry interests are beating the drum against any and all energy tax proposals. Without offering any details, Treasury Secretary Lloyd Bentsen has placed a broad-based energy tax on the table. American Petroleum Institute (API) president Charles J. DiBona says such a tax would damage the US economy just as it is beginning to recover. He acknowledges the deficit is a national problem, but says if any additional tax is required it should be a broad-based consumption tax such as a European-style value-added tax, a view shared by the Chemical Manufacturers Association (CMA).more » DiBona says taxes aimed only at energy would hurt consumers, damage the international competitiveness of US industry by raising energy prices, and raise the costs of doing business. National Association of Manufacturers president Jerry Jasinowski adds that broadbased energy taxes are really taxes on industrial production that will harm US made goods both at home and abroad.« less

  13. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    PubMed

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Impact localization and energy quantification based on the power flow: A low-power requirement approach

    NASA Astrophysics Data System (ADS)

    Guyomar, Daniel; Lallart, Mickaël; Petit, Lionel; Wang, Xing-Jun

    2011-06-01

    The increasing use of composite materials has led to a dramatic change in the definition of safety standards. In particular, composite structures may be subjected to internal damages caused by external impacts that may not be detected by classical inspection methods. Additional constraints related to energy requirements may also be considered in order to make the system autonomous and possibly self-powered. The purpose of this paper is to present a low-cost impact detection and quantification scheme for thin plates or shells giving the whole history of the structure solicitation. Based on the analysis of the energy that has flown over a monitored area through the use of the elastic Poynting vector (that relates the mechanical power density of travelling waves), it is shown that this global energy balance may be linked in a simple way to the voltage output of piezoelectric elements in open-circuit condition. From this estimation, it is therefore possible to detect if an impact occurred inside the monitored area (in this case, the global energy balance would be positive) as well as its associated energy. If the impact occurs out of the frame, the global energy (and thus the obtained estimator) would be negative because of energy dissipation caused by internal losses and almost null. Thanks to this energy flow approach, the system is also independent from the boundary conditions of the structure. Experimental measurements aiming at validating the theoretical predictions showed that the technique permits detecting the impact area (inside/outside the frame) as well as an accurate estimation of the impact energy if the latter occurred inside the frame, both on a steel plate (with different boundary conditions) and an anisotropic composite structure.

  15. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  16. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  17. Energy and Water Resources in a Changing Climate: Towards Adaptation Options in Colorado and the Western US

    NASA Astrophysics Data System (ADS)

    Averyt, K. B.; Pulwarty, R. S.; Udall, B.

    2008-12-01

    Greater energy demands are driving development of domestic energy resources and advancement of fossil- fuel independent energy technologies. However, water is necessary for most energy production. Greenhouse gas emissions are increasing global temperatures, impacting the quality and quantity of water resources. Warming temperatures are also altering the timing and nature of energy demand. As water is necessary for energy production, and energy is needed for the water supply, climate change will further exacerbate the interplay between these two sectors and create additional challenges in adaptive planning. The geology of Colorado is such that it has both carbon (oil shale, coal, coal-bed methane) and non-fossil-fuel (geothermal, winds) energy resources. There is an increasing need to develop these resources, but the impact on the region's water supply is often neglected, as is the energy required to support the water infrastructure. The Western US is prone to drought, and Colorado has experienced periodic drought throughout the observational record. Temperatures in Colorado have risen by about 1°C in the past 30 years, and are projected to increase an additional 2°C by 2050. Precipitation is highly variable and will continue to be in the future, but more severe and persistent droughts are anticipated. To investigate the impact of climate change on the energy-water nexus, in order to evaluate the information necessary to undertake more comprehensive regional impact and adaptation studies, the energy intensity of Colorado's water systems, and water usage by energy sector, are presented. The interdependence of water and energy necessitates that scientists work with decision-makers and consider both sectors when developing climate adaptation strategies. This work represents initial efforts towards a more comprehensive, collaborative analysis of climate change impacts on water and energy supply in support of adaptive management approaches in the Western US.

  18. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingersoll, Daniel T

    2007-01-01

    Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less

  19. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    PubMed

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  20. Development of a water-jet assisted laser paint removal process

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

Top