Science.gov

Sample records for additional experiments conducted

  1. Conducting Miller-Urey Experiments

    NASA Technical Reports Server (NTRS)

    Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

  2. Conducting Miller-Urey Experiments

    PubMed Central

    Parker, Eric T.; Cleaves, James H.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Zhou, Manshui; Bada, Jeffrey L.; Fernández, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments. PMID:24473135

  3. Conducting plant experiments in space.

    PubMed

    Kiss, John Z

    2015-01-01

    The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, the present chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. The author has been a principal investigator on six spaceflight projects and has another two space experiments in development. These experiences include using the US Space Shuttle, the former Russian space station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turnaround of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, and data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Finally, lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants.

  4. 20 CFR 655.46 - Additional employer-conducted recruitment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... limited to where the job opportunity is located in an Area of Substantial Unemployment. (b) Nature of the... contact with State One-Stop Career Centers, and other print advertising, such as using a professional... likely to apply for the job opportunity. (c) Proof of the additional employer-conducted recruitment....

  5. 20 CFR 655.46 - Additional employer-conducted recruitment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... limited to where the job opportunity is located in an Area of Substantial Unemployment. (b) Nature of the... contact with State One-Stop Career Centers, and other print advertising, such as using a professional... likely to apply for the job opportunity. (c) Proof of the additional employer-conducted recruitment....

  6. 20 CFR 655.46 - Additional employer-conducted recruitment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... limited to where the job opportunity is located in an Area of Substantial Unemployment. (b) Nature of the... contact with State One-Stop Career Centers, and other print advertising, such as using a professional... likely to apply for the job opportunity. (c) Proof of the additional employer-conducted recruitment....

  7. The thermal conductivity of silicon nitride with molybdenum disilicide additions

    SciTech Connect

    Beecher, S.C.; Dinwiddie, R.B.; Abeel, A.M.; Lowden, R.A.

    1993-12-31

    Room-temperature thermal conductivity has been measured for a series of silicon nitride (Si{sub 3}N{sub 4}) matrix composites with molybdenum disilicide (MoSi{sub 2}) additions of 2, 5 10, 25 and 50 wt. %. Included in these measurements were a pure MoSi{sub 2} sample and a Si{sub 3}N{sub 4} sample containing only sintering aids. Aluminum oxide (Al{sub 2}O{sub 3}) and yttrium oxide (Y{sub 2}O{sub 3}) were added as the sintering aids, at approximately 6 and 2 respectively. When the amount of MoSi{sub 2} was increased to greater than 10 wt. %, the amount of the sintering aids necessary to densify the composite was decreased. No sintering aids were added to the pure MoSi{sub 2} sample. Thermal conductivities of the Si{sub 3}N{sub 4} sample without MoSi{sub 2} and the pure MoSi{sub 2} sample wee 36 W/m.K and 52 W/m.K respectively, which agree very well with the literature values for similar materials. No statistically significant changes were observed in the thermal conductivity for those samples containing up to 10 wt. % MoSi{sub 2}. However, between 10 and 25 wt. % MoSi{sub 2} there was a dramatic decrease in the thermal conductivity from 37 to 20.9 W/m.K. The thermal conductivity then increased steadily with further additions of MoSi{sub 2} up to 52 W/m.K for the pure MoSi{sub 2} specimen.

  8. Data on conducting the SAMEX-76 experiment

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The compilation of data on conducting the SAMEX-76 experiment is reported. This report includes many tables and graphs of the aircraft's flights and its measurements. Also given is the operation time of this equipment and the many observations that have been made by the Scientific Research Ship Akademik Korolev.

  9. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  10. Cell biology experiments conducted in space

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  11. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    . In addition, once the free energy profile becomes available the full current-voltage dependence can be readily obtained. For both channels we carried out calculations using both approaches. We also tested the main assumptions underlying the diffusive model, such as uncorrelated nature of individual crossing events and Fickian diffusion. The accuracy and consistency of different methods will be discussed. Finally we will discuss how comparisons between calculated and measured ionic conductance and selectivity of transport can be used for determining structural models of the channels.

  12. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  13. Tin nanoparticles as an effective conductive additive in silicon anodes

    PubMed Central

    Zhong, L.; Beaudette, C.; Guo, J.; Bozhilov, K.; Mangolini, L.

    2016-01-01

    We have found that the addition of tin nanoparticles to a silicon-based anode provides dramatic improvements in performance in terms of both charge capacity and cycling stability. Using a simple procedure and off-the-shelf additives and precursors, we developed a structure in which the tin nanoparticles are segregated at the interface between the silicon-containing active layer and the solid electrolyte interface. Even a minor addition of tin, as small as ∼2% by weight, results in a significant decrease in the anode resistance, as confirmed by electrochemical impedance spectroscopy. This leads to a decrease in charge transfer resistance, which prevents the formation of electrically inactive “dead spots” in the anode structure and enables the effective participation of silicon in the lithiation reaction. PMID:27484849

  14. A Guide for Conducting Outdoor Field Experiences.

    ERIC Educational Resources Information Center

    Matthews, Bruce; And Others

    Since research indicates teachers generally lack confidence in their ability to conduct lessons in the outdoors and feel inadequate regarding knowledge of the natural world, this guide has been developed to build teacher confidence in utilizing the outdoors. Designed to be used in conjunction with a practicum workshop, this guide presents…

  15. Payload specialists Patrick Baudry conducts equilibrium experiments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialists Patrick Baudry participates in an experiment involving equilibrium and vertigo. He is anchored to the orbiter floor by foot restraints and is wearing a device over his eyes to measure angular head movement and up and down eye movement.

  16. Psychiatric Residents' Experience Conducting Disability Evaluations

    ERIC Educational Resources Information Center

    Christopher, Paul P.; Boland, Robert J.; Recupero, Patricia R.; Phillips, Katharine A.

    2010-01-01

    Objective: The increasing frequency and societal cost of psychiatric disability underscore the need for accuracy in evaluating patients who seek disability benefits. The authors investigated senior psychiatric residents' experiences performing disability evaluations, their self-assessment of competence for this task, and whether they perceived a…

  17. MS Musgrave conducts CFES experiment on middeck

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission Specialist (MS) Musgrave readies biological sample plate for insertion into Continuous Flow Electrophoresis System (CFES) fluid systems opens biological sample compartment on fluid systems module and documents experiment progress at separation column with 35mm camera. CFES is located on middeck in the galley position (port side wall) with control panel ML86B and water dispenser appearing on the right.

  18. Scientists conduct largest coastal experiment on record

    NASA Astrophysics Data System (ADS)

    Wakefield, Julie

    Duck, N.C.—Something out of the ordinary has been happening near this quiet, resort town on the Outer Banks. More than 100 coastal scientists, students, and technicians have descended on the Army Corps of Engineer's Waterways Experiment Station primarily to study movement of sediment in the surf zone. In fact, a large percentage of the U.S. near-shore research community has flooded the Duck area to execute the largest coastal experiment ever undertaken. The researchers have brought with them more than 80 computers and an array of exotic gadgets to carry out “DUCK94,” an unprecedented project that has been three years in the making.

  19. Using psyscope to conduct IAT experiments on Macintosh computers.

    PubMed

    Borton, Jennifer L S; Aokes, Mark A; Van Wyk, Margaret E; Zink, Tyler A

    2007-11-01

    The Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) is one of the most widely used tools for assessing implicit attitudes. To date, most IAT experiments have been run using Inquisit, a PC-based program. In the present article, we describe a method for conducting IAT experiments using PsyScope, a free, downloadable, Macintosh-based program (see Bonatti, n.d., for the OS X version; Cohen, MacWhinney, Flatt, & Provost, 1993, for the OS 9 version). In addition, we explain how data can be imported into SPSS for analysis. Preliminary results indicate that, in comparison with the PC version of the IAT, the Macintosh version provides similar sensitivity in measuring implicit self-esteem. Our PsyScope script and SPSS syntax may be downloaded from www.psychonomic.org/archive.

  20. Polymer Photooxidation: An Experiment to Demonstrate the Effect of Additives.

    ERIC Educational Resources Information Center

    Allen, Norman S.; McKellar, John F.

    1979-01-01

    This undergraduate experiment shows that the inclusion of an appropriate additive can have a very marked effect on the physical properties of a polymer. The polymer used is polypropylene and the additives are 2-hydroxy-4-octyloxy-benzophenone and benzophenone. (BB)

  1. Lessons Learned from Experiments Conducted on Radar Data Management System

    DTIC Science & Technology

    1994-06-01

    Element Number I Project No. Task -- Work Unit Accession No. 11 Title (Include Security Classification) LESSONS LEARNED FROM EXPERIMENTS CONDUCTED ON...firmly established, an analysis of the experiment can be conducted. The experimental plan and report will be analyzed in Chapter III . 16 III . ANALYSIS...equipped with an ATS and when not, are expected. However, whether or not the ATS eliminates valid air targets remains to be seen. 23 iii 4) :4 I... U C

  2. Analysis of Microgravity Experiments Conducted on the Apollo Spacecraft

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) discusses the microgravity experiments carried out during the later missions of the Apollo program. Microgravity experiments took place during the Apollo 14, 16, and 17 missions and consisted of four experiments in various materials processing concentrations with two of the four experiments taking place over the course of two missions. Experiments consist of composite casting, electrophoresis, heat flow and convection, and liquid transfer. This TM discusses the background, the workup, execution, and results of each experiment. In addition, the historical significance of each experiment to future applications/NASA programs is discussed.

  3. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  4. Conducting a Teaching Experiment with a Gifted Student

    ERIC Educational Resources Information Center

    Hekimoglu, Serkan

    2004-01-01

    In this study, the teaching experiment methodology is used to observe firsthand a gifted student's mathematical learning and reasoning. A series of teaching experiments was conducted with 1 gifted and 1 average 7th-grade student to investigate how the gifted student's mathematical concepts and operation constructions differed from those of the…

  5. EPA to Conduct Additional Investigations in Grenada, Miss. to Guide Cleanup of Grenada Manufacturing, LLC Site

    EPA Pesticide Factsheets

    ATLANTA - Beginning Monday, April 11, 2016, the U.S. Environmental Protection Agency (EPA) will conduct a site investigation at the former Grenada Manufacturing, LLC facility (now Grenada Stamping), followed by additional sampling in the adjacent Ea

  6. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; de Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-03-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS.

  7. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  8. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  9. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  10. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  11. Effects of an additional dimension in the Young experiment

    SciTech Connect

    Barros, Allan Kardec

    2015-09-15

    The results of the Young experiment can be analyzed either by classical or Quantum Physics. The later one though leads to a more complete interpretation, based on two different patterns that appear when one works either with single or double slits. Here we show that the two patterns can be derived from a single principle, in the context of General Relativity, if one assumes an additional spatial dimension to the four known today. The found equations yield the same results as those in Quantum Mechanics.

  12. Graphene as conductive additives in binderless activated carbon electrodes for power enhancement of supercapacitor

    NASA Astrophysics Data System (ADS)

    Nor, N. S. M.; Deraman, M.; Suleman, M.; Norizam, M. D. M.; Basri, N. H.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Othman, M. A. R.; Shamsudin, S. A.; Omar, R.

    2016-11-01

    Carbon based supercapacitor electrodes from composite of binderless activated carbon and graphene as a conductive additive were fabricated with various amount of graphene (0, 2, 4, 6, 8 and 10 wt%). Graphene was mixed in self-adhesive carbon grains produced from pre-carbonized powder derived from fibers of oil palm empty fruit bunches and converted into green monoliths (GMs). The GMs were carbonized (N2) and activated (CO2) to produce activated carbon monoliths (ACMs) electrodes. Porosity characterizations by nitrogen adsorption-desorption isotherm method shows that the pore characteristics of the ACMs are influenced by the graphene additive. The results of galvanostatic charge-discharge tests carried out on the supercapacitor cells fabricated using these electrodes shows that the addition of graphene additive (even in small amount) decreases the equivalent series resistance and enhances the specific power of the cells but significantly lowers the specific capacitance. The supercapacitor cell constructed with the electrode containing 4 wt % of graphene offers the maximum power (175 W kg-1) which corresponds to an improvement of 55%. These results demonstrate that the addition of graphene as conductive additive in activated carbon electrodes can enhance the specific power of the supercapacitor.

  13. Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2009-06-01

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  14. Test of the additivity principle for current fluctuations in a model of heat conduction.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2009-06-26

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  15. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  16. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  17. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  18. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  19. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  20. Progress photograph of sample experiments being conducted with lunar material

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A progress photograph of sample experiments being conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory with lunar material brought back to Earth by the crew of the Apollo 11 mission. Aseptic cultures of liverwort (marchantia polymorpha) - a species of plant commonly found growing on rocks or in wooded areas - are shown in two rows of sample containers. Seven weeks or some 50 days prior to this photograph 0.22 grams of finely ground lunar material was added to each of the upper samples of cultures. The lower cultures were untreated, and a noted difference can be seen in the upper row and the lower one, both in color and size of the culture.

  1. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  2. Thermal conductivity of cast iron: Models and analysis of experiments

    NASA Astrophysics Data System (ADS)

    Helsing, Johan; Grimvall, Göran

    1991-08-01

    Cast iron can be viewed as a composite material. We use effective medium and other theories for the overall conductivity of a composite, expressed in the conductivities, the volume fractions, and the morphology of the constituent phases, to model the thermal conductivity of grey and white cast iron and some iron alloys. The electronic and the vibrational contributions to the conductivities of the microconstituents (alloyed ferrite, cementite, pearlite, graphite) are discussed, with consideration of the various scattering mechanisms. Our model gives a good account of measured thermal conductivities at 300 K. It is easily extended to describe the thermal conductivity of other materials characterized by having several constituent phases of varying chemical composition.

  3. Software reliability: Additional investigations into modeling with replicated experiments

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Schotz, F. M.; Skirvan, J. A.

    1984-01-01

    The effects of programmer experience level, different program usage distributions, and programming languages are explored. All these factors affect performance, and some tentative relational hypotheses are presented. An analytic framework for replicated and non-replicated (traditional) software experiments is presented. A method of obtaining an upper bound on the error rate of the next error is proposed. The method was validated empirically by comparing forecasts with actual data. In all 14 cases the bound exceeded the observed parameter, albeit somewhat conservatively. Two other forecasting methods are proposed and compared to observed results. Although demonstrated relative to this framework that stages are neither independent nor exponentially distributed, empirical estimates show that the exponential assumption is nearly valid for all but the extreme tails of the distribution. Except for the dependence in the stage probabilities, Cox's model approximates to a degree what is being observed.

  4. Conducting focus groups cross-culturally: experiences with Pacific northwest Indian people.

    PubMed

    Strickland, C J

    1999-06-01

    Many disciplines have used focus groups in research and the use has increased in the past 15 years (Smith, 1995). Procedural concerns have been explored, such as the selection of the participants, the location, and the size of the group, but little attention has been given to the consideration of cultural influences. The purpose of this paper is to focus attention on the impact of culture in conducting focus groups. Experiences from 15 focus groups conducted in two qualitative research studies with two Washington state Indian tribes over a 5 year period are presented and illustrate the importance of culture in conducting focus groups. Communication patterns, roles, relationships, and traditions were found to be important elements that must be considered in conducting focus groups cross-culturally. While some strategies discovered were found to be helpful, additional research is needed.

  5. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation.

    PubMed

    Cho, Hyun Woo; Kim, Sang Won; Kim, Jeongmin; Kim, Un Jeong; Im, Kyuhyun; Park, Jong-Jin; Sung, Bong June

    2016-05-21

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs upon uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.

  6. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  7. How to Conduct Clinical Qualitative Research on the Patient's Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    From a perspective of patient-centered healthcare, exploring patients' (a) preconceptions, (b) treatment experiences, (c) quality of life, (d) satisfaction, (e) illness understandings, and (f) design are all critical components in improving primary health care and research. Utilizing qualitative approaches to discover patients' experiences can…

  8. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    SciTech Connect

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  9. Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives

    NASA Astrophysics Data System (ADS)

    Nasani, Narendar; Pukazhselvan, D.; Kovalevsky, Andrei V.; Shaula, Aliaksandr L.; Fagg, Duncan P.

    2017-01-01

    Owing to their high stability and good bulk proton conductivity yttrium doped barium zirconate-based materials are considered as potential electrolytes for protonic ceramic fuel cell applications. Nonetheless, their refractory nature leads to problematic densification that can necessitate the addition of sintering additives. While these additives assist processing, undesirable, strong, negative impacts on proton conductivity have been regularly reported. The current work assesses the potential sintering additives NiO, BaNiOx and BaY2NiO5 and their influence on subsequent electrochemical properties of BaZr0.85Y0.15O3-δ. All sintering additives allow dense electrolyte materials (>95%) to be formed at temperatures below 1450 °C, with enhanced grain growth; with the largest grain growth being offered by the BaNiOx additive. Degradation in overall electrical performances is shown to be bulk related, corresponding to large reductions in bulk conductivity up to two orders of magnitude, whilst grain boundary conductivities are less affected. Most importantly, the current article demonstrates that these high depletions in bulk proton conductivity can be effectively inverted by redox cycling in relatively mild conditions (750 °C, cycling from N2 to H2 and back to N2), opening the way to improve processing of these materials whilst maintaining high levels of proton conductivity.

  10. Astronaut Mike Fincke Conducts Fluid Merging Viscosity Measurement (FMVM) Experiment

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  11. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  12. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  13. HOW WELL ARE HYDRAULIC CONDUCTIVITY VARIATIONS APPROXIMATED BY ADDITIVE STABLE PROCESSES? (R826171)

    EPA Science Inventory

    Abstract

    Analysis of the higher statistical moments of a hydraulic conductivity (K) and an intrinsic permeability (k) data set leads to the conclusion that the increments of the data and the logs of the data are not governed by Levy-stable or Gaussian dis...

  14. An electrical conductivity method for measuring the effects of additives on effective diffusivities in Portland cement pastes

    SciTech Connect

    Kyi, A.A. ); Batchelor, B. . Civil Engineering)

    1994-01-01

    Effective diffusivities are important in describing corrosion and leaching of contaminants in cementitious systems. An electrical conductivity procedure has been used to measure the effective diffusivities of compounds in cementitious systems containing the additives fly ash, silica fume, sodium silicate and bentonite. Silica fume was the most effective additive in reducing the effective diffusivity, but fly ash was the most cost effective. Diffusivities that have been measured with techniques that rely on flux of a compound through the solid were generally lower than those measured with the electrical conductivity procedure. Porosity and bulk density are not well correlated with effective diffusivity in systems containing additives.

  15. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses

    SciTech Connect

    Khasa, S. Dahiya, M. S.; Agarwal, A.

    2014-04-24

    The DC Conductivity and Differential Thermal Analysis of glasses with composition (30−x)Li{sub 2}O⋅xV{sub 2}O{sub 5}⋅20Bi{sub 2}O{sub 3}⋅50B{sub 2}O{sub 3}(x=15, 10, 5) has been carried out in order to study the effect of replacing the Transition Metal Oxide (TMO) with alkali oxide. A significant increase in the DC conductivity has been observed with increase in alkali content. Again the thermal measurements have shown the decrease in both glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). The Glass Stability (GS) and Glass Forming Ability (GFA) have also been calculated and these also were found to decrease with increase in alkali oxide content at the cost of TMO.

  16. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  17. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  18. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  19. Calcium-activated conductance in skate electroreceptors: current clamp experiments.

    PubMed

    Clusin, W T; Bennett, M V

    1977-02-01

    When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa.

  20. Investigating the Effects of Conductivity on Zone Overlap with EMMA: Computer Simulation and Experiment

    PubMed Central

    Stahl, John W.; Catherman, Adam D.; Sampath, Ranasinghe K.; Seneviratne, Aravinda C.; Strein, Timothy G.

    2012-01-01

    In this paper we demonstrate, using both experiment and simulation, how sample zone conductivity can affect plug-plug mixing in small molecule applications of electrophoretically mediated microanalysis (EMMA). The effectiveness of in-line mixing, which is driven by potential, can vary widely with experimental conditions. Using two small molecule systems, the effects of local conductivity differences between analyte plugs, reagent plugs and the background electrolyte on EMMA analyses are examined. Simul 5.0, a dynamic simulation program for capillary electrophoresis (CE) systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analyses for (i) creatinine determination via the Jaffe reaction, a reaction involving a neutral and an anion, and (ii) the redox reaction between gallate and dichloroindophenol (DCIP), two anions. Low sample conductivity, which is widely used in CE analyses, can be detrimental for in-line reactions involving a neutral reactant, as rapid migration of the ionic component across a low conductivity neutral zone results in poor reagent plug overlap, and low reaction efficiency. Conversely, with two similarly charged reagents, a low conductivity sample plug is advantageous, as it allows field-amplified stacking of the reagents into a tight reaction zone. In addition, the complexity of simultaneously overlapping three reagent zones is considered, and experimental results validate the predictions made by the simulation. The simulations, however, do not appear to predict all of the observed experimental behavior. Overall, by combining experiment with simulation, an enhanced appreciation for the local field effects in EMMA is realized, and general guidelines for an advantageous sample matrix can be established for categories of EMMA analyses. PMID:21563180

  1. Investigating the effects of conductivity on zone overlap with EMMA: computer simulation and experiment.

    PubMed

    Stahl, John W; Catherman, Adam D; Sampath, Ranasinghe K; Seneviratne, C Aravinda; Strein, Timothy G

    2011-06-01

    In this paper, we demonstrate, using both experiment and simulation, how sample zone conductivity can affect plug-plug mixing in small molecule applications of electrophoretically mediated microanalysis (EMMA). The effectiveness of in-line mixing, which is driven by potential, can vary widely with experimental conditions. Using two small molecule systems, the effects of local conductivity differences between analyte plugs, reagent plugs and the BGE on EMMA analyses are examined. Simul 5.0, a dynamic simulation program for CE systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analyses for (i) creatinine determination via the Jaffe reaction, a reaction involving a neutral and an anion, and (ii) the redox reaction between gallate and 2,6-dichloroindophenol, two anions. Low sample conductivity, which is widely used in CE analyses, can be detrimental for in-line reactions involving a neutral reactant, as rapid migration of the ionic component across a low conductivity neutral zone results in poor reagent plug overlap and low reaction efficiency. Conversely, with two similarly charged reagents, a low conductivity sample plug is advantageous, as it allows field-amplified stacking of the reagents into a tight reaction zone. In addition, the complexity of simultaneously overlapping three reagent zones is considered, and experimental results validate the predictions made by the simulation. The simulations, however, do not appear to predict all of the observed experimental behavior. Overall, by combining experiment with simulation, an enhanced appreciation for the local field effects in EMMA is realized, and general guidelines for an advantageous sample matrix can be established for categories of EMMA analyses.

  2. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  3. Experiences of health professionals who conducted root cause analyses after undergoing a safety improvement programme

    PubMed Central

    Braithwaite, Jeffrey; Westbrook, Mary T; Mallock, Nadine A; Travaglia, Joanne F

    2006-01-01

    Background Research on root cause analysis (RCA), a pivotal component of many patient safety improvement programmes, is limited. Objective To study a cohort of health professionals who conducted RCAs after completing the NSW Safety Improvement Program (SIP). Hypothesis Participants in RCAs would: (1) differ in demographic profile from non‐participants, (2) encounter problems conducting RCAs as a result of insufficient system support, (3) encounter more problems if they had conducted fewer RCAs and (4) have positive attitudes regarding RCA and safety. Design, setting and participants Anonymous questionnaire survey of 252 health professionals, drawn from a larger sample, who attended 2‐day SIP courses across New South Wales, Australia. Outcome measures Demographic variables, experiences conducting RCAs, attitudes and safety skills acquired. Results No demographic variables differentiated RCA participants from non‐participants. The difficulties experienced while conducting RCAs were lack of time (75.0%), resources (45.0%) and feedback (38.3%), and difficulties with colleagues (44.5%), RCA teams (34.2%), other professions (26.9%) and management (16.7%). Respondents reported benefits from RCAs, including improved patient safety (87.9%) and communication about patient care (79.8%). SIP courses had given participants skills to conduct RCAs (92.8%) and improve their safety practices (79.6%). Benefits from the SIP were thought to justify the investment by New South Wales Health (74.6%) and committing staff resources (72.6%). Most (84.8%) of the participants wanted additional RCA training. Conclusions RCA participants reported improved skills and commitment to safety, but greater support from the workplace and health system are necessary to maintain momentum. PMID:17142585

  4. Additive Fabrication of Conductive Patterns by a Template Transfer Process Based on Benzotriazole Adsorption As a Separation Layer.

    PubMed

    Chang, Yu; Yang, Zhen-Guo

    2016-06-08

    The traditional subtractive process to fabricate conductive patterns is environmentally harmful, wasteful, and limited in line width. The additive process, including direct printing of conductive paste or ink, direct printing of catalytic ink, laser-induced forward transfer, etc., can solve these problems. However, the current additive process also faces many difficulties such as low electrical and adhesion properties, low pattern thickness, high cost, etc. Benzotriazole (BTA), as widely used corrosion inhibitor, can be adsorbed onto a copper surface. The electroplated copper film on BTA-adsorbed copper foil shows poor adhesion. On the basis of this phenomenon, a novel template transfer process to additively fabricate conductive patterns has been developed. A permeant antiadhesive mask is printed on carrier copper foil, and then, BTA is adsorbed onto the exposed area of the carrier foil, thus forming the template. The template is electroplated to grow conductive patterns in the exposed parts, and then can be adhered to the flexible substrate. The substrate is peeled off, with the transfer of the conductive patterns to the substrate, to form the designed conductive patterns on PET. By reimmersing the template into BTA solution, the template can be used again. The mechanism of BTA adsorption and the reason for the low peeling strength are researched using Raman spectra, XPS and electrochemical impedance spectroscopy. Copper patterns more than 20 μm in thickness can be prepared on PET, the resistivity of the prepared copper patterns is 2.01 μΩ cm, which is about the same as bulk copper, and the peeling strength of the pattern on PET is measured to be 6.97 N/cm. This template transfer process, with no waste, low pollution, high electrical and adhesion properties, and low cost, shows high potential in the large scale manufacturing of electronic devices, such as RFID circuitry, FPCs, etc.

  5. Effect of Ag nanowire addition into nanoparticle paste on the conductivity of Ag patterns printed by gravure offset method.

    PubMed

    Ok, Ki-Hun; Lee, Chan-Jae; Kwak, Min-Gi; Choi, Duck-Kyun; Kim, Kwang-Seok; Jung, Seung-Boo; Kim, Jong-Woong

    2014-11-01

    This paper focuses on the effect of Ag nanowire addition into a commercial Ag nanopaste and the printability evaluation of the mixed paste by the gravure offset printing methodology. Ag nanowires were synthesized by a modified polyol method, and a small amount of them was added into a commercial metallic paste based on Ag nanoparticles of 50 nm in diameter. Two annealing temperatures were selected for comparison, and electrical conductivity was measured by four point probe method. As a result, the hybrid mixture could be printed by the gravure offset method for patterning fine lines up to 15 μm width with sharp edges and scarce spreading. The addition of the Ag nanowires was significantly efficient for enhancement of electrical conductivity of the printed lines annealed at a low temperature (150 degrees C), while the effect was somewhat diluted in case of high temperature annealing (200 degrees C). The experimental results were discussed with the conduction mechanism in the printed conductive circuits with a schematic description of the electron flows in the printed lines.

  6. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  7. The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite

    SciTech Connect

    Stevenson, Cynthia; Liu, G.; Zheng, H.; Kim, S.; Deng, Y.; Minor, A.M.; Song, X.; Battaglia, V.S.

    2008-08-07

    Fundamental electrochemical methods, cell performance tests, and physical characterization tests such as electron microscopy were used to study the effects of levels of the inert materials (acetylene black (AB), a nano-conductive additive, and polyvinylidene difluoride (PVDF), a polymer binder) on the power performance of lithium-ion composite cathodes. The electronic conductivity of the AB/PVDF composites at different compositions was measured with a four-point probe direct current method. The electronic conductivity was found to increase rapidly and plateau at a AB:PVDF ratio 0.2:1 (by weight), with 0.8:1 being the highest conductivity composition. AB:PVDF compositions along the plateau of 0.2:1, 0.4:1, 0.6:1 and 0.8:1 were investigated. Electrodes of each of those compositions were fabricated with different fractions of AB/PVDF to active material. It was found that at the 0.8:1 AB:PVDF, the rate performance improved with increases in the AB/PVDF loading, whereas at the 0.2:1 AB:PVDF, the rate performance improved with decreases in the AB/PVDF loading. The impedance of electrodes made with 0.6:1 AB:PVDF was low and relatively invariant.

  8. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2017-04-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  9. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    NASA Astrophysics Data System (ADS)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-02-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  10. Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons.

    PubMed

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-04-03

    The continuous addition of new dentate granule cells, exquisitely regulated by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to impact the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual dentate granule cells in freely-behaving mice. For the first time, we found that active dentate granule cells responded to a novel experience by preferentially increasing their Ca(2+) event frequency. This elevated activity, which we found to be associated with object exploration, returned to baseline by one hour in the same environment, but could be dishabituated via introduction to a novel environment. To seamlessly transition between environments, we next established a freely-controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences accumulatively increased the number of newborn neurons when compared to a single experience. Finally, optogenetic silencing of existing dentate granule cells during novel environmental exploration perturbed experience-induced neuronal addition. Together, our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active dentate granule cells.SIGNIFICANCE STATEMENTAdult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel unrestrained virtual reality system for rodents, we discovered that a new experience rapidly

  11. Electrical conductivity imaging of lower extremities using MREIT: postmortem swine and in vivo human experiments.

    PubMed

    Woo, Eung Je; Kim, Hyung Joong; Minhas, Atul S; Kim, Young Tae; Jeong, Woo Chul; Kwon, O

    2008-01-01

    Cross-sectional conductivity images of lower extremities were reconstructed using Magnetic Resonance Electrical Impedance Tomography (MREIT) techniques. Carbon-hydrogel electrodes were adopted for postmortem swine and in vivo human imaging experiments. Due to their large surface areas and good contacts on the skin, we could inject as much as 10 mA into the lower extremities of human subjects without producing a painful sensation. Using a 3T MREIT system, we first performed a series of postmortem swine experiments and produced high-resolution conductivity images of swine legs. Validating the experimental protocol for the lower extremities, we revised it for the following human experiments. After the review of the Institutional Review Board (IRB), we conducted our first MREIT experiments of human subjects using the same 3T MREIT system. Collecting magnetic flux density data inside lower extremities subject to multiple injection currents, we reconstructed cross-sectional conductivity images using the harmonic B(z) algorithm. The conductivity images very well distinguished different parts of muscles inside the lower extremities. The outermost fatty layer was clearly shown in each conductivity image. We could observe severe noise in the outer layer of the bones primarily due to the MR signal void phenomenon there. Reconstructed conductivity images indicated that the internal regions of the bones have relatively high conductivity values. Future study is desired in terms of the conductivity image reconstruction algorithm to improve the image quality. Further human imaging experiments are planned and being conducted to produce high-resolution conductivity images from different parts of the human body.

  12. Column displacement experiments to evaluate electrical conductivity effects on electromagnetic soil water sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...

  13. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    PubMed

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.

  14. LC Card Order Experiment Conducted at University of Utah Marriott Library

    ERIC Educational Resources Information Center

    Cluff, E. Dale; Anderson, Karen

    1973-01-01

    Between the months of October 1971 and March 1972 the University of Utah Marriott Library conducted an experiment to test the turn-around time of card orders sent to the Library of Congress. This article is a brief report of that experiment. (1 reference) (Author)

  15. Long term experience with semi-conductive glaze high voltage post insulators

    SciTech Connect

    Baker, A.C.; Maney, J.W.; Szilagyi, Z. )

    1990-01-01

    Insulators using semi-conductive glaze have long been known for their superior contamination performance. Early glazes for this type however were not stable and successful use of semi-conductive glazed porcelain insulators was delayed many years until tin-antimony oxide glazes were developed. Service experience of eighteen years is now available for line and station post insulators with this type of glaze. Based on this experience, the aging characteristics of tin-antimony oxide semi-conductive glazes are described and quantified. Several different applications of these insulators are also described.

  16. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive.

    PubMed

    Ozgit, Dilek; Hiralal, Pritesh; Amaratunga, Gehan A J

    2014-12-10

    In this article, the use of reduced graphene oxide (rGO) as a high-surface-area conductive additive for enhancing zinc-silver oxide (Zn-Ag2O) batteries is reported for the first time. Specific capacity, rate capability and cyclability are all improved with the addition of 5% thermally reduced graphene oxide to the electrode. It is shown that the rGO morphology becomes more beneficial as the active materials tend toward the nanoscale. The combination results in a better utilization of the active material, which in turn improves the specific capacity of the zinc-silver oxide batteries by ca. 50%, as a result of the more intimate contact with the nano (∼50 nm) electrode particles. The resulting rGO network also creates a high-surface-area conducting template for ZnO electrodeposition upon discharge, significantly reducing the overall particle size of the ZnO deposit, thus inhibiting the formation of dendrites, and increasing the number of achievable cycles from 4 to >160 with a basic cellulose separator. The morphology of the electrodes and its electrochemical parameters are studied as a function of cycling.

  17. Feasibility study to conduct windblown sediment experiments aboard a space station

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.

    1983-01-01

    A feasibility study was undertaken to determine if a suitable apparatus could be designed to analyze aeolian processes for operation in space and to assess the feasibility of conducting meaningful experiments to address key aspects of aeolian processes. To meet this objective a prototype apparatus was fabricated and some limited experiments were run to determine its suitability for this application. At least three general types of experiments were devised that could be carried out aboard a space station: threshold studies, swirl (dust devil) experiments, and analyses of windblown particle trajectories. How experiments in a zero-g environment could advance knowledge of aeolian processes was studied.

  18. psiTurk: An open-source framework for conducting replicable behavioral experiments online.

    PubMed

    Gureckis, Todd M; Martin, Jay; McDonnell, John; Rich, Alexander S; Markant, Doug; Coenen, Anna; Halpern, David; Hamrick, Jessica B; Chan, Patricia

    2016-09-01

    Online data collection has begun to revolutionize the behavioral sciences. However, conducting carefully controlled behavioral experiments online introduces a number of new of technical and scientific challenges. The project described in this paper, psiTurk, is an open-source platform which helps researchers develop experiment designs which can be conducted over the Internet. The tool primarily interfaces with Amazon's Mechanical Turk, a popular crowd-sourcing labor market. This paper describes the basic architecture of the system and introduces new users to the overall goals. psiTurk aims to reduce the technical hurdles for researchers developing online experiments while improving the transparency and collaborative nature of the behavioral sciences.

  19. Effect of Additives on Green Sand Molding Properties using Design of Experiments and Taguchi's Quality Loss Function - An Experimental Study

    NASA Astrophysics Data System (ADS)

    Desai, Bhagyashree; Mokashi, Pavani; Anand, R. L.; Burli, S. B.; Khandal, S. V.

    2016-09-01

    The experimental study aims to underseek the effect of various additives on the green sand molding properties as a particular combination of additives could yield desired sand properties. The input parameters (factors) selected were water and powder (Fly ash, Coconut shell and Tamarind) in three levels. Experiments were planned using design of experiments (DOE). On the basis of plans, experiments were conducted to understand the behavior of sand mould properties such as compression strength, shear strength, permeability number with various additives. From the experimental results it could be concluded that the factors have significant effect on the sand properties as P-value found to be less than 0.05 for all the cases studied. The optimization based on quality loss function was also performed. The study revealed that the quality loss associated with the tamarind powder was lesser compared to other additives selected for the study. The optimization based on quality loss function and the parametric analysis using ANOVA suggested that the tamarind powder of 8 gm per Kg of molding sand and moisture content of 7% yield better properties to obtain sound castings.

  20. Some considerations on the additional absorption peak in the c-axis infrared conductivity of bilayer cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Munzar, Dominik

    2006-01-01

    Changes of the 400 cm-1 peak in the c-axis conductivity of underdoped YBa2Cu3O6.6 upon application of a parallel magnetic field reported by Kojima et al. are shown to be consistent with the model where the peak is due to the superfluid. Results of our calculations of the c-axis response of bilayer compounds with well defined bilayer split bands are presented and discussed. For moderate values of the bilayer splitting (Δɛ comparable to 2Δmax) the spectra of the superconducting state exhibit an additional mode which is due to the condensate and similar to the one of earlier phenonomenological approaches.

  1. Viscosity, electrical conductivity, and cesium volatility of ORNL (Oak Ridge National Laboratory) vitrified soils with limestone and sodium additives

    SciTech Connect

    Shade, J.W.; Piepel, G.F.

    1990-05-01

    Engineering- and pilot-scale tests of the in situ vitrification (ISV) process have been conducted for Oak Ridge National Laboratory (ORNL) to successfully demonstrate the feasibility of applying ISV to seepage trenches and pits at ORNL. These sites contain soil that overlies crushed limestone fill; therefore, the ISV process is applied to a soil-limestone mixture. Previous testing indicated that while a good retention level of {sup 137}Cs and {sup 90}Sr was achieved in the melt, it would be desirable to improve {sup 137}Cs retention to 99.99% if possible to minimize activity in the off-gas system. Previous testing was limited to one soil-limestone composition. Both Cs volatility and ISV power requirements are in part dependent on melt temperature and viscosity, which depend on melt composition. The study described in this report determined the effect of varying soil and limestone compositions, as well as the addition of a sodium flux, on melt viscosity, electrical conductivity, and Cs volatility. 10 refs., 15 figs., 9 tabs.

  2. Investigation into the effect of some additives on the mechanical strength, quality and thermal conductivity of clay bricks

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.

    2016-08-01

    It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.

  3. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  4. [Shomatsu Yokoyama, a physiologist who refused to conduct experiments on living human bodies].

    PubMed

    Suenaga, Keiko

    2008-09-01

    This article introduces the life of Shomatsu Yokoyama (1913-1992), a physiologist and military doctor, to the reader. During the Sino-Japanese war, Yokoyama disobeyed orders given by his superior officer to conduct inhumane medical experiments on humans. Not only in Unit 731, but also in other units, many military doctors were involved in medical crimes against residents of the areas invaded by the Japanese Army. Inhumane living-body experiments and vivisections were widely conducted at that time. There were, however, a small number of researchers who did not follow the orders to perform human-body experiments. Highlighting the life of such a rare researcher for the purpose of ascertaining the reason for his noncompliance with the order will provide us with insights on medical ethics. When Yokoyama was a student, his teacher, Professor Rinya Kawamura, informed him that he had been requested by the army to conduct special experiments. The remuneration for conducting such experiments was over 10 times more than the research fund allocated to the professor. Kawamura declined the request on the grounds that accepting it was against humanity. Kawamura warned Yokoyama that he might face the same situation in the future and asked Yokoyama to mark his words. Yokoyama was called to Ko-1855 Unit in 1944 and ordered to carry out living-body experiments by his superior officer. He disregarded the order, remembering Kawamura's words. As a result, he was dispatched to the dangerous frontlines. This article explores why Yokoyama was able to disobey the order to conduct inhumane experiments while shedding light on his personal background and his relationship with Rinya Kawamura. This article chronicles the life of one medical researcher who followed the dictates of his conscience during and after the war.

  5. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  6. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

  7. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  8. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  9. NASA's Rodent Research Project: Validation of Capabilities for Conducting Long Duration Experiments in Space

    NASA Technical Reports Server (NTRS)

    Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen

  10. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network

    PubMed Central

    Kirsch, Louise P.; Cross, Emily S.

    2015-01-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation. PMID:26209850

  11. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network.

    PubMed

    Kirsch, Louise P; Cross, Emily S

    2015-12-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation.

  12. Impacts of Asian Dust and Haze Particles Addition on Phytoplankton in Incubation Experiments in the Yellow Sea of China

    NASA Astrophysics Data System (ADS)

    Gao, H.; Zhang, C.; Liu, Y.; Shi, J.; Yao, X.

    2014-12-01

    Atmospheric deposition (AD) induced by dust events and air pollutants has been considered as an important source of bio-available nutrients such as N, P, Si and trace metals (e.g., Fe, Cu, Pb) to the oceans. The coastal seas of China are severely affected by AD from Asian dust events and haze episodes, especially in spring and winter. In this study, several on-board incubation experiments were performed in the Yellow Sea of China during 2011 - 2014, to explore the responses of micro-, nano- and pico-phytoplankton to various combinations of Asian dust, nutrients and haze particles by measuring the size-fractionated chlorophyll a (Chl a) concentration. In the experiments of Asian dust addition, the concentration of Chl a and the conversion efficiency index of N into Chl a increased by up to ~40 % and ~30 %, respectively, compared to the control, showing enhancement effects on the growth of phytoplankton. The addition of haze particles exhibited more obvious promotions of pico-phytoplankton growth, but more severe inhibitions of micro-phytoplankton growth than other treatments. The incubation experiments conducted in the Yellow Sea also indicated P limitation variations in spring and summer. It was inferred that both Asian dust and haze particles additions had significant impacts on the growth and structure of phytoplankton by modulating the limiting factors.

  13. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Pichault, Mathieu; Pansak, Wanwisa; Degré, Aurore; Garré, Sarah

    2016-08-01

    Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.

  14. Effect of tracer buoyancy on tracer experiments conducted in fractured crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Becker, Matthew W.

    2003-02-01

    Tracer buoyancy has been shown to influence breakthrough from two-well tracer experiments conducted in porous media. Two-well tracer experiments are presented from fractured crystalline bedrock, in which the specific gravity of the tracer injectate varied from 1.0002 to 1.0133. Under the forced hydraulic conditions imposed, no difference in breakthrough was noted for the three experiments. These results show that even relatively dense tracer injectate solutions may have an insignificant effect on breakthrough when imposed gradients are sufficiently large.

  15. Cool in the Kitchen: Radiation, Conduction, and the Newton "Hot Block" Experiment.

    ERIC Educational Resources Information Center

    Silverman, Mark P.; Silverman, Christopher R.

    2000-01-01

    Discusses the history of the development of Newton's Law of Cooling. Describes an experiment conducted in the kitchen that is designed to test the rate of cooling of a hot block of iron. Finds that Newton's law does not represent very well the mechanism of heat loss. (Contains over 10 references.) (WRM)

  16. Conducting Design Experiments to Support Teachers' Learning: A Reflection from the Field

    ERIC Educational Resources Information Center

    Cobb, Paul; Zhao, Qing; Dean, Chrystal

    2009-01-01

    This article focuses on 3 conceptual challenges that we sought to address while conducting a design experiment in which we supported the learning of a group of middle school mathematics teachers. These challenges involved (a) situating teachers' activity in the institutional setting of the schools and district in which they worked, (b) developing…

  17. Conducting Action Research in Kenyan Primary Schools: A Narrative of Lived Experiences

    ERIC Educational Resources Information Center

    Otienoh, Ruth

    2015-01-01

    This paper is a narrative of my personal experiences of conducting action research in Kenyan primary schools. It highlights the opportunities, successes, challenges and dilemmas I encountered during the process: from the school hunting period, to the carrying out of the actual research in two schools, with four teachers. This study reveals that…

  18. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  19. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Timofeeva, Elena V.; Gavrilov, Alexei N.; McCloskey, James M.; Tolmachev, Yuriy V.; Sprunt, Samuel; Lopatina, Lena M.; Selinger, Jonathan V.

    2007-12-01

    In recent years many experimentalists have reported an anomalously enhanced thermal conductivity in liquid suspensions of nanoparticles. Despite the importance of this effect for heat transfer applications, no agreement has emerged about the mechanism of this phenomenon, or even about the experimentally observed magnitude of the enhancement. To address these issues, this paper presents a combined experimental and theoretical study of heat conduction and particle agglomeration in nanofluids. On the experimental side, nanofluids of alumina particles in water and ethylene glycol are characterized using thermal conductivity measurements, viscosity measurements, dynamic light scattering, and other techniques. The results show that the particles are agglomerated, with an agglomeration state that evolves in time. The data also show that the thermal conductivity enhancement is within the range predicted by effective medium theory. On the theoretical side, a model is developed for heat conduction through a fluid containing nanoparticles and agglomerates of various geometries. The calculations show that elongated and dendritic structures are more efficient in enhancing the thermal conductivity than compact spherical structures of the same volume fraction, and that surface (Kapitza) resistance is the major factor resulting in the lower than effective medium conductivities measured in our experiments. Together, these results imply that the geometry, agglomeration state, and surface resistance of nanoparticles are the main variables controlling thermal conductivity enhancement in nanofluids.

  20. How astronauts would conduct a seismic experiment on the planet Mars

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Lognonne, P.; Dehant, V.

    During the Summer 2001 Flashline Mars Arctic Research Station (M.A.R.S.) campaign in Devon Island, Nunavut, Canada, the crew of the second rotation conducted a geophysics experiment aiming at assessing the feasibility of an active seismology method to detect subsurface water on Mars. A crew of three deployed a line of 24 sensors. Reflected and refracted signals produced by mini-quakes generated by a sledge hammer were recorded by a seismograph. The experiment was conducted three times, once in a dry run and twice during simulated Extra-Vehicular Activities (EVA) on the edge of the Haughton crater, allowing a three dimensional characterization of the subsurface ground to a depth of several hundred meters. Data were recorded for later detailed processing. A third EVA attempt inside the crater had to be aborted because of the poor weather and terrain conditions. Despite this failed attempt, a large amount of results were collected. Several operational lessons were learned from conducting this experiment under simulated EVA conditions. This paper presents the experiment and the methodology used, reviews the experiment performance and summarizes the results obtained and the operational lessons learned.

  1. Technical Project Plan for The Enhanced Thermal Conductivity of Oxide Fuels Through the Addition of High Thermal Conductivity Fibers and Microstructural Engineering

    SciTech Connect

    Hollenbach, Daniel F; Ott, Larry J; Besmann, Theodore M; Armstrong, Beth L; Wereszczak, Andrew A; Lin, Hua-Tay; Ellis, Ronald James; Becher, Paul F; Jubin, Robert Thomas; Voit, Stewart L

    2010-09-01

    The commercial nuclear power industry is investing heavily in advanced fuels that can produce higher power levels with a higher safety margin and be produced at low cost. Although chemically stable and inexpensive to manufacture, the in-core performance of UO{sub 2} fuel is limited by its low thermal conductivity. There will be enormous financial benefits to any utility that can exploit a new type of fuel that is chemically stable, has a high thermal conductivity, and is inexpensive to manufacture. At reactor operating temperatures, UO{sub 2} has a very low thermal conductivity (<5 W/m {center_dot}K), which decreases with temperature and fuel burnup. This low thermal conductivity limits the rate at which energy can be removed from the fuel, thus limiting the total integrated reactor power. If the fuel thermal conductivity could be increased, nuclear reactors would be able to operate at higher powers and larger safety margins thus decreasing the overall cost of electricity by increasing the power output from existing reactors and decreasing the number of new electrical generating plants needed to meet base load demand. The objective of the work defined herein is to produce an advanced nuclear fuel based on the current UO{sub 2} fuel with superior thermal conductivity and structural integrity that is suitable for current and future nuclear reactors, using the existing fuel fabrication infrastructure with minimal modifications. There are two separate components to the research: (1) Enhanced Thermal Conductivity (ETC) - adding high conductivity fibers to the UO{sub 2} prior to sintering, which act as conduits for moving the heat energy generated within the pellet to the outer surface, (2) Microstructural Engineering (ME) - adding second phase particulates to UO{sub 2} bodies to retard grain growth and to increase thermal conductivity, as well as improve fracture and creep resistance. Different groups will perform the laboratory work for each of these research

  2. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    SciTech Connect

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  3. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    NASA Astrophysics Data System (ADS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  4. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.

    PubMed

    Novakowski, K S; Bickerton, G; Lapcevic, P

    2004-09-01

    Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from

  5. Computational/experimental basis for conducting alkane droplet combustion experiments on space-based-platforms

    NASA Technical Reports Server (NTRS)

    Choi, Mun Y.; Cho, Seog Y.; Dryer, Frederick L.; Haggard, John B., Jr.

    1992-01-01

    An analysis is conducted of the requirement for the conduct of spherically symmetric droplet-combustion experiments on space platforms, on the basis of a novel time-dependent computational droplet combustion model that allows the time- and temperature-dependent transport characteristics to be incorporated. While at low oxygen indices the droplet burning extinction becomes a strong function of oxygen index, it becomes a weaker function at higher oxygen index values. The oxygen index that separates these two ranges are dependent on the diluent, being higher for He and lower for N.

  6. Practical advice for conducting ethical online experiments and questionnaires for United States psychologists.

    PubMed

    Barchard, Kimberly A; Williams, John

    2008-11-01

    It is increasingly easy and, therefore, increasingly common to conduct experiments and questionnaire studies in online environments. However, the online environment is not a data collection medium that is familiar to many researchers or to many research methods instructors. Because of this, researchers have received little information about how to address ethical issues when conducting online research. Researchers need practical suggestions on how to translate federal and professional ethics codes into this new data collection medium. This article assists United States psychologists in designing online studies that meet accepted standards for informed consent, deception, debriefing, the right to withdraw, security of test materials, copyright of participants' materials, confidentiality and anonymity, and avoiding harm.

  7. Goodness-of-fit methods for additive-risk models in tumorigenicity experiments.

    PubMed

    Ghosh, Debashis

    2003-09-01

    In tumorigenicity experiments, a complication is that the time to event is generally not observed, so that the time to tumor is subject to interval censoring. One of the goals in these studies is to properly model the effect of dose on risk. Thus, it is important to have goodness of fit procedures available for assessing the model fit. While several estimation procedures have been developed for current-status data, relatively little work has been done on model-checking techniques. In this article, we propose numerical and graphical methods for the analysis of current-status data using the additive-risk model, primarily focusing on the situation where the monitoring times are dependent. The finite-sample properties of the proposed methodology are examined through numerical studies. The methods are then illustrated with data from a tumorigenicity experiment.

  8. Spinel dissolution via addition of glass forming chemicals. Results of preliminary experiments

    SciTech Connect

    Fox, K. M.; Johnson, F. C.

    2015-11-01

    Increased loading of high level waste in glass can lead to crystallization within the glass. Some crystalline species, such as spinel, have no practical impact on the chemical durability of the glass, and therefore may be acceptable from both a processing and a product performance standpoint. In order to operate a melter with a controlled amount of crystallization, options must be developed for remediating an unacceptable accumulation of crystals. This report describes preliminary experiments designed to evaluate the ability to dissolve spinel crystals in simulated waste glass melts via the addition of glass forming chemicals (GFCs).

  9. How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions.

    PubMed

    Bouchemal, Kawthar; Mazzaferro, Silvia

    2012-06-01

    Isothermal titration calorimetry (ITC) is one of the most interesting methods for the characterization of the interaction mechanisms of cyclodextrins (CDs) with drugs. In this review we explain how to conduct ITC experiments correctly for CD-guest interactions, how to choose an accurate fitting model for the titration curve and how to interpret carefully the ITC results. Finally, the use of ITC for the characterization of CD-containing nanoparticles is discussed.

  10. Effect of Li{sub 2}SO{sub 4} addition on structure and ionic conductivity of lithium borosilicotitanate glasses

    SciTech Connect

    Satpute, N. S.; Deshpande, A. V.

    2014-04-24

    Lithium borosilicotitanate glasses containing Li{sub 2}SO{sub 4} were prepared by melt quenching technique. Electrical conductivity, density, molar volume and glass transition temperature T{sub g} for all the glass samples were measured. IR spectroscopy was used for structural studies of these glasses in the range from 400 to 2000 cm{sub −1}. The conductivity of the Li{sub 2}SO{sub 4} containing glasses was found to be half an order higher than the base glass. The electrical conductivity was interpreted from the point of view of glass structure which suggests that an enhancement in conductivity is due to the incorporation of Li{sub 2}SO{sub 4} in the macromolecular network. The molar volume and glass transition temperature T{sub g} results are found to be in good correlation with conductivity results.

  11. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory.

    PubMed

    Shannon, Kyle M; Gage, Gregory J; Jankovic, Aleksandra; Wilson, W Jeffrey; Marzullo, Timothy C

    2014-03-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students.

  12. Copper Conductivity Model Development and Validation Using Flyer Plate Experiments on the Z-machine

    NASA Astrophysics Data System (ADS)

    Riford, L.; Lemke, R. W.; Cochrane, K.

    2015-11-01

    Magnetically accelerated flyer plate experiments done on Sandia's Z-machine provide insight into a multitude of materials problems at high energies and densities including conductivity model development and validation. In an experiment with ten Cu flyer plates of thicknesses 500-1000 μm, VISAR measurements exhibit a characteristic jump in the velocity correlated with magnetic field burn-through and the expansion of melted material at the free surface. The experiment is modeled using Sandia's shock and multiphysics MHD code ALEGRA. Simulated free surface velocities are within 1% of the measured data early in time, but divergence occurs at the feature, where the simulation indicates a slower burn through time. The cause was found to be in the Cu conductivity model's compressed regime. The model was improved by lowering the conductivity in the region 12.5-16 g/cc and 350-16000 K with a novel parameter based optimization method using the velocity feature as a figure of merit. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000.

    PubMed

    Porterfield, D M; Neichitailo, G S; Mashinski, A L; Musgrave, M E

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research.

  15. Additional experiments relative to the shelf life of Li(Si)/FeS2 thermal batteries

    NASA Astrophysics Data System (ADS)

    Searcy, J. Q.; Armijo, J. R.

    1985-02-01

    A continuing effort to develop a new thermal battery technology based on the Li(Si)/FeS2 electrochemical couple is reported. The results relate to the long shelf life requirement for thermal batteries designed by Sandia, and include topics relevant to leakage through the hermetic seal and accelerated aging experiments with materials new to the technology. Conclusions relevant to leakage through the hermetic seal are that the maximum leak rate must not exceed 1.8 x 10(-7) w, where w is the grams of Li(Si) contained by a battery, and that a bomb type leak test can be designed that is adequate for most Li(Si)/FeS2 batteries. Conclusions relevant to long term compatibility of new materials include the following: nickel is not compatible with the iron disulfide in the cathode; the CaSi2 additive used to suppress the initial voltage transient does not react or degrade during accelerated aging experiments, but the use of that material can lead to an increase in the variability of the activated lives, especially for long life batteries; Grafoil current collectors used with the cathode do not degrade in accelerated aging experiments.

  16. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    SciTech Connect

    Goyal, Kapil K; French, David M; Humphrey, Betty J; Gluth, Jeffry

    2010-01-01

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability

  17. 5 CFR 1001.101 - In addition to this part, what other rules of conduct apply to Office of Personnel Management...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rules of conduct apply to Office of Personnel Management employees? 1001.101 Section 1001.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) REGULATIONS GOVERNING EMPLOYEES OF THE OFFICE OF PERSONNEL MANAGEMENT OPM EMPLOYEE RESPONSIBILITIES AND CONDUCT § 1001.101 In addition to this...

  18. 5 CFR 1001.101 - In addition to this part, what other rules of conduct apply to Office of Personnel Management...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rules of conduct apply to Office of Personnel Management employees? 1001.101 Section 1001.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) REGULATIONS GOVERNING EMPLOYEES OF THE OFFICE OF PERSONNEL MANAGEMENT OPM EMPLOYEE RESPONSIBILITIES AND CONDUCT § 1001.101 In addition to this...

  19. 5 CFR 1001.101 - In addition to this part, what other rules of conduct apply to Office of Personnel Management...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rules of conduct apply to Office of Personnel Management employees? 1001.101 Section 1001.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) REGULATIONS GOVERNING EMPLOYEES OF THE OFFICE OF PERSONNEL MANAGEMENT OPM EMPLOYEE RESPONSIBILITIES AND CONDUCT § 1001.101 In addition to this...

  20. 5 CFR 1001.101 - In addition to this part, what other rules of conduct apply to Office of Personnel Management...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rules of conduct apply to Office of Personnel Management employees? 1001.101 Section 1001.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) REGULATIONS GOVERNING EMPLOYEES OF THE OFFICE OF PERSONNEL MANAGEMENT OPM EMPLOYEE RESPONSIBILITIES AND CONDUCT § 1001.101 In addition to this...

  1. 5 CFR 1001.101 - In addition to this part, what other rules of conduct apply to Office of Personnel Management...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rules of conduct apply to Office of Personnel Management employees? 1001.101 Section 1001.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) REGULATIONS GOVERNING EMPLOYEES OF THE OFFICE OF PERSONNEL MANAGEMENT OPM EMPLOYEE RESPONSIBILITIES AND CONDUCT § 1001.101 In addition to this...

  2. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  3. Exploring the effect of conducting endcaps on the Princeton MRI Experiment

    NASA Astrophysics Data System (ADS)

    Caspary, Kyle; Gilson, Erik; Goodman, Jeremy; Ji, Hantao; Sloboda, Peter

    2016-10-01

    The magnetorotational instability (MRI) is believed to be the primary mechanism which generates the turbulence required to explain the rapid accretion rates observed in some magnetized accretion disks. The Princeton MRI experiment is a modified Taylor-Couette device which uses GaInSn eutectic as a working fluid to study rotating MHD Flows. Diagnostics include Ultrasound Doppler Velocimetry (UDV) for flow profile measurements and an array of magnetic Hall sensors located on the inner and outer cylinders. Results are presented from experiments with conducting endcaps which were installed in order to increase the saturation amplitude of the MRI signal and the angular momentum coupling to the fluid. The effect of conducting endcaps on Shercliff layer instabilities is examined with a comparison to previous results with insulating endcaps. With sufficient velocity shear and magnetic field strength, the fluid exerts a torque on the conducting endcaps due to a coupling via the magnetic field. The onset criterion of this torque is currently under investigation. Motivated by results from the spectral/finite-element code SFEMaNS, the inner ring speed was varied in order to minimize the contribution to the radial magnetic field measurements from non-MRI sources such as Ekman flows.

  4. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Pichault, M.; Beckers, E.; Degré, A.; Garré, S.

    2015-10-01

    Determining soil hydraulic properties is of major concern in various fields of study. Though stony soils are widespread across the globe, most studies deal with gravel-free soils so that the literature describing the impact of stones on soil's hydraulic conductivity is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory and numerical experiments involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned models. Our study suggests that considering that stones only reduce the volume available for water flow might be ill-founded. We pointed out several drivers of the saturated hydraulic conductivity of stony soils, not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, the presence of rock fragments can counteract and even overcome the effect of a reduced volume in some cases. We attribute this to the creation of voids at the fine earth-stone interface. Nevertheless, these differences are mainly important near to saturation. However, we come up with a more nuanced view regarding the validity of the models under unsaturated conditions. Indeed, under unsaturated conditions, the models seem to represent the hydraulic behaviour of stones reasonably well.

  5. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    NASA Technical Reports Server (NTRS)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  6. Comparison of Fire Model Predictions with Experiments Conducted in a Hangar With a 15 Meter Ceiling

    NASA Technical Reports Server (NTRS)

    Davis, W. D.; Notarianni, K. A.; McGrattan, K. B.

    1996-01-01

    The purpose of this study is to examine the predictive capabilities of fire models using the results of a series of fire experiments conducted in an aircraft hangar with a ceiling height of about 15 m. This study is designed to investigate model applicability at a ceiling height where only a limited amount of experimental data is available. This analysis deals primarily with temperature comparisons as a function of distance from the fire center and depth beneath the ceiling. Only limited velocity measurements in the ceiling jet were available but these are also compared with those models with a velocity predictive capability.

  7. STS-47 MS / PLC Lee conducts SLJ experiment M20 using the image furnace

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Mission Specialist (MS) and Payload Commander (PLC) Mark C. Lee, wearing rubber gloves, prepares to load raw material (or crystal seed material) into the upper shaft (or lower shaft) of the Image Furnace. Lee is conducting Spacelab Japan (SLJ) experiment M20, Growth of Samarskite Crystal in Microgravity, during which a single crystal will be produced using the traveling solvent float zone method. The Image Furnace is located in SLJ NASDA Material Sciences Rack 8. SLJ science module is in the payload bay (PLB) of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105.

  8. Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis

    PubMed Central

    Hensen, B.; Kalb, N.; Blok, M. S.; Dréau, A. E.; Reiserer, A.; Vermeulen, R. F. L.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Goodenough, K.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.

    2016-01-01

    The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimental setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observed distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the RNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator. PMID:27509823

  9. Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis

    NASA Astrophysics Data System (ADS)

    Hensen, B.; Kalb, N.; Blok, M. S.; Dréau, A. E.; Reiserer, A.; Vermeulen, R. F. L.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Goodenough, K.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.

    2016-08-01

    The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimental setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observed distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the RNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.

  10. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  11. The additive effect on suicidality of family history of suicidal behavior and early traumatic experiences.

    PubMed

    Lopez-Castroman, J; Guillaume, S; Olié, E; Jaussent, I; Baca-García, E; Courtet, P

    2015-01-01

    Family history of suicidal behavior and personal history of childhood abuse are reported risk factors for suicide attempts and suicide completion. We aim to quantify the additive effect of family history of suicidal behavior and different subtypes of childhood abuse on suicidal behavior. We examined a sample of 496 suicide attempters, comparing individuals with family history of suicidal behavior and personal history of childhood (physical or sexual) abuse, individuals with family history of suicidal behavior only, individuals with history of early traumatic experiences only, and individuals with none of these two risk factors with regards to suicidal features. An additive effect was found for the age at the first attempt in suicide attempters with both family history of suicidal behavior and either physical or sexual abuse. No significant interactions were found between family history of suicidal behavior and childhood trauma in relation to any characteristics of suicidal behavior. Subjects presenting family history of suicidal behavior and childhood abuse attempt suicide earlier in life than subjects with just one or none of them, particularly if they were sexually abused. Other suicidality indexes were only partially or not associated with this combination of risk factors. A careful assessment of patients with both family history of suicidal behavior and childhood abuse could help to prevent future suicide attempts, particularly in young people.

  12. Oxidation resistance, thermal conductivity, and spectral emittance of fully dense zirconium diboride with silicon carbide and tantalum diboride additives

    NASA Astrophysics Data System (ADS)

    Van Laningham, Gregg Thomas

    Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high melting temperatures. As such, this compound could be useful in the construction of thermal protection systems for aerospace applications. This work addresses a primary shortcoming of this material, namely its propensity to destructively oxidize at high temperatures, as well as secondary issues concerning its heat transport properties. To characterize and improve oxidation properties, thermogravimetric studies were performed using a specially constructed experimental setup. ZrB 2-SiC two-phase ceramic composites were isothermally oxidized for ~90 min in flowing air in the range 1500-1900°C. Specimens with 30 mol% SiC formed distinctive reaction product layers which were highly protective; 28 mol% SiC - 6 mol% TaB2 performed similarly. At higher temperatures, specimens containing lower amounts of SiC were shown to be non-protective, whereas specimens containing greater amounts of SiC produced unstable oxide layers due to gas evolution. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from SEM micrographs. In order to characterize one aspect of the materials' heat transport properties, the thermal diffusivities of ZrB2-SiC composites were measured using the laser flash technique. These were converted to thermal conductivities using temperature dependent specific heat and density data; thermal conductivity decreased with increasing temperature over the range 25-2000°C. The composition with the highest SiC content showed the highest thermal conductivity at room temperature, but the lowest at temperatures in excess of ~400°C, because of the greater temperature sensitivity of the thermal conductivity of the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent finite difference calculations were good predictors of multi-phase thermal conductvities for the compositions examined. The thermal conductivities of pure ZrB2 as a function of

  13. Study of adsorption of detergent-dispersion additives on solid particles dispersed in oil using the method of electrical conductivity measurement

    SciTech Connect

    Waligora, B.; Buczak, H.; Olszewska, A.; Szeglowski, Z.

    1984-01-01

    By measuring electrical conductivity of paraffin oil solutions in isooctane (1:1 by volume) the variation in concentration of detergent-dispersant additives is studied; this variation is caused by their adsorption on solid particles (carbon black, aluminum powder). It is shown that dispersants have an improved ability to undergo adsorption, compared with detergents. Studies of adsorption of additives on model sorbents may be used to develop tests for evaluating additive properties. 7 references, 4 figures.

  14. Effects of TiO2 addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-01

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity of the sample increased to 2.12 × 10-5 Scm-1 and 4.61 × 10-5 Scm-1 when 4 wt. % and 10 wt. % of titanium dioxide (TiO2) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF3SO2)2 composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC).

  15. Effects of TiO{sub 2} addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    SciTech Connect

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-28

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF{sub 3}SO{sub 2}){sub 2}) and PVC/PEMA/(LiN(CF{sub 3}SO{sub 2}){sub 2}-TiO{sub 2} films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} exhibited the highest conductivity of 1.75 × 10{sup −5} Scm{sup −1}. The conductivity of the sample increased to 2.12 × 10{sup −5} Scm{sup −1} and 4.61 × 10{sup −5} Scm{sup −1} when 4 wt. % and 10 wt. % of titanium dioxide (TiO{sub 2}) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC)

  16. Can the Maximum Power Principle predict Effective Conductivities of a Confined Aquifer? A Lab Experiment

    NASA Astrophysics Data System (ADS)

    Westhoff, M.; Erpicum, S.; Archambeau, P.; Pirotton, M.; Zehe, E.; Dewals, B.

    2015-12-01

    Power can be performed by a system driven by a potential difference. From a given potential difference, the power that can be subtracted is constraint by the Carnot limit, which follows from the first and second laws of thermodynamics. If the system is such that the flux producing power (with power being the flux times its driving potential difference) also influences the potential difference, a maximum in power can be obtained as a result of the trade-off between the flux and the potential difference. This is referred to as the maximum power principle. It has already been shown that the atmosphere operates close to this maximum power limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state of maximum power, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells. The aim of this study is to test if the soil's effective hydraulic conductivity also adapts in such a way that it produces maximum power. However, the soil's hydraulic conductivity adapts differently; for example by the creation of preferential flow paths. Here, this process is simulated in a lab experiment, which focuses on preferential flow paths created by piping. In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles, with the aim to test if the effective hydraulic conductivity of the sand bed can be predicted with the maximum power principle. The experimental setup consists of two freely draining reservoir connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. The results will indicate whether the maximum power principle does apply for groundwater flow and how it should be applied. Because of the different way of adaptation of flow conductivity, the results differ from that of the

  17. Analysis of in-situ electrical conductivity data from the HFIR TRIST-ER1 experiment

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Shikama, T.

    1997-08-01

    The current vs. applied voltage data generated from the HFIR TRIST-ER1 experiment have been analyzed to determine the electrical conductivity of the 15 aluminum oxide specimens and the MgO-insulated electrical cables as a function of irradiation dose. With the exception of the 0.05%Cr-doped sapphire (ruby) specimen, the electrical conductivity of the alumina specimens remained at the expected radiation induced conductivity (RIC) level of <10{sup -6} S/m during full-power reactor irradiation (10-16 kGy/s) at 450-500{degrees}C up to a maximum dose of {approximately}3 dpa. The ruby specimen showed a rapid initial increase in conductivity to {approximately}2 x 10{sup -4} S/m after {approximately}0.1 dpa, followed by a gradual decrease to <1 x 10{sup -6} S/m after 2 dpa. Nonohmic electrical behavior was observed in all of the specimens, and was attributed to preferential attraction of ionized electrons in the capsule gas to the unshielded low-side bare electrical leads emanating from the subcapsules. The electrical conductivity was determined from the slope of the specimen current vs. voltage curve at negative voltages, where the gas ionization effect was minimized. Dielectric breakdown tests performed on unirradiated mineral-insulated coaxial cables identical to those used in the high voltage coaxial cables during the 3-month irradiation is attributable to thermal dielectric breakdown in the glass seals at the end of the cables, as opposed to a radiation-induced electrical degradation (RIED) effect.

  18. How to conduct a workshop on medical writing: Tips, advice and experience sharing.

    PubMed

    Rathore, Farooq Azam; Mansoor, Sahibzada Nasir

    2015-06-01

    Medical writing has become an essential skill for anybody in academia and engaged in teaching. Workshops on medical writing are an effective way to teach the essential skills of medical writing to students and faculty members. There is a huge demand for these workshops all around the globe. Usually there is no curriculum of medical writing for the undergraduates or dedicated structured training sessions for the faculty members. One of the authors won an Author AID grant to conduct a series of workshops on medical writing. Eight workshops were conducted in three months, benefitting more than 200 students and faculty staff. We share our experience of holding this successful series of workshops with the aim that it might serve as a guide for researchers and faculty members who are eager to share and transfer their skills and knowledge. We also offer lessons learnt during this educational activity, tips to improve the quality and delivery of the content with limited resources and maximizing the impact. Experienced medical writers need to conduct these workshops to transfer their skills and to facilitate their colleagues and students to become better medical writers. Planning, rehearsal, motivation, resource management, good team work, audience analysis and feedback can make a workshop successful. Well prepared workshop content delivered in an interactive way with a variety of activities makes the workshop an engaging and interesting educational activity.

  19. Participation in the definition, conduct, and analysis of particle accelerator experiments for the first Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC) is a joint endeavor between NASA and the Institute of Space and Aeronautical Sciences (ISAS) in Japan. Its objectives are to use energetic electron beams to investigate beam-atmosphere interactions and beam-plasma interactions in the earth's upper atmosphere and ionosphere using the shuttle Spacelab. Two flights of SEPAC have occurred to date (Spacelab 1 on STS-9 in Nov.-Dec. 1983 and ATLAS 1 on STS-45 in Mar.-Apr. 1992). The SEPAC instrumentation is available for future missions, and the scientific results of the first two missions justify further investigations; however, at present there are no identifiable future flight opportunities. As specified in the contract, the primary purpose of this report is to review the scientific accomplishments of the ATLAS 1 SEPAC experiments, which have been documented in the published literature, with only a brief review of the earlier Spacelab 1 results. One of the main results of the Spacelab 1 SEPAC experiments was that the ejection of plasma from the magnetoplasmadynamic (MPD) arcjet was effective in maintaining vehicle charge neutralization during electron beam firings, but only for a brief period of 10 ms or so. Therefore, a xenon plasma contactor, which can provide continuous vehicle charge neutralization, was developed for the ATLAS 1 SEPAC experiments. Because of the successful operation of the plasma contactor on ATLAS 1, it was possible to perform experiments on beam-plasma interactions and beam-atmosphere interactions at the highest beam power levels of SEPAC. In addition, the ability of the plasma contactor to eject neutral xenon led to a successful experiment on the critical ionization velocity (CIV) phenomena on ATLAS 1.

  20. Development of a Laboratory Experiment to Derivate the Thermal Conductivity based on Electrical Resistivity Measurments

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Firmbach, L.; Dietrich, P.

    2014-12-01

    In the course of the energy transition, the number of shallow geothermal systems is constantly growing. These systems allow the exploitation of renewable energy from the subsurface, reduced CO2 emission and additionally, energy storage. An efficient performance of geothermal systems strongly depends upon the availability of exploration data (e.g. thermal conductivity distribution). However, due to high exploration costs, the dimensioning of smaller plants (< 30 kW) is generally based on literature values. While standard in-situ-tests are persistent for larger scale projects, they yield only integral values, e.g. entire length of a borehole heat exchanger. Hence, exploring the distribution of the thermal conductivity as important soil parameter requires the development of new cost-efficient technologies. The general relationship between the electrical (RE) and the thermal resistivity (RT) can be described as log(RE) = CR log(RT) with CRas a multiplier depending on additional soil parameter (e.g. water content, density, porosity, grain size and distribution). Knowing the influencing factor of these additional determining parameters, geoelectrical measurements could provide a cost-efficient exploration strategy of the thermal conductivity for shallow geothermal sites. The aim of this study now is to define the multiplier CRexperimentally to conclude the exact correlation of the thermal and electrical behavior. The set-up consists of an acrylic glass tube with two current electrodes installed at the upper and lower end of the tube. Four electrode chains (each with eight electrodes) measure the potential differences in respect to an induced heat flux initiated by a heat plate. Additional, eight temperature sensors measure the changes of the temperature differences. First, we use this set-up to analyze the influence of soil properties based on differing homogenous sediments with known chemical and petro-physical properties. Further, we analyze the influence of the water

  1. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  2. An experiment in software reliability: Additional analyses using data from automated replications

    NASA Technical Reports Server (NTRS)

    Dunham, Janet R.; Lauterbach, Linda A.

    1988-01-01

    A study undertaken to collect software error data of laboratory quality for use in the development of credible methods for predicting the reliability of software used in life-critical applications is summarized. The software error data reported were acquired through automated repetitive run testing of three independent implementations of a launch interceptor condition module of a radar tracking problem. The results are based on 100 test applications to accumulate a sufficient sample size for error rate estimation. The data collected is used to confirm the results of two Boeing studies reported in NASA-CR-165836 Software Reliability: Repetitive Run Experimentation and Modeling, and NASA-CR-172378 Software Reliability: Additional Investigations into Modeling With Replicated Experiments, respectively. That is, the results confirm the log-linear pattern of software error rates and reject the hypothesis of equal error rates per individual fault. This rejection casts doubt on the assumption that the program's failure rate is a constant multiple of the number of residual bugs; an assumption which underlies some of the current models of software reliability. data raises new questions concerning the phenomenon of interacting faults.

  3. Numerical simulations of the Princeton magnetorotational instability experiment with conducting axial boundaries

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Ji, Hantao; Goodman, Jeremy; Ebrahimi, Fatima; Gilson, Erik; Jenko, Frank; Lackner, Karl

    2016-12-01

    We investigate numerically the Princeton magnetorotational instability (MRI) experiment and the effect of conducting axial boundaries or endcaps. MRI is identified and found to reach a much higher saturation than for insulating endcaps. This is probably due to stronger driving of the base flow by the magnetically rather than viscously coupled boundaries. Although the computations are necessarily limited to lower Reynolds numbers (Re ) than their experimental counterparts, it appears that the saturation level becomes independent of Re when Re is sufficiently large, whereas it has been found previously to decrease roughly as Re-1 /4 with insulating endcaps. The much higher saturation levels will allow for the positive detection of MRI beyond its theoretical and numerical predictions.

  4. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    NASA Technical Reports Server (NTRS)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  5. Automated microbial metabolism laboratory. [design of advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into test chambers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and rationale of an advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into each of four test chambers are outlined. The feasibility for multiple addition tests was established and various details of the methodology were studied. The four chamber battery of tests include: (1) determination of the effect of various atmospheric gases and selection of that gas which produces an optimum response; (2) determination of the effect of incubation temperature and selection of the optimum temperature for performing Martian biochemical tests; (3) sterile soil is dosed with a battery of C-14 labeled substrates and subjected to experimental temperature range; and (4) determination of the possible inhibitory effects of water on Martian organisms is performed initially by dosing with 0.01 ml and 0.5 ml of medium, respectively. A series of specifically labeled substrates are then added to obtain patterns in metabolic 14CO2 (C-14)O2 evolution.

  6. Experiences with the magnetism of conducting loops: Historical instruments, experimental replications, and productive confusions

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2003-02-01

    This study investigates nineteenth century laboratory work on electromagnetism through historical accounts and experimental replications. Oersted found that when a magnetic needle was placed in varying positions around a conducting wire, its orientation changed: in moving from a spot above the wire to one below, its sense inverted. This behavior was confusing and provocative. Early experimenters such as Johann Schweigger, Johann Poggendorff, and James Cumming engaged it by bending wire into loops. These loops, which increased the magnetic effect on a compass placed within, also provided evidence of their understanding and confusion. Coiling conducting wires around iron magnetized it, but when some wires coiled oppositely from others, the effect diminished. This effect confused contemporaries of Joseph Henry who made electromagnets, and amateurs later in the century who constructed multisection induction coils. I experienced these confusions myself while working with multilayer coils and induction coils that I made to replicate the historical instruments. This study shows how confusion can be a productive element in learning, by engaging learners to ask questions and invent experiments. By providing space for learners' confusions, teachers can support the development of their students' physical understandings.

  7. Police arrest and self-defence skills: performance under anxiety of officers with and without additional experience in martial arts.

    PubMed

    Renden, Peter G; Landman, Annemarie; Savelsbergh, Geert J P; Oudejans, Raôul R D

    2015-01-01

    We investigated whether officers with additional martial arts training experience performed better in arrest and self-defence scenarios under low and high anxiety and were better able to maintain performance under high anxiety than officers who just rely on regular police training. We were especially interested to find out whether training once a week would already lead to better performance under high anxiety. Officers with additional experience in kickboxing or karate/jiu-jitsu (training several times per week), or krav maga (training once a week) and officers with no additional experience performed several arrest and self-defence skills under low and high anxiety. Results showed that officers with additional experience (also those who trained once a week) performed better under high anxiety than officers with no additional experience. Still, the additional experience did not prevent these participants from performing worse under high anxiety compared to low anxiety. Implications for training are discussed. Practitioner summary: Dutch police officers train their arrest and self-defence skills only four to six hours per year. Our results indicate that doing an additional martial arts training once a week may lead to better performance under anxiety, although it cannot prevent that performance decreases under high anxiety compared to low anxiety.

  8. Effect of adverse childhood experiences on physical health in adulthood: Results of a study conducted in Baghdad city

    PubMed Central

    Al-Shawi, Ameel F.; Lafta, Riyadh K.

    2015-01-01

    Background: Studies have revealed a powerful relationship between adverse childhood experiences (ACEs) and physical and mental health in adulthood. Literature documents the conversion of traumatic emotional experiences in childhood into organic disease later in life. Objective: The aim was to estimate the effect of childhood experiences on the physical health of adults in Baghdad city. Subjects and Methods: A cross-sectional study was conducted from January 2013 to January 2014. The study sample was drawn from Baghdad city. Multistage sampling techniques were used in choosing 13 primary health care centers and eight colleges of three universities in Baghdad. In addition, teachers of seven primary schools and two secondary schools were chosen by a convenient method. Childhood experiences were measured by applying a modified standardized ACEs-International Questionnaire form and with questions for bonding to family and parental monitoring. Physical health assessment was measured by a modified questionnaire derived from Health Appraisal Questionnaire of Centers for Disease Control and Prevention. The questionnaire includes questions on cerebrovascular diseases, diabetes mellitus, tumor, respiratory and gastrointestinal diseases. Results: Logistic regression model showed that a higher level of bonding to family (fourth quartile) is expected to reduce the risk of chronic physical diseases by almost the half (odds ratio = 0.57) and exposure to a high level of household dysfunction and abuse (fourth quartile) is expected to increase the risk of chronic physical diseases by 81%. Conclusion: Childhood experiences play a major role in the determination of health outcomes in adulthood, and early prevention of ACEs. Encouraging strong family bonding can promote physical health in later life. PMID:25983602

  9. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Tank, Jennifer; Sobota, Daniel; O'Brien, Jon; Webster, Jackson; Valett, H. Maurice; Dodds, Walter; Poole, Geoff; Peterson, Chris G.; Meyer, Judy; McDowell, William; Johnson, Sherri; Hamilton, Stephen; Gregory, Stanley; Grimm, Nancy; Dahm, Cliff; Cooper, Lee W; Ashkenas, Linda; Thomas, Suzanne; Sheibley, Rich; Potter, Jody; Niederlehner, Bobbie; Johnson, Laura; Helton, Ashley; Crenshaw, Chelsea; Burgin, Amy; Bernot, Melody; Beaulieu, Jake; Arango, Clay

    2009-01-01

    We measured uptake length of {sup 15}NO{sub 3}{sup -} in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO{sub 3}{sup -} uptake length. As part of the Lotic Intersite Nitrogen Experiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO{sub 3}{sup -} concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO{sub 3}{sup -} uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S{sub Wtot}). Uptake length increased with specific discharge (Q/w) and increasing NO{sub 3}{sup -} concentrations, showing a loss in removal efficiency in streams with high NO{sub 3}{sup -} concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO{sub 3}{sup -} removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO{sub 3}{sup -} uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO{sub 3}{sup -} uptake lengths via directly increasing both gross primary production and NO{sub 3}{sup -} concentration. Gross primary production shortened S{sub Wtot}, while increasing NO{sub 3}{sup -} lengthened S{sub Wtot} resulting in no net effect of land use on NO{sub 3}{sup -} removal.

  10. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  11. Thermal conductivity of the sideledge in aluminium electrolysis cells: Experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice

    2017-03-01

    During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.

  12. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-01-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  13. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  14. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  15. The results and analysis of irradiation experiments conducted on reactor vessel plate and weld materials

    SciTech Connect

    Biemiller, E.C.; Carter, R.G.; Rosinski, S.T.

    1996-09-01

    This paper documents the extensive amount of experimental work on radiation damage to reactor vessel materials carried out by Yankee Atomic Electric Company (YAEC) and others in support of a licensing effort to restart the Yankee Rowe nuclear power plant. The effect of plate nickel content and microstructure on irradiation damage sensitivity was assessed. Typical reactor pressure vessel plate materials each containing 0.24% (by weight) copper, but different nickel contents at 0.19% and 0.63% were heat treated to produce different microstructures. A Linde 80 weld containing 0.30% copper and 1.00% nickel was produced and heat treated to test microstructure effects on the irradiation response of weld metal. Materials taken from plate surface locations (vs 1/4%) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from a rapid quench, is maintained after irradiation. Irradiations were conducted at two irradiation temperatures, 500 F (260 C) and 550 F (288 C), to determine the effect of irradiation temperature on embrittlement. The results of this irradiation testing and additional data from a DOE/Sandia National Laboratories irradiation study show an irradiation temperature effect that is not consistent, but varies with the materials tested. The test results demonstrate that for nickel bearing steels, the superior toughness of plate surface material is maintained even after irradiation to high fluences, and for the copper content tested, nickel has little effect on irradiation response. A mixed effect of microstructure/heat treatment on the materials` irradiation response was noted. Phosphorus potentially played a role in the irradiation response of the low nickel material irradiated at 500 F (288 C) but did not show prominence in the irradiations for the same material conducted at 500 F (260 C).

  16. Examining the Influence of Additional Field-Based Experiences on Pre-Service Teachers and Their Perceived Ability to Teach

    ERIC Educational Resources Information Center

    Clark, Sarah K.

    2012-01-01

    In an attempt to analyse more closely the training experiences of pre-service teachers, the author conducted an exploratory quasi-experimental study at a university located in the Rocky Mountain region of the USA. All students who were enrolled in the same reading methods course (but enrolled in different sections) were invited to participate in…

  17. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  18. Acid Additives Enhancing the Conductivity of Spiro-OMeTAD Toward High-Efficiency and Hysteresis-Less Planar Perovskite Solar Cells

    SciTech Connect

    Li, Zhen; Tinkham, Jonathan; Schulz, Philip; Yang, Mengjin; Kim, Dong Hoe; Berry, Joseph; Sellinger, Alan; Zhu, Kai

    2016-10-28

    A general doping strategy, using a wide range of acids with different pKa values as additive, is demonstrated to enhance the conductivity of spiro-OMeTAD, the dominant hole transport material in perovskite solar cells (PSCs). Hysteresis-less planar PSCs with ~19% efficiency and better open-circuit voltage and fill factor is achieved with acid doped spiro-OMeTAD.

  19. Hyperbaric oxygen therapy as additional treatment in deep sternal wound infections – a single center's experience

    PubMed Central

    Bryndza, Magdalena; Chrapusta, Anna; Kobielska, Ewa; Kapelak, Bogusław; Grudzień, Grzegorz

    2016-01-01

    Introduction Deep sternal wound infection (DSWI) is one of the most serious complications after cardiac surgery procedures, observed in 5% of patients. Current standard medical therapy for DSWI includes antibiotics, surgical debridement, resuturing or negative pressure wound therapy (NPWT). Unfortunately, in some cases these methods are insufficient, and additional therapeutic options are needed. Aim To assess the effects and usefulness of additional hyperbaric oxygen therapy (HBO2) in patients with DSWI after cardiac surgery procedures. Material and methods A retrospective analysis of 10 patients after cardiac surgery who developed DSWI in the period 2010–2012 was performed. After 3 months of ineffective conventional therapy including targeted antibiotic, surgical sternal debridement and NPWT, patients were qualified for additional HBO2 therapy. A total of 20 sessions of HBO2 therapy were performed, each 92 minutes long. Results After 4 weeks of HBO2 treatment, 7 patients presented complete wound healing with fibrous scar formation. One patient was qualified for the another cycle of HBO2 therapy with 20 additional sessions, and complete wound healing was observed. In 2 cases, after 5 and 19 sessions, HBO2 was interrupted because of improper qualifications. Conclusions The HBO2 as an additional therapy in DSWI was successful in 80% of cases, and no complications were observed. However, due to the small number of published studies with a small number of patients, randomized, clinical trials are needed to assess the clinical results of HBO2 in DSWI after cardiac surgery procedures. PMID:27785131

  20. Exposure and Experience: Additional Criteria for Selecting Future Operational Theater Commanders

    DTIC Science & Technology

    2009-10-23

    Kaufmann. From Plato to Derrida . Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008. 8 Experience Comparison of Former...Forrest E., and Walter Kaufmann. From Plato to Derrida . Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008. Bell, William Gardner. Center

  1. Creating an infrastructure for training in the responsible conduct of research: the University of Pittsburgh's experience.

    PubMed

    Barnes, Barbara E; Friedman, Charles P; Rosenberg, Jerome L; Russell, Joanne; Beedle, Ari; Levine, Arthur S

    2006-02-01

    In response to public concerns about the consequences of research misconduct, academic institutions have become increasingly cognizant of the need to implement comprehensive, effective training in the responsible conduct of research (RCR) for faculty, staff, students, and external collaborators. The ability to meet this imperative is challenging as universities confront declining financial resources and increasing complexity of the research enterprise. The authors describe the University of Pittsburgh's design, implementation, and evaluation of a Web-based, institution-wide RCR training program called Research and Practice Fundamentals (RPF). This project, established in 2000, was embedded in the philosophy, organizational structure, and technology developed through the Integrated Advanced Information Management Systems grant from the National Library of Medicine. Utilizing a centralized, comprehensive approach, the RPF system provides an efficient mechanism for deploying content to a large, diverse cohort of learners and supports the needs of research administrators by providing access to information about who has successfully completed the training. During its first 3 years of operation, the RPF served over 17,000 users and issued more than 38,000 training certificates. The 18 modules that are currently available address issues required by regulatory mandates and other content areas important to the research community. RPF users report high levels of satisfaction with content and ease of using the system. Future efforts must explore methods to integrate non-RCR education and training into a centralized, cohesive structure. The University of Pittsburgh's experience with the RPF demonstrates the importance of developing an infrastructure for training that is comprehensive, scalable, reliable, centralized, affordable, and sustainable.

  2. English as an Additional Language (EAL) "viva voce": The EAL Doctoral Oral Examination Experience

    ERIC Educational Resources Information Center

    Carter, Susan

    2012-01-01

    Is the doctoral "viva voce" a reasonable method of examination? This exploratory paper proposes that the doctoral "viva voce" (oral examination) is a slightly different hurdle for doctoral candidates for whom English is an additional language (EAL, also termed ESL) than for those whose first language is English. It investigates…

  3. Designing Location-Based Learning Experiences for People with Intellectual Disabilities and Additional Sensory Impairments

    ERIC Educational Resources Information Center

    Brown, David J.; McHugh, David; Standen, Penny; Evett, Lindsay; Shopland, Nick; Battersby, Steven

    2011-01-01

    The research reported here is part of a larger project which seeks to combine serious games (or games-based learning) with location-based services to help people with intellectual disabilities and additional sensory impairments to develop work based skills. Specifically this paper reports on where these approaches are combined to scaffold the…

  4. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Kumara, Chamara; Gupta, Mohit; Nylen, Per

    2017-01-01

    Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

  5. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  6. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From... labeling experiments. (a) The food industry is encouraged to experiment voluntarily, under...

  7. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From... labeling experiments. (a) The food industry is encouraged to experiment voluntarily, under...

  8. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From... labeling experiments. (a) The food industry is encouraged to experiment voluntarily, under...

  9. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From... labeling experiments. (a) The food industry is encouraged to experiment voluntarily, under...

  10. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From... labeling experiments. (a) The food industry is encouraged to experiment voluntarily, under...

  11. Students' Design of Experiments: An Inquiry Module on the Conduction of Heat

    ERIC Educational Resources Information Center

    Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.

    2010-01-01

    This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…

  12. Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Romano, John; Ladani, Leila; Sadowski, Magda

    2016-03-01

    The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.

  13. Additive Manufacture (3D Printing) of Plasma Diagnostic Components and Assemblies for Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Quinley, Morgan; Chun, Katherine; Melnik, Paul; Sieck, Paul; Smith, Trevor; Stuber, James; Woodruff, Simon; Romero-Talamas, Carlos; Rivera, William; Card, Alexander

    2016-10-01

    We are investigating the potential impact of additive manufacturing (3D printing) on the cost and complexity of plasma diagnostics. We present a survey of the current state-of-the-art in additive manufacture of metals, as well as the design of diagnostic components that have been optimized for and take advantage of these processes. Included among these is a set of retarding field analyzer probe heads that have been printed in tungsten with internal heat sinks and cooling channels. Finite element analysis of these probe heads shows the potential for a 750K reduction in peak temperature, allowing the probe to take data twice as often without melting. Results of the evaluation of these probe heads for mechanical strength and outgassing, as well as their use on Alcator C-Mod will be presented. Supported by DOE SBIR Grant DE-SC0011858.

  14. Additional results on space environmental effects on polymer matrix composites: Experiment A0180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.

  15. Changes in water, carbon, and nitrogen fluxes with the addition of biochar to soils: lessons learned from laboratory and greenhouse experiments

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Gallagher, M. E.; Masiello, C. A.; Liu, Z.; Dugan, B.; Rudgers, J. A.

    2011-12-01

    The addition of biochar to agricultural soils has the potential to provide a number of ecosystem services, ranging from carbon (C) sequestration to increased soil fertility and crop production. It is estimated that 0.5 to 0.9 Pg of C yr-1 can be sequestered through the addition of biochar to soils, significantly increasing the charcoal flux to the biosphere over natural inputs from fire (0.05 to 0.20 Pg C yr-1). There remain large uncertainties about biochar mobility within the environment, making it a challenge to assess the ecosystem residence time of biochar. We conducted laboratory and greenhouse experiments to understand how soil amendment with laboratory-produced biochar changes water, C, and nitrogen (N) fluxes from soils. We used column experiments to assess how biochar amendment to three types of soils (sand, organic, clay-rich) affected hydraulic conductivity and dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes. Results varied with soil type; biochar significantly decreased the hydraulic conductivity of the sand and organic soils by a factor of 10.6 and 2.7, respectively. While not statistically significant, biochar addition increased the hydraulic conductivity of the clay-rich soil by 50% on average. The addition of biochar significantly increased the DOC fluxes from the C-poor sand and clay soils while it significantly decreased the DOC flux from the organic-rich soil. In contrast, TDN fluxes decreased with biochar additions from all soil types, though the results were not statistically significant from the clay-rich soil. These laboratory experiments suggest that changes in the hydraulic conductivity of soil due to biochar amendments could play a significant role in understanding how biochar additions to agricultural fields will change watershed C and N dynamics. We additionally conducted a 28-day greenhouse experiment with sorghum plants using a three-way factorial treatment (water availability x biochar x mycorrhizae) to

  16. Early Experience with Racial Discrimination and Conduct Disorder as Predictors of Subsequent Drug Use: A Critical Period Hypothesis

    PubMed Central

    Gibbons, Frederick X.; Yeh, Hsiu-Chen; Gerrard, Meg; Cleveland, Michael J.; Cutrona, Carolyn; Simons, Ronald L.; Brody, Gene H.

    2007-01-01

    A critical period hypothesis linking early experiences with both racial discrimination and conduct disorder (CD) with subsequent drug use was examined in a panel of 889 African American adolescents (age 10.5 at Time 1) and their parents. Analyses indicated that these early experiences did predict use by the adolescents at Time 3--five years later. These relations were both direct and indirect, being mediated by an increase in affiliation with friends who were using drugs. The relations existed controlling for parents’ reports of their use, discrimination experiences, and their socioeconomic status (SES). The impact of these early experiences on African American families is discussed. PMID:17275213

  17. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    SciTech Connect

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  18. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  19. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries.

    PubMed

    Zhang, Biao; Yu, Yang; Liu, Yusi; Huang, Zhen-Dong; He, Yan-bing; Kim, Jang-Kyo

    2013-03-07

    Graphene nanosheets (GNSs) have been considered as potential conductive additives for electrodes in Li-ion batteries to replace the existing carbon black (CB). Graphene has exceptionally high aspect ratio and excellent electrical conductivity, enabling the formation of extensive conductive networks at a much lower content than CB. This paper reports the beneficial effects of GNSs with a low percolation threshold on electrochemical performance of Li(4)Ti(5)O(12) (LTO) anodes. The experimental results show that the GNSs with a diameter of 46 μm and a thickness of 4.5 nm have a percolation threshold of 1.8 wt%. The prediction based on the interparticle distance concept gives a percolation threshold of 0.54 wt% for GNSs, which is almost an order of magnitude lower than that for CB particles. The substantially low percolation along with a high electrical conductivity of GNSs explains why the LTO anodes containing only 5 wt% GNSs deliver a much better rate capability than those with 15 wt% CB. However, a higher GNS content of 10 wt% results in re-stacking GNSs, deteriorating the diffusion of Li ions through the thickness of GNSs. The parametric study indicates that the percolation threshold of GNSs is inversely proportional to the aspect ratio of GNSs.

  20. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization.

    PubMed

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-09

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  1. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    NASA Astrophysics Data System (ADS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers.

  2. Cognitive and affective empathy in children with conduct problems: additive and interactive effects of callous-unemotional traits and autism spectrum disorders symptoms.

    PubMed

    Pasalich, Dave S; Dadds, Mark R; Hawes, David J

    2014-11-30

    Callous-unemotional (CU) traits and autism spectrum disorders (ASD) symptoms are characterized by problems in empathy; however, these behavioral features are rarely examined together in children with conduct problems. This study investigated additive and interactive effects of CU traits and ASD symptoms in relation to cognitive and affective empathy in a non-ASD clinic-referred sample. Participants were 134 children aged 3 to 9 years (M=5.60; 79% boys) with oppositional defiant/conduct disorder, and their parents. Clinicians, teachers, and parents reported on dimensions of child behavior, and parental reports of family dysfunction and direct observations of parental warmth/responsiveness assessed quality of family relationships. Results from multiple regression analysis showed that, over and above the effects of child conduct problem severity and quality of family relationships, both ASD symptoms and CU traits were uniquely associated with deficits in cognitive empathy. Moreover, CU traits demonstrated an independent association with affective empathy, and this relationship was moderated by ASD symptoms. That is, there was a stronger negative association between CU traits and affective empathy at higher versus lower levels of ASD symptoms. These findings suggest including both CU traits and ASD-related social impairments in models delineating the atypical development of empathy in children with conduct problems.

  3. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  4. Experiences of clinical tutors with English as an additional language (EAL) students.

    PubMed

    Lu, Hongyan; Maithus, Caroline

    2012-11-01

    Clinical tutors, referred to in the international literature as clinical supervisors, facilitators, mentors or instructors, are responsible for providing and supervising workplace learning opportunities for groups of Bachelor of Nursing (BN) students. They also play a key role in assessing students. The role modeling and support provided by both clinical tutors and registered nurses (RN) or nurse preceptors helps students become familiar with the language in which nursing work is realised. As BN student cohorts in New Zealand have become more diverse in terms of cultures, ethnicities and language backgrounds, clinical tutors have to directly facilitate the development of context-specific and client-focused communication skills for students who speak English as an additional language. We undertook a study which looked at the perceptions of new nursing graduates with English as an additional language (EAL) on the development of spoken language skills for the clinical workplace. As well as interviewing graduates, we spoke to four clinical tutors in order to elicit their views on the language development of EAL students in previous cohorts. This article reports on the themes which emerged from the interviews with the tutors. These include goal setting for communication, integrating students into nursing work, making assessment less stressful, and endorsing independent learning strategies. Based on their observations and on other published research we make some suggestions about ways both clinical tutors and EAL students within their teaching groups could be supported in the development of communication skills for clinical practice.

  5. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  6. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment.

    PubMed

    Choi, Hyo Won; Berwick, Zachary C; Sulkin, Matthew S; Owens, Christopher D; Kassab, Ghassan S

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter.

  7. EFFECT OF (Bi2O3)0.75(Y2O3)0.25 ADDITION ON MICROSTRUCTURES AND IONIC CONDUCTIVITIES OF CODOPED ZIRCONIA

    NASA Astrophysics Data System (ADS)

    Chou, Chen Chia; Huang, Chun Feng; Yeh, Tsung Her

    2012-09-01

    Variation of microstructures and ionic conductivities in (Bi2O3)0.75(Y2O3)0.25 (YSB) modified electrolyte of 8 mol% Y2O3 stabilized zirconia (8YSZ) and YSB modified codoped zirconia (ZrO2)0.92(Y2O3)0.075(MgO)0.005 (YSZM) is investigated in this work. The results demonstrated that a small amount of δ-YSB addition is effective in reducing the sintering temperature of 8YSZ from 1500 to 1200°C and promoting the densification rate of ceramics. Compared to 8YSZ electrolyte, it is interesting that a very limited amount of monoclinic ZrO2 was observed due to the MgO stabilizer in YSB modified codoped zirconia electrolyte. Besides, enhancement of ionic conductivity in δ-YSB modified codoped zirconia is evidently increased by 67% in comparison to the specimen of 8YSZ electrolyte.

  8. Assessment of quality of platelets preserved in plasma and platelet additive solution: A Malaysian experience

    PubMed Central

    Mokhtar, Munirah Binti; Hashim, Hasna Binti; Joshi, Sanmukh R

    2016-01-01

    Background: A use of platelet additives solution (PAS) improves storage conditions so as to give increased shelf life to platelets and to maintain hemostatic function. Objective: The present study was aimed to compare in vitro quality of platelet rich plasma (PRP)-derived platelet concentrate (PC) during extended period of storage in plasma and in additive solution (Composol PS and Fresenius). Study Design: Randomized 19 PCs each were used in the study for plasma and PAS as the storage medium. The measurement parameters, including pH, total white blood cell (WBC) count, total platelet count, and platelet activation rate, were studied on day 1, day 5, and day 8 of the storage period. The sterility test was carried out on the eighth day of storage. Results: pH of PC suspended in PAS was significantly lower as compared to that in plasma (P < 0.001) for all the three days of sampling. The WBC count, both in plasma and in PAS, showed an acceptable values of being <0.2 Χ 109 /unit during the storage period. Platelet count in PAS was higher as compared to that in plasma, though it was not statistically significant. While both the groups showed increased platelet activation rate during the storage, the PCs suspended in PAS showed significantly higher platelet activation rate (p0.001). Results from sterility test showed no bacterial growth in the PCs in both the groups. Conclusion: Most parameters studied on platelet storage in suspending medium of native plasma and PAS remained well within the acceptable limits. However, the pH values and platelet activation rate significantly differed in PAS as compared with plasma. PMID:27011678

  9. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  10. Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Krom, M. D.; Thingstad, T. F.; Brenner, S.; Carbo, P.; Drakopoulos, P.; Fileman, T. W.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kitidis, V.; Kress, N.; Law, C. S.; Liddicoat, M. I.; Mantoura, R. F. C.; Pasternak, A.; Pitta, P.; Polychronaki, T.; Psarra, S.; Rassoulzadegan, F.; Skjoldal, E. F.; Spyres, G.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Wexels Riser, C.; Woodward, E. M. S.; Zodiatis, G.; Zohary, T.

    2005-11-01

    CYCLOPS was a European Framework 5 program to further our understanding of phosphorus cycling in the Eastern Mediterranean. The core of CYCLOPS was a Lagrangian experiment in which buffered phosphoric acid was added to a <4×4 km patch of water together with SF 6 as the inert tracer. The patch was followed for nine days in total. Results obtained prior to the experiment showed that the system was typically ultra-oligotrophic and P-starved with DON:DOP, PON:POP and DIN:DIP all having ratios greatly in excess of 16:1 in surface waters. To our surprise, we found that although the added phosphate was rapidly taken up by the microbial biota, there was a small but significant decrease in chlorophyll a and no increase in primary production, together with an increase in heterotrophic bacterial activity, ciliate numbers and in the gut fullness and egg numbers in the zooplankton community. A microcosm experiment carried out using within-patch and out-of-patch water showed that the phytoplankton community were N and P co-limited while the bacteria and micrograzers were P-limited. Thus this system tends to N and P co-limitation of phytoplankton productivity in summer possibly caused by bioavailable DIN being converted into non-bioavailable forms of DON. On the basis of the data collected within the programme it was concluded that this behavior could be explained by three non-mutually exclusive processes described as (1) trophic by-pass in which the added phosphate gets directly to the grazing part of the predatory food chain from the heterotrophic bacteria bypassing the phytoplankton compartment phosphate, (2) trophic tunnelling in which phosphate is rapidly taken up by both phytoplankton and bacteria via rapid luxury consumption. This causes an immediate change in the phosphorus content but not the abundance of the prey organisms. The added P then "reappears" as responses at the predator level much more rapidly than expected, and (3) mixotrophic by-pass in which inorganic

  11. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  12. Exploring the Experiences of Faculty-Led Teams in Conducting Action Research

    ERIC Educational Resources Information Center

    Zhang, Qi; Amundsen, Cheryl

    2015-01-01

    Action research has been suggested as a useful way to support university faculty to improve teaching and learning. However, there seems to be little knowledge about how faculty (and those who work with them) experience the process of doing action research. In order to explore team members' in-depth experience about what they learned and how they…

  13. [Requirements for drug approval and additional benefits assessment: Regulatory aspects and experiences].

    PubMed

    Broich, K; Löbker, W; Schulte, A; Beinlich, P; Müller, T

    2016-04-01

    The early assessment of benefits of newly approved drugs with novel active substances or new applications, which came into force on 1 January 2011 still represents a challenge to all parties involved. This article highlights the definitions, regulatory requirements and interaction between drug marketing approval and early assessment of benefits in Germany. The constellation of an extensively harmonized European and even international drug authorization process with a predominantly national regulation of drug reimbursement situation inevitably causes friction, which could be markedly reduced through early joint advisory discussions during the planning phase for pivotal clinical trials. During the year 2015 the Federal Institute for Drugs and Medical Devices (BfArM) carried out 300 scientific advice procedures of which 34 were concerned with applications in the field of indications for the central nervous system (CNS). In comparison 98 advisory meetings were held by the Federal Joint Committee (G-BA) of which the BfArM provided advice in 12 instances and in 2 cases on CNS indications. Study design, endpoints and appropriate comparative therapies are the key issues in exchanges and discussions between the BfArM, the G‑BA and applicants. Under these aspects the BfArM and G‑BA promote an early and consistent involvement in early advice procedures regarding the prerequisites for drug approval and assessment of additional benefits.

  14. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  15. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment

    PubMed Central

    Choi, Hyo Won; Berwick, Zachary C.; Sulkin, Matthew S.; Owens, Christopher D.; Kassab, Ghassan S.

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter. PMID:28045933

  16. Conductance catheter measurements of lumen area of stenotic coronary arteries: theory and experiment.

    PubMed

    Choi, Hyo Won; Farren, Neil D; Zhang, Zhen-Du; Huo, Yunlong; Kassab, Ghassan S

    2011-09-01

    An injection of saline solution is required for the measurement of vessel lumen area using a conductance catheter. The injection of room temperature saline to displace blood in a vessel inevitably involves mass and heat transport and electric field conductance. The objective of the present study is to understand the accuracy of conductance method based on the phenomena associated with the saline injection into a stenotic blood vessel. Computational fluid dynamics were performed to simulate flow and its relation to transport and electric field in a stenotic artery for two different sized conductance catheters (0.9 and 0.35 mm diameter) over a range of occlusions [56-84% cross-sectional area (CSA) stenosis]. The results suggest that the performance of conductance catheter is dependent on catheter size and severity of stenosis more significantly for 0.9 mm than for 0.35 mm catheter. Specifically, the time of detection of 95% of injected saline solution at the detection electrodes was shown to range from 0.67 to 3.7 s and 0.82 to 0.94 s for 0.9 mm and 0.35 mm catheter, respectively. The results also suggest that the detection electrodes of conductance catheter should be placed outside of flow recirculation region distal to the stenosis to minimize the detection time. Finally, the simulations show that the accuracy in distal CSA measurements, however, is not significantly altered by whether the position of detection electrodes is inside or outside of recirculation zone (error was within 12% regardless of detection electrodes position). The results were experimentally validated for one lesion geometry and the simulation results are within 8% of actual measurements. The simulation of conductance catheter injection method may lead to further optimization of device and method for accurate sizing of diseased coronary arteries, which has clinical relevance to percutaneous intervention.

  17. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments.

    PubMed

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  18. Sodium Concentration Measurement during Hemodialysis through Ion-Exchange Resin and Conductivity Measure Approach: In Vitro Experiments

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some “mixed samples”, i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis. PMID:23844253

  19. Nitrate removal in stream ecosystems measured by 15N addition experiments: 2. Denitrification

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Sobota, Daniel; Dodds, Walter; Findlay, Stuart; Grimm, Nancy; Hamilton, Stephen; McDowell, William; O'Brien, Jon; Tank, Jennifer; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Gregory, Stanley; Johnson, Sherri; Meyer, Judy; Peterson, Bruce; Poole, Geoff; Valett, H. Maurice; Webster, Jackson; Arango, Clay; Beaulieu, Jake; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; Niederlehner, Bobbie; Potter, Jody; Sheibley, Rich; Thomas, Suzanne

    2009-01-01

    We measured denitrification rates using a field {sup 15}N-NO{sub 3}{sup -} tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S{sub Wden}) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N{sub 2} production rates far exceeded N{sub 2}O production rates in all streams. The fraction of total NO{sub 3}{sup -} removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH{sub 4}{sup +} concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling S{sub Wden} were specific discharge (discharge/width) and NO{sub 3}{sup -} concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (U{sub den}) and NO{sub 3}{sup -} concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although U{sub den} increased with increasing NO{sub 3}{sup -} concentration, the efficiency of NO{sub 3}{sup -} removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO{sub 3}{sup -} load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO{sub 3}{sup -} concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO{sub 3}{sup -} concentration.

  20. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    USGS Publications Warehouse

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  1. Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Shahzad, Aamir; He, Mao-Gang

    2015-12-01

    A newly improved homogenous nonequilibrium molecular dynamics simulation (HNEMDS) method, proposed by the Evans, has been used to compute the thermal conductivity of two-dimensional (2D) strongly coupled complex (dusty) plasma liquids (SCCDPLs), for the first time. The effects of equilibrium external field strength along with different system sizes and plasma states (Γ, κ) on the thermal conductivity of SCCDPLs have been calculated using an enhanced HNEMDS method. A simple analytical temperature representation of Yukawa 2D thermal conductivity with appropriate normalized frequencies (plasma and Einstein) has also been calculated. The new HNEMDS algorithm shows that the present method provides more accurate results with fast convergence and small size effects over a wide range of plasma states. The presented thermal conductivity obtained from HNEMDS method is found to be in very good agreement with that obtained through the previously known numerical simulations and experimental results for 2D Yukawa liquids (SCCDPLs) and with the three-dimensional nonequilibrium molecular dynamics simulation (MDS) and equilibrium MDS calculations. It is shown that the HNEMDS algorithm is a powerful tool, making the calculations very efficient and can be used to predict the thermal conductivity in 2D Yukawa liquid systems.

  2. Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids

    SciTech Connect

    Shahzad, Aamir; He, Mao-Gang

    2015-12-15

    A newly improved homogenous nonequilibrium molecular dynamics simulation (HNEMDS) method, proposed by the Evans, has been used to compute the thermal conductivity of two-dimensional (2D) strongly coupled complex (dusty) plasma liquids (SCCDPLs), for the first time. The effects of equilibrium external field strength along with different system sizes and plasma states (Γ, κ) on the thermal conductivity of SCCDPLs have been calculated using an enhanced HNEMDS method. A simple analytical temperature representation of Yukawa 2D thermal conductivity with appropriate normalized frequencies (plasma and Einstein) has also been calculated. The new HNEMDS algorithm shows that the present method provides more accurate results with fast convergence and small size effects over a wide range of plasma states. The presented thermal conductivity obtained from HNEMDS method is found to be in very good agreement with that obtained through the previously known numerical simulations and experimental results for 2D Yukawa liquids (SCCDPLs) and with the three-dimensional nonequilibrium molecular dynamics simulation (MDS) and equilibrium MDS calculations. It is shown that the HNEMDS algorithm is a powerful tool, making the calculations very efficient and can be used to predict the thermal conductivity in 2D Yukawa liquid systems.

  3. Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Shen, Chen; Rui, Kun; Jin, Jun; Wu, Meifen; Wu, Xiangwei; Wen, Zhaoyin

    2016-10-01

    A high-conductivity solid electrolyte, La2Zr2O7 (LZO) added to Li6.4La3Zr1.4Ta0.6O12 (LLZTO), was prepared via conventional solid-state reactions and sintered at 1100°C for 10 h, which is tens of Celsius degrees lower than the typical sintering temperature for LLZTO. The addition of LZO did not bring in any impurities. LZO acted as a sintering aid to densify the LLZTO from a relative density of 77% up to 90%, which was comparable to that of pure LLZTO sintered at 1200°C. The 6 wt.% LZO-LLZTO samples sintered at 1100°C and 1200°C exhibited a room-temperature conductivity of 1.92 × 10-4 S/cm and 5.84 × 10-4 S/cm, respectively, which were higher than that of pure LLZTO samples. Glass-like phases observed at grain boundaries in LZO-LLZTO ceramics indicated that LZO promoted the formation of the glass-like phases binding together LLZTO grains and thus leading to enhanced density and conductivity of LLZTO.

  4. Using Satellite Technology to Increase Professional Communications Among Teachers: a Report of Experiments Conducted by the National Education Association.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Div. of Instruction and Professional Development.

    The National Education Association (NEA) in conjunction with the National Aeronautics and Space Administration, the National Library of Medicine, The Alaska Broadcasting Commission, and the Pacific PEACESAT Network, conducted four satellite experiments designed to improve professional communication among teachers. These programs were the Satellite…

  5. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  6. A Comparison of Supervised Occupational Experience Programs Conducted by Males and Females in Wyoming. A Report of Research.

    ERIC Educational Resources Information Center

    Reynolds, Carl L.

    A study was conducted in Wyoming to determine the scope and economic value of supervised occupational experience programs (SOEPs) in vocational agriculture. The study tried to determine the level of participation and success realized by females engaged in SOEP activities, and to find out to what degree males and females engage in balanced SOEPs,…

  7. Theme: The Role of the Teacher in Conducting Supervised Agricultural Experience Programs.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2003

    2003-01-01

    Contains 13 theme articles on the role of teachers in supervised agricultural experience (SAE) programs that offer suggestions, ideas, and practices to advance the implementation of SAE programs. (JOW)

  8. Inventory Control: An Inexpensive and Easily Constructed Device for Quantitative Conductivity Experiments.

    ERIC Educational Resources Information Center

    Rettich, Timothy R.; Battino, Rubin

    1989-01-01

    Presents a low cost system with easily replaced electrodes for use in general chemistry. Notes the accuracy and wide applicability permit easy use in physical or quantitative chemistry experiments. Provides schematic, theory, and helpful suggestions. (MVL)

  9. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  10. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  11. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow

  12. Sub-Kelvin Thermal Conductivity and Radioactivity of Some Useful Materials in Low Background Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Kellaris, N.; Daal, M.; Epland, M.; Pepin, M.; Kamaev, O.; Cushman, P.; Kramer, E.; Sadoulet, B.; Mirabolfathi, N.; Golwala, S.; Runyan, M.

    2014-08-01

    We present measurements of the thermal conductivity between 0.05 and 1 K, and radioactive contamination levels, for some thermally isolating materials. TIMET Ti 15-3-3-3, Mersen grade 2020 graphite, Vespel SP-1, Vespel SP-22, Vespel SCP-5000, Vespel SCP-5050, Graphlite CFRP, and a Kapton/epoxy composite are all investigated. Thermal conductivities were measured using a single-heater longitudinal heat flow method. Material radioactivity was determined for the materials at a low background counting facility using a high-purity gamma detector and GEANT4 Monte Carlo simulations.

  13. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment Being Conducted

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Marx, Laura; Fine, Elizabeth; Gummow, Jonathan D.; Wright, Douglas

    2002-01-01

    As part of the Materials International Space Station Experiment (MISSE), 41 different polymers are being exposed for approximately 1 1/2 years to the low-Earth-orbit (LEO) environment on the exterior of the International Space Station. MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA, and is the first external experiment on the space station. A similar set of 41 polymers will be flown as part of the Polymer Erosion and Contamination Experiment (PEACE) a shuttle flight experiment that is being developed at the NASA Glenn Research Center collaboratively with the Hathaway Brown School for girls. Therefore, these 41 polymers are collectively called the MISSE PEACE Polymers. The purpose of the MISSE PEACE Polymers experiment is to determine how durable polymers are in the LEO space environment where spacecraft, such as the space station, orbit. Polymers are commonly used as spacecraft materials because of their desirable properties such as good flexibility, low density, and certain electrical properties or optical properties (such as a low solar absorptance and high thermal emittance). Two examples of the use of polymers on the exterior of spacecraft exposed to the space environment include metalized Teflon FEP (fluorinated ethylene propylene, DuPont) thermal control materials on the Hubble Space Telescope, and polyimide Kapton (DuPont) solar array blankets.

  14. Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3

    NASA Astrophysics Data System (ADS)

    Ermiş, İ.; Çorumlu, V.; Sertkol, M.; Öztürk, M.; Kaleli, M.; Çetin, A.; Turemiş, M.; Arı, M.

    2016-11-01

    The solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92- x Ho0.03Er0.05)2O3 + (ZnO) x solutions with a 0 ≤ x ≤ 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P21/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm-1 at 800°C for undoped (Bi0.92Ho0.03Er0.05)2O3.

  15. Reinforcing Concepts of Transient Heat Conduction and Convection with Simple Experiments and COMSOL Simulations

    ERIC Educational Resources Information Center

    Mendez, Sergio; AungYong, Lisa

    2014-01-01

    To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…

  16. EVALUATION OF THERMAL CONDUCTIVITY OF INSTALLED-IN-PLACE POLYURETHANE FOAM INSULATION BY EXPERIMENT AND ANALYSIS

    SciTech Connect

    Smith, A; Bruce Hardy, B; Kurt Eberl, K; Nick Gupta, N

    2007-12-05

    In the thermal analysis of the 9977 package, it was found that calculated temperatures, determined using a typical thermal analysis code, did not match those measured in the experimental apparatus. The analysis indicated that the thermal resistance of the overpack in the experimental apparatus was less than that expected, based on manufacturer's reported value of thermal conductivity. To resolve this question, the thermal conductivity of the installed foam was evaluated from the experimental results, using a simplified analysis. This study confirmed that the thermal resistance of the experimental apparatus was lower than that which would result from the manufacturer's published values for thermal conductivity of the foam insulation. The test package was sectioned to obtain samples for measurement of material properties. In the course of the destructive examination a large uninsulated region was found at the bottom of the package, which accounted for the anomalous results. Subsequent measurement of thermal conductivity confirmed the manufacturer's published values. The study provides useful insight into the use of simplified, scoping calculations for evaluation of thermal performance of packages.

  17. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  18. Designing and Conducting Strong Quasi-Experiments in Education. Version 2

    ERIC Educational Resources Information Center

    Scher, Lauren; Kisker, Ellen; Dynarski, Mark

    2015-01-01

    The purpose of this paper is to describe best practices in designing and implementing strong quasi-experimental designs (QED) when assessing the effectiveness of policies, programs or practices. The paper first discusses the issues researchers face when choosing to conduct a QED, as opposed to a more rigorous randomized controlled trial design.…

  19. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  20. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  1. ESA successfully conducts experiment in Advanced Space Robotics on Japanese satellite

    NASA Astrophysics Data System (ADS)

    1999-04-01

    ETS-VII is the latest in NASDA's series of engineering test satellites. It is dedicated to the in-orbit assessment and demonstration of novel technologies in rendez-vous / docking and space robotics. ETS-VII is in fact a pair of satellites, a larger chaser and a smaller target satellite which can be released for the rendez-vous and docking experiments. The larger satellite carries a robot arm with a stretched length of about 2 m, and a set of experimentation equipment to test the robot's capabilities : a task board on which typical robot manipulation activities can be performed and measured, an Orbital Replacement Unit (ORU) to be removed and reinstalled, a truss structure to be erected, an antenna assembly mechanism to be actuated and an advanced robot hand. The ESA experiments concern advanced schemes for planning, commanding, controlling and monitoring the activities of a space robot arm system. One set of experiments tests an operational mode called "interactive autonomy", whereby the robot motions are split into typical "tasks" of medium complexity. Ground operators can interact with the tasks (parameterising, commanding, rescheduling, monitoring, interrupting them as needed), relying on the fact that each task will be autonomously executed using appropriate sensor-based control loops (it having been programmed and extensively verified in advance by simulation). This significantly reduces the amount of data traffic over the spacelink - in fact, ETS-VII offers only a few short communications windows per day. Data from ESA experiments will be used to assess the performance of tasks executed with "interactive autonomy" compared with the more traditional telemanipulation at lower control levels. The second group of experiments concerns vision-based robot control. Using the Japanese-provided on-board vision system (which includes one hand camera and one scene-overview camera), it has been demonstrated that reliable automatic object localisation and grasping can be

  2. Laser patterning of transparent conductive metal nanowire coatings: simulation and experiment.

    PubMed

    Henley, Simon J; Cann, Maria; Jurewicz, Izabela; Dalton, Alan; Milne, David

    2014-01-21

    Transparent and electrically conductive metal nanowire networks are possible replacements for costly indium tin oxide (ITO) films in many optoelectronic devices. ITO films are regularly patterned using pulsed lasers so similar technologies could be used for nanowire coatings to define electrode structures. Here, the effects of laser irradiation on conducting silver nanowire coatings are simulated and then investigated experimentally for networks formed by spray deposition onto transparent substrates. The ablation threshold fluence is found experimentally for such nanowire networks and is then related to film thickness. An effective model using finite-element heat transfer analysis is examined to look at energy dissipation through these nanowire networks and used to understand mechanisms at play in the laser-material interactions. It is demonstrated that the three-dimensional nature of these coatings and the relative ratios of the rates of lateral to vertical heat diffusion are important controlling parameter affecting the ablation threshold.

  3. Summary of recent experiments on focusing of target-normal-sheath-accelerated proton beam with a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Alexander, N.; Barnard, J. J.; Lund, S. M.

    2014-05-15

    We present a summary of recent experiments on focusing of laser target-normal-sheath-accelerated (TNSA) proton beam with a stack of thin conducting foils. The experiments were performed using the Phelix laser (GSI-Darmstadt) and the Titan laser, Lawrence Livermore National Laboratory. The phenomena consistent with self-collimation (or weak self-focusing) of TNSA protons were experimentally observed for the first time at the Phelix laser user facility, in a specially engineered structure ('lens') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. Follow up experiments using the Titan laser obtained results consistent with the collimation/focusing observed in the initial experiments using the Phelix. The Titan experiments employed improved, 25 μm- and 50 μm-gap targets and the new fine mesh diagnostic. All the experiments were carried out in a “passive environment,” i.e., no external fields were applied, and no neutralization plasma or injection of secondary charged particles was imposed. A plausible interpretation of the observed phenomena is that the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the conducting foils inhibits radial expansion of the beam.

  4. Modeling thermal conductivity of thermal spray coatings: comparing predictions to experiments

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Longtin, J. P.; Sampath, S.

    2006-12-01

    Thermal conductivity plays a critical role in the thermal transport of thermal-sprayed coatings. In this article, a combined image analysis and finite-element method approach is developed to assess thermal conductivity from high-resolution scanning electron microscopy images of the coating microstructure. Images are analyzed with a collection of image-processing algorithms to reveal the microscopic coating morphology. The processed digital image is used to generate a two-dimensional finite-element mesh in which pores, cracks, and the bulk coating material are identified. The effective thermal conductivity is then simulated using a commercial finite-element code. Results are presented for three coating material systems [yttriastabilized zirconia (YSZ), molybdenum, and NiAl], and the results are found to be in good agreement with the experimental values obtained using the laser flash method. The YSZ coatings are also annealed, and the analysis procedure was repeated to determine whether the technique can accurately assess changes in coating morphology.

  5. Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture

    NASA Astrophysics Data System (ADS)

    McKay, Larry D.; Cherry, John A.; Gillham, Robert W.

    1993-04-01

    Field values of horizontal hydraulic conductivity measured in the upper 1.5-5.5 m of a weathered and fractured clay-rich till were strongly influenced by smearing around piezometer intakes, which occurs during augering, and by the physical scale of the measuring device. Values measured in conventional augered piezometers were typically 1-2 orders of magnitude lower than those measured in piezometers designed to reduce smearing. Measurements of hydraulic conductivity in small-scale seepage collectors or piezometers, which typically intersect fewer than 10 fractures, vary over a much greater range, 10-10 to 10-6 m/s, than large-scale values based on infiltration into 5.5-m-deep trenches which intersect thousands of fractures (range 10-7 to 3×10-7 m/s). Values of hydraulic fracture aperture, 1-43 μm, and fracture porosity, 3×10-5 to 2×10-3, were calculated using the cubic law with fracture orientation/distribution measurements and the small-scale hydraulic conductivity measurements. This paper provides the first reliable determination of the magnitude and spatial distribution of hydraulically derived fracture parameters in a clay deposit. The absence of such data has, until now, severely limited the application of quantitative groundwater flow and contaminant transport models in this type of deposit.

  6. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  7. An Examination of the Benefits, Limitations, and Challenges of Conducting Randomized Experiments with Principals

    ERIC Educational Resources Information Center

    Camburn, Eric M.; Goldring, Ellen; Sebastian, James; May, Henry; Huff, Jason

    2016-01-01

    Purpose: The past decade has seen considerable debate about how to best evaluate the efficacy of educational improvement initiatives, and members of the educational leadership research community have entered the debate with great energy. Throughout this debate, the use of randomized experiments has been a particularly contentious subject. This…

  8. Soil Science self-learning based on the design and conduction of experiments

    NASA Astrophysics Data System (ADS)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the

  9. The influence of the amorphous polymer on conductivity, morphologies and thermal properties of polyether-based blends with addition of inorganic salt

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Sim, L. H.; Kammer, H. W.; Tan, W.

    2012-06-01

    Thermodynamic control of the dispersion of lithium (Li) salt in different phases of semicrystalline/amorphous polymer blends is elucidated in this study. Solid polymer electrolytes of poly(ethylene oxide) (PEO), epoxidized natural rubber (ENR), random copolymer of poly(acrylate) (PAc) and as well as polymer blends of PEO with ENR and PAc doped with various concentrations of Li salt were studied. The salt concentrations (CLi) of solid polymer electrolytes vary between CLi = 0.02 and 0.15. The influence of the ENR or PAc on the properties of PEO after addition of Li salt is discussed. Blends of PEO/ENR and PEO/PAc are immiscible by elucidation of the glass transition temperature (Tg) as well as the morphological analyses. PEO, ENR and PAc possess oxygen in their respective chemical structures, which may be able to coordinate with the Li salt added. Non uniformity of Li salt concentration in different phases of the blends is highlighted for both systems. The conductivity of PEO/ENR and PEO/PAc blends doped with Li salt is primarily governed by PEO. The results for Tg suggest that higher solubility of Li salt in PEO as compared to ENR in the former case and restricted ion transport in the glassy PAc (with Tg≈30°C after addition of Li salt in the latter system. These may be the attributing factors for the enhancement of conductivity of the doped-PEO/ENR blends as compared to that of the doped-PEO/PAc blends. This suggests that PEO exhibits greater extent of complexation with LiClO4 as compared to that of the ENR and PAc as supported by Fourier-transform infra-red (FTIR) studies.

  10. "We actually care and we want to make the parks better": A qualitative study of youth experiences and perceptions after conducting park audits.

    PubMed

    Gallerani, David G; Besenyi, Gina M; Wilhelm Stanis, Sonja A; Kaczynski, Andrew T

    2017-02-01

    This study explored youths' experiences and perceptions about community engagement as a result of participating in a community-based data collection project using paper and mobile technology park environmental audit tools. In July 2014, youth (ages 11-18, n=50) were recruited to participate in nine focus groups after auditing two parks each using paper, electronic, or both versions of the Community Park Audit Tool in Greenville County, SC. The focus groups explored the youths' experiences participating in the project, changes as a result of participation, suggested uses of park audit data collected, and who should use the tools. Four themes emerged related to youths' project participation experiences: two positive (fun and new experiences) and two negative (uncomfortable/unsafe and travel issues). Changes described as a result of participating in the project fell into four themes: increased awareness, motivation for further action, physical activity benefits, and no change. Additionally, youth had numerous suggestions for utilizing the data collected that were coded into six themes: maintenance & aesthetics, feature/amenity addition, online park information, park rating/review system, fundraising, and organizing community projects. Finally, six themes emerged regarding who the youth felt could use the tools: frequent park visitors, community groups/organizations, parks and recreation professionals, adults, youth, and everyone. This study revealed a wealth of information about youth experiences conducting park audits for community health promotion. Understanding youth attitudes and preferences can help advance youth empowerment and civic engagement efforts to promote individual and community health.

  11. Discipline report on thermal analyses of M551, M552, and M553 experiments. [on gravity and heat conduction

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1974-01-01

    Reduced gravity does not significantly affect the thermal histories in the M551 specimen, even if molten metal flow pattern is different from that in terrestrial conditions. Thermal histories corresponding to terrestrial experimental conditions were calculated by use of the computer programs. Heat conduction through brazing alloy (M552 experiment) is improved in the Skylab conditions, because of the increased extent, rate and uniformity of braze spreading in space. Effects of reduced gravity on heat flow in the M553 specimen are insignificant, because convection effects appear instantaneously and conduction is a governing factor on the heat flow.

  12. STS-55 MS3 Harris and Payload Specialist Schlegel conduct Anthrorack experiment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel breathes into Rack 9 Anthrorack (AR) (Human Physiology Laboratory) device for Pulmonary Perfusion and Ventilation During Rest and Exercise experiment while working inside the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. In the background, Mission Specialist 3 (MS3) Bernard A. Harris, Jr monitors his activity.

  13. [The infectious diseases experiments conducted on human guinea pigs by Nazis in concentration camps].

    PubMed

    Sabbatani, Sergio

    2013-06-01

    The author systematically examined all available publications and web documents, with regard to scientifically documented experiments carried out by Nazi physicians in their concentration camps during World War II. This research focused on human experiments dealing with: malaria, tuberculosis, petechial typhus, viral hepatitis, and those regarding sulphonamides as antimicrobial agents. The concentration camps involved by experimental programmes on human guinea pigs were: Natzweiler Struthof, Dachau, Mauthausen, Buchenwald, Neuengamme, Ravensbrück, Sachsenhausen and Auschwitz. Overall, around 7,200 deported prisoners went to their deaths during or because of these experiments (also considering human trials other than previously quoted ones). At the end of the war several physicians were charged with war crimes in two trials (Nuremberg and Dachau), and those found guilty were sentenced to death, or years of imprisonment. Some of them, including the notorious Josef Mengele, succeeded in escaping capture and being brought to justice. Thanks to these trials, partial light has been shed on these crimes, which not infrequently had children as designated victims, selected with excruciating cruelty in special segregation sections. The SS was the key structure which ensured maximum efficiency for these experimental programmes, from both logistic planning through to an operative control system carried out in concentration camps, and thanks to an autonomous, dedicated medical structure, which included a rigid hierarchy of physicians directly dependent on the head of SS forces (Reichsführer), i.e. Dr. Heinrich Himmler. Moreover, it is worth noting that also physicians who were not part of the SS corps collaborated in the above experiments on human guinea pigs: these included military personnel belonging to the Wehrmacht, academic physicians from German universities, and researchers who worked in some German pharmaceutical industries, such as IG Farben, Bayer and Boehring.

  14. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the

  15. Long-Term Network Experiments and Interdisciplinary Campaigns Conducted by the USDA-Agricultural Research Service

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.

    2014-12-01

    The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.

  16. Localization and physical properties experiments conducted by Spirit at Gusev crater

    USGS Publications Warehouse

    Arvidson, R. E.; Anderson, R.C.; Bartlett, P.; Bell, J.F.; Blaney, D.; Christensen, P.R.; Chu, P.; Crumpler, L.; Davis, K.; Ehlmann, B.L.; Fergason, R.; Golombek, M.P.; Gorevan, S.; Grant, J. A.; Greeley, R.; Guinness, E.A.; Haldemann, A.F.C.; Herkenhoff, K.; Johnson, J.; Landis, G.; Li, R.; Lindemann, R.; McSween, H.; Ming, D. W.; Myrick, T.; Richter, L.; Seelos, F.P.; Squyres, S. W.; Sullivan, R.J.; Wang, A.; Wilson, Jim

    2004-01-01

    The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.

  17. STS-47 MS Davis and MS Jemison conduct LBNP experiment in the SLJ module

    NASA Technical Reports Server (NTRS)

    1992-01-01

    At the aft end of the Spacelab Japan (SLJ) science module, STS-47 Mission Specialist (MS) N. Jan Davis (foreground) readies Rack 9 Automatic Blood Pressure System (ABPS) controls as MS Mae C. Jemison, inside the cylindrical fabric lower body negative pressure (LBNP) device, waits for the LBNP experiment to begin. LBNP device is sealed around Jemison's waist. It is attached to the SLJ floor and has a controller that operates a pump to change the pressure inside. Davis will monitor Jemison's pulse rate, blood pressure, and cardiac dimensions and functions.

  18. Localization and physical properties experiments conducted by Spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Anderson, R. C.; Bartlett, P.; Bell, J. F., III; Blaney, D.; Christensen, P. R.; Chu, P.; Crumpler, L.; Davis, K.; Ehlmann, B. L.; Fergason, R.; Golombek, M. P.; Gorevan, S.; Grant, J. A.; Greeley, R.; Guinness, E. A.; Haldemann, A. F. C.; Herkenhoff, K.; Johnson, J.; Landis, G.; Li, R.; Lindemann, R.; Ming, D. W.

    2004-01-01

    The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.

  19. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments.

    PubMed

    Logan, Bruce E

    2012-06-01

    Microbial fuel cells (MFCs) and other bioelectrochemical systems are new technologies that require expertise in a variety of technical areas, ranging from electrochemistry to biological wastewater treatment. There are certain data and critical information that should be included in every MFC study, such as specific surface area of the electrodes, solution conductivity, and power densities normalized to electrode surface area and volumes. Electrochemical techniques such as linear sweep voltammetry can be used to understand the performance of the MFC, but extremely slow scans are required for these biological systems compared to more traditional fuel cells. In this Minireview, the critical information needed for MFC studies is provided with examples of how results can be better conveyed through a full description of materials, the use of proper controls, and inclusion of a more complete electrochemical analysis.

  20. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  1. A summary of the test procedures and operational details of an ocean dumping pollution monitoring experiment conducted 7 October 1976

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.

    1977-01-01

    A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.

  2. Conducting Nursing Intervention Research in a Cooperative Group Setting – A Gynecologic Oncology Group (GOG) Experience

    PubMed Central

    Donovan, Heidi S.; Nolte, Susan; Edwards, Robert P.; Wenzel, Lari

    2014-01-01

    Objectives To provide a history on nursing science within the Gynecology Oncology Group (GOG); to discuss challenges and facilitators of nursing science in the cooperative group (CG) using a current nurse-led protocol (GOG-0259) as an exemplar; and to propose recommendations aimed at advancing nursing science in the CG setting. Data Source GOG reports and protocol databases, online databases of indexed citations, and experiences from the development and implementation of GOG-0259. Conclusions Benefits of CG research include opportunities for inter-disciplinary collaboration and ability to rapidly accrue large national samples. Challenges include limited financial resources to support non-treatment trials, a cumbersome protocol approval process, and lack of experience with nursing/quality of life intervention studies. Formal structures within GOG need to be created to encourage nurse scientists to become active members; promote collaboration between experienced GOG advanced practice nurses and new nurse scientists to identify nursing research priorities; and consider innovative funding structures to support pilot intervention studies. Implications for Nursing Practice Understanding the CG research process is critical for nurse scientists. A multi-disciplinary team of CG leaders can help investigators navigate a complex research environment and can increase awareness of the value of nursing research. PMID:24559780

  3. In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment.

    PubMed

    Kim, Hyung Joong; Kim, Young Tae; Minhas, Atul S; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun; Kwon, O Jung

    2009-11-01

    We present the first in vivo cross-sectional conductivity image of the human leg with 1.7 mm pixel size using the magnetic resonance electrical impedance tomography (MREIT) technique. After a review of its experimental protocol by an Institutional Review Board (IRB), we performed MREIT imaging experiments of four human subjects using a 3 T MRI scanner. Adopting thin and flexible carbon-hydrogel electrodes with a large surface area and good contact, we could inject as much as 9 mA current in a form of 15 ms pulse into the leg without producing a painful sensation and motion artifact. Sequentially injecting two imaging currents in two different directions, we collected induced magnetic flux density data inside the leg. Scaled conductivity images reconstructed by using the single-step harmonic B(z) algorithm well distinguished different parts of the subcutaneous adipose tissue, muscle, crural fascia, intermuscular septum and bone inside the leg. We could observe spurious noise spikes in the outer layer of the bone primarily due to the MR signal void phenomenon there. Around the fat, the chemical shift of about two pixels occurred obscuring the boundary of the fat region. Future work should include a fat correction method incorporated in the MREIT pulse sequence and improvements in radio-frequency coils and image reconstruction algorithms. Further human imaging experiments are planned and being conducted to produce conductivity images from different parts of the human body.

  4. DEWEX: a system for designing and conducting Web-based experiments.

    PubMed

    Naumann, Anja; Brunstein, Angela; Krems, Josef F

    2007-05-01

    DEWEX is a server-based environment for developing Web-based experiments. It provides many features for creating and running complex experimental designs on a local server. It is freeware and allows forboth using default features, for which only text input is necessary, and easy configurations that can be set up by the experimenter. The tool also provides log files on the local server that can be interpreted and analyzed very easily. As an illustration of how DEWEX can be used, a recent study is presented that demonstrates the system's most important features. This study investigated learning from multiple hypertext sources and shows the influences of task, source of information, and hypertext presentation format on the construction of mental representations of a hypertext about a historical event.

  5. Localization and physical property experiments conducted by opportunity at Meridiani Planum

    USGS Publications Warehouse

    Arvidson, R. E.; Anderson, R.C.; Bartlett, P.; Bell, J.F.; Christensen, P.R.; Chu, P.; Davis, K.; Ehlmann, B.L.; Golombek, M.P.; Gorevan, S.; Guinness, E.A.; Haldemann, A.F.C.; Herkenhoff, K. E.; Landis, G.; Li, R.; Lindemann, R.; Ming, D. W.; Myrick, T.; Parker, T.; Richter, L.; Seelos, F.P.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wilson, Jim

    2004-01-01

    The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.

  6. Conducting Science with a CubeSat: The Colorado Student Space Weather Experiment (CSSWE)

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Blum, Lauren; Schiller, Quintin; Kohnert, Rick

    2014-06-01

    The Colorado Student Space Weather Experiment is a 3-unit (10cm x 10cm x 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with professors and professional engineers, CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 x 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program.The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On January 5, 2013, CSSWE completed 90 days of on-orbit science operations, achieving the baseline goal for full mission success and has been operating since. An overview of the CSSWE system, on-orbit performance and lessons learned will be presented.

  7. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  8. Calibration Experiments Conducted for Noninvasive Blood Glucose Sensing Through the Eye

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Bockle, Stefan; Suh, Kwang I.; Rovati, Luigi L.

    2004-01-01

    There are more than 16 million diabetics in the United States and more than 100 million worldwide. Diabetes can lead to severe complications over time such as blindness, renal and cardiovascular diseases, and peripheral neuropathy in the limbs. Poor blood circulation in diabetics can lead to gangrene and the subsequent amputation of extremities. In addition, this pathology is the fourth leading cause of death in the United States. The most effective way to manage diabetes is frequent blood glucose monitoring performed by the patients themselves. However, because of pain, inconvenience, and the fear of developing infections from finger-prick blood tests or implants, many patients monitor their blood glucose levels less frequently than is recommended by their physicians. Therefore, a noninvasive, painless, and convenient method to monitor blood glucose would greatly benefit diabetics. Likewise, detecting, preventing, and treating the untoward effects of prolonged space travel (e.g., a human mission to Mars) in real-time requires the development of noninvasive diagnostic technologies that are compact and powerful. As a "window to the body," the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and to help develop preventative and therapeutic countermeasures early. The noninvasive feature of these technologies permits frequent repetition of tests, enabling an evaluation of the response to therapy.

  9. Conducting discrete choice experiments to inform healthcare decision making: a user's guide.

    PubMed

    Lancsar, Emily; Louviere, Jordan

    2008-01-01

    Discrete choice experiments (DCEs) are regularly used in health economics to elicit preferences for healthcare products and programmes. There is growing recognition that DCEs can provide more than information on preferences and, in particular, they have the potential to contribute more directly to outcome measurement for use in economic evaluation. Almost uniquely, DCEs could potentially contribute to outcome measurement for use in both cost-benefit and cost-utility analysis. Within this expanding remit, our intention is to provide a resource for current practitioners as well as those considering undertaking a DCE, using DCE results in a policy/commercial context, or reviewing a DCE. We present the fundamental principles and theory underlying DCEs. To aid in undertaking and assessing the quality of DCEs, we discuss the process of carrying out a choice study and have developed a checklist covering conceptualizing the choice process, selecting attributes and levels, experimental design, questionnaire design, pilot testing, sampling and sample size, data collection, coding of data, econometric analysis, validity, interpretation and welfare and policy analysis. In this fast-moving area, a number of issues remain on the research frontier. We therefore outline potentially fruitful areas for future research associated both with DCEs in general, and with health applications specifically, paying attention to how the results of DCEs can be used in economic evaluation. We also discuss emerging research trends. We conclude that if appropriately designed, implemented, analysed and interpreted, DCEs offer several advantages in the health sector, the most important of which is that they provide rich data sources for economic evaluation and decision making, allowing investigation of many types of questions, some of which otherwise would be intractable analytically. Thus, they offer viable alternatives and complements to existing methods of valuation and preference elicitation.

  10. High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen

    SciTech Connect

    Jackson, D

    2007-02-07

    Ultra-dense hydrogen has long been the subject of intense experimental and theoretical research due to the fascinating physics which arises from this supposedly simple system. The properties of ultra-dense hydrogen also have important implications for planetary physics, since the interiors of the giant planets Jupiter and Saturn are believed to consist of cores of dense, metallic hydrogen. Finally, ultra-dense hydrogen is of direct programmatic interest, and multiple-shock compression experiments on hydrogen to the metallic state have stimulated the accelerated development of new hydrogen equation-of-state (EOS) models used for ICF and other applications. The focus of our research has often been described as the ''Holy Grail'' of high-pressure physics research: The metallization of solid hydrogen. Metallic hydrogen has long been considered to be the prototypical system for the study of insulator-to-metal (I-M) transitions. Although metallic hydrogen (Z=1) may superficially appear to be a very simple material, it is in fact an extremely challenging system for theoretical analysis due to the presence of large zero-point atomic motions and the complete absence of any core electrons. Thus, solid metallic hydrogen promises to be a fascinating material. Among its predicted properties is the possibility of being a high temperature superconductor with a critical temperature T{sub c} of the order of {approx} 100K [1]. The successful metallization of solid hydrogen would be a groundbreaking scientific discovery and open up new frontiers in science and possibly technology as well.

  11. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: microcosm experiments.

    PubMed

    Yamada, T M; Sueitt, A P E; Beraldo, D A S; Botta, C M R; Fadini, P S; Nascimento, M R L; Faria, B M; Mozeto, A A

    2012-12-01

    The main objective of this study was to perform laboratory experiments on calcium nitrate addition to sediments of a tropical eutrophic urban reservoir (Ibirité reservoir, SE Brazil) to immobilize the reactive soluble phosphorus (RSP) and to evaluate possible geochemical changes and toxic effects caused by this treatment. Reductions of 75 and 89% in the concentration of RSP were observed in the water column and interstitial water, respectively, after 145 days of nitrate addition. The nitrate application increased the rate of autotrophic denitrification, causing a consumption of 98% of the added nitrate and oxidation of 99% of the acid volatile sulfide. As a consequence, there were increases in the sulfate and iron (II) concentrations in the sediment interstitial water and water column, as well as changes in the copper speciation in the sediments. Toxicity tests initially indicated that the high concentrations of nitrate and nitrite in the sediment interstitial water (up to 2300 mg L(-1) and 260 mg L(-1), respectively) were the major cause of mortality of Ceriodaphnia silvestrii and Chironomus xanthus. However, at the end of the experiment, the sediment toxicity was completely removed and a reduction in the 48 h-EC50 of the water was also observed. Based on these results we can say that calcium nitrate treatment proved to be a valuable tool in remediation of eutrophic aquatic ecosystems leading to conditions that can support a great diversity of organisms after a restoration period.

  12. Highly parameterized inverse estimation of hydraulic conductivity and porosity in a three-dimensional, heterogeneous transport experiment

    NASA Astrophysics Data System (ADS)

    Yoon, Hongkyu; McKenna, Sean A.

    2012-10-01

    Assessing the impact of parameter estimation accuracy in models of heterogeneous, three-dimensional (3-D) groundwater systems is critical for predictions of solute transport. A unique experimental data set provides concentration breakthrough curves (BTCs) measured at a 0.253 cm3 scale over the 13 × 8 × 8 cm3 domain (˜53,000 measurement locations). Advective transport is used to match the first temporal moments of BTCs (or mean arrival times, m1) averaged at 0.253 and 1.0 cm3 scales through simultaneous inversion of highly parameterized heterogeneous hydraulic conductivity (K) and porosity (φ) fields. Pilot points parameterize the fields within eight layers of the 3-D medium, and estimations are completed with six different models of the K-φ relationship. Parameter estimation through advective transport shows accurate estimation of the observed m1 values. Results across the six different K-φ relationships have statistically similar fits to the observed m1 values and similar spatial estimates of m1 along the main flow direction. The resulting fields provide the basis for forward transport modeling of the advection-dispersion equation (ADE). Using the estimated K and φ fields demonstrates that advective transport coupled with inversion using dense spatial field parameterization provides an efficient surrogate for the ADE. These results indicate that there is not a single set of model parameters, or a single K-φ relationship, that leads to a best representation of the actual experimental sand packing pattern (i.e., nonuniqueness). Additionally, knowledge of the individual sand K and φ values along with their arrangement in the 3-D experiment does not reproduce the observed transport results at small scales. Small-scale variation in the packing and mixing of the sands causes large deviations from the expected transport results as highlighted in forward ADE simulations. Highly parameterized inverse estimation is able to identify those regions where variations in

  13. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment.

    PubMed

    Yoo, Gayoung; Kang, Hojeong

    2012-01-01

    Biochar application to soil has drawn much attention as a strategy to sequester atmospheric carbon in soil ecosystems. The applicability of this strategy as a climate change mitigation option is limited by our understanding of the mechanisms responsible for the observed changes in greenhouse gas emissions from soils, microbial responses, and soil fertility changes. We conducted an 8-wk laboratory incubation using soils from PASTURE (silt loam) and RICE PADDY (silt loam) sites with and without two types of biochar (biochar from swine manure [CHAR-M] and from barley stover [CHAR-B]). Responses to addition of the different biochars varied with the soil source. Addition of CHAR-B did not change CO and CH evolution from the PASTURE or the RICE PADDY soils, but there was a decrease in NO emissions from the PASTURE soil. The effects of CHAR-M addition on greenhouse gas emissions were different for the soils. The most substantial change was an increase in NO emissions from the RICE PADDY soil. This result was attributed to a combination of abundant denitrifiers in this soil and increased net nitrogen mineralization. Soil phosphatase and N-acetylglucosaminidase activity in the CHAR-B-treated soils was enhanced compared with the controls for both soils. Fungal biomass was higher in the CHAR-B-treated RICE PADDY soil. From our results, we suggest CHAR-B to be an appropriate amendment for the PASTURE and RICE PADDY soils because it provides increased nitrogen availability and microbial activity with no net increase in greenhouse gas emissions. Application of CHAR-M to RICE PADDY soils could result in excess nitrogen availability, which may increase NO emissions and possible NO leaching problems. Thus, this study confirms that the ability of environmentally sound biochar additions to sequester carbon in soils depends on the characteristics of the receiving soil as well as the nature of the biochar.

  14. Motor imagery of locomotion with an additional load: actual load experience does not affect differences between physical and mental durations.

    PubMed

    Munzert, Jörn; Blischke, Klaus; Krüger, Britta

    2015-03-01

    Motor imagery relies strongly on motor representations. Currently, it is widely accepted that both the imagery and execution of actions share the same neural representations (Jeannerod, Neuroimage 14:S103-S109, 2001). Comparing mental with actual movement durations opens a window through which to examine motor representations and how they relate to cognitive motor processes. The present experiment examined mental durations reported by participants standing upright who imagined walking either with or without an additional load while actually carrying or not carrying that same load. Results showed a robust effect of longer durations when imagining the additional load during mental walking, whereas physical walking with an additional load did not extend movement durations accordingly. However, experiencing an actual load during imagery did not influence mental durations substantially. This dissociation of load-related effects can be interpreted as being due to an interaction of motor processes and their cognitive representation along with a reduction in neural activity in vestibular and somatosensory areas during imagery of locomotion. It is argued that this effect might be specific to locomotion and not generalize to a broader range of movements.

  15. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo

    PubMed Central

    Bakalli, Aurora; Pllana, Ejup; Koçinaj, Dardan; Bekteshi, Tefik; Dragusha, Gani; Gashi, Masar; Musliu, Nebih; Gashi, Zaim

    2011-01-01

    Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient’s clinical condition. PMID:21977304

  16. Soil apparent conductivity measurements for planning and analysis of agricultural experiments: A case study from Western-Thailand

    NASA Astrophysics Data System (ADS)

    Rudolph, Sebastian; Wongleecharoen, Chalermchart; Lark, Richard Murray; Marchant, Ben Paul; Garré, Sarah; Herbst, Michael; Vereecken, Harry; Weihermueller, Lutz

    2016-04-01

    In agricultural experiments the success or failure of a potential improvement is generally evaluated based on the plant response, using proper experimental designs with sufficient statistical power. Because within-site variability can negatively affect statistical power, improvements in the experimental design can be achieved if this variation is well understood and incorporated into the experimental design, or if some surrogate variable is used as a covariate in the analysis. Apparent soil electrical conductivity (ECa), measured by electromagnetic induction (EMI) may be one source of this information. The objective of this study was to investigate the effectiveness of EMI-derived ECa measurements for planning and analysis of agricultural experiments. ECa and plant height measurements of maize (the response variable) were taken from an agricultural experiment in Western Thailand. A statistical model of these variables was used to simulate experiments with different designs and treatment effects. The simulated data were used to quantify the statistical power when testing three orthogonal contrasts. The following experimental designs were considered: a simple random design (SR), a complete randomized block design (CRB), and a complete randomized block design with spatially adjusted blocks on plot means of ECa (CRBECa). According to an analysis of variance (ANOVA) the smallest effect sizes could be detected using the CRBECa design, which suggests that ECa survey measurements could be used in the planning phase of an experiment to achieve efficiencies by better blocking. Also, analysis of covariance (ANCOVA) showed that larger power improvements could be achieved when ECa was used as a covariate in the analysis. We therefore recommend that ECa measurements should be used to describe subsurface variability and to support the statistical analysis of agricultural experiments.

  17. Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment

    DOE PAGES

    Jackson, C. Rhett; Du, Enhao; Klaus, Julian; ...

    2016-08-12

    Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaledmore » 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.« less

  18. Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment

    SciTech Connect

    Jackson, C. Rhett; Du, Enhao; Klaus, Julian; Griffiths, Natalie A.; Bitew, Menberu; McDonnell, Jeffrey J.

    2016-08-12

    Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaled 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.

  19. The role of space communication in promoting national development with specific reference to experiments conducted in India

    NASA Astrophysics Data System (ADS)

    Chitnis, E. V.

    The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.

  20. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... hydrocarbon flow? You must take the following safety measures when you conduct drilling operations on a platform with producing wells or that has other hydrocarbon flow: (a) You must install an...

  1. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station...

  2. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station...

  3. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... producing wells or that has other hydrocarbon flow: (a) You must install an emergency shutdown station...

  4. Measuring thermal conductivity of the lunar regolith in-situ: Lessons learned from the Apollo heat flow experiment

    NASA Astrophysics Data System (ADS)

    Grott, Matthias; Knollenberg, Joerg; Sohl, Frank; Krause, Christian

    With landed lunar missions like the International Lunar Network ILN on the agenda of major space agencies, new opportunities for the in-situ geophysical exploration of the Moon are arising. In preparation for these missions, it is due time to re-evaluate earlier measurements and to identify open science questions and lessons learned from the Apollo Lunar Surface Experiment Package. Here we focus on the heat flow experiment conducted during the Apollo 15 and 17 missions, which provided the first extraterrestrial heat flow measurements in history. The lunar heat flow values measured at the two sites carry some uncertainty connected to am-biguities considering the in-situ determination of the thermal conductivity. Disparate thermal conductivity values were deduced using two different methods, (i) a modified line heat source (LHS) method and (ii) a transient method involving the analysis of transient thermal waves. This led to a downward correction of the estimated lunar heat flow by 30 to 50 % relative to first published results. It was concluded at that time that the discrepancy between the both methods must be attributed to regolith disruption close to the borestem and that transient methods would yield more reliable results. We have re-evaluated the influence of regolith disruption caused by probe emplacement on the measurements. We find that disturbed regolith probably extended across many cm from the drill stem into the surrounding soil. This finding poses significant challenges to future in-situ experiments, as the volume sampled by LHS methods is usually fairly restricted. On the other hand, as a direct method, the measurement accuracy of the LHS methods is much higher than that expected from transient methods. We therefore propose to use a combination of methods to gain confidence in the obtained results. Our results suggest that the influence of probe emplacement on the surroundings needs to be carefully analyzed and we will present a model for regolith

  5. Determination of the thermal conductivity of opalinus clay via simulations of experiments performed at the Mont Terri underground laboratory

    NASA Astrophysics Data System (ADS)

    Mügler, C.; Filippi, M.; Montarnal, Ph.; Martinez, J.-M.; Wileveau, Y.

    2006-02-01

    Storage in deep geological formations is a potential solution for the management of high-level radioactive wastes. In this context, different types of rocks such as argillite are extensively studied. In the Mont Terri underground laboratory (Switzerland), several experiments have been performed in order to characterize the properties of the opalinus clay. One of these experiments, called HE-C, has consisted in measuring in situ the time evolution of the rock temperature submitted to a heating source. Experimental measurements have shown that the thermal behaviour of the clay was not homogeneous around the borehole where the heater was installed. Furthermore, 3D direct numerical simulations of this experiment performed with the code Cast3M have proved that it was necessary to introduce a new parameter α to model the amount of electric power lost in cables and by air convection inside the metallic tube containing the heater. A numerical simulation-optimization technique has been used to estimate the thermal longitudinal and transverse conductivities ( λ// and λ⊥) of the host rock. It consists in minimizing an objective function that is the sum of the squared differences between measured and calculated temperatures. But this method induced a lot of Cast3M simulations. In order to drastically reduce the CPU time, we used a neural network approximation built from a sample training of 1100 Cast3M simulations. It allowed us to calculate the objective function for 500 000 different values of the triplet ( λ//, λ⊥, α). Finally, we obtained the following values for the thermal conductivities on one side of the borehole, λ// = 1.84 ± 0.04 W m - 1 K - 1 and λ⊥ = 0.55 ± 0.03 W m - 1 K - 1 ; on the other side, λ// = 1.90 ± 0.07 W m - 1 K - 1 and λ⊥ = 1.07 ± 0.09 W m - 1 K - 1 . The estimated thermal conductivities λ⊥ perpendicular to the bedding plane are quite different. It is perhaps caused by the presence of an intensive fractured zone on one side of

  6. Determination of Unknown Concentrations of Sodium Acetate Using the Method of Standard Addition and Proton NMR: An Experiment for the Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Rajabzadeh, Massy

    2012-01-01

    In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…

  7. Effect of phosphorus additions on the sintering and transport properties of proton conducting BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}}

    SciTech Connect

    Soares, H.S.; Zhang, X.; Antunes, I.; Frade, J.R.; Mather, G.C.; Fagg, D.P.

    2012-07-15

    The influence of phosphorous additions on the sintering and electrical transport properties of the proton-conducting perovskite BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}} (BZY) has been studied with a view to the use of phosphates as typical dispersants for the formation of stabilised solid suspensions or as possible sintering aids. P{sub 2}O{sub 5} additions, (1-x)BZY{center_dot}xP{sub 2}O{sub 5}, monotonously promote densification in the intermediate compositional range 0.04{<=}x{<=}0.08. Nonetheless, BZY reacts with phosphorous forming the phase Ba{sub 3}(PO{sub 4}){sub 2} at temperatures as low as 600 Degree-Sign C. The associated loss of Ba from the perovskite, leads to a decrease in the perovskite lattice parameter, the formation of yttria-based impurity phases and impaired grain growth. Such reaction has an extremely detrimental effect on bulk and grain boundary conductivities. It is, therefore, vital that the current results are taken into account by the protonics community when attempting to prepare the stabilised solid suspensions of BZY nanopowders required for thin ceramic applications. Alternative dispersants to phosphate esters must be found. - Graphical Abstract: Sintering experiments performed at 1500 Degree-Sign C for 5 h and at 1400 Degree-Sign C for 24 h of (1-x)BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}}{center_dot}xP{sub 2}O{sub 5} in the range x=0-0.10. Highlights: Black-Right-Pointing-Pointer P{sub 2}O{sub 5} additions, (1-x)BZY{center_dot}xP{sub 2}O{sub 5}, promote densification in the intermediate compositional range 0.04{<=}x{<=}0.08. Black-Right-Pointing-Pointer BZY reacts with phosphorous forming the phase Ba{sub 3}(PO{sub 4}){sub 2} at temperatures as low as 600 Degree-Sign C. Black-Right-Pointing-Pointer Detrimental effects on bulk and grain boundary conductivities are shown. Black-Right-Pointing-Pointer Alternative dispersants to phosphate esters must be found.

  8. Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment.

    PubMed

    Fouilland, E; Trottet, A; Alves-de-Souza, C; Bonnet, D; Bouvier, T; Bouvy, M; Boyer, S; Guillou, L; Hatey, E; Jing, H; Leboulanger, C; Le Floc'h, E; Liu, H; Mas, S; Mostajir, B; Nouguier, J; Pecqueur, D; Rochelle-Newall, E; Roques, C; Salles, C; Tournoud, M-G; Vasseur, C; Vidussi, F

    2017-03-16

    Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1-2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH4(+), SiO4(3-)) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.

  9. Containerless processing of glass forming melts: D-1, MEA/A-2 experiment 81F01 conducted on STS-61A flight, October 1985

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1986-01-01

    Results of experiment 81F01, which was conducted in the Material Experiment Assembly MEA/A-2 on the D-1 Spacelab Mission (STS-61A), are presented. The general plan of the experiment was to heat, melt, and quench six spherical samples of different glass forming compositions while they were levitated in a single axis acoustic levitator furnace (SAAL). In addition, two non-melting sintered alumina samples were used to check the operational characteristics of the SAAL under reduced gravity conditions. Three of the eight samples were levitated between 1250 and 1500 C before the lack of coolant created an over-temperature condition that caused the SAAL to shut down prematurely. Two of the three samples processed were calcia-gallia-silica and soda-lime-silica glass forming compositions. Evidence of a two to three times increase in the tendency for glass formation was obtained for the calcia-gallia-silica. The final glass appeared reasonably homogeneous even though it was made from hot pressed powders containing deliberate heterogeneities. A photographic record was obtained of the microgravity sample processing sequences.

  10. Dynamic Characteristics of X-pinch Experiments Conducted in a Small Capacitive Generator:Refractive Optical Observations.

    NASA Astrophysics Data System (ADS)

    Sepúlveda, Adolfo; Pavez, Cristian; Pedreros, José; Avaria, Gonzalo; San Martín, Patricio; Soto, Leopoldo

    2016-05-01

    Among the dense plasmas configurations of interest for applications as a portable intense source of X-rays, the X-pinches are the most attractive by their brightness, source size, short duration and space localization, being particularly reproducible when they are conducted with fast pulsed power generators. In recent time, several characteristics of the dynamics and emission have been reproduced in compact generators (typically capacitive generators) of low current rise-rate (less than 0.5 kA/ns). In this work, a preliminary characterization of the dynamic of X-pinch plasma conducted in a small capacitive generator is reported. In order to obtain the plasma dynamics and quantitative information of the plasma density, the dark field Schlieren technique and interferometry were implemented. The experiments were carried out on the multipurpose generator (1.2 μF, 345 J, 47.5 nH, T/4=375 ns and Z = 0.2 Ω in short circuit) capable to produce currents up to 122 kA with 500 ns quarter period, when a charging voltage of 24 kV and metallic X-pinches are used as load. The electrical behavior of the discharge and the X-ray emission are monitored with a Rogowski coil and filtered PIN diodes respectively. For the refractive optical diagnostics a 532 nm frequency- doubled Nd-YAG laser was used. As from a single Schlieren record per shot, a sequence with the time evolution of the plasma is constructed. From the images, a similar dynamic of X- pinches conducted in fast generators of high current is observed, where structures such as coronal plasma, plasma flares and plasma jets are identified. The plasma dynamics observed from a VUV gated pinhole image system is compared with registered dynamic with refractive optical techniques.

  11. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... operations on a platform that has producing wells or has other hydrocarbon flow? You must take the following... hydrocarbon flow: (a) You must install an emergency shutdown station near the driller's console; (b) You...

  12. Synergetic effect of TiO2 nano filler additives on conductivity and dielectric properties of PEO/PVP nanocomposite electrolytes for electrochemical cell applications

    NASA Astrophysics Data System (ADS)

    Koduru, H. K.; Kondamareddy, K. K.; Iliev, M. T.; Marinov, Y. G.; Hadjichristov, G. B.; Karashanova, D.; Scaramuzza, N.

    2017-01-01

    Sodium-ion conducting PEO/PVP blend based solid polymer electrolyte films complexed with NaIO4 salt and nano-sized TiO2 fillers are fabricated by employing a solution casting technique for Na-ion battery applications. Measurements of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) are carried out to investigate the crystallinity and thermal stability of the solid polymer electrolytes. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies are performed to understand the modifications in surface morphological features and to evaluate the size and distribution of dispersed nano-sized TiO2 fillers. The room temperature ionic conductivities of polymer electrolyte films are investigated by impedance analysis in the frequency range 1 MHz - 1 Hz. The nano-sized TiO2 (3 wt%) filled composite electrolyte of ‘PEO/PVP/NaIO4 (10 wt%)’ demonstrates a maximum room temperature conductivity of 9.82 X 10-6 S/cm. The influence of TiO2 filler on conductivity and dielectric properties are presented in this report.

  13. Co-addition of manure increases the dissipation rates of tylosin A and the numbers of resistance genes in laboratory incubation experiments.

    PubMed

    Li, Qian; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Xin, Wen; Wu, Yin-Bao

    2015-09-15

    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.

  14. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  15. Does the soil's effective hydraulic conductivity adapt in order to obey the Maximum Entropy Production principle? A lab experiment

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin

    2015-04-01

    The Maximum Entropy Production (MEP) principle is a conjecture assuming that a medium is organized in such a way that maximum power is subtracted from a gradient driving a flux (with power being a flux times its driving gradient). This maximum power is also known as the Carnot limit. It has already been shown that the atmosphere operates close to this Carnot limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state close to the Carnot limit, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells (e.g. wind). The aim of this study is to test if the soil's effective hydraulic conductivity also adapts itself in such a way that it operates close to the Carnot limit. The big difference between atmosphere and soil is the way of adaptation of its resistance. The soil's hydraulic conductivity is either changed by weathering processes, which is a very slow process, or by creation of preferential flow paths. In this study the latter process is simulated in a lab experiment, where we focus on the preferential flow paths created by piping. Piping is the process of backwards erosion of sand particles subject to a large pressure gradient. Since this is a relatively fast process, it is suitable for being tested in the lab. In the lab setup a horizontal sand bed connects two reservoirs that both drain freely at a level high enough to keep the sand bed always saturated. By adding water to only one reservoir, a horizontal pressure gradient is maintained. If the flow resistance is small, a large gradient develops, leading to the effect of piping. When pipes are being formed, the effective flow resistance decreases; the flow through the sand bed increases and the pressure gradient decreases. At a certain point, the flow velocity is small enough to stop the pipes from growing any further. In this steady state, the effective flow resistance of

  16. Age and School Experience as Factors in Rule Utilization: Use of a Simple Addition Rule. Final Report, Part 1.

    ERIC Educational Resources Information Center

    Goulet, L. R.

    This study attempted to investigate the effects of school experience on performance on visual perception tests involving line figures and forms. The subjects were 120 first grade students selected from two public schools in the same community. The experiment involved an Experimental Treatments X Age X Time of Testing factorial design. All subjects…

  17. Design and conduct of early-phase radiotherapy trials with targeted therapeutics: lessons from the PRAVO experience.

    PubMed

    Ree, Anne Hansen; Hollywood, Donal

    2013-07-01

    New strategies to facilitate the improvement of physical and integrated biological optimization of high-precision treatment protocols are an important priority for modern radiation oncology. From a clinical perspective, as knowledge accumulates from molecular radiobiology, there is a complex and exciting opportunity to investigate novel approaches to rational patient treatment stratification based on actionable tumor targets, together with the appropriate design of next-generation early-phase radiotherapy trials utilizing targeted therapeutics, to formally evaluate relevant clinical and biomarker endpoints. A unique aspect in the development pathway of systemic agents with presumed radiosensitizing activity will also be the need for special attention on patient eligibility and the rigorous definition of radiation dose-volume relationships and potential dose-limiting toxicities. Based on recent experience from systematically investigating histone deacetylase inhibitors as radiosensitizing agents, from initial studies in preclinical tumor models through the conduct of a phase I clinical study to evaluate tumor activity of the targeted agent as well as patient safety and tumor response to the combined treatment modality, this communication will summarize principles relating to early clinical evaluation of combining radiotherapy and targeted therapeutics.

  18. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    SciTech Connect

    Barysevich, A. E.; Cherkas, S. L.

    2011-05-15

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  19. Modeling of Ionic Conductivity Enhancement of LiClO4-PVA-C System by TiO2 Addition Using Complex Numerical Model of PDE

    NASA Astrophysics Data System (ADS)

    Shokrollahi, Mahvash; Semnani, Dariush; Morshed, Mohammad; Rezaei, Behzad; Mirsoofian, Mehdi

    2013-12-01

    PVA-TiO2 nanocomposite polymer electrolytes (PEs) were produced with different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) using the electrospinning process. Morphological studies of PVA-TiO2 nanofibers were accomplished with SEM. PVA-TiO2 membranes exhibited a high porosity of 79-91%. The impedance results showed that incorporation of TiO2 into the nanofiber membrane improved its ionic conductivity from 0.7 × 10-5 to 2.5 × 10-5 S/cm at room temperature. Nanofiber PEs showed very good reversibility and electrochemical stability up to 4.7 V. Diffusion coefficient of Li ion into PVA-TiO2 nanocomposite PEs was estimated by using a complex numerical model of partial differential equation for evaluation of ion transmission. Diffusion coefficient of PVA-TiO2 PEs containing different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) increased with increasing the nanoparticles content.

  20. Independent and additive contributions of postvictory testosterone and social experience to the development of the winner effect.

    PubMed

    Fuxjager, Matthew J; Oyegbile, Temitayo O; Marler, Catherine A

    2011-09-01

    The processes through which salient social experiences influence future behavior are not well understood. Winning fights, for example, can increase the odds of future victory, yet little is known about the internal mechanisms that underlie such winner effects. Here, we use the territorial California mouse (Peromyscus californicus) to investigate how the effects of postvictory testosterone (T) release and winning experience individually mediate positive changes in future winning ability and antagonistic behavior. Male mice were castrated and implanted with T capsules to maintain basal levels of this hormone. We found that males form a robust winner effect if they win three separate territorial disputes and experience a single T surge roughly 45 min after each encounter. Meanwhile, males exhibit only an intermediate winner effect if they either 1) acquire three previous wins but do not experience a change in postvictory T or 2) acquire no previous wins but experience three separate T pulses. The results indicate that the effect of postvictory T must be coupled with that of winning experience to trigger the maximum positive shift in winning ability, which highlights the importance of social context in the development of the winner effect. At the same time, however, postvictory T and winning experience are each capable of increasing future winning ability independently, and this finding suggests that these two factors drive plasticity in antagonistic behavior via distinct mechanistic channels. More broadly, our data offer insight into the possible ways in which various species might be able to adjust their behavioral repertoire in response to social interactions through mechanisms that are unlinked from the effects of gonadal steroid action.

  1. In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conducted without additional reductants and agents

    PubMed Central

    Kang, Jun; Kim, Yeonwon; Kim, Hye-min; Hu, Xiulan; Saito, Nagahiro; Choi, Jae-Hyuk; Lee, Myeong-Hoon

    2016-01-01

    C-encapsulated highly pure Ni, Co, and Fe magnetic nanoparticles (MNPs/C) were synthesized by an innovative one-step in-situ plasma in liquid method (solution plasma processing, SPP) without any additional reductants, agents, or treatment. Successful encapsulation of MNPs was demonstrated by using inductively coupled plasma-atomic emission spectrometry and cyclic voltammetry techniques. The obtained X-ray diffraction patterns and transmission electron microscopy images corresponded to MNPs with average diameters of 5 nm and good crystalline structure. The C capsules with spherical shapes (containing onion-like layers) were characterized by uniform sizes (ranging from 20 nm to 30 nm) and chain-like morphologies. The synthesized MNPs/C exhibited superparamagnetic properties at room temperature and might be utilized in data storage, biomedical, and energy applications since various NPs (including bimetallic ones) could be easily prepared by changing working electrodes. This study shows the potential of SPP to be a candidate for the next-generation synthesis method of NPs/C. PMID:27922106

  2. In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conducted without additional reductants and agents

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Kim, Yeonwon; Kim, Hye-Min; Hu, Xiulan; Saito, Nagahiro; Choi, Jae-Hyuk; Lee, Myeong-Hoon

    2016-12-01

    C-encapsulated highly pure Ni, Co, and Fe magnetic nanoparticles (MNPs/C) were synthesized by an innovative one-step in-situ plasma in liquid method (solution plasma processing, SPP) without any additional reductants, agents, or treatment. Successful encapsulation of MNPs was demonstrated by using inductively coupled plasma-atomic emission spectrometry and cyclic voltammetry techniques. The obtained X-ray diffraction patterns and transmission electron microscopy images corresponded to MNPs with average diameters of 5 nm and good crystalline structure. The C capsules with spherical shapes (containing onion-like layers) were characterized by uniform sizes (ranging from 20 nm to 30 nm) and chain-like morphologies. The synthesized MNPs/C exhibited superparamagnetic properties at room temperature and might be utilized in data storage, biomedical, and energy applications since various NPs (including bimetallic ones) could be easily prepared by changing working electrodes. This study shows the potential of SPP to be a candidate for the next-generation synthesis method of NPs/C.

  3. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga-ZnO thin films.

    PubMed

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-12-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ∼10(-3) mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5-1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga-ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ∼9 × 10(-3) Ω cm and optical transparency of ∼65-90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration.

  4. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films

    PubMed Central

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-01-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ∼10−3 mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5–1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga–ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ∼9 × 10−3 Ω cm and optical transparency of ∼65–90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration. PMID:27877622

  5. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga-ZnO thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-12-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ˜10-3 mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5-1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga-ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ˜9 × 10-3 Ω cm and optical transparency of ˜65-90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration.

  6. Degradation of hydration kinetics of proton-conducting Ba(Zr0.84Y0.15Cu0.01)O3-δ during conductivity-relaxation experiment

    NASA Astrophysics Data System (ADS)

    Choi, Sung Min; Lee, Jong-Heun; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2016-11-01

    The chemical-diffusion and surface-exchange coefficients of a proton-conducting oxide, i.e., Ba(Zr0.84Y0.15Cu0.01)O3-δ upon a sudden change of water-vapor pressure at a fixed oxygen partial pressure are investigated via a conductivity relaxation technique. Conductivity relaxation during the hydration/dehydration process follows typical two-fold non-monotonic behavior that can be explained by decoupled chemical diffusion of H and O. However, the temperature dependence of the measured chemical-diffusion and surface-exchange coefficients is significantly different depending on the direction of the temperature change. In this study, we attempt to identify the origin of these unusual behaviors during the conductivity relaxation experiment via thorough microstructural and compositional analyses on sample surface.

  7. Reflections on Doctoral Supervision: Drawing from the Experiences of Students with Additional Learning Needs in Two Universities

    ERIC Educational Resources Information Center

    Collins, Bethan

    2015-01-01

    Supervision is an essential part of doctoral study, consisting of relationship and process aspects, underpinned by a range of values. To date there has been limited research specifically about disabled doctoral students' experiences of supervision. This paper draws on qualitative, narrative interviews about doctoral supervision with disabled…

  8. [Additional memory load causes changes in induced EEG beta-rhythm in experiments with a visual set formed to facial expression].

    PubMed

    Iakovenko, I A; Kozlov, M K; Cheremushkin, E A

    2012-01-01

    Subjects were divided into two equal groups 35 healthy subjects each. Formation of the visual set to facial emotion recognition was supplemented with two types of additional task: either visuospatial (to find a target stimulus among others) or verbal (to tell a word from a pseudoword). The results of the experiments were compared to those obtained in similar experiments without the memory load. Changes in the EEG beta rhythm during visual set forming and testing were studied. The EEG was analyzed by wavelet transformation. Changes in the mean level, maximum and latency of the maximum of wavelet coefficient were rated at different stages of the experiment. All these characteristics for the beta rhythm were higher in experiments with both types of additional memory load as compared to those without the memory load.

  9. Recognizing and Conducting Opportunistic Experiments in Education: A Guide for Policymakers and Researchers. REL 2014-037

    ERIC Educational Resources Information Center

    Resch, Alexandra; Berk, Jillian; Akers, Lauren

    2014-01-01

    An opportunistic experiment is a type of randomized controlled trial that studies the effects of a planned intervention or policy change with minimal added disruption and cost. This guide defines opportunistic experiments and provides examples, discusses issues to consider when identifying potential opportunistic experiments, and outlines the…

  10. Positive Experiences of Doctoral-Level Supervisors-in-Training Conducting Group-Format Supervision: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Gazzola, Nicola; De Stefano, Jack; Thériault, Anne; Audet, Cristelle

    2014-01-01

    Experiential learning opportunities are powerful in shaping positive supervisor behaviours. We were interested in examining the positive experiences of supervisors-in-training during their first practice experience as supervisors. Our study was guided by two research questions: (a) what are the experiences that supervisors-in-training viewed as…

  11. East Asian International Student Experiences as Learners of English as an Additional Language: Implications for School Counsellors

    ERIC Educational Resources Information Center

    Popadiuk, Natalee E.; Marshall, Steve

    2011-01-01

    In the school counselling literature, little focus is placed on international students who are learners of English as an Additional Language (EAL) and on school counselling support related to their language acquisition. Using the Critical Incident Technique, we analyzed transcripts of 21 international EAL students from China, Japan, and Korea who…

  12. The effects of the addition of a pediatric surgery fellow on the operative experience of the general surgery resident.

    PubMed

    Raines, Alexander; Garwe, Tabitha; Adeseye, Ademola; Ruiz-Elizalde, Alejandro; Churchill, Warren; Tuggle, David; Mantor, Cameron; Lees, Jason

    2015-06-01

    Adding fellows to surgical departments with residency programs can affect resident education. Our specific aim was to evaluate the effect of adding a pediatric surgery (PS) fellow on the number of index PS cases logged by the general surgery (GS) residents. At a single institution with both PS and GS programs, we examined the number of logged cases for the fellows and residents over 10 years [5 years before (Time 1) and 5 years after (Time 2) the addition of a PS fellow]. Additionally, the procedure related relative value units (RVUs) recorded by the faculty were evaluated. The fellows averaged 752 and 703 cases during Times 1 and 2, respectively, decreasing by 49 (P = 0.2303). The residents averaged 172 and 161 cases annually during Time 1 and Time 2, respectively, decreasing by 11 (P = 0.7340). The total number of procedure related RVUs was 4627 and 6000 during Times 1 and 2, respectively. The number of cases logged by the PS fellows and GS residents decreased after the addition of a PS fellow; however, the decrease was not significant. Programs can reasonably add an additional PS fellow, but care should be taken especially in programs that are otherwise static in size.

  13. The Effects of Corona on Current Surges Induced on Conducting Lines by EMP (Electromagnetic Pulse): A Comparison of Experiment Data with Results of Analytic Corona Models

    DTIC Science & Technology

    1987-09-01

    that produced by a nuclear detonation above the earth’s atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico ...March, 1986, an EMP corona experiment was conducted at Kirtland Air Force Base, New Mexico . This work was funded in part by the DOE and by the Defense...through ORNL and by the Defense Nuclear Agency (DNA), was conducted at Kirtland Air Force Base in New Mexico . The data obtained in this measurement program

  14. Electrochemical Reduction of Ag2VP2O8 Composite Electrodes Visualized via In situ Energy Dispersive X-ray Diffraction (EDXRD). Unexpected Conductive Additive Effects

    SciTech Connect

    Kirshenbaum, Kevin C.; Bock, David C.; Zhong, Zhong; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther

    2015-07-29

    In our study, we characterize the deposition of silver metal nanoparticles formed during discharge of Li/Ag2VP2O8 cells with composite cathodes containing conductive carbon additive. Using in situ energy dispersive X-ray diffraction (EDXRD) of an intact battery, the location and distribution of silver metal nanoparticles generated upon reduction-displacement deposition within an Ag2VP2O8 cathode containing a pre-existing percolation network can be observed for the first time. Our study yielded unexpected results where higher rate initial discharge generated a more effective conductive matrix. This stands in contrast to cells with cathodes with no conductive additive where a low rate initial discharge proved more effective. Our results provide evidence that using conductive additives in conjunction with an in situ reduction-displacement deposition of silver metal provides a path toward the ultimate goal of complete electrical contact and full utilization of all electroactive particles.

  15. Microstructural Stability of Nanocrystalline Copper through the Addition of Antimony Dopants at Grain Boundaries: Experiments and Molecular Dynamics Simulations

    SciTech Connect

    Rajgarhia, Rahul K.; Saxena, Ashok; Spearot, Douglas; Hartwig, Ted; More, Karren Leslie; Meyer III, Harry M; Kenik, Edward A

    2010-01-01

    Experiments and simulations show that the microstructural stability of nanocrystalline Cu can be improved by adding impurity atoms, such as Sb, which migrate to the grain boundaries. Cu100-xSbx alloys are cast in three compositions (Cu-0.0, 0.2 and 0.5 at.%Sb) and subsequently processed into nanocrystalline form by equal channel angular extrusion (ECAE). The presence of Sb atoms at the grain boundaries increases the recrystallization temperature to 400 C compared to 200 C for pure nanocrystalline Cu, which was verified by measurements of microhardness, ultimate tensile strength, grain size using TEM, and Auger electron spectroscopy. Molecular dynamics (MD) simulations were performed using a wider range of Sb compositions (0.0 to 1.0 at.%Sb) to study the underlying mechanisms associated with stability. MD simulations show that Sb atoms reduce excess grain boundary energy and that 0.2 and 0.5 at.%Sb is enough to stabilize the nanocrystalline Cu microstructure.

  16. The newer aspect of dexmedetomidine use in dentistry: As an additive to local anesthesia, initial experience, and review of literature

    PubMed Central

    Kumar, Prashant; Thepra, Manju; Bhagol, Amrish; Priya, Kannu; Singh, Virendra

    2016-01-01

    Introduction: Despite the availability of a wide variety of pharmacological agents in the field of anesthesia, there has always been a continuous search for newer local anesthetic agents with improved efficacy, potency, and better handling properties. Dexmedetomidine, a selective alpha-2 adrenergic receptor agonist, is an emerging agent for provision of additive local anesthetic effect if used with conventional local anesthetics, which can be implicated in dentistry for performing many minor oral surgical procedures. The present paper reports a pilot study comparing clinical efficacy and potency of this newer emerging drug in combination with lignocaine. Materials and Methods: Ten patients undergoing orthodontic extraction for correction of malocclusion and other dentofacial deformities requiring orthodontic treatment were locally infiltrated with 2% lignocaine plus dexmedetomidine 1μ/ml and 2% lignocaine plus adrenaline in 1:200,000 dilution at two different appointments. The onset of action, duration of action, and pain threshold were assessed. Results: Onset of action was found to be faster with longer duration of action with the newer drug dexmedetomidine and lignocaine combination when compared with combination of lignocaine and adrenaline. Conclusion: The study demonstrated that the combination of dexmedetomidine with lignocaine enhances the local anesthetic potency of lignocaine without significant systemic effects when locally injected into oral mucosa. PMID:28163484

  17. Making Meaning about Educational Experiences through Participatory Action Research: A Project Conducted with Adults Enrolled in a Community College Mathematics Course

    ERIC Educational Resources Information Center

    Moreno, German Alonso

    2015-01-01

    This paper discusses the findings of a group of co-researchers involved in a participatory action research (PAR) project conducted with adults in a developmental education program. The co-researchers were mostly individuals of Hispanic descent, who had struggled in the past with schooling. Because the educational experiences of Hispanics often…

  18. Forestry Impacts on Mercury Mobility, Methylation, and Bioaccumulation - A Field Experiment with Enriched Stable Mercury Isotope Additions

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Haynes, Kristine; Mazur, Maxwell; Fidler, Nathan; Eckley, Chris; Kolka, Randy; Eggert, Susan; Sebestyen, Stephen

    2013-04-01

    Forest harvesting has clear impacts on terrestrial hydrology at least over the short term. Similar biogeochemical impacts, such as augmented mercury fluxes or downstream impacts on ecosystems are not as clear, and recent studies have not demonstrated consistent or predictable impacts across systems. To gain a better process understanding of mercury cycling in upland forest-lowland peatland ecosystems, we undertook a field-scale experiment at a study site in northern Minnesota (USA) where shallow subsurface hillslope runoff flows into an adjacent peatland ecosystem. Starting in 2009, three upland forest plots (< 1 hectare each) were delineated and hydrometric infrastructure such as runoff trenches, snow lysimeters, soil moisture probes, shallow piezometers, and throughfall gauges were installed in each plot. We added 14.2 to 16.7 μg/m2 of enriched mercury-200 and mercury-204 (as dilute mercuric nitrate) in the spring of 2011 and 2012, respectively, to distinguish between contemporary and legacy mercury and to provide some insight into the duration of contemporary mercury mobility in impacted terrestrial ecosystems. During the late winter of 2012, one of the study plots was clearcut and approximately 80% of slash was removed. We clearcut a second plot without slash removal, and left the third plot as a control. Throughout the study, we have monitored (including isotopes): mercury in runoff, soil-air gaseous Hg fluxes, methylation potentials in the adjacent peatland, and bioaccumulation into invertebrates inhabiting the adjacent peatland. Early results mostly indicate that slash removal actually lessens the impacts of clearcutting on mercury mobility (although forest harvesting in general does have a significant impact) and that forestry operations at this scale have little to no impact on methylation or bioaccumulation in downstream peatlands. Thus far, the greatest impact of slash removal in forest harvested systems is an increase in mercury evasion, likely as a

  19. Exploring electrical conductivity anomalies across the martensite transition in Fe{sub 7}Pd{sub 3} ferromagnetic shape memory alloys: Experiments and ab-initio calculations

    SciTech Connect

    Arabi-Hashemi, A.; Mayr, S. G.

    2015-03-02

    Conductivity in Fe{sub 7}Pd{sub 3} is characterized by an anomalous increase when traversing the face–centered–cubic (fcc) austenite to face–centered–tetragonal (fct) martensite transition, contrary to most other conventional and ferromagnetic shape memory alloys. Experiments on molecular– beam–epitaxy–grown single crystals indicate a resistivity change of ≈20% during the transformation on top of a quadratic temperature dependence reaching up to room temperature. The physical foundations of residual resistivity changes along the full Bain path are addressed by a Kubo– Greenwood approach within the framework of density functional theory. To do so, a concept to reliably extract the DC conductivities is proposed that yields reproducible results consistent with experiments. Finding that conductivity peaks in the fct phase, we identify a large density of states paired with high velocities at the Fermi level in the majority spin sub–bands in presence of minimum s–d electron scattering as underlying physical origin.

  20. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    PubMed

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM.

  1. Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Neuber, A.

    2012-12-01

    Copper and silver wires are subjected to pulsed high current densities producing high density metal plasma in the sub-eV regime with atmospheric air as a background gas. Numerical simulation via application of the one-dimensional magnetohydrodynamic partial differential equations solved simultaneously with the constraining circuit equations is presented. The simulations require accurate knowledge of the material equation of state (EOS) and transport properties; the LANL sesame database is applied for the EOS in all cases. Two electrical conductivity models are applied. First, the Lee-More-Desjarlais (LMD) and its modification, the quantum LMD (QLMD) conductivity, which have been well proven at higher temperatures, are applied. Simulations with the LMD and QLMD data indicate that the conductivity data as well as the MHD methodology are accurate in the sub-eV regime of interest. A less computationally involved, empirical conductivity model is applied in the same regime to explore its temperature-density range of applicability compared to the more sophisticated model.

  2. Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime.

    PubMed

    Stephens, J; Neuber, A

    2012-12-01

    Copper and silver wires are subjected to pulsed high current densities producing high density metal plasma in the sub-eV regime with atmospheric air as a background gas. Numerical simulation via application of the one-dimensional magnetohydrodynamic partial differential equations solved simultaneously with the constraining circuit equations is presented. The simulations require accurate knowledge of the material equation of state (EOS) and transport properties; the LANL sesame database is applied for the EOS in all cases. Two electrical conductivity models are applied. First, the Lee-More-Desjarlais (LMD) and its modification, the quantum LMD (QLMD) conductivity, which have been well proven at higher temperatures, are applied. Simulations with the LMD and QLMD data indicate that the conductivity data as well as the MHD methodology are accurate in the sub-eV regime of interest. A less computationally involved, empirical conductivity model is applied in the same regime to explore its temperature-density range of applicability compared to the more sophisticated model.

  3. Results from the EPL monkey-pod experiment conducted as part of the 1974 NASA/Ames shuttle CVT-2

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1974-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continuously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general spacecraft sources.

  4. Results from the EPL monkey-pod flight experiments conducted aboard the NASA/Ames CV-990, May 1976

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1976-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general space craft sources.

  5. Pacific Hake Characteristics Affecting the Conduct of an Acoustic Clutter Experiment off the West Coast of the United States

    DTIC Science & Technology

    2012-07-04

    the assessment process. Echo sounder /trawl surveys of hake have been conducted by the National Marine Fisheries Service (NMFS) since 1977 to assess...3] There will be an NMFS hake survey in 2012. [20] The echo sounder /trawl method uses echo sounders to measure the total acoustic backscattering...NMFS echo sounder /trawl surveys have focused on fish age two or greater. Age-1 hake are generally more southerly and closer to shore than adults and

  6. MyAgRecord: An Online Career Portfolio Management Tool for High School Students Conducting Supervised Agricultural Experience Programs.

    ERIC Educational Resources Information Center

    Emis, Larry; Dillingham, John

    Texas's online career portfolio management tool for high school students participating in supervised agricultural experience programs (SAEPs) was developed in 1998 by a committee of Texas high school teachers of agriscience and Texas Education Agency personnel. The career portfolio management tool reflects General Accepted Accounting Principles…

  7. Conducting Multi-Generational Qualitative Research in Education: An Experiment in Grounded Theory. Black Studies and Critical Thinking. Volume 5

    ERIC Educational Resources Information Center

    Collins, Donald R.

    2011-01-01

    This book outlines a methodology for viewing multiple generations of African Americans, specifically those who were called or called themselves Negro, Colored, Black, or African American (NCBAA). Within this framework, African Americans of varying ages describe their lives and educational experiences, allowing researchers to address a variety of…

  8. Improving planning, design, reporting and scientific quality of animal experiments by using the Gold Standard Publication Checklist, in addition to the ARRIVE guidelines.

    PubMed

    Hooijmans, Carlijn R; de Vries, Rob; Leenaars, Marlies; Curfs, Jo; Ritskes-Hoitinga, Merel

    2011-03-01

    Several studies have demonstrated serious omissions in the way research that use animals is reported. In order to improve the quality of reporting of animal experiments, the Animals in research: reporting in vivo experiments (ARRIVE) Guidelines were published in the British Journal of Pharmacology in August 2010. However, not only the quality of reporting of completed animal studies needs to be improved, but also the design and execution of new experiments. With both these goals in mind, we published the Gold Standard Publication Checklist (GSPC) in May 2010, a few months before the ARRIVE guidelines appeared. In this letter, we compare the GSPC checklist with the ARRIVE Guidelines. The GSPC describes certain items in more detail, which makes it both easier to use when designing and conducting an experiment and particularly suitable for making systematic reviews of animal studies more feasible. In order to improve not only the reporting but also the planning, design, execution and thereby, the scientific quality of animal experiments, we strongly recommend to all scientists involved in animal experimentation and to editors of journals publishing animal studies to take a closer look at the contents of both the ARRIVE guidelines and GSPC, and select the set of guidelines which is most appropriate for their particular situation.

  9. Graduate Socialization in the Responsible Conduct of Research: A National Survey on the Research Ethics Training Experiences of Psychology Doctoral Students.

    PubMed

    Fisher, Celia B; Fried, Adam L; Feldman, Lindsay G

    2009-11-01

    Little is known about the mechanisms by which psychology graduate programs transmit responsible conduct of research (RCR) values. A national sample of 968 current students and recent graduates of mission-diverse doctoral psychology programs, completed a web-based survey on their research ethics challenges, perceptions of RCR mentoring and department climate, their ability to conduct research responsibility, and whether they believed psychology as a discipline promotes scientific integrity. Research experience, mentor RCR instruction and modeling, and department RCR policies predicted student RCR preparedness. Mentor RCR instruction, department RCR policies, and faculty modeling of RCR behaviors predicted confidence in the RCR integrity of the discipline. Implications for training are discussed.

  10. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  11. Overwash Deposition Stabilizes Backbarrier Marshes as Sea Level Rises: Insights from Experiments Conducted using a Coupled Barrier Island-Marsh Model

    NASA Astrophysics Data System (ADS)

    Walters, D.; Moore, L. J.; Duran, O.; Fagherazzi, S.; Mariotti, G.

    2013-12-01

    We investigate the interactions between barrier islands and backbarrier marshes that determine the island-marsh response to climate change. To this end we couple the morphological-behavior model, GEOMBEST, with a newly-developed marsh-edge progradation component based on an existing model of tidal flat-salt marsh hydrodynamics. We conduct two sets of experiments with the new model to assess 1) the impact of overwash deposition on backbarrier marsh morphology and 2) the impact of backbarrier marsh morphology on rates of island migration. Results indicate that for backbarrier marshes to persist under accelerating RSLR, sufficient sediment must be deposited at the bayside marsh-edge boundary for the marsh to prograde at a rate equal to or greater than the rate of island transgression (i.e., to maintain marsh width). Simulations further indicate that overwash deposition can provide backbarrier marshes with an additional source of sediment that allows maintenance of existing (i.e., a steady state), and creation of new, narrow marsh platforms (~500m wide) within a range of conditions (high rate of RSLR and low fine-grained sediment supply) under which they would otherwise disappear or not exist. This existence of a stable marsh width is supported by remote sensing observations of barrier islands and backbarrier marshes along the eastern shore of Virginia, which show that a significantly high proportion of islands are backed by marshes approximately 500m wide. A second set of experiments demonstrates that the impact of backbarrier marsh platforms on barrier islands is to reduce accommodation space in the backbarrier bay, which decreases the rate of island transgression because less landward migration is necessary to maintain island elevation relative to sea level. These coupled processes indicate that barrier islands and backbarrier marshes are intimately connected such that under conditions of high rates of RSLR and overwash deposition, narrow marsh platforms exist where

  12. Extremely low frequency (ELF) stray magnetic fields of laboratory equipment: a possible co-exposure conducting experiments on cell cultures.

    PubMed

    Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György

    2015-09-01

    Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

  13. The In-Space Soldering Investigation: To Date Analysis of Experiments Conducted on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Gillies, D. C.; Hua, F.; Anilkumar, A.

    2006-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still, internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  14. Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments

    PubMed Central

    Lissau, Henriette; Frisenda, Riccardo; Olsen, Stine T.; Jevric, Martyn; Parker, Christian R.; Kadziola, Anders; Hansen, Thorsten; van der Zant, Herre S. J.; Brøndsted Nielsen, Mogens; Mikkelsen, Kurt V.

    2015-01-01

    The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor–acceptor molecules. Here we report that donor–acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor–acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor–acceptor cruciforms is tuned by small changes in the environment. PMID:26667583

  15. Effect of volcano ash additions on nutrient concentrations, bloom dynamics and community metabolism in a short-term experiment in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Weinbauer, Markus

    2016-04-01

    Volcano ash deposition is now considered as an important source of inorganic bioavailable iron which can relieve Fe-limitation in the ocean. As volcano ash also releases PO4, a experiment was performed in the NW Mediterranean Sea to test whether volcano ash deposition can affect nutrient dynamics and bloom development in a P-limited system. In a 54h experiment, it was shown that the development of a phytoplankton bloom was not enhanced or even repressed by ash additions of 2 and 20 mg l-1, whereas higher ash concentrations (200 mg l-1) induced a phytoplankton bloom as indicated by elevated Chlorophyll-a levels. Concurrently, net community production (NCP) and gross primary production (GPP) were enhanced at T24h at the highest ash additions. The metabolic balance was roughly neutral at low or no ash additions, but shifted towards phototrophy at the highest ash additions. The data on inorganic nutrient development and release estimates from ash material assays suggest relieving of P-limitation concomitant with NO3 and silicate use from ash. The concentration of TEP increased with increasing ash levels. The abundances of the heterotrophic compartment (bacteria, viruses and ciliates) also indicated dose-dependent responses. Our data suggest that heterotrophs won the competition for inorganic nutrients at ash levels of 2 and 20 mg l-1, whereas phytoplankton won at levels of 200 mg l-1. Overall, our experiments point to a strong potential of volcano ash deposition as forcing factor for nutrient dynamics and the activity of microbial plankton in a P-limited system.

  16. Results and analyses for irradiation/anneal experiments conducted on Yankee Rowe reactor pressure vessel surrogate materials. Final report

    SciTech Connect

    Biemiller, E.C.

    1995-12-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate and weld materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. The effect of plate nickel content and microstructure on irradiation damage sensitivity was assessed. Typical reactor vessel plate materials each containing 0.24% (by weight) copper, but different nickel contents at 0.63% and 0.19%, were heat treated to produce different microstructures in the test materials. A Linde 80 weld containing 0.30% copper and 1.00% nickel was produced and heat treated to test microstructure effects on the irradiation response of weld metal. Materials taken from plate surface locations (vs 1/4 thickness) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from a rapid quench, is maintained after irradiation. Irradiations were conducted at two irradiation temperatures (500{degrees}F and 550{degrees}F) to determine the effect of irradiation temperature on embrittlement. An annealing test matrix was also initiated to study the potential for a 650{degrees}F anneal. A major irradiation/annealing/reirradiation study was conducted by the DOE`s LWR Technology Center at Sandia National Laboratories (SNL), using an irradiation temperature of 550{degrees}F and a 850{degrees}F anneal. The results of the irradiation testing and the DOE/SNL annealing study show an irradiation temperature effect that is not consistent but, varies with the materials tested. The test results demonstrate that for nickel bearing steels, the superior toughness of plate surface material is maintained even after irradiation to high fluences and for the copper content tested, nickel has little effect on irradiation response.

  17. Third and Final Shuttle Mission of the Isothermal Dendritic Growth Experiment Conducted: Highest Supercooling Ever Recorded Achieved

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Malarik, Diane C.

    1999-01-01

    Dendrites describe the treelike crystal morphology commonly assumed in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because the size, shape, and orientation of the dendrites determine the final microstructure of a material. It is the microstructure that then determines the physical properties of cast or welded products. Although it is well known that dendritic growth is controlled by the transport of latent heat from the moving solid-liquid interface, an accurate and predictive model has not yet been developed. The effects of gravity-induced convection on the transfer of heat from the interface have prevented adequate testing, under terrestrial conditions, of solidification models. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three microgravity experiments flown aboard the Space Shuttle Columbia. The apparatus was used to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, thereby producing a wealth of benchmark-quality data for testing solidification models and theories.

  18. Challenges in conducting multicenter, multicultural, and multilingual trials: a view from the literature and real-life experience reports.

    PubMed

    Hanson, Beate; De Faoite, Diarmuid

    2013-01-01

    A trend toward international multicenter clinical trials in the medical device industry is helping to increase recruitment figures and to improve the generalizability of results, among other factors. However, working globally creates its own unique set of problems, which are rarely discussed in the literature. This article considers these issues from multicenter, multicultural, and multilingual perspectives. A multicenter study implies a replication of work to coordinate research sites that are working under different regulations. Standardizing elements of the clinical trial is essential for proper comparison of results. Multicultural differences manifest themselves in different forms in international clinical research. However, the impact of culture on a study's success is a real issue, particularly when patient-reported outcomes form part of the trial. A trial that is conducted globally obviously requires the use of local language material, but this element is fraught with the possibility of mistranslation and misunderstanding. In this article, we also examine the composition of a research team and how to keep everyone involved in a global clinical trial both informed and enthused about a trial that may last several years. Examples from our own clinical investigations are reported throughout this article.

  19. Alignment of carbon iron into polydimethylsiloxane to create conductive composite with low percolation threshold and high piezoresistivity: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Wang, Xiaojie

    2017-04-01

    In this study, various amounts of carbonyl iron particles (CIPs) were cured into polydimethylsiloxane (PDMS) matrix under a magnetic field up to 1.0 T to create anisotropy of conductive composite materials. The electrical resistivity for the longitudinal direction was measured as a function of filler volume fraction to understand the electrical percolation behavior. The electrical percolation threshold (EPT) of CIPs–PDMS composite cured under a magnetic field can be as low as 0.1 vol%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs–PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. Based on the morphological observation of the composite structures, a two-dimensional stick percolation model for the CIPs–PDMS composites has been established. The Monte Carlo simulation is performed to obtain the percolation probability. The simulation results in prediction of the values of EPTs are close to that of experimental measurements. It demonstrates that the low percolation behavior of CIPs–PDMS composites is due to the average length of particle chains forming by external magnetic field.

  20. Group Sparse Additive Models

    PubMed Central

    Yin, Junming; Chen, Xi; Xing, Eric P.

    2016-01-01

    We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the ℓ1/ℓ2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.

  1. Bridging the qualitative-quantitative divide: Experiences from conducting a mixed methods evaluation in the RUCAS programme.

    PubMed

    Makrakis, Vassilios; Kostoulas-Makrakis, Nelly

    2016-02-01

    Quantitative and qualitative approaches to planning and evaluation in education for sustainable development have often been treated by practitioners from a single research paradigm. This paper discusses the utility of mixed method evaluation designs which integrate qualitative and quantitative data through a sequential transformative process. Sequential mixed method data collection strategies involve collecting data in an iterative process whereby data collected in one phase contribute to data collected in the next. This is done through examples from a programme addressing the 'Reorientation of University Curricula to Address Sustainability (RUCAS): A European Commission Tempus-funded Programme'. It is argued that the two approaches are complementary and that there are significant gains from combining both. Using methods from both research paradigms does not, however, mean that the inherent differences among epistemologies and methodologies should be neglected. Based on this experience, it is recommended that using a sequential transformative mixed method evaluation can produce more robust results than could be accomplished using a single approach in programme planning and evaluation focussed on education for sustainable development.

  2. Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Ex-periments

    SciTech Connect

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2006-03-20

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.

  3. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment.

    PubMed

    Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A

    2015-06-04

    Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.

  4. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    PubMed Central

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-01-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years. PMID:27573360

  5. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-08-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years.

  6. Promoting good clinical practices in the conduct of clinical trials: experiences in the Department of Veterans Affairs Cooperative Studies Program.

    PubMed

    Sather, Mike R; Raisch, Dennis W; Haakenson, Clair M; Buckelew, Julia M; Feussner, John R

    2003-10-01

    The ever-increasing concern for the welfare of volunteers participating in clinical trials and for the integrity of the data derived from those trials has generated the concept of Good Clinical Practice (GCP). The Veterans Affairs Cooperative Studies Program, in anticipation of the need to comply with GCP guidelines, developed a Site Monitoring and Review Team (SMART), which consists of a Good Clinical Practice Monitoring Group and a Good Clinical Practice Review Group. The review group conducted 335 site reviews from fiscal years (FY) 1999 through 2001 to assess and encourage adherence to GCP. Data from reviews were compared for two time periods, a 2-year implementation period (FYs 1999/2000, n=204) and a continuing follow-up period (FY 2001, n=131). Overall, high GCP adherence was exhibited by 11.3% (n=23) of study sites in FY 1999/2000 versus 20.6% (n=27) in FY 2001, average to good adherence was exhibited by 84.3% (n=172) in FY 1999/2000 versus 77.0% (n=101) in FY 2001, and below average adherence was exhibited by 4.4% (n=9) versus 1.5% (n=3) in these two periods. These changes were statistically significant by chi square analysis (p=0.029). Moreover, GCP adherence was assessed within eight GCP focus areas: patient informed consent, protocol adherence, safety monitoring, institutional review board interactions, regulatory document management, patient records in investigator file, drug/device accountability, and general site operations. Median assessment scores for all 62 GCP review elements improved from 0.82 to 0.89 (p<0.001). Median assessment scores for the 14 selected critical GCP items improved from 0.78 to 0.89 (p<0.001). Median scores for five of the eight GCP focus areas improved significantly (p<0.001) between the two time periods. These data suggest that the site-oriented activities of SMART combined with centralized quality assurance activities of the coordinating centers represent an integrated, versatile program to promote and assure GCP adherence

  7. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  8. Chemical Results of Laboratory Dry/Rewet Experiments Conducted on Wetland Soils from Two Sites in the Everglades, Florida

    USGS Publications Warehouse

    Orem, William H.

    2008-01-01

    Drought and fire are natural environmental factors that have historically impacted and shaped the Everglades ecosystem. For example, drought and fire help to maintain the existing ecosystem biotic assemblage by periodically eradicating invading flora not adapted to living with this normal aspect of Everglades' ecology. Flora native to the Everglades are adapted to withstand normal drought cycles and all but the most intense fire conditions that burn into the peat substrate. Remobilization of nutrients and other elements from wetland soil following drought/fire and rewetting may actually stimulate plant re-growth, assisting in the recovery of the ecosystem from these events, and play a role in maintaining the geochemical balance of the ecosystem. Although drought/fire cycles occur naturally in the Everglades' ecosystem, the frequency, intensity, and duration of these events have been altered by anthropogenic activities. The hydrology of the ecosystem has been changed by the construction of water management structures starting around 1900 and continuing through the 1970s. These structures include canals, levees, and pumping stations around Lake Okeechobee and within the Everglades. In addition, water management practices have preferentially moved water toward agricultural and urban areas and away from the Everglades during periods of low rainfall. One result of these practices has been more severe drought and fire cycles within the ecosystem compared to pre-development activity. A major goal of restoration efforts in the Everglades is to restore a more natural flow of water into the ecosystem to alleviate some of the extreme drought and fire conditions witnessed during the past several decades.

  9. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  10. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.

    PubMed

    Snowden, Michael E; Güell, Aleix G; Lai, Stanley C S; McKelvey, Kim; Ebejer, Neil; O'Connell, Michael A; Colburn, Alexander W; Unwin, Patrick R

    2012-03-06

    Scanning electrochemical cell microscopy (SECCM) is a high resolution electrochemical scanning probe technique that employs a dual-barrel theta pipet probe containing electrolyte solution and quasi-reference counter electrodes (QRCE) in each barrel. A thin layer of electrolyte protruding from the tip of the pipet ensures that a gentle meniscus contact is made with a substrate surface, which defines the active surface area of an electrochemical cell. The substrate can be an electrical conductor, semiconductor, or insulator. The main focus here is on the general case where the substrate is a working electrode, and both ion-conductance measurements between the QRCEs in the two barrels and voltammetric/amperometric measurements at the substrate can be made simultaneously. In usual practice, a small perpendicular oscillation of the probe with respect to the substrate is employed, so that an alternating conductance current (ac) develops, due to the change in the dimensions of the electrolyte contact (and hence resistance), as well as the direct conductance current (dc). It is shown that the dc current can be predicted for a fixed probe by solving the Nernst-Planck equation and that the ac response can also be derived from this response. Both responses are shown to agree well with experiment. It is found that the pipet geometry plays an important role in controlling the dc conductance current and that this is easily measured by microscopy. A key feature of SECCM is that mass transport to the substrate surface is by diffusion and, for charged analytes, ion migration which can be controlled and varied quantifiably via the bias between the two QRCEs. For a working electrode substrate this means that charged redox-active analytes can be transported to the electrode/solution interface in a well-defined and controllable manner and that relatively fast heterogeneous electron transfer kinetics can be studied. The factors controlling the voltammetric response are determined by

  11. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: The additive and subtractive effect of the three dopaminergic genes - DRD2, D{beta}H, and DAT1

    SciTech Connect

    Comings, D.E.; Wu, S.; Chiu, C.; Ring, R.H.; Gade, R.; Ahn, C.; Dietz, G.; Muhleman, D.

    1996-05-31

    Polymorphisms of three different dopaminergic genes, dopamine D{sub 2} receptor (DRD2), dopamine {beta}-hydroxylase (D{beta}H), and dopamine transporter (DAT1), were examined in Tourette syndrome (TS) probands, their relatives, and controls. Each gene individually showed a significant correlation with various behavioral variables in these subjects. The additive and subtractive effects of the three genes were examined by genotyping all three genes in the same set of subjects. For 9 of 20 TS associated comorbid behaviors there was a significant linear association between the degree of loading for markers of three genes and the mean behavior scores. The behavior variables showing the significant associations were, in order, attention deficit hyperactivity disorder (ADHD), stuttering, oppositional defiant, tics, conduct, obsessive-compulsive, mania, alcohol abuse, and general anxiety - behaviors that constitute the most overt clinical aspects of TS. For 16 of the 20 behavior scores there was a linear progressive decrease in the mean score with progressively lesser loading for the three gene markers. These results suggest that TS, ADHD, stuttering, oppositional defiant and conduct disorder, and other behaviors associated with TS, are polygenic, due in part to these three dopaminergic genes, and that the genetics of other polygenic psychiatric disorders may be deciphered using this technique. 144 refs., 2 figs., 13 tabs.

  12. T cell regulation in microgravity - The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities

    NASA Astrophysics Data System (ADS)

    Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver

    2014-11-01

    Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.

  13. Experiment to determine electrical conductivity and equation of state data from Ohmically exploded tamped planar foils - preliminary diagnostic results and modeling

    NASA Astrophysics Data System (ADS)

    Ruden, E. L.; Amdahl, D. J.; Brown, D. J.; Grabowski, T. C.; Gregg, C. W.; Kostora, M. R.; Martinez, B. M.; Parker, J. V.; Camacho, J. F.; Coffey, S. K.; Poulsen, P.

    2009-11-01

    Diagnostic results from initial nondestructive (thick foil, low current) tests are presented for an experiment to simultaneously determine the electrical conductivity, pressure, density, specific energy, and temperature time histories of a planar metal foil tamped by a well characterized transparent material and exploded by a 36 μF, 50 kV rated capacitor bank discharge. Voltage differentials measure the foil's surface electric field, a B-dot probe measures surface current density, and a laser velocity interferometer (VISAR) measures dynamic foil thickness. From such and future filtered photodiode measurements, the desired properties will be inferred up to a few eV and within an order of magnitude of solid density. The purpose of the present phase of the experiment is to develop and validate diagnostic designs, data analysis techniques, and 2-D MHD simulations of the process using the MACH2 code.

  14. Experiments Conducted Aboard the International Space Station: The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI): A Current Study of Results

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C> ; Hua, F.; Anilkumar, A. V.

    2006-01-01

    Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  15. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  16. Thermoelectric Properties of Conducting Polymers

    DTIC Science & Technology

    1994-07-01

    polyphenylene sulfide , all of which are made conductive by addition of carbon. Polymers made conductive in this way do not have a high Seebeck...merit. KEYWORDS: Polyaniline, conducting polymer, conductive vinyl, conductive nylon, conductive polyphenylene sulfide , polyoctylthiophene, Schiff’s...directions. Polyphenylene sulfide (Ryton) A conductive form of this material, which is commercially available, is made conductive by the presence of carbon

  17. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields

  18. Metabolic and cardiovascular adaptation, monkey. NASA SMD 3, project 76, experiment 44 conducted at NASA/JSC, 14-25 May 1977

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1977-01-01

    The biomedical results from an experiment on a monkey subjected to space flight conditions are reported. A background history of the development and testing of an experiment system designed to permit measurement of physiological parameters in subhuman primates during continuous, comfortable, couch restraint for periods of up to 30 days is reviewed. Of major importance in the experimental design of the system was the use of a fiberglass pod, which could be sealed and subdivided into upper and lower parts, to monitor and control the physiological responses for various parts of the animal's body. The experiment was conducted within the Spacelab Simulator for a period of 11 days. Data recorded includes: Spacelab Simulator cabin temperature; ventilation rate; pod internal temperature; fraction percent oxygen; fraction percent carbon dioxide; oxygen consumption rate; carbon dioxide production rate; respiratory quotient; intrathoracic temperature; heart rate; mean aortic pressure; mean ventricular pressure; diurnal variation of parameters measured; comparison of mean preflight, flight, and postflight values of the parameters measured; and correlation matrix for the parameters measured.

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. The Role of Patients’ Age on Their Preferences for Choosing Additional Blood Pressure-Lowering Drugs: A Discrete Choice Experiment in Patients with Diabetes

    PubMed Central

    de Vries, Sieta T.; de Vries, Folgerdiena M.; Dekker, Thijs; Haaijer-Ruskamp, Flora M.; de Zeeuw, Dick; Ranchor, Adelita V.; Denig, Petra

    2015-01-01

    Objectives To assess whether patients’ willingness to add a blood pressure-lowering drug and the importance they attach to specific treatment characteristics differ among age groups in patients with type 2 diabetes. Materials and Methods Patients being prescribed at least an oral glucose-lowering and a blood pressure-lowering drug completed a questionnaire including a discrete choice experiment. This experiment contained choice sets with hypothetical blood pressure-lowering drugs and a no additional drug alternative, which differed in their characteristics (i.e. effects and intake moments). Differences in willingness to add a drug were compared between patients <75 years (non-aged) and ≥75 years (aged) using Pearson χ2-tests. Multinomial logit models were used to assess and compare the importance attached to the characteristics. Results Of the 161 patients who completed the questionnaire, 151 (72%) could be included in the analyses (mean age 68 years; 42% female). Aged patients were less willing to add a drug than non-aged patients (67% versus 84% respectively; P = 0.017). In both age groups, the effect on blood pressure was most important for choosing a drug, followed by the risk of adverse drug events and the risk of death. The effect on limitations due to stroke was only significant in the non-aged group. The effect on blood pressure was slightly more important in the non-aged than the aged group (P = 0.043). Conclusions Aged patients appear less willing to add a preventive drug than non-aged patients. The importance attached to various treatment characteristics does not seem to differ much among age groups. PMID:26445349

  1. Threats to Validity in the Design and Conduct of Preclinical Efficacy Studies: A Systematic Review of Guidelines for In Vivo Animal Experiments

    PubMed Central

    Henderson, Valerie C.; Kimmelman, Jonathan; Fergusson, Dean; Grimshaw, Jeremy M.; Hackam, Dan G.

    2013-01-01

    Background The vast majority of medical interventions introduced into clinical development prove unsafe or ineffective. One prominent explanation for the dismal success rate is flawed preclinical research. We conducted a systematic review of preclinical research guidelines and organized recommendations according to the type of validity threat (internal, construct, or external) or programmatic research activity they primarily address. Methods and Findings We searched MEDLINE, Google Scholar, Google, and the EQUATOR Network website for all preclinical guideline documents published up to April 9, 2013 that addressed the design and conduct of in vivo animal experiments aimed at supporting clinical translation. To be eligible, documents had to provide guidance on the design or execution of preclinical animal experiments and represent the aggregated consensus of four or more investigators. Data from included guidelines were independently extracted by two individuals for discrete recommendations on the design and implementation of preclinical efficacy studies. These recommendations were then organized according to the type of validity threat they addressed. A total of 2,029 citations were identified through our search strategy. From these, we identified 26 guidelines that met our eligibility criteria—most of which were directed at neurological or cerebrovascular drug development. Together, these guidelines offered 55 different recommendations. Some of the most common recommendations included performance of a power calculation to determine sample size, randomized treatment allocation, and characterization of disease phenotype in the animal model prior to experimentation. Conclusions By identifying the most recurrent recommendations among preclinical guidelines, we provide a starting point for developing preclinical guidelines in other disease domains. We also provide a basis for the study and evaluation of preclinical research practice. Please see later in the article

  2. Indicators: Conductivity

    EPA Pesticide Factsheets

    Conductivity is a measure of the ability of water to pass an electrical current. Because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases.

  3. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment

    PubMed Central

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot–1 (equivalent to the recommended field rate of 150 kg ha–1) to 0.44 g pot–1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk. PMID:27880837

  4. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  5. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  6. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  7. Prevention of intimal hyperplasia using short-period vascular heating without surrounding tissue injury: in vitro/in vivo experiments and thermal conduction calculation

    NASA Astrophysics Data System (ADS)

    Suga, Eriko; Kaneko, Kenji; Futami, Hikaru; Yamashita, Erika; Arai, Tsunenori

    2005-04-01

    We have been proposed novel short-term (<10s) heating balloon using the combination of light-heat conversion mechanism and heated contrast medium irrigation in the balloon to improve dilatation characteristics of balloon angioplasty. Our new balloon angioplasty had suppressed intimal hyperplasia in rabbit model. We designed following experiments to understand the mechanism of suppression of intimal hyperplasia in our new thermal balloon angioplasty. We also aimed to obtain the suitable heating condition in our angioplasty to suppress intimal hyperplasia. We studied influence of the short-term heating on smooth muscle cells (SMCs) lethality in vitro. We investigated number of SMCs reduction in media in order to prevent intimal hyperplasia. We applied to our heating balloon dilatation to chronic rabbit model using normal iliac artery to study relation between heating condition and hyperplasia suppression. We estimated temperature history of the rabbit vascular wall by thermal conduction calculation. We related the estimated temperature history to the hyperplasia suppression effect in the chronic rabbit model. Finally, we obtained the relation between number of SMCs decreases and intimal hyperplasia suppression. We obtained that the short-term heating with 10s laser irradiation corresponding to estimated temperature of 50°C in the media and prevented intimal hyperplasia in the rabbit chronic model. In this case, we estimated about 30 percents of SMCs cellular lethality in media.

  8. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures.

    PubMed

    Watanabe, Hiromichi; Yamashita, Yuichiro

    2012-01-01

    A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.

  9. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  10. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  11. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  12. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2007-03-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  13. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the Advanced Test Reactor. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    Hayes, Steven L.

    2006-12-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  14. Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B

    SciTech Connect

    S. L. Hayes; D. J. Utterbeck; T. A. Hyde

    2006-11-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

  15. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment.

    PubMed

    Suhrhoff, Tim Jesper; Scholz-Böttcher, Barbara M

    2016-01-15

    Four common consumer plastic samples (polyethylene, polystyrene, polyethylene terephthalate, polyvinylchloride) were studied to investigate the impact of physical parameters such as turbulence, salinity and UV irradiance on leaching behavior of selected plastic components. Polymers were exposed to two different salinities (i.e. 0 and 35 g/kg), UV radiation and turbulence. Additives (e.g. bisphenol A, phthalates, citrates, and Irgafos® 168 phosphate) and oligomers were detected in initial plastics and aqueous extracts. Identification and quantification was performed by GC-FID/MS. Bisphenol A and citrate based additives are leached easier compared to phthalates. The print highly contributed to the chemical burden of the analyzed polyethylene bag. The study underlines a positive relationship between turbulence and magnitude of leaching. Salinity had a minor impact that differs for each analyte. Global annual release of additives from assessed plastics into marine environments is estimated to be between 35 and 917 tons, of which most are derived from plasticized polyvinylchloride.

  16. Generation, Isolation, and Characterization of a Stable Enol from Grignard Addition to a Bis-Ester: A Microscale Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nicaise, Olivier J. C.; Ostrom, Kyle F.; Dalke, Brent J.

    2005-01-01

    An experiment is described that introduces students to the concept of temperature-dependent stability of the tetrahedral intermediate in an acyl-transfer reaction. The process involves the determination of the structure of an alpha-ketoester and its corresponding remarkably stable enol ester to suggest a mechanism for the formation of the products.

  17. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  18. Research Experience and Agreement with Selected Ethics Principles from Canada's "Tri-Council Policy Statement--Ethical Conduct for Research Involving Humans"

    ERIC Educational Resources Information Center

    Fahy, Pat; Spencer, Bob

    2004-01-01

    An online survey was conducted of students, instructors, and researchers in distance education regarding principles for the ethical treatment of human research subjects. The study used an online questionnaire based on principles drawn from Canada's "Tri-Council Policy Statement, Ethical Conduct for Research Involving Humans" (TCPS,…

  19. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  20. Cooling of Gas Turbines I - Effects of Addition of Fins to Blade Tips and Rotor, Admission of Cooling Air Through Part of Nozzles, and Change in Thermal Conductivity of Turbine Components

    NASA Technical Reports Server (NTRS)

    Brown, Byron

    1947-01-01

    An analysis was developed for calculating the radial temperature distribution in a gas turbine with only the temperatures of the gas and the cooling air and the surface heat-transfer coefficient known. This analysis was applied to determine the temperatures of a complete wheel of a conventional single-stage impulse exhaust-gas turbine. The temperatures were first calculated for the case of the turbine operating at design conditions of speed, gas flow, etc. and with only the customary cooling arising from exposure of the outer blade flange and one face of the rotor to the air. Calculations were next made for the case of fins applied to the outer blade flange and the rotor. Finally the effects of using part of the nozzles (from 0 to 40 percent) for supplying cooling air and the effects of varying the metal thermal conductivity from 12 to 260 Btu per hour per foot per degree Farenheit on the wheel temperatures were determined. The gas temperatures at the nozzle box used in the calculations ranged from 1600F to 2000F. The results showed that if more than a few hundred degrees of cooling of turbine blades are required other means than indirect cooling with fins on the rotor and outer blade flange would be necessary. The amount of cooling indicated for the type of finning used could produce some improvement in efficiency and a large increase in durability of the wheel. The results also showed that if a large difference is to exist between the effective temperature of the exhaust gas and that of the blade material, as must be the case with present turbine materials and the high exhaust-gas temperatures desired (2000F and above), two alternatives are suggested: (a) If metal with a thermal conductivity comparable with copper is used, then the blade temperature can be reduced by strong cooling at both the blade tip and root. The center of the blade will be less than 2000F hotter than the ends; (b) With low conductivity materials some method of direct cooling other than

  1. Effect of Bi2O3 addition on electron paramagnetic resonance, optical absorption, and conductivity in vanadyl-doped Li2O-K2O-Bi2O3-B2O3 glasses.

    PubMed

    Subhadra, M; Kistaiah, P

    2011-02-17

    Glasses with composition 15Li(2)O-15K(2)O-xBi(2)O(3)-(65 - x)-B(2)O(3)/5V(2)O(5) (3 ≤ x ≤ 15) have been prepared by the conventional melt quench technique. The electron paramagnetic resonance spectra of VO(2+) in these glasses have been recorded in the X-band frequency (≈9.3 GHz) at room temperature. The spin Hamiltonian parameters and covalency rates were evaluated. It was found that the V(4+) ions exist as vanadyl (VO(2+)) ions and are in an octahedral coordination with a tetragonal compression. The covalency rates (1 - α(2)) and (1 - γ(2)) indicate moderate covalency for the σ- and π-bonds. It was observed that the spin-Hamiltonian parameters depend slightly on the relative concentration of Bi(2)O(3). The optical properties of this glass system are studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The direct current electrical conductivity, σ, has been measured in the temperature range 373-573 K. The conductivity decreases with the increase in Bi(2)O(3) concentration. This has been discussed in terms of the decrease in the number of mobile ions and their mobility. An attempt is made to correlate the EPR, optical, and electrical results and to find the effect of Bi(2)O(3) content on these parameters.

  2. Spatio-Temporal Variation in Contrasting Effects of Resident Vegetation on Establishment, Growth and Reproduction of Dry Grassland Plants: Implications for Seed Addition Experiments

    PubMed Central

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle. PMID:23755288

  3. Appropriate Conduct

    ERIC Educational Resources Information Center

    Di Lullo, Louis

    2004-01-01

    Many years ago when the author assumed the role of assistant principal for school climate, discipline, and attendance, he inherited many school policies and guidelines that were outdated, unfair, and without merit in the current school climate. Because the school conduct code had not been revised since the school opened in 1960, many of the…

  4. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    SciTech Connect

    Spetzler, Hartmut

    2006-05-01

    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible

  5. An ensemble Kalman filter approach to identify the hydraulic conductivity spatial distribution from electrical resistivity tomography time-lapse monitoring of three-dimensional tracer test experiments

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Perri, M. T.; Salandin, P.

    2012-04-01

    An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is applied to assess the spatial distribution of hydraulic conductivity K by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) images generated for a synthetic tracer test in a heterogeneous aquifer. Assuming that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating both the hydrological state in terms of solute concentration and the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the aquifer heterogeneity at the local scale can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of the uncertainty inherently affecting ERT inversions in terms of tracer concentration and the choice of the prior statistics of K. The results show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework, the reconstruction of the hydraulic conductivity spatial distribution being satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  6. Three-year experience with the Sophono in children with congenital conductive unilateral hearing loss: tolerability, audiometry, and sound localization compared to a bone-anchored hearing aid.

    PubMed

    Nelissen, Rik C; Agterberg, Martijn J H; Hol, Myrthe K S; Snik, Ad F M

    2016-10-01

    Bone conduction devices (BCDs) are advocated as an amplification option for patients with congenital conductive unilateral hearing loss (UHL), while other treatment options could also be considered. The current study compared a transcutaneous BCD (Sophono) with a percutaneous BCD (bone-anchored hearing aid, BAHA) in 12 children with congenital conductive UHL. Tolerability, audiometry, and sound localization abilities with both types of BCD were studied retrospectively. The mean follow-up was 3.6 years for the Sophono users (n = 6) and 4.7 years for the BAHA users (n = 6). In each group, two patients had stopped using their BCD. Tolerability was favorable for the Sophono. Aided thresholds with the Sophono were unsatisfactory, as they did not reach under a mean pure tone average of 30 dB HL. Sound localization generally improved with both the Sophono and the BAHA, although localization abilities did not reach the level of normal hearing children. These findings, together with previously reported outcomes, are important to take into account when counseling patients and their caretakers. The selection of a suitable amplification option should always be made deliberately and on individual basis for each patient in this diverse group of children with congenital conductive UHL.

  7. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-02-20

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m(3) air/d per 1 m(3)/d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required.

  8. Main results of the experiments conducted during the flight of the Kosmos-1129 Biosatellite and the status of preparation of studies on the next biosatllite

    NASA Technical Reports Server (NTRS)

    Ilin, E. A.

    1980-01-01

    Experiments included studies on the biological effects of weightlessness. Space flight stress, disorientation, and physiological factors are discussed for each experimental subject. The subjects included rats, drosophila flies, and plants. Metabolic rates were monitored along with other changes in the subject's activity cycles.

  9. The Utility of Using Mixed-Methods and Intersectionality Approaches in Conducting Research on Filipino American Students' Experiences with the Campus Climate and on Sense of Belonging

    ERIC Educational Resources Information Center

    Maramba, Dina C.; Museus, Samuel D.

    2011-01-01

    In this article, the authors discuss how merging mixed-methods and intersectional analyses can generate deeper and more authentic understandings of students' experiences within the campus climate and its relation to sense of belonging in college. They discuss overemphasis on one-dimensional analyses of campus climates and sense of belonging,…

  10. THERMAL DISTRIBUTION SYSTEM EXPERIMENT

    SciTech Connect

    KRAJEWSKI,R.F.; ANDREWS,J.W.; WEI,G.

    1999-09-01

    A laboratory experiment has been conducted which tests for the effects of distribution system purging on system Delivery Effectiveness (DE) as defined in ASHRAE 152P. The experiment is described in its configuration, instrumentation, and data acquisition system. Data gathered in the experiment is given and discussed. The results show that purging of the distribution system alone does not offer any improvement of the system DE. Additional supporting tests were conducted regarding experimental simulations of buffer zones and bare pipe and are also discussed.

  11. Electron mean free path and conduction-band density-of-states in solid methane as determined from low-energy electron transmission experiments

    NASA Astrophysics Data System (ADS)

    Jay-Gerin, J.-P.; Plenkiewicz, B.; Plenkiewicz, P.; Perluzzo, G.; Sanche, L.

    1985-09-01

    Recently, Plenkiewicz et al. developed a theoretical model for analyzing the current I t transmitted by a thin dielectric film as a function of incident electron energy E. The purpose of this paper is to apply this model to the analysis of recent I t( E) results for solid methane. The analysis permits the determination of both the electron mean free path as a function of energy and the electronic conduction-band density-of-states in the quasi-elastic scattering region. The differences between our results and Kunz's solid methane band structure calculations are also discussed.

  12. What makes an excellent mental health nurse? A pragmatic inquiry initiated and conducted by people with lived experience of service use.

    PubMed

    Gunasekara, Imani; Pentland, Tina; Rodgers, Tracey; Patterson, Sue

    2014-04-01

    Mental health nurses are in challenging positions. They have the opportunity to support people hospitalized for the treatment of mental illnesses on their recovery journeys, but are simultaneously required to manage a burgeoning administrative burden, maintain organizational 'order', and contain risk. While obliged by policy to engender an environment that promotes recovery, they receive little guidance about how this should be achieved. When feedback from people hospitalized in our service indicated the experience of care was variable, we undertook a pragmatic inquiry examining consumers' views about what makes an excellent mental health nurse. We interviewed 20 people with lived experience of hospitalization and analysed transcripts thematically. To ensure findings were relevant and useful, we consulted mental health nurses about nurses' needs, and incorporated this with the views of service users. The analysis demonstrated that personal qualities, professional skills, and environmental factors all influence the experience of mental health nursing. Our findings highlight a need for renewed attention to the basics of relationships and the importance for nurses of self-awareness and support. We urge nurses to make time to really get to know the people for whom they provide care, and to work to maintain passion for mental health nursing. It seems likely that attention to the simple things has the potential to improve levels of satisfaction among service users, decrease distress, and support the development of an environment in which can nurture recovery.

  13. [The experiments conducted by Japanese on human guinea pigs, and the use of biological weapons during the Sino-Japanese war (1937-1945)].

    PubMed

    Sabbatani, Sergio

    2014-09-01

    Starting from the end of the nineteenth century, and during the first four decades of the past century, Japan showed considerable military expansion, on the back of a pan-Asiatic and imperialistic ideology, comparable only to those expressed by Wilhelmian and Nazi Germany. This growth led to Japan playing an extremely important role in the Asia-Pacific continent, which unavoidably brought the country onto a collision course with the British Empire and the United States of America. The Japanese general Shiro Ishii, who had undoubted organisational abilities but also a propensity for crimes against mankind, starting from the end of the 1920s and during the subsequent decade, under the suggestion of a military physician, developed a research programme to obtain biological weapons, since he was aware of the lack of raw materials, technology and scientific background in nuclear weapons. This project was taken forward despite Japan's ratification of the Geneva protocol, undersigned by 70 nations, which posed strict limits to the use of both biological and chemical weapons. In actual fact, the protocol allowed these weapons for defensive purposes, and permitted their experimental development. The research programme, developed with the support of the high command of the Japanese army and certainly known by the Emperor (Tenno) Hirohito, had its operative basis from the year 1932 in the satellite state of Manchukuo, but later and paralleling the increased, aggressive behaviour towards China and the English and American colonies during World War II, spread towards other Asian provinces occupied by the Japanese armies, with other operative units. In these dedicated bases, which were true concentration camps, numerous experiments were carried out on human guinea pigs, frequently concluding with vivisection. Among others, experiments of freezing, thirst, hunger, loss of blood, wounding with firearms, and bone fractures, were performed, as well as the inoculation of

  14. Conducting a thermal conductivity survey

    NASA Technical Reports Server (NTRS)

    Allen, P. B.

    1985-01-01

    A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

  15. [The question of secondary medical transfer in Belgium: the experience conducted at the University Hospital Center of Liège].

    PubMed

    Brasseur, E; Micheels, J; Ghuysen, A; D'Orio, V

    2007-02-01

    Evaluation of the aid of an emergency mobile unit to transfer monitorized patients to a University hospital, in the political context of regional care network offering highly qualified but restricted tertiary area centres, and an open prospective study conducted over the 5 first months in 2006. The call regulation was assessed by the emergency physician of the transfer team and all missions were concluded with an evaluating report. An amount of 197 requests were taken into account from which 80 % were addressed between 8 am and 8 pm. The mean average time interval for missions was 59 minutes (base to base) and the distance covered was 20.7 km as a mean. In essence, indications for medical secondary transfer regarded patients in need for acute coronary care (42.6%), specific intensive care (26.4%) and neurosurgical interventions (19.3%). We noted that endotracheal intubation occurred in only one case. Mortality during such a transfer activity was absent. Medical transfer unit allows the development of specific high qualified network resources owing to the secondary addressee of patients. However, the weak incidence of complication questions the practice of systematic medical accompanying during such transfers.

  16. Electrochemical Deposition Of Conductive Copolymers

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Liang, Ranty H.

    1991-01-01

    Experiments show electrically conductive films are deposited on glassy carbon or indium tin oxide substrates by electrochemical polymerization of N-{(3-trimethoxy silyl) propyl} pyrrole or copolymerization with pyrrole. Copolymers of monomer I and pyrrole exhibit desired electrical conductivity as well as desired adhesion and other mechanical properties. When fully developed, new copolymerization process useful in making surface films of selectable conductivity.

  17. Thermal Conductivity of Rubble Piles

    NASA Astrophysics Data System (ADS)

    Luan, Jing; Goldreich, Peter

    2015-11-01

    Rubble piles are a common feature of solar system bodies. They are composed of monolithic elements of ice or rock bound by gravity. Voids occupy a significant fraction of the volume of a rubble pile. They can exist up to pressure P≈ {ε }Yμ , where {ε }Y is the monolithic material's yield strain and μ its rigidity. At low P, contacts between neighboring elements are confined to a small fraction of their surface areas. As a result, the effective thermal conductivity of a rubble pile, {k}{con}≈ k{(P/({ε }Yμ ))}1/2, can be orders of magnitude smaller than the thermal conductivity of its monolithic elements, k. In a fluid-free environment, only radiation can transfer energy across voids. It contributes an additional component, {k}{rad}=16{\\ell }σ {T}3/3, to the total effective conductivity, {k}{eff}={k}{con}+{k}{rad}. Here ℓ, the inverse of the opacity per unit volume, is of the order of the size of the elements, and voids. An important distinction between {k}{con} and {k}{rad} is that the former is independent of the size of the elements, whereas the latter is proportional to it. Our expression for {k}{eff} provides a good fit to the depth dependence of thermal conductivity in the top 140 cm of the lunar regolith. It also offers a good starting point for detailed modeling of thermal inertias for asteroids and satellites. Measurement of the response of surface temperature to variable insolation is a valuable diagnostic of a regolith. There is an opportunity for careful experiments under controlled laboratory conditions to test models of thermal conductivity such as the one we outline.

  18. Rapid prototype extruded conductive pathways

    SciTech Connect

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  19. Attitudes toward and experiences of gender issues among physician teachers: A survey study conducted at a university teaching hospital in Sweden

    PubMed Central

    Risberg, Gunilla; Johansson, Eva E; Westman, Göran; Hamberg, Katarina

    2008-01-01

    Background Gender issues are important to address during medical education, however research about the implementation of gender in medical curricula reports that there are obstacles. The aim of this study was to explore physician teachers' attitudes to gender issues. Methods As part of a questionnaire, physician teachers at Umeå University in Sweden were given open-ended questions about explanations for and asked to write examples why they found gender important or not. The 1 469 comments from the 243 respondents (78 women, 165 men) were analyzed by way of content analysis. The proportion of comments made by men and women in each category was compared. Results We found three themes in our analysis: Understandings of gender, problems connected with gender and approaches to gender. Gender was associated with differences between women and men regarding behaviour and disease, as well as with inequality of life conditions. Problems connected with gender included: delicate situations involving investigations of intimate body parts or sexual attraction, different expectations on male and female physicians and students, and difficulty fully understanding the experience of people of the opposite sex. The three approaches to gender that appeared in the comments were: 1) avoidance, implying that the importance of gender in professional relationships was recognized but minimized by comparing gender with aspects, such as personality and neutrality; 2) simplification, implying that gender related problems were easy to address, or already solved; and 3) awareness, implying that the respondent was interested in gender issues or had some insights in research about gender. Only a few individuals described gender as an area of competence and knowledge. There were comments from men and women in all categories, but there were differences in the relative weight for some categories. For example, recognizing gender inequities was more pronounced in the comments from women and avoidance

  20. 1-week habitation of two people in an airtight facility, CEEF with two goats and 23 crops, conducted with 89% self-sufficiency in food and without O2-addition and CO2-release - analysis of exchange of carbon and oxygen among organisms and water circulation in the CEEF -

    NASA Astrophysics Data System (ADS)

    Tako, Y.; Tsuga, S.; Tani, T.; Arai, R.; Komatsubara, O.; Shinohara, M.

    Three 1-week experiments were conducted from September to October of 2005 in which two human subjects named as eco-nauts were enclosed and worked in an airtight facility called Closed Ecosystem Experiment Facilities CEEF The test involved connecting a Plant Module PM with 23 crops including rice soybean peanut and sugar beet to an Animal Habitation Module AHM which included the eco-nauts and two Shiba-goats Although only 34 weight of the food consumed by the eco-nauts was produced by crops in the PM in the first experiment it was 81 in the second and third experiments As for feed to the goats 40 rice straw was produced in the PM in the first experiment and all of the feed rice straw soybean leaf and peanut shell was produced in the PM in the second and third experiments In all these experiments the crops produced more oxygen than the amount consumed by respiration of human and animals The oxygen build-up in the atmosphere of the PM from crop photosynthesis was separated and supplied to atmosphere of the AHM Carbon dioxide build-up in atmosphere of the AHM from respiration of eco-nauts and Shiba-goats was separated and supplied back to atmosphere of the PM Carbon in waste except for a part of that in human feces was withdrawn and not recycled for these experiments Therefore carbon dioxide from respiration compensated the demand for photosynthesis of the crops Amounts of carbon in edible and inedible parts of harvested crop biomass and amount of carbon taken by the eco-nauts and Shiba-goats were also estimated Water transpired through

  1. Nonlinear dynamics in cardiac conduction

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  2. The Training and Field Work Experiences of Community Health Workers conducting non-invasive, population-based screening for Cardiovascular Disease in Four Communities in Low and Middle-Income Settings

    PubMed Central

    Denman, Catalina A.; Montano, Carlos Mendoza; Gaziano, Thomas A.; Levitt, Naomi; Rivera-Andrade, Alvaro; Carrasco, Diana Munguía; Zulu, Jabu; Khanam, Masuma Akter; Puoane, Thandi

    2015-01-01

    Background Cardiovascular disease (CVD) is on the rise in low- and middle-income countries (LMIC) and is proving difficult to combat due to the emphasis on improving outcomes in maternal and child health and infectious diseases, against a backdrop of severe human resource and infrastructure constraints. Effective task-sharing from physicians or nurses to community health workers (CHWs) to conduct population-based screening for persons at risk, has the potential to mitigate the impact of CVD on vulnerable populations. CHWs in Bangladesh, Guatemala, Mexico, and South Africa were trained to conduct non-invasive population-based screening for persons at high risk for CVD. Objective (s) The objectives of this study were to quantitatively assess the performance of CHWs during training and to qualitatively capture their training and fieldwork experiences while conducting non-invasive screening for cardiovascular disease (CVD) risk in their communities. Methods Written tests were used to assess CHWs’ acquisition of content knowledge during training, and focus group discussions conducted to capture their training and fieldwork experiences. Results Training was effective at increasing the CHWs’ content knowledge of cardiovascular disease (CVD) and this knowledge was largely retained up to six months after the completion of field work. Common themes which need to be addressed when designing task sharing with CHWs in chronic diseases are identified, including language, respect, and compensation. The importance of having intimate knowledge of the community receiving services from design to implementation is underscored. Conclusions Effective training for screening for CVD in community settings should have a strong didactic core that is supplemented with culture-specific adaptations in the delivery of instruction. The incorporation of expert and intimate knowledge of the communities themselves is critical, from the design to implementation phases of training. Challenges such

  3. Anomalous Conductances in an Ultracold Quantum Wire

    NASA Astrophysics Data System (ADS)

    Kanász-Nagy, M.; Glazman, L.; Esslinger, T.; Demler, E. A.

    2016-12-01

    We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic constriction [S. Krinner et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8144 (2016)]. The quantized conductance observed at weak interactions increases severalfold as the gas is made strongly interacting, which cannot be explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the condensate propagating through the constriction, leading to a significant excess conductance. Furthermore, we find the spin conductance being suppressed by superconductivity; the agreement with experiment provides an additional support for our model.

  4. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  5. [Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 1. Mobile communications and changes in electromagnetic conditions for the population. Needs for additional substantiation of the existing hygienic standards].

    PubMed

    Grigor'ev, Iu G; Grigor'ev, O A; Ivanov, A A; Liaginskaia, A M; Merkulov, A V; Stepanov, V S; Shagina, N B

    2010-01-01

    Mobile communications provides a new source of electromagnetic exposure for almost the whole population of the Russian Federation. For the first time in the history of civilization the brain of mobile phone users was exposed to localized radiofrequency (RF) electromagnetic fields (EMF). Population exposure from the base stations is also considered to be specific. However, existing standards for limiting the exposure do not account for this special EMF source and may not ensure the absence of health effects. There was a need for reliable information that would extend databases used for development of new standards. As recommended by the World Health Organization an additional experiment was performed under the supervision of foreign experts, which showed changes in autoimmune status in rats after long-term low-level RF EMF exposure with an incident power density of 500 microW/cm2.

  6. Benefits of additives application during combustion of phytomass

    NASA Astrophysics Data System (ADS)

    Palacka, Matej; Vician, Peter; Holubčík, Michal; Jandačka, Jozef

    2016-06-01

    Phytomass, particularly wheat straw as a source of energy has countless benefits, but it has many problems in its direct burn too. The worst problem is the ash flow temperature. The aim of study was to analyze and reduce the problems of the wheat straw combustion. The experiment was conducted under realistic conditions. In this paper was implemented analysis of ash features with and without adding additives into the wheat straw. Selected samples were laboratory processed and examined. The result of the work was the impact of additional additives for ash features.

  7. [Are clinical features derived from evidences and experiences outside of Japan applicable to clinical practices in Japan? Comparisons of results among studies conducted in US, Europe, Asian Countries and Japan].

    PubMed

    Kamada, Kyousuke

    2011-03-01

    Levetiracetam is an antiepileptic drug (AED) approved for the adjunctive treatment of partial seizures firstly in the US in 1999. In Japan, levetiracetam was approved for the adjunctive treatment of partial seizures. Accumulated evidences and experiences in US, Europe and Asian counties have indicated clinical features of levetiracetam (i.e., rapid onset of action, high efficacy and tolerability, no drug-drug interactions). One may ask whether the known clinical features are applicable to Japanese epilepsy patients with partial seizures. This article is aimed at answering such questions by reviewing published articles on effects of races onto pharmacokinetics and on efficacy and safety profiles shown in studies conducted in the US, Europe, Taiwan, China, Korea, Asian 6 countries and Japan, which allowed to compare the profiles across the different populations. Pharmacokinetic profiles were not different between Western and Japanese, and between Chinese and Western populations. The values of efficacy variables such as percentage (%) reduction of seizure frequency from baselines, 50% responder rate and seizure free rate at dose range of 1,000 mg-3,000 mg/d were similar across 4 open studies (Korea, 6 Asian countries, US, Europe and other western; % reduction: 43.2-52.3%, 50% responder rate: 43.6-57.9%, Seizure free rate: 16.2-20.2%). In the 6 placebo-controlled double blind studies (US, 2 Europe studies, China, Taiwan and Japan), the values of the efficacy variables of the levetiracetam arms (1,000 mg/d, 2,000 mg/d, 3,000 mg/d, 1,000-2,000 mg/d, 2,000-3,000 mg/d) were at least numerically superior to those of corresponding placebo arms even though the statistical significance was not obtained for all of the variables. The degrees of difference between the values of placebo and levetiracetam arms were within comparable ranges. These comparisons suggested levetiracetam would have similar efficacy and safety profiles in Japanese patients to those in the US, Europe, and

  8. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  9. Heat conduction in conducting polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

    2013-09-01

    Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

  10. The COUGAR Experiment for BEXUS 18- Lessons Learned

    NASA Astrophysics Data System (ADS)

    Burgdorf, J.; Sirin, A.; Wolff, F.

    2015-09-01

    In this paper, the development process and experiment conduction of the COUGAR experiment flown on BEXUS 1 8 is described. The aim is to describe the development process in detail to provide information for future experiments on how to avoid common pit-falls in the planing, development and conducting of a student experiment. This includes the illustration of the initial idea and experiment proposal, how the concept of the different subsystems developed over time and finally the experiment actually conducted in Autumn 2014. Especially factors that led to additional and unanticipated delays are highlighted, along with others that are specific to the processes inside a student project team.

  11. Electrical Conductivity in Textiles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  12. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  13. Conducting the Heat

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  14. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  15. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  16. Psychology Experiments.

    ERIC Educational Resources Information Center

    McGraw, Ken; Tew, Mark D.; Williams, John E.

    2001-01-01

    A goal of the PsychExperiments project was to reduce the financial burden on psychology departments for hardware/software used in their laboratories. In its third year, the PsychExperiments site now hosts 39 experiments. Over 200 classrooms worldwide have signed up as official site users and there have been nearly 10,000 data sessions conducted.…

  17. DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility.

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Mitchell, G.; Vieira, D.; Bredeweg, T.; Ullmann, J.; Jandel, M.; Couture, A.; Keksis, A.; Rundberg, R.; Wilhelmy, J.; O'Donnell, J.; Baramsai, B.; Haight, R.; Wouters, J.; Krticka, M.; Parker, W.; Becker, J.; Agvaanlusan, U.

    2009-10-01

    DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility. The absolute cross sections of the ^89Y(n,γ) reaction was measured for the first time ever in the neutron energy range of 10 eV -- 10 keV and improvements were made in the 10 -- 300 keV range. The error bars were significantly reduced and number of cross section points was increased since the past ^89Y(n,γ) experiments. The ^157Gd(n,γ) cross section was determined at En = 20 eV -- 300 keV by normalizing the experimental DANCE data to a well known resonance taken from the ENDF/B-VII library. Computer simulations of the ^157Gd(n,γ) cascades and DANCE pulse height function were made using DICEBOX and GEANT4 codes and simulated Esum and Eγ spectra are compared to the experimental DANCE data. Values of spin and photon strength function (PSF) of the ^157Gd(n,γ) resonances are provided in the range of En = 2 -- 300 eV using spin dependence upon a γ-ray multiplicity.

  18. Evaluation of the DHCE Experiment

    SciTech Connect

    Greenwood, Lawrence R.; Baldwin, David L.; Hollenberg, Glenn W.; Kurtz, Richard J.

    2002-03-31

    The Dynamic Helium Charging Experiment (DHCE) experiment was conducted in the Fast Flux Test Facility (FFTF) during cycle 12, which was completed in 1992. The purpose of the experiment was to enhance helium generation in vanadium alloys to simulate fusion reactor helium-to-dpa ratios with a target goal of 4-5 appm He/dpa. The Fusion Materials Science Program is considering mounting another experiment in hopes of gathering additional data on the effect of helium on the mechanical and physical properties of vanadium structural materials. Pacific Northwest National Laboratory was assigned the task of evaluating the feasibility of conducting another DHCE experiment by carefully evaluating the results obtained of the first DHCE experiment. This report summarizes the results of our evaluation and presents recommendations for consideration by the Materials Science Coordinators Organization.

  19. Measurement of heat conduction through stacked screens.

    PubMed

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  20. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  1. Conductive dense hydrogen.

    PubMed

    Eremets, M I; Troyan, I A

    2011-11-13

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K, showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  2. Conductive dense hydrogen

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Troyan, I. A.

    2011-12-01

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, Tc, of 200-400 K (ref. ), and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K (refs , ), showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  3. Electric utility use of fireside additives. Final report

    SciTech Connect

    Locklin, D.W.; Krause, H.H.; Anson, D.; Reid, W.

    1980-01-01

    Fireside additives have been used or proposed for use in fossil-fired utility boilers to combat a number of problems related to boiler performance and reliability. These problems include corrosion, fouling, superheat control, and acidic emissions. Fuel additives and other fireside additives have been used mainly with oil firing; however, there is growing experience with additives in coal-firing, especially for flyash conditioning to improve the performance of electrostatic precipitators. In decisions regarding the selection and use of additives, utilities have had to rely extensively on empiricism, due partly to an incomplete understanding of processes involved and partly to the limited amount of quantitative data. The study reported here was sponsored by the Electric Power Research Institute to assemble and analyze pertinent operating experience and to recommend guidelines for utility decisions on the use of additives. The combined results of the state-of-the-art review of technical literature and a special survey of utility experience are reported. A total of 38 utilities participated in the survey, providing information on trials conducted on 104 units in 93 different plants. Altogether, 445 separate trials were reported, each representing a unit/additive/fuel combination. Additives used in these trials included 90 different additive formulations, both pure compounds and proprietary products. These formulations were categorized into 37 generic classes according to their chemical constituents, and the results of the survey are presented by these generic classes. The findings are organized according to the operating problems for which fireside additives are used. Guidelines are presented for utility use in additive selection and in planning additive trials.

  4. Complex conductivity of organic-rich shales

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The

  5. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  6. Electrospun porous conductive polymer membranes

    NASA Astrophysics Data System (ADS)

    Wang, Jingwen; Naguib, Hani E.; Bazylak, Aimy

    2012-04-01

    In this work, two methodologies were used in fabricating conductive electrospun polymer fibers with nano features. We first investigated the addition of multiwall carbon nanotubes (MWCNT) as conductive fillers at concentrations ranging from 1 to 10% into a polystyrene (PS) matrix. Electrospinning conditions were tailored to produce fibers with minimal beads. Next, we investigated the effects of coating electrospun fibers with nano structured conductive polymer. Oxidant (FeCl3) fibers were electrospun in PS and then exposed to a pyrrole (Py) monomer in a vacuum chamber. As a result, polypyrrole (PPy) was coated on the fibers creating conductive pathways. In both methods, the electrospun conductive fibers were characterized in terms of their morphologies, thermal stability and electrical conductivity. Strong correlations were found among PPy coating nanostructures, oxidant concentration and polymerization time. Electrospun fibrous membranes with conductive polymer coating exhibit much higher electrical conductivities compare to fibers with conductive fillers. Highest conductivity achieved was 9.5E-4 S/cm with 40% FeCl3/PS fibers polymerized with Py for 140 min.

  7. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    -statistics of the scattering states satisfies the same universality class as those of the bound states. This provides a practical means of measuring the chaotic scattering from transport experiments. Finally, I studied a ballistic system without any impurities: a window-coupled quantum wire. This system has the ability of switching electric current from one wire to the other quantum mechanically. I have made a systematic study of the complicated magneto-conductance fluctuations observed in this system experimentally. My theoretical results are in qualitative agreement with the measurements, and they provide the much needed understanding of the physics controlling these oscillations.

  8. Electric utility use of fireside additives. Final report

    SciTech Connect

    Locklin, D.W.; Krause, H.H.; Anson, D.; Reid, W.

    1980-01-01

    Fireside additives have been used or proposed for use in fossil-fired utility boilers to combat a number of problems related to boiler performance and reliability. These problems include corrosion, fouling, superheat control, and acidic emissions. Fuel additivies and other fireside additives have been used mainly with oil firing; however, there is growing experience with additives in coal-firing, especially for flyash conditioning to improve the performance of electrostatic precipitators. In decisions regarding the selection and use of additives, utilities have had to rely extensively on empiricism, due partly to our incomplete understanding of processes involved and partly to the limited amount of quantitative data. The study reported here was sponsored by the Electric Power Research Institute to assemble and analyze pertinent operating experience and to recommend guidelines for utility decisions on the use of additives. This report describes the combined results of the state-of-the-art review of technical literature and a special survey of utility experience. A total of 38 utilities participated in the survey, providing information on trials conducted on 104 units in 93 different plants. Altogether, 445 separate trials were reported, each representing a unit/additive/fuel combination. 90 different additive formulations, both pure compounds and proprietary products, were categorized into 37 generic classes according to their chemical constituents, and the results of the survey are presented by these generic classes. This report is organized according to the operating problems for which fireside additives are used. Guidelines are presented for utility use in additive selection and in planning additive trials.

  9. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  10. Infrared transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Johnson, Linda F.; Moran, Mark B.

    2001-09-01

    A novel class of complex metal oxides that have potential as transparent conducting oxides (TCOs) for the electromagnetic-interference (EMI) shielding on IR-seeker windows and missile domes has been identified. These complex metal oxides exhibit the rhombohedral (R3m) crystalline structure of naturally occurring delafossite, CuFeO2. The general chemical formula is ABO2 where A is a monovalent metal (Me+1 such as Cu, Ag, Au, Pt or Pd, and B is a trivalent metal (Me3+) such as Al,Ti,Cr,Co,Fe,Ni,Cs,Rh,Ga,Sn,In,Y,La,Pr,Nd,Sm or Eu. By adjusting the oxygen content, the conductivity can be varied over a wide range so that the delafossites behave as insulators, semiconductors or metals. This paper presents results for films of p-type CuxAlyOz and n-type CuxCryOz deposited by reactive magnetron co-sputtering from high-purity-metal targets. Films have been deposited using conventional RF- and DC-power supplies, and a new asymmetric-bipolar-pulsed- DC-power supply. Similar to the high-temperature-copper- oxide superconductors, the presence of Cu-O bonds is critical for the unique properties. Fourier transform infrared (FTIR) and electron spectroscopy for chemical analysis (ESCA) are used to understand the relationship between the optoelectornic properties and the molecular structure of the films. For example, FTIR absorption bands at 1470 and 1395cm-1 are present only in CuxAlyOz films that exhibit enhanced electrical conductivity. When these bands are absent, the CuxAlyOz films have high values of resistivity. In addition to the 1470 and 1395cm-1 bands observed in CuxAlyOz films, another pair of bands at 1040 and 970cm-1 is present in CuxCryOz films.

  11. Radiative thermal conduction fronts

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-07-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  12. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  13. Additive Similarity Trees

    ERIC Educational Resources Information Center

    Sattath, Shmuel; Tversky, Amos

    1977-01-01

    Tree representations of similarity data are investigated. Hierarchical clustering is critically examined, and a more general procedure, called the additive tree, is presented. The additive tree representation is then compared to multidimensional scaling. (Author/JKS)

  14. Laser sintering of conductive carbon paste on plastic substrate

    NASA Astrophysics Data System (ADS)

    Kelkar, Rohan; Kinzel, Edward C.; Xu, Xianfan

    2009-07-01

    We investigate fabrication of functional conductive carbon paste onto a plastic substrate using a laser. The method allows simultaneous sintering, patterning, and functionalization of the carbon paste. Experiments are carried out to optimize the laser-processing parameters. It is shown that sheet resistance values obtained by laser sintering are close to the one specified by the manufacturer using the conventional sintering method. Additionally, a heat transfer analysis using numerical methods is conducted to understand the relationship between the temperature during sintering and the sheet resistance values of sintered carbon wires. The process developed has the potential of producing carbon-based electronic components on low-cost plastic substrates.

  15. Laser sintering of conductive carbon paste on plastic substrate

    NASA Astrophysics Data System (ADS)

    Kinzel, Edward C.; Kelkar, Rohan; Xu, Xianfan

    2010-02-01

    This work investigates fabrication of functional conductive carbon paste onto a plastic substrate using a laser. The method allows simultaneous sintering, patterning, and functionalization of the carbon paste. Experiments are carried out to optimize the laser processing parameters. It is shown that sheet resistance values obtained by laser sintering are close to the one specified by the manufacturer using conventional sintering method. Additionally, a heat transfer analysis using numerical methods is conducted to understand the relationship between the temperature during sintering and the sheet resistance values of sintered carbon wires. The process developed in this work has the potential of producing carbon-based electronic components on low cost plastic substrates.

  16. Facile synthesis of cyanofurans via Michael-addition/cyclization of ene-yne-ketones with trimethylsilyl cyanide.

    PubMed

    Yu, Yue; Chen, Yang; Wu, Wanqing; Jiang, Huanfeng

    2017-01-03

    We have developed a Michael-addition/cyclization procedure between ene-yne-ketones and TMSCN under metal-free conditions. A wide range of cyanofurans was delivered in high yields, which could be further transformed to a series of furo-furanimines, furo-pyridazines or carboxamido-furans. In addition, deuterium-labeling experiments have been conducted to clarify the reaction pathway.

  17. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  18. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  19. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    PubMed

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  20. CADDIS Recent Additions

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  1. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  2. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  3. Conductive dense hydrogen

    NASA Astrophysics Data System (ADS)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T < 100 K showed that at record pressures of 300 GPa, hydrogen remains in the molecular state and is an insulator with a band gap of appr 2 eV. Given our current experimental and theoretical understanding, hydrogen is expected to become metallic at pressures of 400-500 GPa, beyond the current limits of static pressures achievable using diamond anvil cells. We found that at room temperature and pressure > 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  4. Simultaneous Rheoelectric Measurements of Strongly Conductive Complex Fluids

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Divoux, Thibaut; McKinley, Gareth H.

    2016-12-01

    We introduce an modular fixture designed for stress-controlled rheometers to perform simultaneous rheological and electrical measurements on strongly conductive complex fluids under shear. By means of a nontoxic liquid metal at room temperature, the electrical connection to the rotating shaft is completed with minimal additional mechanical friction, allowing for simultaneous stress measurements at values as low as 1 Pa. Motivated by applications such as flow batteries, we use the capabilities of this design to perform an extensive set of rheoelectric experiments on gels formulated from attractive carbon-black particles, at concentrations ranging from 4 to 15 wt %. First, experiments on gels at rest prepared with different shear histories show a robust power-law scaling between the elastic modulus G0' and the conductivity σ0 of the gels—i.e., G0'˜σ0α, with α =1.65 ±0.04 , regardless of the gel concentration. Second, we report conductivity measurements performed simultaneously with creep experiments. Changes in conductivity in the early stage of the experiments, also known as the Andrade-creep regime, reveal for the first time that plastic events take place in the bulk, while the shear rate γ ˙ decreases as a weak power law of time. The subsequent evolution of the conductivity and the shear rate allows us to propose a local yielding scenario that is in agreement with previous velocimetry measurements. Finally, to establish a set of benchmark data, we determine the constitutive rheological and electrical behavior of carbon-black gels. Corrections first introduced for mechanical measurements regarding shear inhomogeneity and wall slip are carefully extended to electrical measurements to accurately distinguish between bulk and surface contributions to the conductivity. As an illustrative example, we examine the constitutive rheoelectric properties of five different grades of carbon-black gels and we demonstrate the relevance of this rheoelectric apparatus as a

  5. Polyaniline Based Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Teli, M.; Dash, S.; Desai, P.

    2014-12-01

    The conductive polymers were mixed with binder and coated on cotton, polyester and wool fabric, keeping conductive polymer concentration at 5 %. Conductive woven fabrics were obtained by pad-dry-cure coating technique. The surface and bulk conductivity behaviour of the coating paste with respect to temperature were studied using four probe and two probe technique. The conductivity studies show that the coated fabrics have good electrical conductivity in the range of 33.2 μS/cm-3281 μS/cm and there was an increase in conductivity with rise in temperature.

  6. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  7. Polylactides in additive biomanufacturing.

    PubMed

    Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W

    2016-12-15

    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.

  8. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  9. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  10. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  12. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  13. The Conductivity of Solutions.

    ERIC Educational Resources Information Center

    Rayner-Canham, Geoff

    1993-01-01

    Presents historical background and modern explanations for the popular demonstration of showing conductivity of solutions through the insertion of a light-bulb conductivity tester into deionized water and water with salt in it. (PR)

  14. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  15. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  16. Effectiveness of various organometallics as antiwear additives in mineral oil

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with 1045 steel contacting 302 stainless steel and lubricated with various organometallics in mineral oil. Auger emission spectroscopy was used to determine the element present in the wear contact zone. The results indicate that there are organometallics which are as effective an antiwear additives as the commonly used zinc dialkyl dithiophosphate. These include dimethyl cadmium, triphenyl lead thiomethoxide, and triphenyl tin chloride. The additives were examined in concentrations to 1 weight percent. With dimethyl cadmium at concentrations of 0.5 weight percent and above, cadmium was detected in the contact zone. Coincident with the detection of cadmium, a marked decrease in the friction coefficient was observed. All additives examined reduced friction, but only the aforementioned reduced wear to a level comparable to that observed with zinc dialkyl dithiophosphate.

  17. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  18. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  19. Recommended Protocol for Round Robin Studies in Additive Manufacturing.

    PubMed

    Moylan, Shawn; Brown, Christopher U; Slotwinski, John

    2016-03-01

    One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST's experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed.

  20. Recommended Protocol for Round Robin Studies in Additive Manufacturing

    PubMed Central

    Moylan, Shawn; Brown, Christopher U.; Slotwinski, John

    2016-01-01

    One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST’s experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed. PMID:27274602

  1. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  2. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  4. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  5. Nonlinear Conductivity in Dicyanoquinonediimine Complexes

    NASA Astrophysics Data System (ADS)

    Wakita, Hitoshi; Ozawa, Tatsuhiko; Bando, Yoshimasa; Mori, Takehiko

    2010-09-01

    Nonlinear conductivity is observed below the metal-insulator (M-I) transitions of molecular conductors, halogen-substituted (R1,R2-DCNQI)2Cu (DCNQI: dicyanoquinonediimine, R1,R2: methyl or halogen). Despite the difference of the M-I transition temperatures depending on the halogens, these compounds show nonlinear properties at similar low temperatures (<80 K), and the characteristics are regarded as “activation” type. The complex of deuterated dimethyl-DCNQI (d2-DMeDCNQI)2Cu, which shows reentrant M-I-M transitions, exhibits irreversible switching from a low-conducting state to a high-conducting state in the intermediate I state. Since the Peierls distortion is irreversibly erased by the electric field, this phenomenon is called “Peierls memory”. In addition, “inverse” nonlinear conductivity from a high-conducting state to a low-conducting state is observed at the low-temperature M state, which is not only entirely reversible but also accompanied by a new kind of rapid current oscillation in the order of 3 kHz. These observations demonstrate metastable nature of the intermediate I state.

  6. Highly elastic conductive polymeric MEMS

    PubMed Central

    Ruhhammer, J; Zens, M; Goldschmidtboeing, F; Seifert, A; Woias, P

    2015-01-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations. PMID:27877753

  7. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  8. 10 CFR 2.605 - Additional considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Additional considerations. 2.605 Section 2.605 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS... Permit § 2.605 Additional considerations. (a) The Commission will not conduct more than one review...

  9. 10 CFR 2.625 - Additional considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Additional considerations. 2.625 Section 2.625 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS... License Under 10 Cfr Part 52 § 2.625 Additional considerations. (a) The Commission will not conduct...

  10. 11 CFR 9008.13 - Additional audits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Additional audits. 9008.13 Section 9008.13... Convention Committees § 9008.13 Additional audits. In accordance with 11 CFR 104.16(c), the Commission, pursuant to 11 CFR 111.10, may upon affirmative vote of four members conduct an audit and...

  11. 11 CFR 9007.4 - Additional audits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Additional audits. 9007.4 Section 9007.4... FINANCING EXAMINATIONS AND AUDITS; REPAYMENTS § 9007.4 Additional audits. In accordance with 11 CFR 104.16(c), the Commission, pursuant to 11 CFR 111.10, may upon affirmative vote of four members conduct an...

  12. 11 CFR 9008.13 - Additional audits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Additional audits. 9008.13 Section 9008.13... Convention Committees § 9008.13 Additional audits. In accordance with 11 CFR 104.16(c), the Commission, pursuant to 11 CFR 111.10, may upon affirmative vote of four members conduct an audit and...

  13. 11 CFR 9007.4 - Additional audits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Additional audits. 9007.4 Section 9007.4 Federal... EXAMINATIONS AND AUDITS; REPAYMENTS § 9007.4 Additional audits. In accordance with 11 CFR 104.16(c), the Commission, pursuant to 11 CFR 111.10, may upon affirmative vote of four members conduct an audit and...

  14. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  15. Fused Lasso Additive Model

    PubMed Central

    Petersen, Ashley; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the problem of predicting an outcome variable using p covariates that are measured on n independent observations, in a setting in which additive, flexible, and interpretable fits are desired. We propose the fused lasso additive model (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to a global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets. Supplemental materials are available online, and the R package flam is available on CRAN. PMID:28239246

  16. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidi none to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  17. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  18. Additives in plastics.

    PubMed

    Deanin, R D

    1975-06-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products.

  19. Conductive Channel for Energy Transmission

    SciTech Connect

    Apollonov, Victor V.

    2011-11-10

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  20. Conductive Channel for Energy Transmission

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.

    2011-11-01

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  1. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  2. More Than Additional Space...

    ERIC Educational Resources Information Center

    CEFP Journal, 1973

    1973-01-01

    A much needed addition to the Jamestown Elementary School turned out to be more than an expansion of walls for more space. A new educational program, a limited budget, and a short time line were tackled on a team approach basis and were successfully resolved. (Author)

  3. School Partnerships: Technology Rich Classrooms and the Student Teaching Experience

    ERIC Educational Resources Information Center

    VanSlyke-Briggs, Kjersti; Hogan, Molly; Waffle, Julene; Samplaski, Jessica

    2014-01-01

    Building upon an established relationship between a college and a local school district, this project formally designated a Partnership School, at which education students conduct field experience. In addition to providing these participating pre-service teachers (students) with a clinically rich experience through closer supervision by and…

  4. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  5. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  6. E-Textbooks and Students' Learning Experiences

    ERIC Educational Resources Information Center

    Sun, Jun; Flores, Javier; Tanguma, Jesus

    2012-01-01

    The contribution of the e-textbooks can be enormous considering their additional supporting features, but adoption has not crystallized yet. This study examines the relevant experiences of college students in terms of how the use of e-textbooks may enhance their learning. A survey study was conducted to measure the perceptions of each student on…

  7. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    SciTech Connect

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  9. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  10. Hydronuclear experiments

    SciTech Connect

    Thorn, R.N.; Westervelt, D.R.

    1987-02-01

    Hydronuclear experiments, a method for assessing some aspects of nuclear weapon safety, were conducted at Los Alamos during the 1958 to 1961 moratorium on nuclear testing. The experiments resulted in subcritical multiplying assemblies or a very slight degree of supercriticality and, in some cases, involved a slight, but insignificant, fission energy release. These experiments helped to identify so-called one-point safety problems associated with some of the nuclear weapons systems of that time. The need for remedial action was demonstrated, although some of the necessary design changes could not be made until after the resumption of weapons testing at the end of 1961.

  11. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  12. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  13. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  14. Conduction in Polydiacetylene Bilayers.

    DTIC Science & Technology

    1979-12-04

    This indicates that the polymer backbone has little effect in the conduction machanism of a dark undoped sample but only comes into play upon...almost none to doping. This indicates that the polymer backbone has little effect in the conduction machanism of a dark undoped sample but only comes into

  15. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  16. Conductive Critical Thinking

    ERIC Educational Resources Information Center

    Paetkau, Mark

    2007-01-01

    One of my goals as an instructor is to teach students critical thinking skills. This paper presents an example of a student-led discussion of heat conduction at the first-year level. Heat loss from a human head is calculated using conduction and radiation models. The results of these plausible (but wrong) models of heat transfer contradict what…

  17. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2015-10-13

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  18. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2017-04-04

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  19. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  20. Terahertz Conductivity of Single Walled Nanotube Films

    NASA Astrophysics Data System (ADS)

    Han, Jia-Guang; Zhu, Zhi-Yuan; He, Feng; Liao, Yi; Wang, Zhen-Xia; Zhang, Wei; Yu, Li-Ping; Sun, Li-Tao; Wang, Ting-Tai

    2003-09-01

    The conductivity of single walled nanotube films is investigated with a combination of the Maxwell-Garnett (MG) model and the Drude-Lorentzian (DL) model in the Terahertz region. A theoretical fit for Jeon's experiment is given and a decrease of the real conductivity with increasing frequency is predicted. Meanwhile, the MG and DL models are also discussed for different samples.

  1. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  2. Platelet additive solution - electrolytes.

    PubMed

    Azuma, Hiroshi; Hirayama, Junichi; Akino, Mitsuaki; Ikeda, Hisami

    2011-06-01

    Recent attention to solutions that replace most or all plasma in platelet concentrates, while maintaining satisfactory platelet function, is motivated by the potential of plasma reduction or depletion to mitigate various transfusion-related adverse events. This report considers the electrolytic composition of previously described platelet additive solutions, in order to draw general conclusions about what is required for platelet function and longevity. The optimal concentrations of Na(+) and Cl(-) are 69-115 mM. The presence of both K(+) and Mg(2+) in platelet suspension at nearly physiological concentrations (3-5mM and 1.5-3mM, respectively) is indispensable for good preservation capacity because both electrolytes are required to prevent platelet activation. In contrast to K(+) and Mg(2+), Ca(2+) may not be important because no free Ca(2+) is available in M-sol, which showed excellent platelet preservation capacity at less than 5% plasma concentration. The importance of bicarbonate (approximately 40 mM) can be recognized when the platelets are suspended in additive solution under less than 5% residual plasma concentration.

  3. Differential conduction block in branches of a bifurcating axon.

    PubMed Central

    Grossman, Y; Parnas, I; Spira, M E

    1979-01-01

    1. Propagation of action potentials at high frequency was studied in a branching axon of the lobster by means of simultaneous intracellular recording both before and after the branch point. 2. Although the branching axon studied has a geometrical ratio close to one (perfect impedance matching) conduction across the branch point failed at stimulation frequencies above 30 Hz. 3. The block of conduction after high frequency stimulation occurred at the branch point per se. The parent axon and daughter branches continued to conduct action potentials. 4. Conduction block after high frequency stimulation appeared first in the thicker daughter branch and only later in the thin branch. 5. With high frequency stimulation there was a 10-15% reduction in amplitude of the action potential in the parent axon, a corresponding decrease in the rate of rise of the action potential, a 25-30% decrease in conduction velocity, marked increase in threshold and prolongation of the refractory period. In addition the membrane was depolarized by 1-3 mV. 6. Measurements of the membrane current using the patch clamp technique showed a large decrease in the phase of inward current associated with the action potential, before the branching point. 7. The small membrane depolarization seen after high frequency stimulation is not the sole cause of the conduction block. Imposed prolonged membrane depolarization (8 mV for 120 sec) was insufficient to produce conduction block. 8. In vivo chronic extracellular recordings from the main nerve bundle (which contains the parent axon) and the large daughter branch revealed that: (a) the duration and frequency of trains of action potentials along the axons exceeded those used in the isolated nerve experiments and (b) conduction failure in the large daughter branch could be induced in the whole animal by electrical stimulation of the main branch as in the isolated preparation. 9. Possible mechanisms underlying block of conduction after high frequency

  4. Differential conduction block in branches of a bifurcating axon.

    PubMed

    Grossman, Y; Parnas, I; Spira, M E

    1979-10-01

    1. Propagation of action potentials at high frequency was studied in a branching axon of the lobster by means of simultaneous intracellular recording both before and after the branch point. 2. Although the branching axon studied has a geometrical ratio close to one (perfect impedance matching) conduction across the branch point failed at stimulation frequencies above 30 Hz. 3. The block of conduction after high frequency stimulation occurred at the branch point per se. The parent axon and daughter branches continued to conduct action potentials. 4. Conduction block after high frequency stimulation appeared first in the thicker daughter branch and only later in the thin branch. 5. With high frequency stimulation there was a 10-15% reduction in amplitude of the action potential in the parent axon, a corresponding decrease in the rate of rise of the action potential, a 25-30% decrease in conduction velocity, marked increase in threshold and prolongation of the refractory period. In addition the membrane was depolarized by 1-3 mV. 6. Measurements of the membrane current using the patch clamp technique showed a large decrease in the phase of inward current associated with the action potential, before the branching point. 7. The small membrane depolarization seen after high frequency stimulation is not the sole cause of the conduction block. Imposed prolonged membrane depolarization (8 mV for 120 sec) was insufficient to produce conduction block. 8. In vivo chronic extracellular recordings from the main nerve bundle (which contains the parent axon) and the large daughter branch revealed that: (a) the duration and frequency of trains of action potentials along the axons exceeded those used in the isolated nerve experiments and (b) conduction failure in the large daughter branch could be induced in the whole animal by electrical stimulation of the main branch as in the isolated preparation. 9. Possible mechanisms underlying block of conduction after high frequency

  5. Electrical Conductivity in Insulator

    NASA Astrophysics Data System (ADS)

    Sinha, Anil Kumar

    2003-03-01

    ABSTRACT In insulating solid(Plastic Sheet)of 0.73mm thickness, the conduction process was ohmic at low D.C. electric feilds, but the feild strength increased the conductivity became feild dependent at high feilds and it exhibited some conductivity and the variation in conduction current was none-ohmic.The mechanism of electron transfer between two metallic electrodes separated by insulating material has received considerable attention. The electron transfer current was studied on 0.73mm plastic sheet and(I-V),(log I-log V),(log J-E^1/2)and (log o- 1/T) relations have been studied and the value of slope,electronic dielectric constant and activation energy for nature of conduction mechanism and process have been determined.The electrical conductivity measurements were carried out at room temperature (32.5 celcius)under high D.C. electric feilds of the order of 10^6 volt/meter.The sample of insulator(plastic sheet) was sandwiched between the aluminium electrodes of designed experimental cell,The effect of very high varying feilds at 32.5 celcius temperature,the electrical conduction has been proposed on the data obtained.The non-ohmic behavior in the sample seemed to start at an electric feild 3x10^6 volt/meter.In this case on data obtained it was concluded that "SCHOTTKY EMISSION MECHANISM" has been proposed. The activation energy was calculated by plotting(log o-1/T)characterstics at running temperature and it was found 0.325ev which is less than 1.0,It confirms predominance of Electronic Conduction. I=current in ampere V=volt T=temperature O=conductivity

  6. A novel high-efficiency methodology for metal additive manufacturing

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wei, Zhengying; Wang, Xin; Fang, Xuewei; Zhao, Guangxi

    2016-11-01

    Metal additive manufacturing (AM) offers unrivalled design freedom with the ability to manufacture complex parts. However, the high capital costs and slow throughput printing have severely restricted its application. In this paper, a new metal AM process, referred to as the "metal fused-coating additive manufacturing (MFCAM)", was developed for highly efficient metal parts production. This new process is the combination of metal fused-coating process and laser surface melting process. A two-dimensional numerical model was established to provide an insight into the primary thermo-physical phenomena occurring in the MFCAM process. Experiments of single-track formation were conducted using MFCAM to validate the feasibility of the proposed process. The good agreement between experimental and simulated results demonstrated the reasonableness of the established models.

  7. Report on July 2015 Additional Protocol Coordinators Best Practices Workshop

    SciTech Connect

    Gitau, Ernest T.N.; Burbank, Roberta L.; Finch, Valerie A.

    2016-07-31

    After 10 years of implementation experience, the Office of Nonproliferation and Arms Control (NPAC) within the Department of Energy/National Nuclear Security Administration (DOE/NNSA) conducted the Additional Protocol (AP) Coordinators Best Practices Workshop at Oak Ridge National Laboratory from July 29-30, 2015. The goal of this workshop was to identify implementation best practices, lessons learned, and compliance challenges from the various Additional Protocol Coordinators (APCs) at each laboratory in the DOE/NNSA complex and associated sites. The workshop provided the opportunity for participants to share their insights and establish networks that APCs can utilize to continue to discuss challenges (new and old), identify best practices, and enhance communication and coordination for reporting multi-lab research projects during review activities. Workshop participants included DOE/NNSA HQ, laboratory and site APCs, seasoned experts, members of the original implementation outreach team, and Field Element and site security representatives.

  8. Gross decontamination experiment report

    SciTech Connect

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  9. Additive composition, for gasoline

    SciTech Connect

    Vataru, M.

    1989-01-10

    An admixture is described that comprises Diesel fuel and an additive composition added thereto which is between about 0.05 to about 2.0 percent by weight of the fuel, the composition comprising: (a) between about 0.05 and 25% relative weight parts of an organic peroxide, and (b) between about 0.1 and 25% relative weight parts of detergent selected from the component group that consists of: (i) fatty amines; (ii) ethoxylated and propoxylated derivatives of fatty amines; (iii) fatty diamines; (iv) fatty imidazlines; (v) polymeric amines and derivatives thereof; (vi) combination of one or more of the (i) through (v) components with carboxylic acid or acids having from three to forth carbon atoms, (c) from about 99.0 to about 50% by weight of a hydrocarbon solvent.

  10. Teardrop bladder: additional considerations

    SciTech Connect

    Wechsler, R.J.; Brennan, R.E.

    1982-07-01

    Nine cases of teardrop bladder (TDB) seen at excretory urography are presented. In some of these patients, the iliopsoas muscles were at the upper limit of normal in size, and additional evaluation of the perivesical structures with computed tomography (CT) was necessary. CT demonstrated only hypertrophied muscles with or without perivesical fat. The psoas muscles and pelvic width were measured in 8 patients and compared with the measurements of a control group of males without TDB. Patients with TDB had large iliopsoas muscles and narrow pelves compared with the control group. The psoas muscle width/pelvic width ratio was significantly greater (p < 0.0005) in patients with TDB than in the control group, with values of 1.04 + 0.05 and 0.82 + 0.09, respectively. It is concluded that TDB is not an uncommon normal variant in black males. Both iliopsoas muscle hypertrophy and a narrow pelvis are factors that predispose a patient to TDB.

  11. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  12. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  13. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  14. Cardiac Conduction through Engineered Tissue

    PubMed Central

    Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.

    2006-01-01

    In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362

  15. Cardiac conduction system

    MedlinePlus Videos and Cool Tools

    ... cardiac muscle cells in the walls of the heart that send signals to the heart muscle causing it to contract. The main components ... the cardiac conduction system's electrical activity in the heart.

  16. Conductive open frameworks

    DOEpatents

    Yaghi, Omar M.; Wan, Shun; Doonan, Christian J.; Wang, Bo; Deng, Hexiang

    2016-02-23

    The disclosure relates generally to materials that comprise conductive covalent organic frameworks. The disclosure also relates to materials that are useful to store and separate gas molecules and sensors.

  17. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  18. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  19. Synthesis and characterization of soluble conducting polymers and conducting adhesives

    NASA Astrophysics Data System (ADS)

    Oztemiz, Serhan

    setting feature of the cyanoacrylates, a fast and serviceable conducting adhesive is formulated. Environmentally stable and electrically conducting cyanoacrylate formulations have been successfully prepared by introducing silver particles into a stabilized cyanoacrylate formulation. Silver particles have been observed to increase the viscosity and decrease the thixotropicity of the formulations. The stability of the formulations was achieved by using excess amounts of anionic stabilizers. This excess amount of inhibitor increases the set time by delaying the start of the reaction. This inhibition problem was solved by introducing functional amine groups and accelerating the reaction. Addition of the amine groups created more nucleation sites on the surface, which competed with the stabilizer to start the reaction. The use of accelerators did not affect the adhesive strength of the bond, however, it did change the resistivity of the adhesive joint.

  20. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.