Sample records for additional fabrication steps

  1. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  2. One-step fabrication of multifunctional micromotors.

    PubMed

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-09-07

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.

  3. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Yu; Lei, Jixue; Yin, Bing

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  4. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  5. Additives in fibers and fabrics.

    PubMed

    Barker, R H

    1975-06-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  6. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  7. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Heo, Youn-Jung; Kim, Jueng-Eun; Lee, Donmin; Lee, Cheol-Ho; Joh, Han-Ik; Yeo, Jun-Seok; Kim, Dong-Yu

    2017-08-23

    Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH 3 NH 3 PbI 3 (MAPbI 3 ) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

  8. Interfacial complexation in microfluidic droplets for single-step fabrication of microcapsule

    NASA Astrophysics Data System (ADS)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Williams, Danielle; Liu, Wei; Schloss, Ashley; Regan, Lynn; Yan, Elsa; Dufrense, Eric; Loewenberg, Michael; Osuji, Chinedum

    We present microfluidic interfacial complexation in emulsion droplets as a simple single-step approach for fabricating a large variety of stable monodisperse microcapsules with tailored mechanical properties, protein binding and controlled release behavior. We rely on electrostatic interactions and hydrogen bonding to direct the assembly of complementary species at oil-water droplet interfaces to form microcapsules with polyelectrolyte shells, composite polyelectrolyte-nanoparticle shells, and copolymer-nanofiber shells. Additionally, we demonstrate the formation of microcapsules by adsorption of an amphiphilic bacterial hydrophobin, BslA, at oil-in-water and water-in-oil droplets, and protein capture on these capsules using engineered variants of the hydrophobin. We discuss the composition dependence of mechanical properties, shell thickness and release behavior, and regimes of stability for microcapsule fabrication. Nanoparticle based microcapsules display an intriguing plastic deformation response which enables the formation of large aspect ratio asperities by pipette aspiration of the shell.

  9. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  10. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  11. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  12. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru

    2012-07-01

    The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.

  13. One-step volumetric additive manufacturing of complex polymer structures

    DOE PAGES

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; ...

    2017-12-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex non-periodic 3D geometries on a timescale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that lowabsorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10-100more » mW) may be successfully used to build full structures in ~1-10 s.« less

  14. One-step volumetric additive manufacturing of complex polymer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex non-periodic 3D geometries on a timescale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that lowabsorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10-100more » mW) may be successfully used to build full structures in ~1-10 s.« less

  15. One-step volumetric additive manufacturing of complex polymer structures

    PubMed Central

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; Henriksson, Johannes; Weisgraber, Todd H.; Panas, Robert M.; Fang, Nicholas X.; Spadaccini, Christopher M.

    2017-01-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s. PMID:29230437

  16. One-step volumetric additive manufacturing of complex polymer structures.

    PubMed

    Shusteff, Maxim; Browar, Allison E M; Kelly, Brett E; Henriksson, Johannes; Weisgraber, Todd H; Panas, Robert M; Fang, Nicholas X; Spadaccini, Christopher M

    2017-12-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.

  17. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    PubMed Central

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720

  18. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  19. Design and fabrication of the progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Qin, Linling; Qian, Lin; Yu, Jingchi

    2011-11-01

    The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.

  20. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  1. Antireflective surface with a step in the taper: Numerical optimization and large-area fabrication

    NASA Astrophysics Data System (ADS)

    Shinotsuka, Kei; Hongo, Koki; Dai, Kotaro; Hirama, Satoru; Hatta, Yoshihisa

    2017-02-01

    In this study, we developed a practical method to improve the optical performance of subwavelength antireflective two-dimensional (2D) gratings. A numerical simulation of both convex and concave paraboloids suggested that surface reflectivity drastically decreases when a step is introduced in the taper. The optimum height and depth of a step provided average reflectances of 0.098% for convex protrusions and 0.040% for concave protrusions in the visible range. Furthermore, a stepped paraboloid was experimentally fabricated by dry etching of a Si substrate with SiO2 particle monolayer mask. A cyclo-olefin polymer (COP) reverse replica (concave) imprinted by the Si mold exhibited a measured reflectance of 0.077% on average in the visible range. It was also demonstrated that the antireflective structure was fabricated on the whole surface of a 6 in. Si wafer, which is a sufficient size for industrial utilization.

  2. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    PubMed

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  3. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending

    PubMed Central

    2012-01-01

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young’s modulus, and reactive blending leads to further improvement in Young’s modulus while hardly reducing the elongation at break of HDPE. PMID:22747773

  4. UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique

    NASA Astrophysics Data System (ADS)

    Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes

    2017-02-01

    In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.

  5. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive

    PubMed Central

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications. PMID:27788161

  6. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive.

    PubMed

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin; Wu, Junwei

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications.

  7. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching

    PubMed Central

    2012-01-01

    A template-free fabrication method for silicon nanostructures, such as silicon micropillar (MP)/nanowire (NW) composite structure is presented. Utilizing an improved metal-assisted electroless etching (MAEE) of silicon in KMnO4/AgNO3/HF solution and silicon composite nanostructure of the long MPs erected in the short NWs arrays were generated on the silicon substrate. The morphology evolution of the MP/NW composite nanostructure and the role of self-growing K2SiF6 particles as the templates during the MAEE process were investigated in detail. Meanwhile, a fabrication mechanism based on the etching of silver nanoparticles (catalyzed) and the masking of K2SiF6 particles is proposed, which gives guidance for fabricating different silicon nanostructures, such as NW and MP arrays. This one-step method provides a simple and cost-effective way to fabricate silicon nanostructures. PMID:23043719

  8. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    PubMed

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  9. Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine

    PubMed Central

    Xue, Chao-Hua; Bai, Xue; Jia, Shun-Tian

    2016-01-01

    A robust, self-healing superhydrophobic poly(ethylene terephthalate) (PET) fabric was fabricated by a convenient solution-dipping method using an easily available material system consisting of polydimethylsiloxane and octadecylamine (ODA). The surface roughness was formed by self-roughening of ODA coating on PET fibers without any lithography steps or adding any nanomaterials. The fabric coating was durable to withstand 120 cycles of laundry and 5000 cycles of abrasion without apparently changing the superhydrophobicity. More interestingly, the fabric can restore its super liquid-repellent property by 72 h at room temperature even after 20000 cycles of abrasion. Meanwhile, after being damaged chemically, the fabric can restore its superhydrophobicity automatically in 12 h at room temperature or by a short-time heating treatment. We envision that this simple but effective coating system may lead to the development of robust protective clothing for various applications. PMID:27264995

  10. Direct fabrication of bio-inspired gecko-like geometries with vat polymerization additive manufacturing method

    NASA Astrophysics Data System (ADS)

    Davoudinejad, A.; Ribo, M. M.; Pedersen, D. B.; Islam, A.; Tosello, G.

    2018-08-01

    Functional surfaces have proven their potential to solve many engineering problems, attracting great interest among the scientific community. Bio-inspired multi-hierarchical micro-structures grant the surfaces with new properties, such as hydrophobicity, adhesion, unique optical properties and so on. The geometry and fabrication of these surfaces are still under research. In this study, the feasibility of using direct fabrication of microscale features by additive manufacturing (AM) processes was investigated. The investigation was carried out using a specifically designed vat photopolymerization AM machine-tool suitable for precision manufacturing at the micro dimensional scale which has previously been developed, built and validated at the Technical University of Denmark. It was shown that it was possible to replicate a simplified surface inspired by the Tokay gecko, the geometry was previously designed and replicated by a complex multi-step micromanufacturing method extracted from the literature and used as benchmark. Ultimately, the smallest printed features were analyzed by conducting a sensitivity analysis to obtain the righteous parameters in terms of layer thickness and exposure time. Moreover, two more intricate designs were fabricated with the same parameters to assess the surfaces functionality by its wettability. The surface with increased density and decreased feature size showed a water contact angle (CA) of 124°  ±  0.10°, agreeing with the Cassie–Baxter model. These results indicate the possibility of using precision AM for a rapid, easy and reliable fabrication method for functional surfaces.

  11. The importance of a two-step impression procedure for complete denture fabrication: a systematic review of the literature.

    PubMed

    Regis, R R; Alves, C C S; Rocha, S S M; Negreiros, W A; Freitas-Pontes, K M

    2016-10-01

    The literature has questioned the real need for some clinical and laboratory procedures considered essential for achieving better results for complete denture fabrication. The aim of this study was to review the current literature concerning the relevance of a two-step impression procedure to achieve better clinical results in fabricating conventional complete dentures. Through an electronic search strategy of the PubMed/MEDLINE database, randomised controlled clinical trials which compared complete denture fabrication in adults in which one or two steps of impressions occurred were identified. The selections were made by three independent reviewers. Among the 540 titles initially identified, four studies (seven published papers) reporting on 257 patients evaluating aspects such as oral health-related quality of life, patient satisfaction with dentures in use, masticatory performance and chewing ability, denture quality, direct and indirect costs were considered eligible. The quality of included studies was assessed according to the Cochrane guidelines. The clinical studies considered for this review suggest that a two-step impression procedure may not be mandatory for the success of conventional complete denture fabrication regarding a variety of clinical aspects of denture quality and patients' perceptions of the treatment. © 2016 John Wiley & Sons Ltd.

  12. Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition.

    PubMed

    Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin

    2018-04-24

    Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.

  13. Single-step fabrication of polydimethylsiloxane microwell arrays with long-lasting hydrophilic inner surfaces

    NASA Astrophysics Data System (ADS)

    Gowa Oyama, Tomoko; Barba, Bin Jeremiah Duenas; Hosaka, Yuji; Taguchi, Mitsumasa

    2018-05-01

    We propose a single-step fabrication method for polydimethylsiloxane (PDMS) cell-adhesive microwell arrays with long-lasting (>10 months in aqueous medium) hydrophilic inner surfaces without the need for any chemical treatment such as development. Irradiation of a PDMS film with a low-energy electron beam (55 kV) in air generated a ˜40-μm-thick hydrophilic silica-like layer on the PDMS surface, which was the key to the prolonged hydrophilicity. Moreover, the concomitant compaction of the irradiated area produced dozens-of-micrometers-deep concave wells. The hydrophilic microwells generated on the hydrophobic non-irradiated PDMS surface easily trapped nano-/picoliter droplets and cells/single-cells. In addition, the surfaces of the microwells offered stable and favorable cell-adherent environments. The method presented here can realize stable and reliable lab-on-chips and cater to the expanding demand in biological and medical applications.

  14. A Method for Fabricating Additive Manufactured Lightweight Metallic Mirrors

    DTIC Science & Technology

    2015-06-14

    systems [3, 4].    The state of the art in this industry is the ULE™,  Zerodur ™, or beryllium isogrid  mirrors .  The isogrid design is a standard in...1    A Method for Fabricating Additive Manufactured Lightweight  Metallic  Mirrors   Michael Stern, Joseph Bari  This work  is  sponsored  by  the...methods for fabricating  low‐weight optics are in use today. We present a novel methodology for generating lightweight  metallic  mirrors  fabricated by

  15. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  16. Two-step fabrication of ZnO-PVP composites with tunable visible emissions

    NASA Astrophysics Data System (ADS)

    Agulto, Verdad C.; Empizo, Melvin John F.; Kawano, Keisuke; Minami, Yuki; Yamanoi, Kohei; Sarukura, Nobuhiko; Yago, Allan Christopher C.; Sarmago, Roland V.

    2018-02-01

    We report a two-step fabrication of zinc oxide-polyvinylpyrrolidone (ZnO-PVP) composites for potential phosphor-based applications. The composites are fabricated by initially preparing ZnO microrods using hydrothermal growth method and then dip-coating the microrods into aqueous PVP solutions with varying molar concentrations. The as-prepared ZnO microrods exhibit smooth surfaces and broad visible emissions, while the ZnO-PVP composites have pitted surfaces with shifted and reduced visible emissions. These changes in the structural and optical properties, which are found to depend on the PVP concentration, are attributed to the adsorption of PVP on the microrod surface. Although the surface morphology and visible emission are modified by PVP, the composites still maintain a hexagonal wurtzite crystal structure and near-band-edge ultraviolet (UV) emission similar with the as-prepared microrods. Our results therefore suggest that the ZnO-PVP composites can be used as phosphors that offer not only properties found in both ZnO and PVP but also tunable visible emissions which can be controlled during material fabrication.

  17. SEMICONDUCTOR TECHNOLOGY: Reduction of proximity effect in fabricating nanometer-spaced nanopillars by two-step exposure

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Renping, Zhang; Weihua, Han; Jian, Liu; Xiang, Yang; Ying, Wang; Chian Chiu, Li; Fuhua, Yang

    2009-11-01

    A two-step exposure method to effectively reduce the proximity effect in fabricating nanometer-spaced nanopillars is presented. In this method, nanopillar patterns on poly-methylmethacrylate (PMMA) were partly cross-linked in the first-step exposure. After development, PMMA between nanopillar patterns was removed, and hence the proximity effect would not take place there in the subsequent exposure. In the second-step exposure, PMMA masks were completely cross-linked to achieve good resistance in inductively coupled plasma etching. Accurate pattern transfer of rows of nanopillars with spacing down to 40 nm was realized on a silicon-on-insulator substrate.

  18. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production

    PubMed Central

    Johnson, Ashley R.; Caudill, Cassie L.; Tumbleston, John R.; Bloomquist, Cameron J.; Moga, Katherine A.; Ermoshkin, Alexander; Shirvanyants, David; Mecham, Sue J.; Luft, J. Christopher; DeSimone, Joseph M.

    2016-01-01

    Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing (“3D printing”) technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine. PMID:27607247

  19. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Lloyd, Peter D.

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  20. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energymore » has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.« less

  1. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  2. Fabrication of sapphire-based high performance step-edge HTS Josephson junctions and SQUIDs and their application to scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Ming, Bin

    Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID

  3. Fabrication of mandible fracture plate by indirect additive manufacturing

    NASA Astrophysics Data System (ADS)

    Aizat, M.; Khan, S. F.

    2017-10-01

    Bone fracture is a serious skeletal injury due to accidents and fragility of the bones at a certain age. In order to accelerate fracture healing process, fracture bone plate is use to hold the fracture segment for more stability. The purpose of this study is to fabricate mandibular fracture plate by using indirect additive manufacturing methods in order to reduce time taken during bending and shaping the fracture fixation plate that conform to the anatomy of the fractured bone site. The design and analysis of the plates are performed using CATIA and ANSYS software. The 3D-CAD data were sent to an additive manufacturing machine (fused filament fabricated) to generate master pattern using PLA and the mould were fabricated using Plaster of Paris. A melt ZAMAK 3 was poured directly into the moulds, and left it until completely harden. 3point bending test was performed on the prototype plate using universal testing machine. Stress-strain curve shows the graph exhibited a linear relationship of stress-strain up to a strain value of 0.001. Specimens give a maximum yielding stress and then break before the conventional deflection. Since the maximum flexural stress and the breaking stress are far apart with a plateau stating at strain value of 0.003mm/mm in most specimens, the specimen’s failure types are considered plastic failure mode. The average thickness and width are 1.65mm and 2.18mm respectively. The flexural modulus and flexural strength are 189.5GPa and 518.1MPa, respectively.

  4. One-step Maskless Fabrication and Optical Characterization of Silicon Surfaces with Antireflective Properties and a White Color Appearance

    PubMed Central

    Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.

    2016-01-01

    We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703

  5. Systems and Methods for Designing and Fabricating Contact-Free Support Structures for Overhang Geometries of Parts in Powder-Bed Metal Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)

    2017-01-01

    Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.

  6. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.

    PubMed

    Ding, Su; Jiu, Jinting; Gao, Yue; Tian, Yanhong; Araki, Teppei; Sugahara, Tohru; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Suganuma, Katsuaki; Uchida, Hiroshi

    2016-03-09

    Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 μs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields.

  7. 77 FR 43481 - Taking Additional Steps to Address the National Emergency With Respect to Somalia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Additional Steps to Address the National Emergency With Respect to Somalia #0; #0; #0; Presidential Documents... Additional Steps to Address the National Emergency With Respect to Somalia By the authority vested in me as... order to take additional steps to deal with the national emergency with respect to the situation in...

  8. A Four-step Approach for Evaluation of Dose Additivity

    EPA Science Inventory

    A four step approach was developed for evaluating toxicity data on a chemical mixture for consistency with dose addition. Following the concepts in the U.S. EPA mixture guidance (EPA 2000), toxicologic interaction for a defined mixture (all components known) is departure from a c...

  9. Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes

    PubMed Central

    Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.

    2015-01-01

    This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186

  10. Plastic-Syringe Induced Silicone Contamination in Organic Photvoltaic Fabrication: Implications for Small-Volume Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, John A.; Nalwa, Kanwar S.; Mahadevapuram, Rakesh

    Herein, the implications of silicone contamination found in solution-processed conjugated polymer solar cells are explored. Similar to a previous work based on molecular cells, we find this contamination as a result of the use of plastic syringes during fabrication. However, in contrast to the molecular case, we find that glass-syringe fabricated devices give superior performance than plastic-syringe fabricated devices in poly(3-hexylthiophene)-based cells. We find that the unintentional silicone addition alters the solution’s wettability, which translates to a thinner, less absorbent film on spinning. With many groups studying the effects of small-volume additives, this work should be closely considered as manymore » of these additives may also directly alter the solutions’ wettability, or the amount of silicone dissolved off the plastic syringes, or both. Thereby, film thickness, which generally is not reported in detail, can vary significantly from device to device.« less

  11. A Novel Method for Fabricating Additive Manufactured Lightweight, Optical Quality Metallic Mirrors

    DTIC Science & Technology

    2016-01-04

    lighter  mirrors  can  lead to great reductions of mass in full systems [3,4].    The state of the art in this industry is ULE™,  Zerodur ™, or beryllium...1    A Novel Method for Fabricating Additive Manufactured  Lightweight, Optical Quality Metallic  Mirrors   Michael Stern, Joseph Bari  Distribution A...metallic  mirrors  fabricated by growing an additive manufactured blank, post  processing the faces, coating with electroless nickel, and diamond turning

  12. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    NASA Astrophysics Data System (ADS)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  13. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  14. Single-step fabrication of thin-film linear variable bandpass filters based on metal-insulator-metal geometry.

    PubMed

    Williams, Calum; Rughoobur, Girish; Flewitt, Andrew J; Wilkinson, Timothy D

    2016-11-10

    A single-step fabrication method is presented for ultra-thin, linearly variable optical bandpass filters (LVBFs) based on a metal-insulator-metal arrangement using modified evaporation deposition techniques. This alternate process methodology offers reduced complexity and cost in comparison to conventional techniques for fabricating LVBFs. We are able to achieve linear variation of insulator thickness across a sample, by adjusting the geometrical parameters of a typical physical vapor deposition process. We demonstrate LVBFs with spectral selectivity from 400 to 850 nm based on Ag (25 nm) and MgF2 (75-250 nm). Maximum spectral transmittance is measured at ∼70% with a Q-factor of ∼20.

  15. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.

  16. Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan

    2018-04-01

    The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.

  17. Closed hollow bulb obturator--one-step fabrication: a clinical report.

    PubMed

    Buzayan, Muaiyed M; Ariffin, Yusnidar T; Yunus, Norsiah

    2013-10-01

    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing. © 2013 by the American College of Prosthodontists.

  18. Additive direct-write microfabrication for MEMS: A review

    NASA Astrophysics Data System (ADS)

    Teh, Kwok Siong

    2017-12-01

    Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive

  19. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  20. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  1. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  2. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2017-06-01

    A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.

  3. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  4. Fabrication of controlled hierarchical wrinkle structures on polydimethylsiloxane via one-step C4F8 plasma treatment

    NASA Astrophysics Data System (ADS)

    Miao, Liming; Cheng, Xiaoliang; Chen, Haotian; Song, Yu; Guo, Hang; Zhang, Jinxin; Chen, Xuexian; Zhang, Haixia

    2018-01-01

    We report a simple method for fabricating two-dimensional and nested hierarchical wrinkle structures on polydimethylsiloxane surfaces via one-step C4F8 plasma treatment that innovatively combines two approaches to monolayer wrinkle structure fabrication. The wavelengths of the two dimensions of the wrinkle structures can be controlled by plasma treatment (radio frequency (RF) power and plasma treatment time) and stretching (stretching strain and axial stretching), respectively. We also analyze the different interactions between the two dimensions of wrinkle structures with different wavelengths and explain the phenomenon using Fourier waveform superposition. The character of the two dimensions and hierarchy is obvious when the wavelengths of the two wrinkles are different. In surface wetting tests, the hierarchical wrinkle shows great hydrophobicity and keeps the stretching property under 25%.

  5. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  6. Printing Outside the Box: Additive Manufacturing Processes for Fabrication of Large Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Peters, Warren

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.

  7. Fabrication of Turbine Disk Materials by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  8. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing.

    PubMed

    Whatley, Benjamin R; Kuo, Jonathan; Shuai, Cijun; Damon, Brooke J; Wen, Xuejun

    2011-03-01

    A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.

  9. Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices.

    PubMed

    de Araujo, William R; Frasson, Carolina M R; Ameku, Wilson A; Silva, José R; Angnes, Lúcio; Paixão, Thiago R L C

    2017-11-20

    A single-step laser scribing process is used to pattern nanostructured electrodes on paper-based devices. The facile and low-cost technique eliminates the need for chemical reagents or controlled conditions. This process involves the use of a CO 2 laser to pyrolyze the surface of the paperboard, producing a conductive porous non-graphitizing carbon material composed of graphene sheets and composites with aluminosilicate nanoparticles. The new electrode material was extensively characterized, and it exhibits high conductivity and an enhanced active/geometric area ratio; it is thus well-suited for electrochemical purposes. As a proof-of-concept, the devices were successfully employed for different analytical applications in the clinical, pharmaceutical, food, and forensic fields. The scalable and green fabrication method associated with the features of the new material is highly promising for the development of portable electrochemical devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  11. Defense Intelligence: Additional Steps Could Better Integrate Intelligence Input into DODs Acquisition of Major Weapon Systems

    DTIC Science & Technology

    2016-11-01

    DEFENSE INTELLIGENCE Additional Steps Could Better Integrate Intelligence Input into DOD’s Acquisition of Major Weapon...States Government Accountability Office Highlights of GAO-17-10, a report to congressional committees November 2016 DEFENSE INTELLIGENCE ...Additional Steps Could Better Integrate Intelligence Input into DOD’s Acquisition of Major Weapon Systems What GAO Found The Department of Defense (DOD

  12. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2015-05-01

    3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.

  13. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  14. Fabrication of a novel superhydrophobic and superoleophilic surface by one-step electrodeposition method for continuous oil/water separation

    NASA Astrophysics Data System (ADS)

    Xiang, Meisu; Jiang, Meihuizi; Zhang, Yanzong; Liu, Yan; Shen, Fei; Yang, Gang; He, Yan; Wang, Lilin; Zhang, Xiaohong; Deng, Shihuai

    2018-03-01

    A novel superhydrophobic and superoleophilic surface was fabricated by one-step electrodeposition on stainless steel meshes, and the durability and oil/water separation properties were assessed. Field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and optical contact angle measurements were used to characterize surface morphologies, chemical compositions, and wettabilities, respectively. The results indicated that the as-prepared mesh preformed excellent superhydrophobicity and superoleophilicity with a high water contact angle (WCA) of 162 ± 1° and oil contact angle of (OCA) 0°. Meanwhile, the as-prepared mesh also exhibited continuous separation capacity of many kinds of oil/water mixtures, and the separation efficiency for lubrication oil/water mixture was about 98.6%. In addition, after 10 separation cycles, the as-prepared mesh possessed the WCAs of 155 ± 2°, the OCAs of 0° and the separation efficiency of 97.8% for lubrication oil/water mixtures. The as-prepared mesh also retained superhydrophobic and superoleophilic properties after abrading, immersing in salt solutions and different pH solutions.

  15. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample

  16. A Four Step Approach to Evaluate Mixtures for Consistency with Dose Addition

    EPA Science Inventory

    We developed a four step approach for evaluating chemical mixture data for consistency with dose addition for use in environmental health risk assessment. Following the concepts in the U.S. EPA mixture risk guidance (EPA 2000a,b), toxicological interaction for a defined mixture (...

  17. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    NASA Technical Reports Server (NTRS)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  18. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  19. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  20. Step-by-Step Heating of Dye Solution for Efficient Solar Energy Harvesting in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan

    2018-05-01

    A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.

  1. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  2. Conception d'un outil d'aide a la decision de technologies de fabrication additive en milieu aeronautique

    NASA Astrophysics Data System (ADS)

    Buvat, Gael

    La fabrication additive offre une opportunite d'amelioration des methodes de productions de pieces. Cependant, les technologies de fabrication additive sont diverses, les fournisseurs de services sont multiples et peu de personnel est forme pour operer sur ces technologies. L'objectif de cette etude est d'emettre une suggestion de concepts d'outils d'aide a la decision de technologies, de materiaux et de post-traitements de fabrication additive en milieu aeronautique. Trois sous-objectifs sont employes. Premierement, la definition des criteres de decision de technologies, de materiaux et de post-traitements de fabrication additive. Ensuite, l'elaboration d'un cahier des charges de l'outil d'aide a la decision en accord avec les besoins industriels du secteur aeronautique. Et enfin, la suggestion de trois concepts d'outils d'aide a la decision et leur evaluation par comparaison au cahier des charges etabli. Les criteres captures aupres de 11 industriels concernent des criteres de couts, de qualite, de conception et de delai d'obtention. Ensuite, nous avons elabore un cahier des charges permettant de reunir les besoins des industriels du secteur aeronautique selon trois axes qui constituent la colonne vertebrale des outils d'aide a la decision : une suggestion d'interface utilisateur, une suggestion de bases de donnees et un moteur de selection des technologies, des materiaux et des post-traitements de fabrication additive. La convivialite de l'interface utilisateur, l'evaluation de la qualite souhaitee par l'utilisateur et la prise en compte des etudes de cas realisees par le moteur de selection sont exemples de besoins que nous avons identifie au sein de cette etude. Nous avons ensuite transcrit ces besoins en specifications techniques pour permettre une evaluation du niveau de satisfaction des industriels au travers d'un pointage des trois concepts suggeres. Ces trois concepts d'outils d'aide a la decision ont ete realises respectivement grâce a Microsoft Excel

  3. Crash-Energy Absorbing Composite Structure and Method of Fabrication

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)

    1996-01-01

    A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The fiber reinforcement can be in the form of a fabric or braided fibers wrapped about a core that is either left in place or removed from the ultimate cured structure. The geometric configuration of cells is held together with more fiber reinforcement (in the form of fabric or braided fibers) in order to integrate the cells in the geometric configuration. The additional fiber reinforcement is resin-cured to the cells. Curing of the cells and ultimate structure can occur in a single step. In applications where post-crash integrity is necessary, ductile fibers can be used to integrate the cells in the geometric configuration. The novelty of the present invention is that simple fabrication techniques are used to create structures that can be formed in a variety of net stable shapes without additional reinforcement and can withstand combined loading while crushing in a desired direction.

  4. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  5. A two-step sealing-and-reinforcement SU8 bonding paradigm for the fabrication of shallow microchannels

    NASA Astrophysics Data System (ADS)

    Mehboudi, Aryan; Yeom, Junghoon

    2018-03-01

    Adhesive bonding is a key technique to create microfluidic devices when two separate substrates are used to form microchannels. Among many adhesives explored in microchannel fabrication, SU8 has been widely used as an adhesive layer for sealing the microchannel sidewalls. The majority of the available SU8-based bonding methods, however, suffer from the difficulties associated with sealing of two important types of the microchannel architecture: (1) shallow microchannels with small patterns on a large area, and (2) microchannels with ultra-low aspect ratios (e.g. 6 mm in width and 2~μ m in height). In this paper, a new bonding paradigm based upon the low-temperature and low-pressure SU8 bonding, consisting of two steps of sealing using a thin-SU8-coated PET film and bonding reinforcement using a SU8-coated glass slide, is proposed to resolve the aforementioned difficulties. Since it does not need complicated instruments such as a wafer bonding machine and a lamination device, the developed bonding paradigm is convenient and economical. We successfully demonstrate the compatibility of the proposed bonding paradigm with the two microchannel fabrication approaches based on the glass wet etching and the SU8 photo-lithography, where small microchannels with the innermost surfaces fully made of SU8 are obtained. A theoretical model is employed to better investigate the flow characteristics and the structural behavior of the microchannel including the PET film deformation, strain and von Mises stress distributions, bonding strength, etc. Moreover, we demonstrate the fabrication of the multi-height deep-shallow microchannel sidewalls and their sealing using the SU8-coated PET film. Finally, as a proof-of-concept device, a microfluidic filter consisting of the double-height deep-shallow microchannel is fabricated for separation of 3 µm and 10 µm particles.

  6. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  7. Two-step fabrication technique of gold tips for use in point-contact spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasiwodeyar, S.; Dwyer, M.; Liu, M.

    For a successful point-contact spectroscopy (PCS) measurement, metallic tips of proper shape and smoothness are essential to ensure the ballistic nature of a point-contact junction. Until recently, the fabrication of Au tips suitable for use in point-contact spectroscopy has remained more of an art involving a trial and error method rather than an automated scientific process. To address these issues, we have developed a technique with which one can prepare high quality Au tips reproducibly and systematically. It involves an electronic control of the driving voltages used for an electrochemical etching of a gold wire in a HCl-glycerol mixture ormore » a HCl solution. We find that a stopping current, below which the circuit is set to shut off, is a single very important parameter to produce an Au tip of desired shape. We present detailed descriptions for a two-step etching process for Au tips and also test results from PCS measurements using them.« less

  8. Additive manufactured x-ray optics for astronomy

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Feldman, Charlotte; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Doel, Peter; Willingale, Richard; Hugot, Emmanuel

    2017-08-01

    Additive manufacturing, more commonly known as 3D printing, has become a commercially established technology for rapid prototyping and the fabrication of bespoke intricate parts. Optical components, such as mirrors and lenses, are now being fabricated via additive manufacturing, where the printed substrate is polished in a post-processing step. One application of additively manufactured optics could be within the astronomical X-ray community, where there is a growing need to demonstrate thin, lightweight, high precision optics for a beyond Chandra style mission. This paper will follow a proof-of-concept investigation, sponsored by the UK Space Agency's National Space Technology Programme, into the feasibility of applying additive manufacturing in the production of thin, lightweight, precision X-ray optics for astronomy. One of the benefits of additive manufacturing is the ability to construct intricate lightweighting, which can be optimised to minimise weight while ensuring rigidity. This concept of optimised lightweighting will be applied to a series of polished additively manufactured test samples and experimental data from these samples, including an assessment of the optical quality and the magnitude of any print-through, will be presented. In addition, the finite element analysis optimisations of the lightweighting development will be discussed.

  9. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  10. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing.

    PubMed

    Weng, Yuyan; Li, Zhiyun; Peng, Lun; Zhang, Weidong; Chen, Gaojian

    2017-12-14

    Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.

  11. One-step fabrication of porous GaN crystal membrane and its application in energy storage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-03-01

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.

  12. On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing

    DOE PAGES

    Sridharan, Niyanth S.; Noakes, Mark W.; Nycz, Andrzej; ...

    2017-12-06

    Low alloy carbon manganese (C-Mn) steel builds were fabricated using a wire based additive manufacturing system developed at Oak Ridge National Laboratory. Specimens were fabricated in the X,Y and Z direction and detailed mechanical testing was performed. The mechanical testing results showed a significant scatter in tensile ductility and significant variation in Charpy toughness. Further detailed microstructure characterization showed significant microstructural heterogeneity in builds fabricated in each direction. The scatter in mechanical properties was then rationalized based on the microstructural observations and the underlying changes in the local heat transfer conditions. Lastly, the results indicate that when fabricating parts usingmore » C-Mn low alloy steel welds the process parameters and tool path should be chosen such that the cooling rate from 800 °C to 500 °C is greater than 30 s to avoid formation of martensite austenite (MA) phases, which leads to toughness reductions.« less

  13. On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth S.; Noakes, Mark W.; Nycz, Andrzej

    Low alloy carbon manganese (C-Mn) steel builds were fabricated using a wire based additive manufacturing system developed at Oak Ridge National Laboratory. Specimens were fabricated in the X,Y and Z direction and detailed mechanical testing was performed. The mechanical testing results showed a significant scatter in tensile ductility and significant variation in Charpy toughness. Further detailed microstructure characterization showed significant microstructural heterogeneity in builds fabricated in each direction. The scatter in mechanical properties was then rationalized based on the microstructural observations and the underlying changes in the local heat transfer conditions. Lastly, the results indicate that when fabricating parts usingmore » C-Mn low alloy steel welds the process parameters and tool path should be chosen such that the cooling rate from 800 °C to 500 °C is greater than 30 s to avoid formation of martensite austenite (MA) phases, which leads to toughness reductions.« less

  14. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    PubMed

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Fabrication of Optimized Superconducting Phase Inverters Based on Superconductor-Ferromagnet-Superconductor pi π -Junctions

    NASA Astrophysics Data System (ADS)

    Bolginov, V. V.; Rossolenko, A. N.; Shkarin, A. B.; Oboznov, V. A.; Ryazanov, V. V.

    2018-03-01

    We have implemented a trilayer technological approach to fabricate Nb-Cu_{0.47} Ni_{0.53}-Nb superconducting phase inverters (π -junctions) with enhanced critical current. Within this technique, all three layers of the superconductor-ferromagnet-superconductor junction deposited in a single vacuum cycle that have allowed us to obtain π -junctions with critical current density up to 20 kA/cm^2. The value achieved is a factor of 10 higher than for the step-by-step method used in earlier works. Our additional experiments have shown that this difference is related to a bilayered CuNi/Cu barrier used in the case of the step-by-step technique and interlayer diffusion at the CuNi/Cu interface. We show that the interlayer diffusion can be utilized for fine tuning of the 0{-}π transition temperature of already fabricated junctions. The results obtained open new opportunities for the CuNi-based phase inverters in digital and quantum Josephson electronics.

  16. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Cho, Dong-Woo

    2016-07-05

    Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.

  17. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  18. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  19. Nanoimprint lithography for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven; Li, Zhiyong

    2016-09-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  20. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  1. Design of underwater superoleophobic TiO{sub 2} coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Guo, Zhiguang, E-mail: zguo@licp.cas.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

    Self-cleaning properties inspired by the structures and functions of some creatures are of great interest since the late 20th century. In this paper, TiO{sub 2} coatings with hierarchical rutile TiO{sub 2} flowers on fluorine-doped tin oxide substrate are fabricated through a simple one-step hydrothermal method. The flower-like coatings exhibit superhydrophilicity in air and superoleophobicity underwater with a contact angle as high as 157°, presenting good underwater self-cleaning performance. In addition, when contaminated by oleic acid, the as-prepared TiO{sub 2} coatings also exhibit excellent photocatalytic capability under ultraviolet irradiation, which demonstrated self-cleaning properties in a different way. This self-cleaning film providesmore » a good strategy for some industrial and ocean applications.« less

  2. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    PubMed

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  3. Laser-assisted fabrication of single-layer flexible touch sensor

    PubMed Central

    Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul

    2016-01-01

    Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204

  4. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  5. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  6. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  7. Fabrication of magnetic bubble memory overlay

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.

  8. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    NASA Astrophysics Data System (ADS)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  9. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  10. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    NASA Astrophysics Data System (ADS)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  11. Improvements in Cold-Plate Fabrication

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  12. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    DOE PAGES

    Li, Ling; Tirado, Angelica; Conner, Benjamin S.; ...

    2017-04-27

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd 3Cu 0.25Co 0.75 (NdCuCo) and Pr 3Cu 0.25Co 0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity H ci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  13. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Tirado, Angelica; Conner, Benjamin S.

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd 3Cu 0.25Co 0.75 (NdCuCo) and Pr 3Cu 0.25Co 0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity H ci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  14. Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C(60) nanostructures on pentacene substrates.

    PubMed

    Breuer, Tobias; Witte, Gregor

    2013-10-09

    A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.

  15. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    PubMed

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  17. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    PubMed

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which ismore » usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.« less

  19. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  20. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    PubMed

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  1. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    PubMed Central

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-01-01

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining. PMID:28788558

  2. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  3. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    PubMed

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  4. Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth S.; Gussev, Maxim N.; Parish, Chad M.

    Here, ultrasonic additive manufacturing (UAM) is a solid-state additive manufacturing process that uses fundamental principles of ultrasonic welding and sequential layering of tapes to fabricate complex three-dimensional (3-D) components. One of the factors limiting the use of this technology is the poor tensile strength along the z-axis. Recent work has demonstrated the improvement of the z-axis properties after post-processing treatments. The abnormally high stability of the grains at the interface during post-weld heat treatments is, however, not yet well understood. In this work we use multiscale characterization to understand the stability of the grains during post-weld heat treatments. Aluminum alloymore » (6061) builds, fabricated using ultrasonic additive manufacturing, were post-weld heat treated at 180, 330 and 580 °C. The grains close to the tape interfaces are stable during post-weld heat treatments at high temperatures (i.e., 580 °C). This is in contrast to rapid grain growth that takes place in the bulk. Transmission electron microscopy and atom-probe tomography display a significant enrichment of oxygen and magnesium near the stable interfaces. Based on the detailed characterization, two mechanisms are proposed and evaluated: nonequilibrium nano-dispersed oxides impeding the grain growth due to grain boundary pinning, or grain boundary segregation of magnesium and oxygen reducing the grain boundary energy.« less

  5. Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing

    DOE PAGES

    Sridharan, Niyanth S.; Gussev, Maxim N.; Parish, Chad M.; ...

    2018-03-06

    Here, ultrasonic additive manufacturing (UAM) is a solid-state additive manufacturing process that uses fundamental principles of ultrasonic welding and sequential layering of tapes to fabricate complex three-dimensional (3-D) components. One of the factors limiting the use of this technology is the poor tensile strength along the z-axis. Recent work has demonstrated the improvement of the z-axis properties after post-processing treatments. The abnormally high stability of the grains at the interface during post-weld heat treatments is, however, not yet well understood. In this work we use multiscale characterization to understand the stability of the grains during post-weld heat treatments. Aluminum alloymore » (6061) builds, fabricated using ultrasonic additive manufacturing, were post-weld heat treated at 180, 330 and 580 °C. The grains close to the tape interfaces are stable during post-weld heat treatments at high temperatures (i.e., 580 °C). This is in contrast to rapid grain growth that takes place in the bulk. Transmission electron microscopy and atom-probe tomography display a significant enrichment of oxygen and magnesium near the stable interfaces. Based on the detailed characterization, two mechanisms are proposed and evaluated: nonequilibrium nano-dispersed oxides impeding the grain growth due to grain boundary pinning, or grain boundary segregation of magnesium and oxygen reducing the grain boundary energy.« less

  6. Fabricating specialised orthopaedic implants using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Unwin, Paul

    2014-03-01

    It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.

  7. Fabrication of a Microbial Biosensor Based on QD-MWNT Supports by a One-Step Radiation Reaction and Detection of Phenolic Compounds in Red Wines

    PubMed Central

    Kim, Seul-Ki; Kwen, Hai-Doo; Choi, Seong-Ho

    2011-01-01

    An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT) composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC) electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor. PMID:22319395

  8. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  9. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  10. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  11. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface.

    PubMed

    Zhao, Xinzhen; He, Chunju

    2015-08-19

    On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.

  12. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  13. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  14. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  15. 3D printing for health & wealth: Fabrication of custom-made medical devices through additive manufacturing

    NASA Astrophysics Data System (ADS)

    Colpani, Alessandro; Fiorentino, Antonio; Ceretti, Elisabetta

    2018-05-01

    Additive Manufacturing (AM) differs from traditional manufacturing technologies by its ability to handle complex shapes with great design flexibility. These features make the technique suitable to fabricate customized components, particularly answering specific custom needs. Although AM mainly referred to prototyping, nowadays the interest in direct manufacturing of actual parts is growing. This article shows the application of AM within the project 3DP-4H&W (3D Printing for Health & Wealth) which involves engineers and physicians for developing pediatric custom-made medical devices to enhance the fulfilling of the patients specific needs. In the project, two types of devices made of a two-component biocompatible silicone are considered. The first application (dental field) consists in a device for cleft lip and palate. The second one (audiological field) consists in an acoustic prosthesis. The geometries of the devices are based on the anatomy of the patient that is obtained through a 3D body scan process. For both devices, two different approaches were planned, namely direct AM and indirect Rapid Tooling (RT). In particular, direct AM consists in the FDM processing of silicone, while RT consists in molds FDM fabrication followed by silicone casting. This paper presents the results of the RT method that is articulated in different phases: the acquisition of the geometry to be realized, the design of the molds taking into account the casting feasibility (as casting channel, vents, part extraction), the realization of molds produced through AM, molds surface chemical finishing, pouring and curing of the silicone. The fabricated devices were evaluated by the physicians team that confirmed the effectiveness of the proposed procedure in fabricating the desired devices. Moreover, the procedure can be used as a general method to extend the range of applications to any custom-made device for anatomic districts, especially where complex shapes are present (as tracheal or

  16. Marginal Accuracy and Internal Fit of Dental Copings Fabricated by Modern Additive and Subtractive Digital Technologies.

    PubMed

    Nelson, Neha; K S, Jyothi; Sunny, Kiran

    2017-03-01

    The margins of copings for crowns and retainers of fixed partial dentures affect the progress of microleakage and dental caries. Failures occur due to altered fit which is also influenced by the method of fabrication. An in-vitro study was conducted to determine among the cast base metal, copy milled zirconia, computer aided designing computer aided machining/manufacturing zirconia and direct metal laser sintered copings which showed best marginal accuracy and internal fit. Forty extracted maxillary premolars were mounted on an acrylic model and reduced occlusally using a milling machine up to a final tooth height of 4 mm from the cementoenamel junction. Axial reduction was accomplished on a surveyor and a chamfer finish line was given. The impressions and dies were made for fabrication of copings which were luted on the prepared teeth under standardized loading, embedded in self-cure acrylic resin, sectioned and observed using scanning electron microscope for internal gap and marginal accuracy. The copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Comparison of mean between the four groups by ANOVA and post-hoc Tukey HSD tests showed a statistically significant difference between all the groups (p⟨0.05). It was concluded that the copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Additive digital technologies such as direct metal laser sintering could be cost-effective for the clinician, minimize failures related to fit and increase longevity of teeth and prostheses. Copyright© 2017 Dennis Barber Ltd.

  17. Corrosion protective performance of amino trimethylene phosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly

    NASA Astrophysics Data System (ADS)

    Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi

    2018-06-01

    Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.

  18. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    NASA Astrophysics Data System (ADS)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  19. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  20. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaoyuan; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093; Ma, Wenhui, E-mail: mwhsilicon@163.com

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWsmore » is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.« less

  1. Influence of parameters controlling the extrusion step in fused filament fabrication (FFF) process applied to polymers using numerical simulation

    NASA Astrophysics Data System (ADS)

    Shahriar, Bakrani Balani; Arthur, Cantarel; France, Chabert; Valérie, Nassiet

    2018-05-01

    Extrusion is one of the oldest manufacturing processes; it is widely used for manufacturing finished and semi-finished products. Moreover, extrusion is also the main process in additive manufacturing technologies such as Fused Filament Fabrication (FFF). In FFF process, the parts are manufactured layer by layer using thermoplastic material. The latter in form of filament, is melted in the liquefier and then it is extruded and deposited on the previous layer. The mechanical properties of the printed parts rely on the coalescence of each extrudate with another one. The coalescence phenomenon is driven by the flow properties of the melted polymer when it comes out the nozzle just before the deposition step. This study aims to master the quality of the printed parts by controlling the effect of the parameters of the extruder on the flow properties in the FFF process. In the current study, numerical simulation of the polymer coming out of the extruder was carried out using Computational Fluid Dynamics (CFD) and two phase flow (TPF) simulation Level Set (LS) method by 2D axisymmetric module of COMSOL Multiphysics software. In order to pair the heat transfer with the flow simulation, an advection-diffusion equation was used. Advection-diffusion equation was implemented as a Partial Differential Equation (PDE) in the software. In order to define the variation of viscosity of the polymer with temperature, the rheological behaviors of two thermoplastics were measured by extensional rheometer and using a parallel-plate configuration of an oscillatory rheometer. The results highlight the influence of the environment temperature and the cooling rate on the temperature and viscosity of the extrudate exiting from the nozzle. Moreover, the temperature and its corresponding viscosity at different times have been determined using numerical simulation. At highest shear rates, the extrudate undergoes deformation from typical cylindrical shape. These results are required to predict the

  2. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  3. Fabrication Capabilities Utilizing In Situ Materials

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Fikes, John C.; Darby, Charles A.; Good, James E.; Gilley, Scott D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has a Space Exploration Policy that lays out a plan that far exceeds the earlier Apollo goals where landing on the moon and taking those first historic steps fulfilled the mission. The policy states that we will set roots on the moon by establishing an outpost. This outpost will be used as a test bed for residing in more distant locales, such as Mars. In order to become self-sufficient, the occupants must have the capability to fabricate component parts in situ. Additionally, in situ materials must be used to minimize valuable mission upmass and to be as efficient as possible. In situ materials can be found from various sources such as raw lunar regolith whereby specific constituents can be extracted from the regolith (such as aluminum, titanium, or iron), and existing hardware already residing on the moon from past Apollo missions. The Electron Beam Melting (EBM) process lends itself well to fabricating parts, tools, and other necessary items using in situ materials and will be discussed further in this paper.

  4. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  5. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  6. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  7. Evaluation of the occlusal contact of crowns fabricated with the bite impression method.

    PubMed

    Makino, Sachi; Okada, Daizo; Shin, Chiharu; Ogura, Reiko; Ikeda, Masaomi; Miura, Hiroyuki

    2013-09-30

    In prosthodontic treatment, reconstruction of a proper occlusal contact relationship is very important as well as reconstruction of a proper interproximal relationship and marginal fitness. Unfortunately, occlusal relationships are sometimes lost in the process of occlusal adjustment of crowns. The purpose of this study was to compare the occlusal contacts of single crown fabricated by two different types of impression techniques. Nine subjects, whose molars required treatment with crown restoration, were enrolled in this study. Full cast crowns were fabricated using two types of impression techniques: the conventional impression method (CIM) and the bite impression method (BIM). The occlusal contacts of crowns were precisely evaluated at the following stages: after occlusal adjustment on the articulator (Step 0), before occlusal adjustment in the mouth (Step 1), after occlusal adjustment at the intercuspal position (Step 2), and after occlusal adjustment during lateral and protrusive excursions (Step 3). The number of occlusal contacts of the crowns on the functional cusps fabricated with BIM was significantly greater than that with CIM after occlusal adjustment. For this reason, the crowns fabricated with BIM might have a more functionally desirable occlusal surface compared to the crowns fabricated with CIM.

  8. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification.

    PubMed

    Pant, Hem Raj; Kim, Han Joo; Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In; Hui, K S; Kim, Cheol Sang

    2014-01-15

    A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Additive Technology: Update on Current Materials and Applications in Dentistry.

    PubMed

    Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil

    2017-02-01

    Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.

  10. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy.

    PubMed

    Liu, Dongfei; Zhang, Hongbo; Mäkilä, Ermei; Fan, Jin; Herranz-Blanco, Bárbara; Wang, Chang-Fang; Rosa, Ricardo; Ribeiro, António J; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-01-01

    An advanced nanocomposite consisting of an encapsulated porous silicon (PSi) nanoparticle and an acid-degradable acetalated dextran (AcDX) matrix (nano-in-nano), was efficiently fabricated by a one-step microfluidic self-assembly approach. The obtained nano-in-nano PSi@AcDX composites showed improved surface smoothness, homogeneous size distribution, and considerably enhanced cytocompatibility. Furthermore, multiple drugs with different physicochemical properties have been simultaneously loaded into the nanocomposites with a ratiometric control. The release kinetics of all the payloads was predominantly controlled by the decomposition rate of the outer AcDX matrix. To facilitate the intracellular drug delivery, a nona-arginine cell-penetrating peptide (CPP) was chemically conjugated onto the surface of the nanocomposites by oxime click chemistry. Taking advantage of the significantly improved cell uptake, the proliferation of two breast cancer cell lines was markedly inhibited by the CPP-functionalized multidrug-loaded nanocomposites. Overall, this nano-in-nano PSi@polymer composite prepared by the microfluidic self-assembly approach is a universal platform for nanoparticles encapsulation and precisely controlled combination chemotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function.

    PubMed

    Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng

    2018-03-01

    Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.

  12. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hui; Cummings, Marvin; Camino, Fernando

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  13. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE PAGES

    Yan, Hui; Cummings, Marvin; Camino, Fernando; ...

    2015-08-05

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  14. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  15. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    PubMed

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  17. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  18. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates

    PubMed Central

    Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2014-01-01

    Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458

  19. Mechanical properties of cobalt-chromium 3-unit fixed dental prostheses fabricated by casting, milling, and additive manufacturing.

    PubMed

    Øilo, Marit; Nesse, Harald; Lundberg, Odd Johan; Gjerdet, Nils Roar

    2018-04-25

    New additive manufacturing techniques for nonprecious alloys have made the fabrication of metal-ceramic fixed partial dentures (FPDs) less expensive and less time-consuming. However, whether the mechanical properties produced by these techniques are comparable is unclear. The purpose of this in vitro study was to evaluate the mechanical properties of cobalt-chromium frameworks for FPDs fabricated by 3 different techniques. Thirty frameworks for 3-unit FPDs were fabricated by traditional casting, computer-aided design and computer-aided manufacturing (CAD-CAM) milling, and selective laser melting (SLM), with n=10 in each group. The frameworks were weighed, and distal and mesial connector areas measured. The frameworks were cemented and loaded centrally (0.5 mm/s) until deformation above 1 mm occurred. Stiffness was measured as the slope of the axis between 500 and 2000 N. Microhardness was measured on sectioned specimens by Vickers indentation. The microstructure was also analyzed by scanning electron microscopy. One-way ANOVA with Tukey post hoc analysis was used to compare the groups (α=.05). The framework design differed among the groups, making a comparison of strength impossible. The milled frameworks appeared bulky, while the cast and SLM frameworks were more slender. Statistically significant differences were found in microhardness, stiffness, wall thickness, weight, and connector size (P<.05), and a significant correlation was found between hardness and stiffness (-0.4, P<.005). Fabrication method affects the design, stiffness, microhardness, and microstructure of cobalt-chromium FPD frameworks. The SLM frameworks were stiffer and harder than the cast and milled specimens. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  1. Computer-aided fabrication of a zirconia 14-unit removable dental prosthesis: a technical report.

    PubMed

    Grösser, Julian; Sachs, Caroline; Stadelmann, Markus; Schweiger, Josef; Güthe, Jan-Frederik; Beuer, Florian

    2014-01-01

    Double crown systems with primary crowns made from zirconia are used to support removable dental prostheses (RDPs). However, the fabrication of RDPs is labor-intensive and costly. Manufacturing primary and secondary crowns from zirconia with a CAD/CAM system might simplify the fabrication protocol and reduce costs. Furthermore, only ceramic materials are used in this method, providing an RDP with the highest possible biocompatibility and greatest possible esthetics. This article describes the fabrication protocol step by step.

  2. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  3. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  4. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: an in vitro study.

    PubMed

    Caputi, Sergio; Varvara, Giuseppe

    2008-04-01

    Dimensional accuracy when making impressions is crucial to the quality of fixed prosthodontic treatment, and the impression technique is a critical factor affecting this accuracy. The purpose of this in vitro study was to compare the dimensional accuracy of a monophase, 1- and 2-step putty/light-body, and a novel 2-step injection impression technique. A stainless steel model with 2 abutment preparations was fabricated, and impressions were made 15 times with each technique. All impressions were made with an addition-reaction silicone impression material (Aquasil) and a stock perforated metal tray. The monophase impressions were made with regular body material. The 1-step putty/light-body impressions were made with simultaneous use of putty and light-body materials. The 2-step putty/light-body impressions were made with 2-mm-thick resin-prefabricated copings. The 2-step injection impressions were made with simultaneous use of putty and light-body materials. In this injection technique, after removing the preliminary impression, a hole was made through the polymerized material at each abutment edge, to coincide with holes present in the stock trays. Extra-light-body material was then added to the preliminary impression and further injected through the hole after reinsertion of the preliminary impression on the stainless steel model. The accuracy of the 4 different impression techniques was assessed by measuring 3 dimensions (intra- and interabutment) (5-mum accuracy) on stone casts poured from the impressions of the stainless steel model. The data were analyzed by 1-way ANOVA and Student-Newman-Keuls test (alpha=.05). The stone dies obtained with all the techniques had significantly larger dimensions as compared to those of the stainless steel model (P<.01). The order for highest to lowest deviation from the stainless steel model was: monophase, 1-step putty/light body, 2-step putty/light body, and 2-step injection. Significant differences among all of the groups for

  5. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at

  6. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  7. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  8. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.

    PubMed

    Cesewski, Ellen; Haring, Alexander P; Tong, Yuxin; Singh, Manjot; Thakur, Rajan; Laheri, Sahil; Read, Kaitlin A; Powell, Michael D; Oestreich, Kenneth J; Johnson, Blake N

    2018-06-13

    Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.

  9. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  10. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel.

    PubMed

    Zhang, Yi; Yang, Jia-Cheng E; Fu, Ming-Lai; Yuan, Baoling; Gupta, Kiran

    2018-05-15

    Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.

  11. Nanocarbon materials fabricated using plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo

    2017-12-01

    Since the discovery of fullerenes more than three decades ago, new kinds of nanoscale materials of carbon allotropes called "nanocarbons" have so far been discovered or synthesized at successive intervals as cases such as carbon nanotubes, carbon nanohorns, graphene, carbon nanowalls, and a carbon nanobelt, while nanodiamonds were actually discovered before then. Their attractively excellent mechanical, physical, and chemical properties have driven researchers to continuously create one of the hottest frontiers in materials science and technology. While plasma states have often been involved in their discovery, on the other hand, plasma-based approaches to this exciting field originally hold promising and enormous potentials for advancing and expanding industrial/biomedical applications of nanocarbons of great diversity. This article provides an extensive overview on plasma-fabricated nanocarbon materials, where the term "fabrication" is defined as synthesis, functionalization, and assembly of devices to cover a wide range of issues associated with the step-by-step plasma processes. Specific attention has been paid to the comparative examination between plasma-based and non-plasma methods for fabricating the nanocarobons with an emphasis on the advantages of plasma processing, such as low-temperature/large-scale fabrication and diversity-carrying structure controllability. The review ends with current challenges and prospects including a ripple effect of the nanocarbon studies on the development of related novel nanomaterials such as transition metal dichalcogenides. It contains not only the latest progress in the field for cutting-edge scientists and engineers, but also the introductory guidance to non-specialists such as lower-class graduate students.

  12. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.

    2018-04-01

    In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.

  13. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  14. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  15. Prevalence of dry methods in granite countertop fabrication in Oklahoma.

    PubMed

    Phillips, Margaret L; Johnson, Andrew C

    2012-01-01

    Granite countertop fabricators are at risk of exposure to respirable crystalline silica, which may cause silicosis and other lung conditions. The purpose of this study was to estimate the prevalence of exposure control methods, especially wet methods, in granite countertop fabrication in Oklahoma to assess how many workers might be at risk of overexposure to crystalline silica in this industry. Granite fabrication shops in the three largest metropolitan areas in Oklahoma were enumerated, and 47 of the 52 shops participated in a survey on fabrication methods. Countertop shops were small businesses with average work forces of fewer than 10 employees. Ten shops (21%) reported using exclusively wet methods during all fabrication steps. Thirty-five shops (74%) employing a total of about 200 workers reported using dry methods all or most of the time in at least one fabrication step. The tasks most often performed dry were edge profiling (17% of shops), cutting of grooves for reinforcing rods (62% of shops), and cutting of sink openings (45% of shops). All shops reported providing either half-face or full-face respirators for use during fabrication, but none reported doing respirator fit testing. Few shops reported using any kind of dust collection system. These findings suggest that current consumer demand for granite countertops is giving rise to a new wave of workers at risk of silicosis due to potential overexposure to granite dust.

  16. Multi-functional micromotor: microfluidic fabrication and water treatment application.

    PubMed

    Chen, Anqi; Ge, Xue-Hui; Chen, Jian; Zhang, Liyuan; Xu, Jian-Hong

    2017-12-05

    Micromotors are important for a wide variety of applications. Here, we develop a microfluidic approach for one-step fabrication of a Janus self-propelled micromotor with multiple functions. By fine tuning the fabrication parameters and loading functional nanoparticles, our micromotor reaches a high speed and achieves an oriented function to promote the water purification efficiency and recycling process.

  17. Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools

    NASA Astrophysics Data System (ADS)

    Cheung, Kwan Yee; Lai, Kwok Kei; Mak, Wing Cheung

    2018-05-01

    Microparticles have attracted much attention for medical, analytical and biological applications. Calcium carbonate (CaCO3) templating method with the advantages of having narrow size distribution, controlled morphology and good biocompatibility that has been widely used for the synthesis of various protein-based microparticles. Despite CaCO3 template is biocompatible, most of the conventional methods to create stable protein microparticles are mainly driven by chemical crosslink reagents which may induce potential harmful effect and remains undesirable especially for biomedical or clinical applications. In this article, we demonstrate the fabrication of protein microparticles and microcapsules with an innovative method using biomolecular tools such as enzymes and affinity molecules to trigger the assembling of protein molecules within a porous CaCO3 template followed by a template removal step. We demonstrated the enzyme-assisted fabrication of collagen microparticles triggered by transglutaminase, as well as the affinity-assisted fabrication of BSA-biotin avidin microcapsules triggered by biotin-avidin affinity interaction, respectively. Based on the different protein assemble mechanisms, the collagen microparticles appeared as a solid-structured particles, while the BSA-biotin avidin microcapsules appeared as hollow-structured morphology. The fabrication procedures are simple and robust that allows producing protein microparticles or microcapsules under mild conditions at physiological pH and temperature. In addition, the microparticle morphologies, protein compositions and the assemble mechanisms were studied. Our technology provides a facile approach to design and fabricate protein microparticles and microcapsules that are useful in the area of biomaterials, pharmaceuticals and analytical chemistry.

  18. Directivity pattern of the sound radiated from axisymmetric stepped plates.

    PubMed

    He, Xiping; Yan, Xiuli; Li, Na

    2016-08-01

    For the purpose of optimal design and efficient utilization of the kind of stepped plate radiator in air, in this contribution, an approach for calculation of the directivity pattern of the sound radiated from a stepped plate in flexural vibration with a free edge is developed based on Kirchhoff-Love hypothesis and Rayleigh integral principle. Experimental tests of directivity pattern for a fabricated flat plate and two fabricated plates with one and two step radiators were carried out. It shows that the configuration of the measured directivity patterns by the proposed analytic approach is similar to those of the calculated approach. Comparison of the agreement between the calculated directivity pattern of a stepped plate and its corresponding theoretical piston show that the former radiator is equivalent to the latter, and the diffraction field generated by the unbaffled upper surface may be small. It also shows that the directivity pattern of a stepped radiator is independent of the metallic material but dependent on the thickness of base plate and resonant frequency. The thicker the thickness of base plate, the more directive the radiation is. The proposed analytic approach in this work may be adopted for any other plates with multi-steps.

  19. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  20. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  1. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  2. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  3. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    PubMed Central

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215

  4. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    DOEpatents

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  5. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.

    PubMed

    Brower, Kara; White, Adam K; Fordyce, Polly M

    2017-01-27

    Microfluidic systems have enabled powerful new approaches to high-throughput biochemical and biological analysis. However, there remains a barrier to entry for non-specialists who would benefit greatly from the ability to develop their own microfluidic devices to address research questions. Particularly lacking has been the open dissemination of protocols related to photolithography, a key step in the development of a replica mold for the manufacture of polydimethylsiloxane (PDMS) devices. While the fabrication of single height silicon masters has been explored extensively in literature, fabrication steps for more complicated photolithography features necessary for many interesting device functionalities (such as feature rounding to make valve structures, multi-height single-mold patterning, or high aspect ratio definition) are often not explicitly outlined. Here, we provide a complete protocol for making multilayer microfluidic devices with valves and complex multi-height geometries, tunable for any application. These fabrication procedures are presented in the context of a microfluidic hydrogel bead synthesizer and demonstrate the production of droplets containing polyethylene glycol (PEG diacrylate) and a photoinitiator that can be polymerized into solid beads. This protocol and accompanying discussion provide a foundation of design principles and fabrication methods that enables development of a wide variety of microfluidic devices. The details included here should allow non-specialists to design and fabricate novel devices, thereby bringing a host of recently developed technologies to their most exciting applications in biological laboratories.

  6. Fabrication of freestanding, microperforated membranes and their applications in microfluidics

    PubMed Central

    Zheng, Yizhe; Dai, Wen; Ryan, Declan; Wu, Hongkai

    2010-01-01

    This manuscript describes a convenient method for the fabrication of freestanding, microperforated membranes in photocurable polymers using only one step of photolithography. We used photosensitive prepolymers to make the membranes and photolithography to define the micropatterns. We demonstrated the fabrication of single- and multilayer microperforated membranes in SU-8 photoresist and Norland Optical Adhesive prepolymer. These membranes can be used to pattern surfaces in various materials and to fabricate complex three-dimensional microfluidic channel structures. PMID:21045933

  7. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications

    PubMed Central

    Schuchardt, Arnim; Braniste, Tudor; Mishra, Yogendra K.; Deng, Mao; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Raevschi, Simion; Schulte, Karl; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2015-01-01

    Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications. PMID:25744694

  9. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  10. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography.

    PubMed

    Bonabi, A; Cito, S; Tammela, P; Jokinen, V; Sikanen, T

    2017-05-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp ® , via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp ® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20-200  μ m) and the depth (here, 15-45  μ m). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp ® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration.

  11. Experimental Investigation of Air-Cooled Turbine Blades in Turbojet Engine. 7: Rotor-Blade Fabrication Procedures

    NASA Technical Reports Server (NTRS)

    Long, Roger A.; Esgar, Jack B.

    1951-01-01

    An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly.

  12. A novel fabrication method for suspended high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  13. Fabrication of lightweight Si/SiC LIDAR mirrors

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S.; Taylor, Raymond L.

    1991-01-01

    A new, chemical vapor deposition (CVD) process was developed for fabricating lightweight, polycrystalline silicon/silicon-carbide (Si/SiC) mirrors. The process involves three CVD steps: (1) to produce the mirror faceplate; (2) to form the lightweight backstructure, which is deposited integral to the faceplate; and (3) to deposit a layer of optical-grade material, e.g., Si, onto the front surface of the faceplate. The mirror figure and finish are fabricated into the faceplate.

  14. Photonic devices on planar and curved substrates and methods for fabrication thereof

    DOEpatents

    Bartl, Michael H.; Barhoum, Moussa; Riassetto, David

    2016-08-02

    A versatile and rapid sol-gel technique for the fabrication of high quality one-dimensional photonic bandgap materials. For example, silica/titania multi-layer materials may be fabricated by a sol-gel chemistry route combined with dip-coating onto planar or curved substrate. A shock-cooling step immediately following the thin film heat-treatment process is introduced. This step was found important in the prevention of film crack formation--especially in silica/titania alternating stack materials with a high number of layers. The versatility of this sol-gel method is demonstrated by the fabrication of various Bragg stack-type materials with fine-tuned optical properties by tailoring the number and sequence of alternating layers, the film thickness and the effective refractive index of the deposited thin films. Measured optical properties show good agreement with theoretical simulations confirming the high quality of these sol-gel fabricated optical materials.

  15. Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)

    1991-01-01

    A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.

  16. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  17. CAD/CAM guided surgery in implant dentistry. A review of software packages and step-by-step protocols for planning surgical guides.

    PubMed

    Scherer, Michael D; Kattadiyil, Mathew T; Parciak, Ewa; Puri, Shweta

    2014-01-01

    Three-dimensional radiographic imaging for dental implant treatment planning is gaining widespread interest and popularity. However, application of the data from 30 imaging can be a complex and daunting process initially. The purpose of this article is to describe features of three software packages and the respective computerized guided surgical templates (GST) fabricated from them. A step-by-step method of interpreting and ordering a GST to simplify the process of the surgical planning and implant placement is discussed.

  18. Fabrication and characterization of lithographically patterned and optically transparent anodic aluminum Oxide (AAO) nanostructure thin film.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2012-10-01

    Optically transparent anodic aluminum oxide (AAO) nanostructure thin film has been successfully fabricated from lithographically patterned aluminum on indium tin oxide (ITO) glass substrates for the first time, indicating the feasibility to integrate the AAO nanostructures with microdevices or microfluidics for a variety of applications. Both one-step and two-step anodization processes using sulfuric acid and oxalic acid have been utilized for fabricating the AAO nanostructure thin film. The optical properties of the fabricated AAO nanostructure thin film have been evaluated and analyzed.

  19. Fabrication of a resin appliance with alloy components using digital technology without an analog impression.

    PubMed

    Al Mortadi, Noor; Jones, Quentin; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J

    2015-11-01

    The aim of this study was to fabricate a resin appliance incorporating "wire" components without the use of an analog impression and dental casts using an intraoral scanner and computer technology to build the appliance. This unique alignment of technology offers an enormous reduction in the number of fabrication steps when compared with more traditional methods of manufacture. The prototype incorporated 2 Adams clasps and a fitted labial bow. The alloy components were built from cobalt-chromium in an initial powdered form using established digital technology methods and then inserted into a build of a resin base plate. This article reports the first known use of computer-aided design and additive manufacture to fabricate a resin and alloy appliance, and constitutes proof of the concept for such manufacturing. The original workflow described could be seen as an example for many other similar appliances, perhaps with active components. The scan data were imported into an appropriate specialized computer-aided design software, which was used in conjunction with a force feedback (haptic) interface. The appliance designs were then exported as stereolithography files and transferred to an additive manufacturing machine for fabrication. The results showed that the applied techniques may provide new manufacturing and design opportunities in orthodontics and highlights the need for intraoral-specific additive manufacture materials to be produced and tested for biocompatibility compliance. In a trial, the retainer was fitted orally and judged acceptable by the clinician according to the typical criteria when placing such appliances in situ. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-01

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  1. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting.

    PubMed

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-28

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  2. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  3. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, S.; Graff, G.L.

    1997-12-09

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering. 2 figs.

  4. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.

    1997-01-01

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.

  5. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure.

    PubMed

    Xiong, Yu; Georgieva, Radostina; Steffen, Axel; Smuda, Kathrin; Bäumler, Hans

    2018-03-15

    The Co-precipitation Crosslinking Dissolution technique (CCD-technique) allows a few-steps fabrication of particles composed of different biopolymers and bioactive agents under mild conditions. Morphology and properties of the fabricated biopolymer particles depend on the fabrication conditions, the nature of the biopolymers and additives, but also on the choice of the inorganic templates for co-precipitation. Here, we investigate the influence of an acidic biopolymer, hyaluronic acid (HA), on the formation of particles from bovine hemoglobin and bovine serum albumin applying co-precipitation with CaCO 3 and MnCO 3 . CaCO 3 templated biopolymer particles are almost spherical with particle size from 2 to 20 µm and protein entrapment efficiency from 13 to 77%. Presence of HA causes significant structural changes of the particles and decreasing protein entrapment efficiency. In contrast, MnCO 3 templated particles exhibit uniform peanut shape and submicron size with remarkably high protein entrapment efficiency of nearly 100%. Addition of HA has no influence on the protein entrapment efficiency or on morphology and size of the particles. These effects can be attributed to the strong interaction of Mn 2+ with proteins and much weaker interaction with HA. Therefore, entrapment efficiency, size and structure of biopolymer particles can be optimized by varying the mineral templates and additives. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Microlens fabrication by replica molding of frozen laser-printed droplets

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  7. Step Transfer-Addition and Radical-Termination (START) Polymerization of α,ω-Unconjugated Dienes under Irradiation of Blue LED Light.

    PubMed

    Xu, Tianchi; Yin, Hongnan; Li, Xiaohong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-07-01

    A new polymerization method, termed as step transfer-addition and radical-termination, is developed for the step-growth radical polymerization of α,ω-unconjugated dienes under irradiation of visible light at room temperature (25 °C) for the first time. α,ω-Diiodoperfluoroalkane monomers (signified as A) are added onto α,ω-unconjugated dienes (signified as B) alternatively and efficiently with the generation of perfluorocarbon-containing alternating copolymers (AB) n . Based on the combined analyses of polymerization kinetics and NMR spectra ( 1 H and 19 F), the mechanism of the novel polymerization method, including the side reaction, is proposed. This novel polymerization method provides a new strategy not only for the step-growth radical polymerization of α,ω-unconjugated dienes but also for the construction of high molecular weight perfluorocarbon-containing alternating copolymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.

    PubMed

    Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang

    2014-12-24

    Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.

  9. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  10. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  11. Two-step digit-set-restricted modified signed-digit addition-subtraction algorithm and its optoelectronic implementation.

    PubMed

    Qian, F; Li, G; Ruan, H; Jing, H; Liu, L

    1999-09-10

    A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {1, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter.

  12. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  13. Additively Manufactured Low Cost Upper Stage Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek

    2016-01-01

    Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.

  14. A facile and efficient single-step approach for the fabrication of vancomycin functionalized polymer-based monolith as chiral stationary phase for nano-liquid chromatography.

    PubMed

    Xu, Dongsheng; Shao, Huikai; Luo, Rongying; Wang, Qiqin; Sánchez-López, Elena; Fanali, Salvatore; Marina, Maria Luisa; Jiang, Zhengjin

    2018-07-06

    A facile single-step preparation strategy for fabricating vancomycin functionalized organic polymer-based monolith within 100μm fused-silica capillary was developed. The synthetic chiral functional monomer, i.e 2-isocyanatoethyl methacrylate (ICNEML) derivative of vancomycin, was co-polymerized with the cross-linker ethylene dimethacrylate (EDMA) in the presence of methanol and dimethyl sulfoxide as the selected porogens. The co-polymerization conditions were systematically optimized in order to obtain satisfactory column performance. Adequate permeability, stability and column morphology were observed for the optimized poly(ICNEML-vancomycin-co-EDMA) monolith. A series of chiral drugs were evaluated on the monolith in either polar organic-phase or reversed-phase modes. After the optimization of separation conditions, baseline or partial enantioseparation were obtained for series of drugs including thalidomide, colchicine, carteolol, salbutamol, clenbuterol and several other β-blockers. The proposed single-step approach not only resulted in a vancomycin functionalized organic polymer-based monolith with acceptable performance, but also significantly simplified the preparation procedure by reducing time and labor. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fabrication of PDMS architecture

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    The study report novel, yet simple and flexible fabrication method for micro channel patterning PDMS thin mold on glass surfaces, the method allows microstructures with critical dimensions to be formed using PDMS. Micro channel production is a two-step process. First, soft photolithography methods are implemented to fabricate a reusable mold. The mold is then used to create the micro channel, which consists of SU8, PDMS and glass. The micro channel design was performed using AutoCAD and the fabrication begins by creating a replicable mold. The mold is created on a glass slide. by spin-coating speed between 500 to 1250rpm with an acceleration of 100 rpm/s for 100 and 15 second ramp up and down speed respectively. Channel flow rate based on concentration were measured by analyzing the recorded flow profiles which was collected from the high powered microscope at. 80µ, 70µm, 50µm for inlet channel 1, 2, 3 respectively the channel flow were compared for flow efficiency at different concentrations and Re. Thus, the simplicity of device structure and fabrication makes it feasible to miniaturize it for the development of point-of-care kits, facilitating its use in both clinical and non-clinical environments. With its simple geometric structure and potential for mass commercial fabrication, the device can be developed to become a portable photo detection sensor that can be use for both environmental and diagnostic application.

  16. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  17. One-step sol-gel imprint lithography for guided-mode resonance structures.

    PubMed

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  18. Recent progress on the scalable fabrication of hybrid polymer/SiO2 nanophotonic cavity arrays with an encapsulated MoS2 film

    NASA Astrophysics Data System (ADS)

    Hammer, Sebastian; Mangold, Hans-Moritz; Nguyen, Ariana E.; Martinez-Ta, Dominic; Naghibi Alvillar, Sahar; Bartels, Ludwig; Krenner, Hubert J.

    2018-02-01

    We review1 the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS2) - silicon dioxide (SiO2) one-dimensional (1D), freestanding photonic-crystal cavities (PCCs) capable of enhancement of the MoS2 photoluminescence (PL) at the narrow cavity resonance. As demonstrated in our prior work [S. Hammer et al., Sci. Rep. 7, 7251 (2017)]1, geometric mode tuning over the wide spectral range of MoS2 PL can be achieved by changing the PC period. In this contribution, we provide a step-by-step description of the fabrication process and give additional detailed information on the degradation of MoS2 by XeF2 vapor. We avoid potential damage of the MoS2 monolayer during the crucial XeF2 etch by refraining from stripping the electron beam (e-beam) resist after dry etching of the photonic crystal pattern. The remaining resist on top of the samples encapsulates and protects the MoS2 film during the entire fabrication process. Albeit the thickness of the remaining resists strongly depends on the fabrication process, the resulting encapsulation of the MoS2 layer improves the confinement to the optical modes and gives rise to a potential enhancement of the light-matter interaction.

  19. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography

    PubMed Central

    Bonabi, A.; Cito, S.; Tammela, P.; Jokinen, V.

    2017-01-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp®, via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20–200 μm) and the depth (here, 15–45 μm). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration. PMID:28652888

  20. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    PubMed Central

    Vasconcelos, Helena

    2018-01-01

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108

  1. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.

    PubMed

    de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis

    2018-04-20

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  2. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application

    NASA Astrophysics Data System (ADS)

    Diao, Fangyuan; Xiao, Xinxin; Luo, Bing; Sun, Hui; Ding, Fei; Ci, Lijie; Si, Pengchao

    2018-01-01

    It is important to design and fabricate nanoporous metals (NPMs) with optimized microstructures for specific applications. In this contribution, nanoporous coppers (NPCs) with controllable thicknesses and pore sizes were fabricated via the combination of a co-sputtering of Cu/Ti with a subsequent dealloying process. The effect of dealloying time on porous morphology and the corresponding surface enhanced Raman scattering (SERS) behaviors were systematically investigated. Transmission electron microscopy (TEM) identified the presences of the gaps formed between ligaments and also the nanobumps on the nanoparticle-aggregated ligament surface, which were likely to contribute as the ;hot spots; for electromagnetic enhancement. The optimal NPC film exhibited excellent SERS performance towards Rhodamine 6G (R6G) with a low limiting detection (10-9 M), along with good uniformity and reproducibility. The calculated enhancement factor of ca. 4.71 × 107 was over Au substrates and comparable to Ag systems, promising the proposed NPC as a cheap candidate for high-performance SERS substrate.

  3. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  4. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    PubMed

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  5. Fabrication of An Inexpensive but Effective Colonoscopic Simulator.

    PubMed

    Jones, Mark W; Deere, Matthew J; Harris, Justin R; Chen, Anthony J; Henning, Werner H

    2017-01-01

    Because of increasing requirements for simulator training before actual clinical endoscopies, the demand for realistic, inexpensive endoscopic simulators is increasing. We describe the steps involved in the design and fabrication of an effective and realistic mechanical colonoscopic simulator.

  6. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    NASA Astrophysics Data System (ADS)

    Komonov, A. I.; Prinz, V. Ya.; Seleznev, V. A.; Kokh, K. A.; Shlegel, V. N.

    2017-07-01

    Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi2Se3 and ZnWO4 layered single crystals. It was shown that the conducting surface of Bi2Se3 crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi2Se3 surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO4 crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  7. Numerical Simulation with Experimental Validation of the Draping Behavior of Woven Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Pasupuleti, Praveen; Zhao, Selina

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process. In this step, the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the tows may change significantly compared to the initial orientations. Accurate prediction of the tow orientations after molding is important for evaluating the structural performance of the final part. This paper investigates the fiber angle changes for carbon fiber woven fabrics during draping over a truncatedmore » pyramid tool designed and fabricated at the General Motors Research Labs. This aspect of study is a subset of the broad study conducted under the purview of a Department of Energy project funded to GM in developing state of the art computational tools for integrated manufacturing and structural performance prediction of carbon fiber composites. Fabric bending, picture frame testing, and bias-extension evaluations were carried out to determine the material parameters for these fabrics. The PAM-FORM computer program was used to model the draping behavior of these fabrics. Following deformation, fiber angle changes at different locations on the truncated pyramid were measured experimentally. The predicted angles matched the experimental results well as measured along the centerline and at several different locations on the deformed fabric. Details of the test methods used as well as the numerical results with various simulation parameters will be provided.« less

  8. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  9. Spectrum online-tunable Mach-Zehnder interferometer based on step-like tapers and its refractive index sensing characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng

    2017-11-01

    A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.

  10. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    NASA Astrophysics Data System (ADS)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  11. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices.

    PubMed

    Liao, P H; Peng, K P; Lin, H C; George, T; Li, P W

    2018-05-18

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO 2 /SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5-95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5-4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si 1-x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si 1-x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core 'building block' required for the fabrication of Ge-based MOS devices.

  12. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  13. High-temperature fabricable nickel-iron aluminides

    DOEpatents

    Liu, Chain T.

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  14. The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis.

    PubMed

    Doménech, José David; Muñoz, Pascual; Capmany, José

    2009-11-09

    In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.

  15. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors.

    PubMed

    Ge, Feng; Liu, Zhen; Lee, Seon Baek; Wang, Xiaohong; Zhang, Guobing; Lu, Hongbo; Cho, Kilwon; Qiu, Longzhen

    2018-06-27

    One-step deposition of bi-functional semiconductor-dielectric layers for organic field-effect transistors (OFETs) is an effective way to simplify the device fabrication. However, the proposed method has rarely been reported in large-area flexible organic electronics. Herein, we demonstrate wafer-scale OFETs by bar coating the semiconducting and insulating polymer blend solution in one-step. The semiconducting polymer poly(3-hexylthiophene) (P3HT) segregates on top of the blend film, whereas dielectric polymethyl methacrylate (PMMA) acts as the bottom layer, which is achieved by a vertical phase separation structure. The morphology of blend film can be controlled by varying the concentration of P3HT and PMMA solutions. The wafer-scale one-step OFETs, with a continuous ultrathin P3HT film of 2.7 nm, exhibit high electrical reproducibility and uniformity. The one-step OFETs extend to substrate-free arrays that can be attached everywhere on varying substrates. In addition, because of the well-ordered molecular arrangement, the moderate charge transport pathway is formed, which resulted in stable OFETs under various organic solvent vapors and lights of different wavelengths. The results demonstrate that the one-step OFETs have promising potential in the field of large-area organic wearable electronics.

  16. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps.

    PubMed

    Roberts, Peter L

    2014-01-01

    The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG-1 & -3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion-exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non-enveloped viruses over the life-time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion-exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X-100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers.

  17. Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing.

    PubMed

    Ji, Lei; Lu, Jiping; Tang, Shuiyuan; Wu, Qianru; Wang, Jiachen; Ma, Shuyuan; Fan, Hongli; Liu, Changmeng

    2018-06-28

    Wire feeding additive manufacturing (WFAM) has broad application prospects because of its advantages of low cost and high efficiency. However, with the mode of lateral wire feeding, including wire and laser additive manufacturing, gas tungsten arc additive manufacturing etc., it is easy to generate macro defects on the surface of the components because of the anisotropy of melted wire, which limits the promotion and application of WFAM. In this work, gas tungsten arc additive manufacturing with lateral wire feeding is proposed to investigate the mechanisms of macro defects. The results illustrate that the defect forms mainly include side spatters, collapse, poor flatness, and unmelted wire. It was found that the heat input, layer thickness, tool path, and wire curvature can have an impact on the macro defects. Side spatters are the most serious defects, mainly because the droplets cannot be transferred to the center of the molten pool in the lateral wire feeding mode. This research indicates that the macro defects can be controlled by optimizing the process parameters. Finally, block parts without macro defects were fabricated, which is meaningful for the further application of WFAM.

  18. Fabrication of Submillimeter Axisymmetric Optical Components

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Savchenkov, Anatoliy; Strekalov, Dmitry

    2007-01-01

    It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 m. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe.

  19. Report: EPA Data Standards Plan Completed But Additional Steps Are Needed

    EPA Pesticide Factsheets

    Report #12-P-0519, June 5, 2012. The actions taken by EPA were either incomplete or lacked steps to help management determine the overall effectiveness of the Agency’s implementation of data standards.

  20. Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing [Fabrication of highly dense isotropic Nd-Fe-B bonded magnets via extrusion-based additive manufacturing

    DOE PAGES

    Li, Ling; Jones, Kodey E.; Sales, Brian C.; ...

    2018-04-03

    Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ~5.2 g/cm 3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performedmore » at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Lastly, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.« less

  1. Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing [Fabrication of highly dense isotropic Nd-Fe-B bonded magnets via extrusion-based additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Jones, Kodey E.; Sales, Brian C.

    Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ~5.2 g/cm 3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performedmore » at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Lastly, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.« less

  2. Fabrication of Silica Ultra High Quality Factor Microresonators

    PubMed Central

    Maker, Ashley J.; Armani, Andrea M.

    2012-01-01

    Whispering gallery resonant cavities confine light in circular orbits at their periphery.1-2 The photon storage lifetime in the cavity, quantified by the quality factor (Q) of the cavity, can be in excess of 500ns for cavities with Q factors above 100 million. As a result of their low material losses, silica microcavities have demonstrated some of the longest photon lifetimes to date1-2. Since a portion of the circulating light extends outside the resonator, these devices can also be used to probe the surroundings. This interaction has enabled numerous experiments in biology, such as single molecule biodetection and antibody-antigen kinetics, as well as discoveries in other fields, such as development of ultra-low-threshold microlasers, characterization of thin films, and cavity quantum electrodynamics studies.3-7 The two primary silica resonant cavity geometries are the microsphere and the microtoroid. Both devices rely on a carbon dioxide laser reflow step to achieve their ultra-high-Q factors (Q>100 million).1-2,8-9 However, there are several notable differences between the two structures. Silica microspheres are free-standing, supported by a single optical fiber, whereas silica microtoroids can be fabricated on a silicon wafer in large arrays using a combination of lithography and etching steps. These differences influence which device is optimal for a given experiment. Here, we present detailed fabrication protocols for both types of resonant cavities. While the fabrication of microsphere resonant cavities is fairly straightforward, the fabrication of microtoroid resonant cavities requires additional specialized equipment and facilities (cleanroom). Therefore, this additional requirement may also influence which device is selected for a given experiment. Introduction An optical resonator efficiently confines light at specific wavelengths, known as the resonant wavelengths of the device. 1-2 The common figure of merit for these optical resonators is the quality

  3. Method of fabricating porous silicon carbide (SiC)

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  4. Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology

    NASA Astrophysics Data System (ADS)

    Towne, Silas; Viswanathan, Vish; Holbery, James; Rieke, Peter

    Utilizing drop-on-demand technology, we have successfully fabricated hydrogen-air polymer electrolyte membrane fuel cells (PEMFC), demonstrated some of the processing advantages of this technology and have demonstrated that the performance is comparable to conventionally fabricated membrane electrode assemblies (MEAs). Commercial desktop inkjet printers were used to deposit the active catalyst electrode layer directly from print cartridges onto Nafion ® polymer membranes in the hydrogen form. The layers were well-adhered and withstood simple tape peel, bending and abrasion tests and did so without any post-deposition hot press step. The elimination of this processing step suggests that inkjet-based fabrication or similar processing technologies may provide a route to less expensive large-scale fabrication of PEMFCs. When tested in our experimental apparatus, open circuit voltages up to 0.87 V and power densities of up to 155 mW cm -2 were obtained with a catalyst loading of 0.20 mg Pt cm -2. A commercially available membrane under identical, albeit not optimized test conditions, showed about 7% greater power density. The objective of this work was to demonstrate some of the processing advantages of drop-on-demand technology for fabrication of MEAs. It remains to be determined if inkjet fabrication offers performance advantages or leads to more efficient utilization of expensive catalyst materials.

  5. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    NASA Technical Reports Server (NTRS)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  6. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    NASA Astrophysics Data System (ADS)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  7. Uniform Si nano-dot fabrication using reconstructed structure of Si(110)

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Uozumi, Yuki; Yasuda, Satoshi; Asaoka, Hidehito

    2018-06-01

    Si nano-dot (ND) formation on Si(110) is observed by means of a scanning tunneling microscope (STM). The initial Si-NDs are Si crystals that are continuous from the substrate and grow during the oxide layer desorption. The NDs fabricated on the flat surface of Si(110)-1 × 1 are surrounded by four types of facets with almost identical appearance probabilities. An increase in the size of the NDs increases the variety of its morphology. In contrast, most Si-NDs fabricated on straight-stepped surface of Si(110)-16 × 2 reconstructed structure are surrounded by only a single type of facet, namely the \\text{Si}(17,15,1)-2 × 1 plane. An appearance probability of the facet in which the base line is along the step of Si(110)-16 × 2 exceeds 75%. This finding provides a fabrication technique of uniformed structural Si-NDs by using the reconstructed structure of Si(110).

  8. Supramolecular "Step Polymerization" of Preassembled Micelles: A Study of "Polymerization" Kinetics.

    PubMed

    Yang, Chaoying; Ma, Xiaodong; Lin, Jiaping; Wang, Liquan; Lu, Yingqing; Zhang, Liangshun; Cai, Chunhua; Gao, Liang

    2018-03-01

    In nature, sophisticated functional materials are created through hierarchical self-assembly of nanoscale motifs, which has inspired the fabrication of man-made materials with complex architectures for a variety of applications. Herein, a kinetic study on the self-assembly of spindle-like micelles preassembled from polypeptide graft copolymers is reported. The addition of dimethylformamide and, subsequently, a selective solvent (water) can generate a "reactive point" at both ends of the spindles as a result of the existence of structural defects, which induces the "polymerization" of the spindles into nanowires. Experimental results combined with dissipative particle dynamics simulations show that the polymerization of the micellar subunits follows a step-growth polymerization mechanism with a second-order reaction characteristic. The assembly rate of the micelles is dependent on the subunit concentration and on the activity of the reactive points. The present work reveals a law governing the self-assembly kinetics of micelles with structural defects and opens the door for the construction of hierarchical structures with a controllable size through supramolecular step polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and water-activated paper batteries

    NASA Astrophysics Data System (ADS)

    Lee, Ki Bang

    2006-11-01

    Two-step activation of paper batteries has been successfully demonstrated to provide quick activation and to supply high power to credit card-sized biosystems on a plastic chip. A stack of a magnesium layer (an anode), a fluid guide (absorbent paper), a highly doped filter paper with copper chloride (a cathode) and a copper layer as a current collector is laminated between two transparent plastic films into a high power biofluid- and water-activated battery. The battery is activated by two-step activation: (1) after placing a drop of biofluid/water-based solution on the fluid inlet, the surface tension first drives the fluid to soak the fluid guide; (2) the fluid in the fluid guide then penetrates into the heavily doped filter paper with copper chloride to start the battery reaction. The fabricated half credit card-sized battery was activated by saliva, urine and tap water and delivered a maximum voltage of 1.56 V within 10 s after activation and a maximum power of 15.6 mW. When 10 kΩ and 1 KΩ loads are used, the service time with water, urine and saliva is measured as more than 2 h. An in-series battery of 3 V has been successfully tested to power two LEDs (light emitting diodes) and an electric driving circuit. As such, this high power paper battery could be integrated with on-demand credit card-sized biosystems such as healthcare test kits, biochips, lab-on-a-chip, DNA chips, protein chips or even test chips for water quality checking or chemical checking.

  10. Design and fabrication of realistic adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1983-01-01

    Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.

  11. Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline

    NASA Astrophysics Data System (ADS)

    Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan

    2015-10-01

    Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.

  12. Optimizing The DSSC Fabrication Process Using Lean Six Sigma

    NASA Astrophysics Data System (ADS)

    Fauss, Brian

    Alternative energy technologies must become more cost effective to achieve grid parity with fossil fuels. Dye sensitized solar cells (DSSCs) are an innovative third generation photovoltaic technology, which is demonstrating tremendous potential to become a revolutionary technology due to recent breakthroughs in cost of fabrication. The study here focused on quality improvement measures undertaken to improve fabrication of DSSCs and enhance process efficiency and effectiveness. Several quality improvement methods were implemented to optimize the seven step individual DSSC fabrication processes. Lean Manufacturing's 5S method successfully increased efficiency in all of the processes. Six Sigma's DMAIC methodology was used to identify and eliminate each of the root causes of defects in the critical titanium dioxide deposition process. These optimizations resulted with the following significant improvements in the production process: 1. fabrication time of the DSSCs was reduced by 54 %; 2. fabrication procedures were improved to the extent that all critical defects in the process were eliminated; 3. the quantity of functioning DSSCs fabricated was increased from 17 % to 90 %.

  13. A supramolecular approach to fabricate highly emissive smart materials

    PubMed Central

    Liu, Kai; Yao, Yuxing; Kang, Yuetong; Liu, Yu; Han, Yuchun; Wang, Yilin; Li, Zhibo; Zhang, Xi

    2013-01-01

    The aromatic chromophores, for example, perylene diimides (PDIs) are well known for their desirable absorption and emission properties. However, their stacking nature hinders the exploitation of these properties and further applications. To fabricate emissive aggregates or solid-state materials, it has been common practice to decrease the degree of stacking of PDIs by incorporating substituents into the parent aromatic ring. However, such practice often involves difficultorganic synthesis with multiple steps. A supramolecular approach is established here to fabricate highly fluorescent and responsive soft materials, which has greatly decreases the number of required synthetic steps and also allows for a system with switchable photophysical properties. The highly fluorescent smart material exhibits great adaptivity and can be used as a supramolecular sensor for the rapid detection of spermine with high sensitivity and selectivity, which is crucial for the early diagnosis of malignant tumors. PMID:23917964

  14. One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach

    PubMed Central

    Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer

    2015-01-01

    We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319

  15. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  16. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  17. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  18. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  19. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order

    PubMed Central

    2017-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle. PMID:28630684

  20. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order.

    PubMed

    Choudhary, Eric; Szalai, Veronika

    2016-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle.

  1. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process.

    PubMed

    Huotilainen, Eero; Jaanimets, Risto; Valášek, Jiří; Marcián, Petr; Salmi, Mika; Tuomi, Jukka; Mäkitie, Antti; Wolff, Jan

    2014-07-01

    The process of fabricating physical medical skull models requires many steps, each of which is a potential source of geometric error. The aim of this study was to demonstrate inaccuracies and differences caused by DICOM to STL conversion in additively manufactured medical skull models. Three different institutes were requested to perform an automatic reconstruction from an identical DICOM data set of a patients undergoing tumour surgery into an STL file format using their software of preference. The acquired digitized STL data sets were assessed and compared and subsequently used to fabricate physical medical skull models. The three fabricated skull models were then scanned, and differences in the model geometries were assessed using established CAD inspection software methods. A large variation was noted in size and anatomical geometries of the three physical skull models fabricated from an identical (or "a single") DICOM data set. A medical skull model of the same individual can vary markedly depending on the DICOM to STL conversion software and the technical parameters used. Clinicians should be aware of this inaccuracy in certain applications. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.

    PubMed

    Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung

    2017-09-06

    A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.

  3. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  4. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  5. Hydraulic Design of Stepped Spillways Workshop

    USDA-ARS?s Scientific Manuscript database

    Stepped chutes and spillways are commonly used for routing discharges during flood events. In addition, stepped chutes are used for overtopping protection of earthen embankments. Stepped spillways provide significant energy dissipation due to its stepped feature; as a result, the stilling basin as...

  6. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating.

    PubMed

    Naghieh, S; Karamooz Ravari, M R; Badrossamay, M; Foroozmehr, E; Kadkhodaei, M

    2016-06-01

    In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layers penetration׳s effect on inter-layer adhesion, which is reflected on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-built samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Rapid fabrication of microneedles using magnetorheological drawing lithography.

    PubMed

    Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun

    2018-01-01

    Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask

  8. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  9. Fabrication and characterization of active nanostructures

    NASA Astrophysics Data System (ADS)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  10. Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione.

    PubMed

    Zhu, Wanying; Jiang, Guoyi; Xu, Lei; Li, Bingzhi; Cai, Qizhi; Jiang, Huijun; Zhou, Xuemin

    2015-07-30

    Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π-π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N-H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L(-1) (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  12. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-08-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.

  13. Modifications of Fabrication of Vibratory Microgyroscopes

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Yee, Karl Y.; Wiberg, Dean

    2005-01-01

    A micromachining process for the fabrication of vibratory microgyroscopes from silicon wafers, and aspects of the microgyroscope design that are inextricably linked with the fabrication process, have been modified in an effort to increase production yields from perspectives of both quantity and quality. Prior to the modifications, the effective production yield of working microgyroscopes was limited to one or less per wafer. The modifications are part of a continuing effort to improve the design and increase production yields to more than 30 working microgyroscopes per wafer. A discussion of pertinent aspects of the unmodified design and the unmodified fabrication process is prerequisite to a meaningful description of the modifications. The design of the microgyroscope package was not conducive to high yield and rapid testing of many microgyroscopes. One of the major impediments to high yield and testing was found to lie in vibration- isolation beams around the four edges of each microgyroscope, which beams were found to be unnecessary for achieving high resonance quality factors (Q values) characterizing the vibrations of petallike cantilevers. The fabrication process included an 8- m-deep plasma etch. The purpose of the etch was to create 8- m vertical gaps, below which were to be placed large gold evaporated electrodes and sensing pads to drive and sense resonant vibrations of the "petals." The process also included a step in which bridges between dies were cut to separate the dies. The etched areas must be kept clean and smooth (free of debris and spikes), because any object close to 8 m high in those areas would stop the vibrations. However, it was found that after the etch, there remained some spikes with heights that were, variously, almost as high or as high as the etch depth. It also was found that the cutting of bridges created silicon debris, some of which lodged in the 8- m gaps and some of which landed on top of the petals. The masses added to the

  14. A comparative study of additive and subtractive manufacturing for dental restorations.

    PubMed

    Bae, Eun-Jeong; Jeong, Il-Do; Kim, Woong-Chul; Kim, Ji-Hwan

    2017-08-01

    Digital systems have recently found widespread application in the fabrication of dental restorations. For the clinical assessment of dental restorations fabricated digitally, it is necessary to evaluate their accuracy. However, studies of the accuracy of inlay restorations fabricated with additive manufacturing are lacking. The purpose of this in vitro study was to evaluate and compare the accuracy of inlay restorations fabricated by using recently introduced additive manufacturing with the accuracy of subtractive methods. The inlay (distal occlusal cavity) shape was fabricated using 3-dimensional image (reference data) software. Specimens were fabricated using 4 different methods (each n=10, total N=40), including 2 additive manufacturing methods, stereolithography apparatus and selective laser sintering; and 2 subtractive methods, wax and zirconia milling. Fabricated specimens were scanned using a dental scanner and then compared by overlapping reference data. The results were statistically analyzed using a 1-way analysis of variance (α=.05). Additionally, the surface morphology of 1 randomly (the first of each specimen) selected specimen from each group was evaluated using a digital microscope. The results of the overlap analysis of the dental restorations indicated that the root mean square (RMS) deviation observed in the restorations fabricated using the additive manufacturing methods were significantly different from those fabricated using the subtractive methods (P<.05). However, no significant differences were found between restorations fabricated using stereolithography apparatus and selective laser sintering, the additive manufacturing methods (P=.466). Similarly, no significant differences were found between wax and zirconia, the subtractive methods (P=.986). The observed RMS values were 106 μm for stereolithography apparatus, 113 μm for selective laser sintering, 116 μm for wax, and 119 μm for zirconia. Microscopic evaluation of the surface

  15. Three-dimensional autologous cartilage framework fabrication assisted by new additive manufactured ear-shaped templates for microtia reconstruction.

    PubMed

    Zhou, Jiayu; Pan, Bo; Yang, Qinghua; Zhao, Yanyong; He, Leren; Lin, Lin; Sun, Hengyun; Song, Yupeng; Yu, Xiaobo; Sun, Zhongyang; Jiang, Haiyue

    2016-10-01

    During microtia reconstruction, the intraoperative design of the cartilage framework is important for the appearance and symmetry of the bilateral auricles. Templates (traditionally, the X-ray film template) are usually utilized to complete the task, which can provide cues regarding size, cranioauricular angle and positioning to the surgeons. With a combination of three-dimensional (3D) scanning and additive manufacturing (AM) techniques, we utilized two different ear-shaped templates (sheet moulding and 3D templates) during the fabrication of 3D-customized autologous cartilage frameworks for auricle reconstruction. Forty unilateral microtia patients were included in the study. All the patients underwent auricle reconstruction using the tissue-expanding technique assisted by the new AM templates. Images were processed using computer-aided design software and exported to print two different AM ear-shaped templates: sheet moulding and 3D. Both templates were assisted by the 3D framework fabrication. The 3D images of each patient's head were captured preoperatively using a 3D scanner. X-ray film templates were also made for the patients. The lengths and widths of the contralateral auricles, X-ray film and sheet moulding templates were measured in triplicate. The error of the template and the contralateral auricle were used to compare the accuracy between the two templates. Between January and May 2014, 40 unilateral microtia patients aged 6-29 years were included in this study. All patients underwent auricle reconstruction using autogenous costal cartilage. The sterilized AM templates were used to assist in the framework fabrication. The operative time was decreased by an average of 15 min compared with the method assisted by the X-ray film template. Postoperative appearance evaluation (based on five indexes: symmetry, length, width, cranioauricular angle and the substructure of the reconstructed ear) was performed by both the doctors and the patients (or their

  16. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    NASA Technical Reports Server (NTRS)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  17. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.

    PubMed

    Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja

    2017-01-01

    Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

  18. Innovative monitoring of 3D warp interlock fabric during forming process

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.

    2017-10-01

    The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.

  19. Novel strategy for immunomodulation: Dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology.

    PubMed

    Lin, Shiqi; Cai, Bingzhen; Quan, Guilan; Peng, Tingting; Yao, Gangtao; Zhu, Chune; Wu, Qiaoli; Ran, Hao; Pan, Xin; Wu, Chuanbin

    2018-01-01

    Thymopentin (TP5) is commonly used in the treatment for autoimmune diseases, with a short plasma half-life (30s) and a long treatment period (7 days to 6 months). It is usually administrated by syringe injection, resulting in compromised patient compliance. Dissolving microneedle array (DMNA) offers a superior approach for transdermal delivery of biological macromolecules, as it allows painless penetration through the stratum corneum and generates minimal biohazardous waste after dissolving in the skin. Despite recent advances in DMNA as a novel approach for transdermal drug delivery, problem of insufficient mechanical strength remains to be solved. In this study, TP5-loaded DMNA (TP5-DMNA) was uniquely developed using a modified two-step molding technology. The higher mechanical strength was furnished by employing bovine serum albumin (BSA) as a co-material to fabricate the needles. The obtained TP5-DMNA containing BSA displayed better skin penetration and higher drug loading efficiency than that without BSA. The in vivo pharmacodynamics study demonstrated that TP5-DMNA had comparative effect on immunomodulation to intravenous injection of TP5, in terms of ameliorating the CD4+/CD8+ ratio, SOD activity and MDA value to the basal level. Only mild irritation was observed at the site of administration. These results suggest that the novel TP5-DMNA utilizing BSA provides an alternative approach for convenient and safe transdermal delivery of TP5, which is a promising administration strategy for future clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1

  1. Characteristics of MAO coating obtained on ZK60 Mg alloy under two and three steps voltage-increasing modes in dual electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Wang, Ze-Xin; Lu, Sheng; Lv, Wei-gang; Jiang, Xi-zhi; Sun, Lei

    2017-03-01

    The micro-arc oxidation process was conducted on ZK60 Mg alloy under two and three steps voltage-increasing modes by DC pulse electrical source. The effect of each mode on current-time responses during MAO process and the coating characteristic were analysed and discussed systematically. The microstructure, thickness and corrosion resistance of MAO coatings were evaluated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), microscope with super-depth of field and electrochemical impedance spectroscopy (EIS). The results indicate that two and three steps voltage-increasing modes can improve weak spark discharges with insufficient breakdown strength in later period during the MAO process. Due to higher value of voltage and voltage increment, the coating with maximum thickness of about 20.20μm formed under two steps voltage-increasing mode shows the best corrosion resistance. In addition, the coating fabricated under three steps voltage-increasing mode shows a smoother coating with better corrosion resistance due to the lower amplitude of voltage-increasing.

  2. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  3. Ultra-slim flexible glass for roll-to-roll electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Garner, Sean; Glaesemann, Scott; Li, Xinghua

    2014-08-01

    As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.

  4. Nanoscale fabrication using single-ion impacts

    NASA Astrophysics Data System (ADS)

    Millar, Victoria; Pakes, Chris I.; Cimmino, Alberto; Brett, David; Jamieson, David N.; Prawer, Steven D.; Yang, Changyi; Rout, Bidhudutta; McKinnon, Rita P.; Dzurak, Andrew S.; Clark, Robert G.

    2001-11-01

    We describe a novel technique for the fabrication of nanoscale structures, based on the development of localized chemical modification caused in a PMMA resist by the implantation of single ions. The implantation of 2 MeV He ions through a thin layer of PMMA into an underlying silicon substrate causes latent damage in the resist. On development of the resist we demonstrate the formation within the PMMA layer of clearly defined etched holes, of typical diameter 30 nm, observed using an atomic force microscope employing a carbon nanotube SPM probe in intermittent-contact mode. This technique has significant potential applications. Used purely to register the passage of an ion, it may be a useful verification of the impact sites in an ion-beam modification process operating at the single-ion level. Furthermore, making use of the hole in the PMMA layer to perform subsequent fabrication steps, it may be applied to the fabrication of self-aligned structures in which surface features are fabricated directly above regions of an underlying substrate that are locally doped by the implanted ion. Our primary interest in single-ion resists relates to the development of a solid-state quantum computer based on an array of 31P atoms (which act as qubits) embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. A single-ion resist would permit an accurate verification of 31P implantation sites. Subsequent metalisation of the latent damage may allow the fabrication of self-aligned metal gates above buried phosphorous atoms.

  5. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  6. Alternate Spray-coating for the Direct Fabrication of Hydroxyapatite Films without Crystal Growth Step in Solution.

    PubMed

    Watanabe, Satoshi; Kashiwagi, Rei; Matsumoto, Mutsuyoshi

    2017-03-01

    We discuss an alternate spray-coating technique for the direct fabrication of hydroxyapatite films using metal masks, suction-type spray nozzles and two calcification solutions of calcium hydroxide and phosphoric acid aqueous solutions. Hydroxyapatite films were formed only on the hydrophobic surface of the substrates. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that the spray-coated films consisted of hydroxyapatite nanoparticles. The Ca/P ratio was estimated to be about 1.26. X-ray diffraction patterns of the spray-coated films almost coincided with those of the hydroxyapatite powders, showing that the spray-coated films consisted of hydroxyapatite nanoparticles. Dot arrays of hydroxyapatite films at a diameter of 100 μm were formed by tuning the concentrations of calcium hydroxide and phosphoric acid aqueous solutions. This technique allows for the direct fabrication of the hydroxyapatite films without crystal growth process in hydroxyapatite precursors, the scaffolds of crystal growth such as biocompatibility SiO 2 -CaO glasses, or electrophoresis processes. By using this technique, large-area ceramic films with biocompatibility will be micropatterned with minimized material consumption, short fabrication time, and reduced equipment investments.

  7. Development of a Fabrication Path for Au-Organothiol-Carbon Nanotube Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Moscatello, Jason

    2011-04-01

    Silicon electronics is at the scaling limit and new approaches are necessary. Nanomaterials have significant promise in addressing this problem and each has its own potentially useful properties; yet making the material is only the first step in harnessing those properties. Transitioning from developing materials to integrating them into devices is no small endeavor - placement, wiring, etc. are nontrivial on the nanoscale. This talk details work done at Michigan Tech developing a fabrication process for Molecular Electronic Junctions (MEJs). The goal is to study the lifetime of MEJs containing strong bonds because short lifetime is the largest limiting factor in many MEJs. It is important that the physics studied remains accurate even if the size is scaled down and the MEJs are arranged into arrays - two things that are necessary for MEJs to be used commercially. In addition the process is widely usable, since it only utilizes inexpensive and/or common processes (e.g. dielectrophoresis and photolithography). An overview of the fabrication process will be detailed, along with carbon nanotube (top electrode) placement by dielectrophoresis, and initial results.

  8. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  9. Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC).

    PubMed

    Zabihi, Fatemeh; Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2016-12-01

    In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm(2) active area is obtained for the device made via the scalable 2S-SVASC technique.

  10. Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Serien, Daniela; Wu, Dong; Xu, Jian; Kawano, Hiroyuki; Midorikawa, Katsumi; Sugioka, Koji

    2017-02-01

    Lab-on-a-chip devices have been intensively developed during the last decade when emerging technologies offered possibilities to manufacture reliable devices with increased spatial resolution. These biochips allowed testing chemical reactions in nanoliter volumes with enhanced sensitivity and lower consumption of reagents. There is space to further consolidate biochip assembling processing since the new technologies attempt direct fabrication in view of reducing costs and time by increasing efficiency and functionalities. Rapid prototyping by ultrafast lasers which induces local modifications inside transparent materials of both glass and polymers with high precision at micro- and nanoscale is a promising tool for fabrication of such biochips. We have developed a new technology by combining subtractive ultrafast laser assisted chemical etching of glasses and additive two-photon polymerization to integrate 3D glass microfluidics and polymer microcomponents in a single biochip. The innovative hybrid "ship-in-a-bottle" approach is not only an instrument that can tailor 3D environments but also a tool to fabricate biomimetic in vivo structures inside a glass microfluidic chip. It was possible to create appropriate environment for cell culturing and to offer robustness and transparency for optical interrogation. Cancer cells were cultivated inside biochips and monitored over short and long periods. With the view of understanding cancer cells specific behavior such as migration or invasiveness inside human body, introduction of different geometrical configurations and chemical conditions were proposed. The cells were found responsive to a gradient of nutrient concentration through the microchannels of a 3D polymeric scaffold integrated inside glass biochip.

  11. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei

    2017-07-01

    Considering that the manual inspection of the yarn-dyed fabric can be time consuming and less efficient, a convolutional neural network (CNN) solution based on the modified AlexNet structure for the classification of the yarn-dyed fabric defect is proposed. CNN has powerful ability of feature extraction and feature fusion which can simulate the learning mechanism of the human brain. In order to enhance computational efficiency and detection accuracy, the local response normalization (LRN) layers in AlexNet are replaced by the batch normalization (BN) layers. In the process of the network training, through several convolution operations, the characteristics of the image are extracted step by step, and the essential features of the image can be obtained from the edge features. And the max pooling layers, the dropout layers, the fully connected layers are also employed in the classification model to reduce the computation cost and acquire more precise features of fabric defect. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show the capability of defect classification via the modified Alexnet model and indicate its robustness.

  12. Comparison of 1-step and 2-step methods of fitting microbiological models.

    PubMed

    Jewell, Keith

    2012-11-15

    Previous conclusions that a 1-step fitting method gives more precise coefficients than the traditional 2-step method are confirmed by application to three different data sets. It is also shown that, in comparison to 2-step fits, the 1-step method gives better fits to the data (often substantially) with directly interpretable regression diagnostics and standard errors. The improvement is greatest at extremes of environmental conditions and it is shown that 1-step fits can indicate inappropriate functional forms when 2-step fits do not. 1-step fits are better at estimating primary parameters (e.g. lag, growth rate) as well as concentrations, and are much more data efficient, allowing the construction of more robust models on smaller data sets. The 1-step method can be straightforwardly applied to any data set for which the 2-step method can be used and additionally to some data sets where the 2-step method fails. A 2-step approach is appropriate for visual assessment in the early stages of model development, and may be a convenient way to generate starting values for a 1-step fit, but the 1-step approach should be used for any quantitative assessment. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Does my step look big in this? A visual illusion leads to safer stepping behaviour.

    PubMed

    Elliott, David B; Vale, Anna; Whitaker, David; Buckley, John G

    2009-01-01

    Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01). During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001). Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992) of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.

  14. Fabrication of hybrid molecular devices using multi-layer graphene break junctions.

    PubMed

    Island, J O; Holovchenko, A; Koole, M; Alkemade, P F A; Menelaou, M; Aliaga-Alcalde, N; Burzurí, E; van der Zant, H S J

    2014-11-26

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  15. Fabrication of hybrid molecular devices using multi-layer graphene break junctions

    NASA Astrophysics Data System (ADS)

    Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.

    2014-11-01

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  16. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    PubMed Central

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-01-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives. PMID:26293346

  17. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  18. BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Bradley S.; Noakes, Mark W.; Roschli, Alex C.

    ORNL worked with Hover Energy LLC (Hover) on the design of Big Area Additive Manufacturing (BAAM) extrusion components. The objective of this technical collaboration was to identify and evaluate fabrication of components using alternative additive manufacturing techniques. Multiple candidate parts were identified. A design modification to fabricate diverters using additive manufacturing (AM) was performed and the part was analyzed based on anticipated wind loading. Scaled versions of two parts were printed using the BAAM for wind tunnel testing.

  19. Flexible metasurface black nickel with stepped nanopillars.

    PubMed

    Qian, Qinyu; Yan, Ying; Wang, Chinhua

    2018-03-15

    We report on a monolithic, all-metallic, and flexible metasurface perfect absorber [black nickel (Ni)] based on coupled Mie resonances originated from vertically stepped Ni nanopillars homoepitaxially grown on an Ni substrate. Coupled Mie resonances are generated from Ni nanopillars with different sizes such that Mie resonances of the stepped two sets of Ni nanopillars occur complementarily at different wavelengths to realize polarization-independent broadband absorption over the entire visible wavelength band (400-760 nm) within an ultra-thin surface layer of only 162 nm thick in total. Two-step double-beam interference lithography and electroplating are utilized to fabricate the proposed monolithic metasurface that can be arbitrarily bent and pressed. A black nickel metasurface is experimentally demonstrated in which an average polarization-independent absorption of 0.972 (0.961, experiment) in the entire visible band is achieved and remains 0.838 (0.815, experiment) when the incident angle increases to 70°.

  20. Fabrication of cylindrical superhydrophobic microchannels by replicating lotus leaf structures on internal walls

    NASA Astrophysics Data System (ADS)

    Das, Ajit; Bhaumik, Soubhik Kumar

    2018-04-01

    Cylindrical superhydrophobic microchannels are fabricated by replicating lotus leaf structures on internal walls. The fabrication process comprises of three steps: the creation of a cylindrical mold of a glass rod (125 µm) with polystyrene films bearing negative imprints of lotus leaf (superhydrophobic) structures; casting polydimethylsiloxane (PDMS, Sylgard 184) over the mold; and solvent-assisted pulling off of the glass rod to leave a positive replica on the inner wall of the PDMS cast. The last crucial step is achieved through selective dissolution of the intermediate negative replica layer in the cylindrical mold without any swelling effect. The high fidelity of the replication process is confirmed through scanning electron microscope (SEM) imaging. The attained superhydrophobicity is assessed by comparing the dynamics of the advancing meniscus in the fabricated microchannels with that over a similarly fabricated smooth microchannel. Contact angle studies of the meniscus reveal a lower capillary effect and drag force experienced by the superhydrophobic microchannel compared to smooth ones. Studies based on velocity lead to a prediction of a drag reduction of 35%. A new avenue is thus opened up for microfabrication and flow analysis of closed superhydrophobic (SH) conduits in lab on chip and microfluidic applications.

  1. Enhanced Crystallization by Methanol Additive in Anti-solvent for Achieving High-quality MAPbI3 Perovskite Films in Humid Atmosphere.

    PubMed

    Yang, Fu; Kamarudin, Muhammad Akmal; Zhang, PuTao; Kapil, Gaurav; Ma, Tingli; Hayase, Shuzi

    2018-05-04

    Perovskite solar cells have attracted considerable attention owing to easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside glovebox to avoid the moisture, as organometallic halide perovskite is easily dissolved in water. In this study, we propose one-step fabrication of high-quality MAPbI3 perovskite films in 50 % RH humid ambient air by using diethyl ether as an anti-solvent and methanol as an additive into this anti-solvent. Because of the existence of methanol, the water molecules can be efficiently removed from the gaps of perovskite precursors and the perovskite film formation can be slightly controlled leading to pinhole-free and low roughness film. Concurrently, methanol can modify a proper DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction has been suppressed when the device prepared with additive anti-solvent way. This method presents a new path for controlling the growth and morphology of perovskite films in the humid climates and uncontrolled laboratories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wire electric-discharge machining and other fabrication techniques

    NASA Technical Reports Server (NTRS)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  3. On fabrication procedures of Li-ion conducting garnets

    NASA Astrophysics Data System (ADS)

    Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina

    2017-04-01

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.

  4. Automatic measurement for dimensional changes of woven fabrics based on texture

    NASA Astrophysics Data System (ADS)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  5. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowes, Ted

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The

  6. Demonstration of the feasibility of automated silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.; Schwartz, F. M.

    1975-01-01

    A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.

  7. Thin film solar cell configuration and fabrication method

    DOEpatents

    Menezes, Shalini

    2009-07-14

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  8. One-step large-scale deposition of salt-free DNA origami nanostructures

    PubMed Central

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo

    2015-01-01

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation. PMID:26492833

  9. Method for fabricating pixelated silicon device cells

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  10. One-step synthesis of bioactive glass by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shih, Shao-Ju; Chou, Yu-Jen; Chien, I.-Chen

    2012-12-01

    Bioactive glasses (BGs) have recently received more attention from biologists and engineers because of their potential applications in bone implants. The sol-gel process is one of the most popular methods for fabricating BGs, and has been used to produce BGs for years. However, the sol-gel process has the disadvantages of discontinuous processing and a long processing time. This study presented a one-step spray pyrolysis (SP) synthesis method to overcome these disadvantages. This SP method has synthesized spherical bioactive glass (SBG) and mesoporous bioactive glass (MBG) particles using Si-, Ca- and P-based precursors. This study used transmission electron microscopy, selected area electron diffraction and X-ray dispersive spectroscopy to characterize the microstructure, crystallographic structure, and chemical composition for the BG particles. In addition, in vitro bioactive tests showed the formation of hydroxyl apatite layers on SBG and MBG particles after immersion in simulated body fluid for 5 h. Experimental results show the SP formation mechanisms of SBG and MBG particles.

  11. Fabrication of scaffolds in tissue engineering: A review

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  12. An overview on STEP-NC compliant controller development

    NASA Astrophysics Data System (ADS)

    Othman, M. A.; Minhat, M.; Jamaludin, Z.

    2017-10-01

    The capabilities of conventional Computer Numerical Control (CNC) machine tools as termination organiser to fabricate high-quality parts promptly, economically and precisely are undeniable. To date, most CNCs follow the programming standard of ISO 6983, also called G & M code. However, in fluctuating shop floor environment, flexibility and interoperability of current CNC system to react dynamically and adaptively are believed still limited. This outdated programming language does not explicitly relate to each other to have control of arbitrary locations other than the motion of the block-by-block. To address this limitation, new standard known as STEP-NC was developed in late 1990s and is formalized as an ISO 14649. It adds intelligence to the CNC in term of interoperability, flexibility, adaptability and openness. This paper presents an overview of the research work that have been done in developing a STEP-NC controller standard and the capabilities of STEP-NC to overcome modern manufacturing demands. Reviews stated that most existing STEP-NC controller prototypes are based on type 1 and type 2 implementation levels. There are still lack of effort being done to develop type 3 and type 4 STEP-NC compliant controller.

  13. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation

    NASA Astrophysics Data System (ADS)

    Karimnezhad, Hanieh; Rajabi, Laleh; Salehi, Ehsan; Derakhshan, Ali Ashraf; Azimi, Sara

    2014-02-01

    Nanocomposite membranes with hydrophilic surface were fabricated for separation of oil (n-hexane) from oil/water emulsion. Three different nanomaterials namely, para-aminobenzoate alumoxane (PAB-A), boehmite-epoxide and polycitrate alumoxane (PC-A) were coated on the Kevlar fabric (support), according to a three-step dip-coating protocol. FTIR, SEM, TEM, UV/vis spectrophotometer, and wettability analyses were used to characterize the composite membranes. The three coating layers interacted chemically with one another and also physically with the Kevlar fabric. Water uptake measurements indicated that the membrane is a hydrophilic one. SEM and TEM analyses showed the smooth surface of the composite membrane and three-dimensional dendrimeric hyper-branched structure of (PC-A), respectively. A dead-end filtration setup was applied to test the membranes performance under natural gravity force. Effect of pH as an important variable affecting separation process was investigated with the neutral pH provided the optimum condition for the separation. Oil rejection and permeate fluxes were also monitored. The optimum flux and rejection obtained, were 7392 (Lm-2 h-1) and 89.06% at pH 7, respectively. Fouling occurred as a gel layer on the membrane surface. The deposited oil droplets on the surface of the membrane were successfully washed away with satisfactory permeate flux recovery (FRR = 88.88% at neutral pH), using hot distilled water and acidic solution as eluents.

  14. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Can Reduced-Step Polishers Be as Effective as Multiple-Step Polishers in Enhancing Surface Smoothness?

    PubMed

    Kemaloglu, Hande; Karacolak, Gamze; Turkun, L Sebnem

    2017-02-01

    The aim of this study was to evaluate the effects of various finishing and polishing systems on the final surface roughness of a resin composite. Hypotheses tested were: (1) reduced-step polishing systems are as effective as multiple-step systems on reducing the surface roughness of a resin composite and (2) the number of application steps in an F/P system has no effect on reducing surface roughness. Ninety discs of a nano-hybrid resin composite were fabricated and divided into nine groups (n = 10). Except the control, all of the specimens were roughened prior to be polished by: Enamel Plus Shiny, Venus Supra, One-gloss, Sof-Lex Wheels, Super-Snap, Enhance/PoGo, Clearfil Twist Dia, and rubber cups. The surface roughness was measured and the surfaces were examined under scanning electron microscope. Results were analyzed with analysis of variance and Holm-Sidak's multiple comparisons test (p < 0.05). Significant differences were found among the surface roughness of all groups (p < 0.05). The smoothest surfaces were obtained under Mylar strips and the results were not different than Super-Snap, Enhance/PoGo, and Sof-Lex Spiral Wheels. The group that showed the roughest surface was the rubber cup group and these results were similar to those of the One-gloss, Enamel Plus Shiny, and Venus Supra groups. (1) The number of application steps has no effect on the performance of F/P systems. (2) Reduced-step polishers used after a finisher can be preferable to multiple-step systems when used on nanohybrid resin composites. (3) The effect of F/P systems on surface roughness seems to be material-dependent rather than instrument- or system-dependent. Reduced-step systems used after a prepolisher can be an acceptable alternative to multiple-step systems on enhancing the surface smoothness of a nanohybrid composite; however, their effectiveness depends on the materials' properties. (J Esthet Restor Dent 29:31-40, 2017). © 2016 Wiley Periodicals, Inc.

  16. NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Protz, Chris

    2017-01-01

    The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.

  17. Reactive polymer multilayers fabricated by covalent layer-by-layer assembly: 1,4-conjugate addition-based approaches to the design of functional biointerfaces.

    PubMed

    Bechler, Shane L; Lynn, David M

    2012-05-14

    We report on conjugate addition-based approaches to the covalent layer-by-layer assembly of thin films and the post-fabrication functionalization of biointerfaces. Our approach is based on a recently reported approach to the "reactive" assembly of covalently cross-linked polymer multilayers driven by the 1,4-conjugate addition of amine functionality in poly(ethyleneimine) (PEI) to the acrylate groups in a small-molecule pentacrylate species (5-Ac). This process results in films containing degradable β-amino ester cross-links and residual acrylate and amine functionality that can be used as reactive handles for the subsequent immobilization of new functionality. Layer-by-layer growth of films fabricated on silicon substrates occurred in a supra-linear manner to yield films ≈ 750 nm thick after the deposition of 80 PEI/5-Ac layers. Characterization by atomic force microscopy (AFM) suggested a mechanism of growth that involves the reactive deposition of nanometer-scale aggregates of PEI and 5-Ac during assembly. Infrared (IR) spectroscopy studies revealed covalent assembly to occur by 1,4-conjugate addition without formation of amide functionality. Additional experiments demonstrated that acrylate-containing films could be postfunctionalized via conjugate addition reactions with small-molecule amines that influence important biointerfacial properties, including water contact angles and the ability of film-coated surfaces to prevent or promote the attachment of cells in vitro. For example, whereas conjugation of the hydrophobic molecule decylamine resulted in films that supported cell adhesion and growth, films treated with the carbohydrate-based motif D-glucamine resisted cell attachment and growth almost completely for up to 7 days in serum-containing media. We demonstrate that this conjugate addition-based approach also provides a means of immobilizing functionality through labile ester linkages that can be used to promote the long-term, surface-mediated release

  18. Fabrication of Natural Uranium UO 2 Disks (Phase II): Texas A&M Work for Others Summary Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Baldwin, Charles A.; Schmidlin, Joshua E.

    The steps to fabricate natural UO 2 disks for an irradiation campaign led by Texas A&M University are outlined. The process was initiated with stoichiometry adjustment of parent, U 3O 8 powder. The next stage of sample preparation involved exploratory pellet pressing and sintering to achieve the desired natural UO 2 pellet densities. Ideal densities were achieved through the use of a bimodal powder size blend. The steps involved with disk fabrication are also presented, describing the coring and thinning process executed to achieve final dimensionality.

  19. Fabrication of high-density In3Sb1Te2 phase change nanoarray on glass-fabric reinforced flexible substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong

    2012-06-01

    Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.

  20. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  1. Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Yan; Qu, Shiliang; Guo, Zhongyi

    2011-07-01

    We have fabricated a microdiverter with a protrusion and a complicated micromixer with grid-like structures in silica glass by using water-assisted femtosecond laser ablation. When distilled water is introduced into the fabricated microchannel, the blocking and redepositing effects of ablated debris can be reduced greatly. The total length of the fabricated microfluidic devices is 6 mm without any deformation. The diameters of the fabricated microchannels can be controlled by changing the used pulse energies and the width of the laser-scanning region inside the sample. The experimental results show that it is possible to fabricate high-quality and high-aspect-ratio complicated microfluidic devices in single step without the need of using photosensitive glass or post-processing.

  2. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  3. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  4. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  5. Applications of additive manufacturing in dentistry: A review.

    PubMed

    Bhargav, Aishwarya; Sanjairaj, Vijayavenkatraman; Rosa, Vinicius; Feng, Lu Wen; Fuh Yh, Jerry

    2017-07-24

    Additive manufacturing (AM) or 3D printing has been hailed as the third industrial revolution as it has caused a paradigm shift in the way objects have been manufactured. Conventionally, converting a raw material to a fully finished and assembled, usable product comprises several steps which can be eliminated by using this process as functional products can be created directly from the raw material at a fraction of the time originally consumed. Thus, AM has found applications in several sectors including automotive, aerospace, printed electronics, and healthcare. AM is increasingly being used in the healthcare sector, given its potential to fabricate patient-specific customized implants with required accuracy and precision. Implantable heart valves, rib cages, and bones are some of the examples where AM technologies are used. A vast variety of materials including ceramics, metals, polymers, and composites have been processed to fabricate intricate implants using 3D printing. The applications of AM in dentistry include maxillofacial implants, dentures, and other prosthetic aids. It may also be used in surgical training and planning, as anatomical models can be created at ease using AM. This article gives an overview of the AM process and reviews in detail the applications of 3D printing in dentistry. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  6. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  7. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    PubMed

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  8. Fabrication of elliptical SRF cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  9. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  10. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  11. Quantum Dot Solar Cell Fabrication Protocols

    DOE PAGES

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; ...

    2016-09-26

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  12. Quantum Dot Solar Cell Fabrication Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  13. Method of fabricating reflection-mode EUV diffraction elements

    DOEpatents

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  14. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  15. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  16. Facile fabrication of uniform hierarchical structured (UHS) nanocomposite surface with high water repellency and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Aliofkhazraei, M.; Forooshani, H. Mojiri; Rouhaghdam, A. Sabour

    2018-04-01

    In the present study, two-stage process for the fabrication of superhydrophobic Ni-Cu-TiO2 nanocomposite coatings on the copper substrate has been introduced. Surface modification was performed on the electrodeposited coatings by myristic acid-ethanol solution to achieve superhydrophobicity. Additionally, in order to further study the roughness effect, instead of addition of copper ions in electrodeposition bath, three substrates were roughened by electrochemical etching method. Water repellency properties were studied through measurement of static and dynamic contact angles, and performing bouncing test, self-cleaning and water-jet evaluation. The samples were electrodeposited in various current densities, and the highest corrosion resistance and water repellency properties were obtained for the sample which was electrodeposited in two consecutive steps and modified by a fatty acid called myristic acid (which significantly reduces surface energy of the coating). The highest water contact angle (161°) and the lowest contact angle hysteresis (3°) were obtained for the sample which was coated by 10 mA/cm2 (144 min) and 20 mA/cm2 (18 min), respectively. Since this approach does not require any sophisticated equipment and materials, it shows promising future in the fabrication of superhydrophobic coatings.

  17. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  18. Fabrication of low reflective nanopore-type black Si layer using one-step Ni-assisted chemical etching for Si solar cell application

    NASA Astrophysics Data System (ADS)

    Takaloo, AshkanVakilipour; Kolahdouz, Mohammadreza; Poursafar, Jafar; Es, Firat; Turan, Rasit; Ki-Joo, Seung

    2018-03-01

    Nanotextured Si fabricated through metal-assisted chemical etching (MACE) technique exhibits a promising potential for producing antireflective layer for photovoltaic (PV) application. In this study, a novel single-step nickel (Ni) assisted etching technique was applied to produce an antireflective, nonporous Si (black Si) in an aqueous solution containing hydrofluoric acid (HF), hydrogen peroxide (H2O2) and NiSO4 at 40 °C. Field emission scanning electron microscope was used to characterize different morphologies of the textured Si. Optical reflection measurements of samples were carried out to compare the reflectivity of different morphologies. Results indicated that vertical as well as horizontal pores with nanosized diameters were bored in the Si wafer after 1 h treatment in the etching solution containing different molar ratios of H2O2 to HF. Increasing H2O2 concentration in electrochemical etching solution had a considerable influence on the morphology due to higher injection of positive charges from Ni atoms onto the Si surface. Optimized concentration of H2O2 led to formation of an antireflective layer with 2.1% reflectance of incident light.

  19. Design, fabrication and control of origami robots

    NASA Astrophysics Data System (ADS)

    Rus, Daniela; Tolley, Michael T.

    2018-06-01

    Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.

  20. Fabrication of multi-functional silicon surface by direct laser writing

    NASA Astrophysics Data System (ADS)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  1. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.

    PubMed

    Memon, Muhammad Usman; Lim, Sungjoon

    2017-09-09

    The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing.

  2. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators

    PubMed Central

    2017-01-01

    The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing. PMID:28891947

  3. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    NASA Astrophysics Data System (ADS)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  4. Micromechanical Structures Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, S

    2001-05-08

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates.« less

  5. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission.

    PubMed

    Hu, Tao; Li, Juhao; Ge, Dawei; Wu, Zhongying; Tian, Yu; Shen, Lei; Liu, Yaping; Chen, Su; Li, Zhengbin; He, Yongqi; Chen, Zhangyuan

    2018-04-02

    Weakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences. The same fabrication method as standard single-mode fiber is adopted so that it is practical and cost-effective. The mode multiplexer/demultiplexer (MUX/DEMUX) consists of cascaded mode-selective couplers (MSCs), which are designed and fabricated by tapering the proposed FMF with single-mode fiber (SMF). The mode MUX and DEMUX achieve very low modal crosstalk not only for the multiplexing/demultiplexing but also for the coupling to/from the FMF. Based on the fabricated FMF and mode MUX/DEMUX, we successfully demonstrate the first simultaneous 4-modes (LP 01 , LP 11 , LP 21 & LP 31 ) 10-km FMF transmission with 10-Gb/s intensity modulation and MIMO-free direct detection (IM/DD). The modal crosstalk of the whole transmission link is successfully suppressed to less than -16.5 dB. The experimental results indicate that FMF with simple step-index structure supporting 4 weakly-coupled modes is feasible.

  6. A review on fabricating tissue scaffolds using vat photopolymerization.

    PubMed

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Supercritical Fluid Technologies to Fabricate Proliposomes.

    PubMed

    Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei

    2015-01-01

    Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.

  8. Closeout of JOYO-1 Specimen Fabrication Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ME Petrichek; JL Bump; RF Luther

    2005-10-31

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cuttingmore » of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2.« less

  9. Microstructures and Microhardness Properties of CMSX-4® Additively Fabricated Through Scanning Laser Epitaxy (SLE)

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Holenarasipura Raghu, Shashank; Das, Suman

    2017-12-01

    Epitaxial CMSX-4® deposition is achieved on CMSX-4® substrates through the scanning laser epitaxy (SLE) process. A thorough analysis is performed using various advanced material characterization techniques, namely high-resolution optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and Vickers microhardness measurements, to characterize and compare the quality of the SLE-fabricated CMSX-4® deposits to the CMSX-4® substrates. The results show that the CMSX-4® deposits have smaller primary dendritic arm spacing, finer γ/ γ' size, weaker elemental segregation, and higher microhardness compared to the investment cast CMSX-4® substrates. The results presented here demonstrate that CMSX-4® is an attractive material for laser-based AM processing and, therefore, can be used in the fabrication of gas turbine hot-section components through AM processing.

  10. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    PubMed Central

    Clement, Carlos E.; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong

    2017-01-01

    We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2) than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been

  11. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.

    PubMed

    Clement, Carlos E; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong

    2017-01-05

    We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance ( c ≈ 10 μF/cm²) than that of conventional dielectrics such as SiO₂. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been

  12. Investigation of low-cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Massions, V. P.; Mach, R. W.

    1973-01-01

    The fabrication, testing, and evaluation of materials and techniques employed in the fabrication of ablative heat shield panels are described. Results of this effort show projected reductions in labor man-hours for dielectric curing of panels when compared to panels molded in a steam-heated press. In addition, panels were fabricated with more than one density within the cross-section. These dual-density panels show significant weight and cost reduction potentials.

  13. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices

    NASA Astrophysics Data System (ADS)

    Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar

    2018-07-01

    Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional

  14. Analysis, design, fabrication, and performance of three-dimensional braided composites

    NASA Astrophysics Data System (ADS)

    Kostar, Timothy D.

    1998-11-01

    Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters

  15. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics.

    PubMed

    Wu, Chung Chiang; Liu, Chang Hua; Zhong, Zhaohui

    2010-03-10

    We report a one-step direct transfer technique for the fabrication of functional nanoelectronic devices using pristine single-walled carbon nanotubes (SWNTs). Suspended SWNTs grown by the chemical vapor deposition (CVD) method are aligned and directly transferred onto prepatterned device electrodes at ambient temperature. Using this technique, we successfully fabricated SWNT electromechanical resonators with gate-tunable resonance frequencies. A fully suspended SWNT p-n diode has also been demonstrated with the diode ideality factor equal to 1. Our method eliminates the organic residues on SWNTs resulting from conventional lithography and solution processing. The results open up opportunities for the fundamental study of electron transport physics in ultraclean SWNTs and for room temperature fabrication of novel functional devices based on pristine SWNTs.

  16. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  17. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    PubMed

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  18. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  19. Etching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMS

    NASA Astrophysics Data System (ADS)

    Rao, A. V. Narasimha; Swarnalatha, V.; Pal, P.

    2017-12-01

    Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved anisotropy between Si{111} and Si{110} planes. In the manufacturing company, high etch rate is demanded to increase the productivity that eventually reduces the cost of end product. In order to modify the etching characteristics of KOH for the micromachining of Si{110}, we have investigated the effect of hydroxylamine (NH2OH) in 20 wt% KOH solution. The concentration of NH2OH is varied from 0 to 20% and the etching is carried out at 75 °C. The etching characteristics which are studied in this work includes the etch rates of Si{110} and silicon dioxide, etched surface morphology, and undercutting at convex corners. The etch rate of Si{110} in 20 wt% KOH + 15% NH2OH solution is measured to be four times more than that of pure 20 wt% KOH. Moreover, the addition of NH2OH increases the undercutting at convex corners and enhances the etch selectivity between Si and SiO2.

  20. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  1. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  2. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  3. Process for fabrication of large titanium diboride ceramic bodies

    DOEpatents

    Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.

    1989-01-01

    A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.

  4. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    NASA Astrophysics Data System (ADS)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  5. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors.

    PubMed

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-27

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  6. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-01

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  7. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    NASA Astrophysics Data System (ADS)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  8. CMOS-Compatible Fabrication for Photonic Crystal-Based Nanofluidic Structure.

    PubMed

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin; Song, Han; Xiong, Hui; Huang, Pengcheng

    2017-12-01

    Photonic crystal (PC)-based devices have been widely used since 1990s, while PC has just stepped into the research area of nanofluidic. In this paper, photonic crystal had been used as a complementary metal oxide semiconductors (CMOS) compatible part to create a nanofluidic structure. A nanofluidic structure prototype had been fabricated with CMOS-compatible techniques. The nanofluidic channels were sealed by direct bonding polydimethylsiloxane (PDMS) and the periodic gratings on photonic crystal structure. The PC was fabricated on a 4-in. Si wafer with Si 3 N 4 as the guided mode layer and SiO 2 film as substrate layer. The higher order mode resonance wavelength of PC-based nanofluidic structure had been selected, which can confine the enhanced electrical field located inside the nanochannel area. A design flow chart was used to guide the fabrication process. By optimizing the fabrication device parameters, the periodic grating of PC-based nanofluidic structure had a high-fidelity profile with fill factor at 0.5. The enhanced electric field was optimized and located within the channel area, and it can be used for PC-based nanofluidic applications with high performance.

  9. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    NASA Astrophysics Data System (ADS)

    He, Yong; Xue, Guang-Huai; Fu, Jian-Zhong

    2014-11-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  10. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.

    PubMed

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-11-27

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  11. Forging of metallic nano-objects for the fabrication of submicron-size components

    NASA Astrophysics Data System (ADS)

    Rösler, J.; Mukherji, D.; Schock, K.; Kleindiek, S.

    2007-03-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1).

  12. Method of electrode fabrication and an electrode for metal chloride battery

    DOEpatents

    Bloom, I.D.; Nelson, P.A.; Vissers, D.R.

    1993-03-16

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 [Omega]cm[sup 2] than those resistivity values of approximately 1.0-1.5 [Omega]cm[sup 2] exhibited by currently available electrodes.

  13. Method of electrode fabrication and an electrode for metal chloride battery

    DOEpatents

    Bloom, Ira D.; Nelson, Paul A.; Vissers, Donald R.

    1993-01-01

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 .OMEGA.cm.sup.2 than those resistivity values of approximately 1.0-1.5 .OMEGA.cm.sup.2 exhibited by currently available electrodes.

  14. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.

    PubMed

    Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek

    2014-06-15

    This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-08-01

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  16. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  17. Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue

    2018-02-01

    The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.

  18. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  19. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  20. Thermally stable ohmic contacts to n-type GaAs. VII. Addition of Ge or Si to NiInW ohmic contacts

    NASA Astrophysics Data System (ADS)

    Murakami, Masanori; Price, W. H.; Norcott, M.; Hallali, P.-E.

    1990-09-01

    The effects of Si or Ge addition to NiInW ohmic contacts on their electrical behavior were studied, where the samples were prepared by evaporating Ni(Si) or Ni(Ge) pellets with In and W and annealed by a rapid thermal annealing method. An addition of Si affected the contact resistances of NiInW contacts: the resistances decreased with increasing the Si concentrations in the Ni(Si) pellets and the lowest value of ˜0.1 Ω mm was obtained in the contact prepared with the Ni-5 at. % Si pellets after annealing at temperatures around 800 °C. The contact resistances did not deteriorate during isothermal annealing at 400 °C for more than 100 h, far exceeding process requirements for self-aligned GaAs metal-semiconductor field-effect-transistor devices. In addition, the contacts were compatible with TiAlCu interconnects which have been widely used in the current Si process. Furthermore, the addition of Si to the NiInW contacts eliminated an annealing step for activation of implanted dopants and low resistance (˜0.2 Ω mm) contacts were fabricated for the first time by a ``one-step'' anneal. In contrast, an addition of Ge to the NiInW contacts did not significantly reduce the contact resistances.

  1. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  2. One-step Ge/Si epitaxial growth.

    PubMed

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 < x < 1) graded buffer layer was demonstrated through a facile chemical vapor deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  3. Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface.

    PubMed

    Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting

    2017-10-13

    Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.

  4. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE PAGES

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...

    2017-05-10

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  5. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  6. Fabrication of an optical component

    DOEpatents

    Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.

    2000-01-01

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  7. Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Li, Chih-Wei; Li, Jyun-Yi; Lin, Chih-Chien

    2018-05-01

    In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.

  8. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  9. Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.

  10. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  11. Fabrication of p(+)-n junction GaAs solar cells by a novel method

    NASA Technical Reports Server (NTRS)

    Ghandhi, S. K.; Mathur, G.; Rode, H.; Borrego, J. M.

    1984-01-01

    A novel method for making p(+)-n diffused junction GaAs solar cells, with the formation of a diffusion source, an anti-reflective coating, and a protective cover glass in a single chemical-vapor deposition operation is discussed. Consideration is given to device fabrication and to solar-cell characteristics. The advantages of the technique are that the number of process steps is kept to an absolute minimum, the fabrication procedure is low-cost, and the GaAs surface is protected during the entire operation.

  12. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition

    NASA Astrophysics Data System (ADS)

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l-1, 30 g l-1, 60 g l-1, 90 g l-1) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l-1, the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l-1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  13. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition.

    PubMed

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l -1 , 30 g l -1 , 60 g l -1 , 90 g l -1 ) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni 2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l -1 , the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l -1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  14. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  15. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  16. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  17. Step-wise refolding of recombinant proteins.

    PubMed

    Tsumoto, Kouhei; Arakawa, Tsutomu; Chen, Linda

    2010-04-01

    Protein refolding is still on trial-and-error basis. Here we describe step-wise dialysis refolding, in which denaturant concentration is altered in step-wise fashion. This technology controls the folding pathway by adjusting the concentrations of the denaturant and other solvent additives to induce sequential folding or disulfide formation.

  18. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  19. Synergetic effect of Sn addition and oxygen-deficient atmosphere to fabricate active hematite photoelectrodes for light-induced water splitting

    NASA Astrophysics Data System (ADS)

    Freitas, Andre L. M.; Souza, Flavio L.

    2017-11-01

    This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface—which is represented by material synthesized at 4 h —exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth. The increased donor number density provided by the oxygen vacancies (confirmed by x-ray photoelectron data), and a possible reduction in the grain boundary energy or hematite crystal interface might favor charge separation, and increase the electron transfer through the hematite into the back contact (FTO substrate). In consequence, the light-induced water oxidation reaction efficiency of Sn-hematite photoelectrodes was significantly increased in comparison with pure ones, even though the vertical rod morphology was not preserved. This finding provides a novel insight into intentional Sn addition, revealing that dopant segregation at the hematite crystal surface (or at the grain boundaries) could—by increasing the electron mobility—be the more relevant factor in developing active hematite photoelectrodes than the control of columnar morphology.

  20. Design, modeling, and fabrication of crab-shape capacitive microphone using silicon-on-isolator wafer

    NASA Astrophysics Data System (ADS)

    Ganji, Bahram Azizollah; Sedaghat, Sedighe Babaei; Roncaglia, Alberto; Belsito, Luca; Ansari, Reza

    2018-01-01

    This paper presents design, modeling, and fabrication of a crab-shape microphone using silicon-on-isolator (SOI) wafer. SOI wafer is used to prevent the additional deposition of sacrificial and diaphragm layers. The holes have been made on diaphragm to prevent back plate etching. Dry etching is used for removing the sacrificial layer, because wet etching causes adhesion between the diaphragm and the back plate. Crab legs around the perforated diaphragm allow for improving the microphone performance and reducing the mechanical stiffness and air damping of the microphone. In this structure, the supply voltage is decreased due to the uniform deflection of the diaphragm due to the designed low-K (spring constant) structure. An analytical model of the structure for description of microphone behavior is presented. The proposed method for estimating the basic parameters of the microphone is based on the calculation of the spring constant using the energy method. The microphone is fabricated using only one mask to pattern the crab-shape diaphragm, resulting in a low-cost and easy fabrication process. The diaphragm size is 0.3 mm×0.3 mm, which is smaller than the conventional microelectromechanical systems capacitive microphone. The results show that the analytical equations have a good agreement with measurement results. The device has the pull-in voltage of 14.3 V, a resonant frequency of 90 kHz, an open-circuit sensitivity of 1.33 mV/Pa under bias voltage of 5 V. Comparing with previous works, this microphone has several advantages: SOI wafer decreases the fabrication process steps, the microphone is smaller than the previous works, and crab-shape diaphragm improves the microphone performances.

  1. Development of Flame Resistant Combat Uniform Fabrics Made from Long Staple Wool and Aramid Blend Yarn

    DTIC Science & Technology

    2013-04-15

    Kentwool recombed the wool top ( wool is first combed during the production of wool top); a second combing process is an optional step sometimes used in...RESISTANT COMBAT UNIFORM FABRICS MADE FROM LONG STAPLE WOOL AND ARAMID BLEND YARN by Parvez Mehta* Mitchell Driggers* and Carole...SUBTITLE DEVELOPMENT OF FLAME RESISTANT COMBAT UNIFORM FABRICS MADE FROM LONG STAPLE WOOL AND ARAMID BLEND YARN 5a. CONTRACT NUMBER W911QY-11

  2. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper

    PubMed Central

    2011-01-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria. PMID:22085594

  3. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    NASA Astrophysics Data System (ADS)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  4. Dispersion flattened single etch-step waveguide based on subwavelength grating

    NASA Astrophysics Data System (ADS)

    Jafari, Zeinab; Zarifkar, Abbas

    2017-06-01

    A novel subwavelength-grating-assisted (SWG-assisted) waveguide is proposed for dispersion flattening. Tuning the refractive index, which is a powerful tool in dispersion engineering, can be carried out through adjusting the properties of the SWG regions. It is particularly beneficial for controlling the flattened dispersion bandwidth. This will also eliminate the need for integration of other less compatible materials with silicon. Moreover, the SWG-assisted waveguide can be easily fabricated through a single etch-step process. By engineering the structural parameters of the waveguide, an ultra-flat dispersion profile with a total dispersion variation of 10 (ps/nm/km) over a wide bandwidth of 1615 nm is obtained. The possibility of bandwidth expansion, the fabrication friendly design, and the flattened dispersion profile of the proposed waveguide make it promising for wideband nonlinear applications.

  5. Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.

    1995-01-01

    Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.

  6. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    PubMed

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  7. Development Of Methodologies Using PhabrOmeter For Fabric Drape Evaluation

    NASA Astrophysics Data System (ADS)

    Lin, Chengwei

    Evaluation of fabric drape is important for textile industry as it reveals the aesthetic and functionality of the cloth and apparel. Although many fabric drape measuring methods have been developed for several decades, they are falling behind the need for fast product development by the industry. To meet the requirement of industries, it is necessary to develop an effective and reliable method to evaluate fabric drape. The purpose of the present study is to determine if PhabrOmeter can be applied to fabric drape evaluation. PhabrOmeter is a fabric sensory performance evaluating instrument which is developed to provide fast and reliable quality testing results. This study was sought to determine the relationship between fabric drape and other fabric attributes. In addition, a series of conventional methods including AATCC standards, ASTM standards and ISO standards were used to characterize the fabric samples. All the data were compared and analyzed with linear correlation method. The results indicate that PhabrOmeter is reliable and effective instrument for fabric drape evaluation. Besides, some effects including fabric structure, testing directions were considered to examine their impact on fabric drape.

  8. Towards reinforcement solutions for urban fibre/fabric waste using bio-based biodegradable resins.

    NASA Astrophysics Data System (ADS)

    Agrawal, Pramod; Hermes, Alina; Bapeer, Solaf; Luiken, Anton; Bouwhuis, Gerrit; Brinks, Ger

    2017-10-01

    The main research question is how to systematically define and characterize urban textile waste and how to effectively utilise it to produce reinforcement(s) with selected bio-based biodegradable resin(s). Several composite samples have been produced utilising predominantly natural and predominantly synthetic fibres by combining loose fibres with PLA, nonwoven fabric with PLA, woven fabric with PLA, two-layer composite & four-layer composite samples. Physio-chemical characterisations according to the established standards have been conducted. The present work is a step toward the circular economy and closing the loop in textile value chain.

  9. Grayscale photomask fabricated by laser direct writing in metallic nano-films.

    PubMed

    Guo, Chuan Fei; Cao, Sihai; Jiang, Peng; Fang, Ying; Zhang, Jianming; Fan, Yongtao; Wang, Yongsheng; Xu, Wendong; Zhao, Zhensheng; Liu, Qian

    2009-10-26

    The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

  10. Direct fabrication of /sup 238/PuO/sub 2/ fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burney, G.A.; Congdon, J.W.

    1982-07-01

    The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less

  11. Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur A.; Li, Billy Chun-Yip; Fleurial, Pierre; Star, Kurt

    2010-01-01

    The development of more efficient thermoelectric couple technology capable of operating with high-grade heat sources up to 1,275 K is key to improving the performance of radioisotope thermoelectric generators. Lanthanum telluride La3-xTe4 and 14-1-11 Zintls (Yb14MnSb11) have been identified as very promising materials. The fabrication of advanced high-temperature thermoelectric couples requires the joining of several dissimilar materials, typically including a number of diffusion bonding and brazing steps, to achieve a device capable of operating at elevated temperatures across a large temperature differential (up to 900 K). A thermoelectric couple typically comprises a heat collector/ exchanger, metallic interconnects on both hot and cold sides, n-type and ptype conductivity thermoelectric elements, and cold-side hardware to connect to the cold-side heat rejection and provide electrical connections. Differences in the physical, mechanical, and chemical properties of the materials that make up the thermoelectric couple, especially differences in the coefficients of thermal expansion (CTE), result in undesirable interfacial stresses that can lead to mechanical failure of the device. The problem is further complicated by the fact that the thermoelectric materials under consideration have large CTE values, are brittle, and cracks can propagate through them with minimal resistance. The inherent challenge of bonding brittle, high-thermal-expansion thermoelectric materials to a hot shoe material that is thick enough to carry the requisite electrical current was overcome. A critical advantage over prior art is that this device was constructed using all diffusion bonds and a minimum number of assembly steps. The fabrication process and the materials used are described in the following steps: (1) Applying a thin refractory metal foil to both sides of lanthanum telluride. To fabricate the n-type leg of the advanced thermoelectric couple, the pre-synthesized lanthanum

  12. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    DTIC Science & Technology

    2014-10-01

    oxide ( AAO ) membranes were fabricated from high purity aluminum foil (99.999%) by electrochemical route using a controlled two-step anodization ...deposition of Fe and Co in anodized alumina templates. We used commercially prepared AAO templates which had pore diameters of 100 nm (300 nm), an...a thermal decomposition method. The final product was suspended in high-purity hexane to create a ferrofluid. Custom highly ordered anodic aluminum

  13. Sensing characteristics of long period gratings in hollow core fiber fabricated via electrode arc discharge

    NASA Astrophysics Data System (ADS)

    Iadicicco, Agostino; Cutolo, A.; Campopiano, Stefania

    2014-05-01

    This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers (HC-PCFs) by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the sensitivity of LPGs in HC-PCF to environmental parameters such as strain, temperature and static pressure are presented and discussed.

  14. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.

    PubMed

    Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert

    2013-07-01

    A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.

  15. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  16. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  17. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    PubMed

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    PubMed

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  19. Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Jinghai; Cai, Feilong; Yang, Liyan; Ye, Fanghao; Zhang, Jinghui; Gurney, Robert S.; Liu, Dan; Wang, Tao

    2017-07-01

    Organometal halide perovskite is a promising material to fabricate light-emitting diodes (LEDs) via solution processing due to its exceptional optoelectronic properties. However, incomplete precursor conversion and various defect states in the perovskite light-emitting layer lead to low luminance and external quantum efficiency of perovskite LEDs. We show here the addition of an optimum amount of sodium bromide in the methylammonium lead bromide (MAPbBr3) precursor during a one-step perovskite solution casting process can effectively improve the film coverage, enhance the crystallinity, and passivate ionic defects on the surface of MAPbBr3 crystal grains, resulting in LEDs with a reduced turn-on voltage from 2.8 to 2.3 V and an enhanced maximum luminance from 1059 to 6942 Cd/m2 when comparing with the pristine perovskite-based device.

  20. Fabricating interlocking support walls, with an adjustable backshort, in a TES bolometer array for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.

    2006-04-01

    We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.

  1. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    PubMed Central

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-01-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods. PMID:25427880

  2. Cellulosic fabrics printing with multifunctional encapsulated phthalocyanine pigment blue using phase separation method.

    PubMed

    Haroun, Ahmed A; Diab, H A; Hakeim, O A

    2016-08-01

    Aqueous dispersions of citric-acrylate (CAC) oligomer encapsulating C.I. Pigment Blue 15:3 (PB15:3) in the presence of glutaraldhyde were formulated using the phase separation method. FT-IR spectroscopy and centrifuge sedimentation are performed to confirm the encapsulation of pigment into CAC oligomer. The prepared capsules were characterized using thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). The results revealed that the encapsulated pigment had a profound multifunctional impact and minimized the driving force of pigment printing on the cellulosic fabrics. Besides, the encapsulated pigment accelerated the pigment fixation on cellulosic fabrics without drying in one step and reduced the required amount of the binder, compared with the control sample. Furthermore, the printed fabrics exhibited good antibacterial performance against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The presence of the crosslinker could be stabilized the encapsulated pigment on the cellulosic fabrics. Moreover, the light and washing fastness for the printed fabrics using encapsulated pigment are higher than that in case of using control samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  4. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in

  5. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes.

    PubMed

    Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna

    2018-06-19

    Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).

  6. Fabricating Germanium Interfaces for Battery Applications

    NASA Astrophysics Data System (ADS)

    Serino, Andrew Clark

    The experimental results presented herein detail the importance of material surfaces in device performance. We have demonstrated this importance by furthering and applying our understanding of germanium surfaces to a number of real-world applications. Pure and stable dispersions of germanane, an "all-surface" form of germanium, were created through solid-state synthesis followed by ultrasonication and centrifugation. These dispersions were used to fabricate germanane-based, high-performance, Li-ion anodes with capacities of ˜1100 mA-h/g, capacity retention over 100 cycles, and Coulombic efficiency of 99%. Additionally, carborane monolayers were self-assembled on Ge(100) and Ge(111) surfaces through carboxylic acid tethers, and found to be capable of tuning the surface work function by ˜0.4 eV without significantly affecting surface wettability. These capabilities are important for increasing device efficiency while minimizing complications associated with processing. Lastly, we introduce the concept of the molecular battery, a possible design using a layer-by-layer deposition approach, and our steps toward its realization. In this pursuit, we explored the assembly of metal-organic coordination of carborane-based linkers, as well as the capabilities of a film of benzene-based linkers (<50 nm) as a Li-ion battery separator using a Ge anode as a tool for analyzing performance.

  7. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    PubMed

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  9. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frack, E.K.; Drake, R.E.; Patt, R.

    This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less

  10. Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli

    Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.

  11. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Hye Yun

    the following. A support is a "temporary" structure typically built in-situ with the primary part to provide the structural support to the mass of overhanging features; it is subsequently removed after fabrication. During the building process, the existence of such support can affect the local heat flow from the build to the substrate, which in turn may influence the local microstructure. The first objective of this research is to develop a fundamental understanding of the effect of the support on the microstructure fabricated by L-PBF AM. Two groups of as-built samples, with support and without support, are studied. SEM along with EBSD is used to analyze the microstructure characteristics including the growth of the microstructures, the fraction of different microstructure and the misorientation among the microstructure grains. At the nano-scale resolution, TEM is used to identify the precipitate phases. In addition, the micro-hardness values are also measured for samples built with and without support. As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma' prime and gamma''. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values

  12. Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review

    PubMed Central

    Arifvianto, Budi; Zhou, Jie

    2014-01-01

    Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of metallic materials have preferably been chosen for bone tissue engineering applications where load-bearing capacities are required, considering the superior mechanical properties possessed by this type of materials to those of polymeric and ceramic materials. The space holder method has been recognized as one of the viable methods for the fabrication of metallic biomedical scaffolds. In this method, temporary powder particles, namely space holder, are devised as a pore former for scaffolds. In general, the whole scaffold fabrication process with the space holder method can be divided into four main steps: (i) mixing of metal matrix powder and space-holding particles; (ii) compaction of granular materials; (iii) removal of space-holding particles; (iv) sintering of porous scaffold preform. In this review, detailed procedures in each of these steps are presented. Technical challenges encountered during scaffold fabrication with this specific method are addressed. In conclusion, strategies are yet to be developed to address problematic issues raised, such as powder segregation, pore inhomogeneity, distortion of pore sizes and shape, uncontrolled shrinkage and contamination. PMID:28788638

  13. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  14. SPAR-H Step-by-Step Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. J. Galyean; A. M. Whaley; D. L. Kelly

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less

  15. Tactile Fabric Panel in an Eight Zones Structure

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Luengo, Sonia

    2007-01-01

    By introducing a percentage of conductive material during the manufacture of sewing thread, it is possible to obtain a fabric which is able to detect variations in pressure in certain areas. In previous experiments the existence of resistance variations has been demonstrated, although some constrains of cause and effect were found in the fabric. The research has been concentrated in obtaining a fabric that allows electronic detection of its shape changes. Additionally, and because a causal behavior is needed, it is necessary that the fabric recovers its original shape when the external forces cease. The structure of the fabric varies with the type of deformation applied. Two kinds of deformation are described: those caused by stretching and those caused by pressure. This last type of deformation gives different responses depending on the conductivity of the object used to cause the pressure. This effect is related to the type of thread used to manufacture the fabric. So, if the pressure is caused by a finger the response is different compared to the response caused by a conductive object. Another fact that has to be mentioned is that a pressure in a specific point of the fabric can affect other detection points depending on the force applied. This effect is related to the fabric structure. The goals of this article are validating the structure of the fabric used, as well as the study of the two types of deformation mentioned before. PMID:28903272

  16. Flexible Metal-Fabric Radiators

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Nguyen, Hai D.; Ruemmele, Warren; Andish, Kambiz K.; McCalley, Sean

    2005-01-01

    Flexible metal-fabric radiators have been considered as alternative means of dissipating excess heat from spacecraft and space suits. The radiators also may be useful in such special terrestrial applications as rejecting heat from space-suit-like protective suits worn in hot work environments. In addition to flexibility and consequent ease of deployment and installation on objects of varying sizes and shapes, the main advantages of these radiators over conventional rigid radiators are that they weigh less and occupy less volume for a given amount of cooling capacity. A radiator of this type includes conventional stainless-steel tubes carrying a coolant fluid. The main radiating component consists of a fabric of interwoven aluminum-foil strips bonded to the tubes by use of a proprietary process. The strip/tube bonds are strong and highly thermally conductive. Coolant is fed to and from the tubes via flexible stainless-steel manifolds designed to accommodate flexing of, and minimize bending forces on, the fabric. The manifolds are sized to minimize pressure drops and distribute the flow of coolant evenly to all the tubes. The tubes and manifolds are configured in two independent flow loops for operational flexibility and protective redundancy.

  17. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    PubMed

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  18. Selection of Additive Manufacturing (AM) Equipment

    DTIC Science & Technology

    2017-04-01

    in the design , test, and fabrication of the systems within the AMRDEC portfolio. 14. SUBJECT TERMS Additive Manufacturing (AM), Fused Deposition...tools in the design and development of AMRDEC products .   Figure 1. Stratasys Objet Connex3 [1] While these machines and technologies have...TECHNICAL REPORT RDMR-WD-16-87 SELECTION OF ADDITIVE MANUFACTURING (AM) EQUIPMENT Lance E. Hall Weapons Development

  19. Fabrication and characterization of resonant SOI micromechanical silicon sensors based on DRIE micromachining, freestanding release process and silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic

    2002-11-01

    This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.

  20. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    PubMed

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  1. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance.

    PubMed

    Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin

    2012-04-21

    Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012

  2. Additive Manufacturing of Porous Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Kirka, Michael M.

    2017-06-01

    Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating heliummore » from liquefied natural gas.« less

  3. A novel method for fabrication of continuous-relief optical elements

    NASA Astrophysics Data System (ADS)

    Guo, Xiaowei; Du, Jinglei; Chen, Mingyong; Ma, Yanqin; Zhu, Jianhua; Peng, Qinjun; Guo, Yongkang; Du, Chunlei

    2005-08-01

    A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled spatial-light-modulator (SLM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of digital SLM-based lithography and enzyme etching SHSG are discussed in detail, and microlens arrays, micro axicon-lens arrays and gratings with good profile were achieved. This method is simple, cheap and the aberration in processing procedures can be in-situ corrected in the step of designing mask, so it is a practical method to fabricate continuous profile for low-volume production.

  4. Two-step electrodeposition to fabricate the p-n heterojunction of a Cu2O/BiVO4 photoanode for the enhancement of photoelectrochemical water splitting.

    PubMed

    Bai, Shouli; Liu, Jingchao; Cui, Meng; Luo, Ruixian; He, Jing; Chen, Aifan

    2018-05-15

    A Cu2O/BiVO4 p-n heterojunction based photoanode in photoelectrochemical (PEC) water splitting is fabricated by a two-step electrodeposition method on an FTO substrate followed by annealing treatment. The structures and properties of the samples are characterized by XRD, FESEM, HRTEM, XPS and UV-visible spectra. The photoelectrochemical activity of the photoanode in water oxidation has been investigated and measured in a three electrode quartz cell system; the obtained maximum photocurrent density of 1.72 mA cm-2 at 1.23 V vs. RHE is 4.5 times higher than that of pristine BiVO4 thin films (∼0.38 mA cm-2). The heterojunction based photoanode also exhibits a tremendous cathodic shift of the onset potential (∼420 mV) and enhancement in the IPCE value by more than 4-fold. The enhanced photoelectrochemical properties of the Cu2O/BiVO4 photoelectrode are attributed to the efficient separation of the photoexcited electron-hole pairs caused by the inner electronic field (IEF) of the p-n heterojunction.

  5. Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

    PubMed Central

    Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Medina, Frank; Wicker, Ryan B.

    2012-01-01

    This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM. PMID:22956957

  6. Impact response of graphite/epoxy fabric structures

    NASA Technical Reports Server (NTRS)

    Lagace, Paul A.; Kraft, Michael J.

    1990-01-01

    The impact damage resistance and damage tolerance of graphite/epoxy fabric plate (coupon) and cylinder structures were investigated and compared in an analytical and experimental study. Hercules A370-5H/3501-6 five-harness satin weave cloth in a quasi-isotropic (0,45)(sub s) laminate configuration was utilized. Specimens were impacted with 12.7 mm diameter steel spheres at velocities ranging from 10 m/s to 100 m/s. Damage resistance of the specimens was determined through the use of dye penetrant enhanced x-radiography, sectioning, epoxy burnoff, and visual methods. Damage tolerance of the flat plate structures was assessed in a residual tensile test while damage tolerance of the cylinder structures was assessed via pressurization tests. Impacted fabric laminates exhibited matrix crushing, fiber breakage, delamination, and fiber bundle disbonds; the latter being a unique damage mode for fabric laminates. Plate delamination and bundle disbonding was found to be more extensive around the central core area of fiber damage in the coupon specimens than in the cylinder specimens which showed a cleaner damage area due to impact. Damage resistance and damage tolerance were predicted by utilizing a five-step analysis approach previously utilized for coupon configurations. Two of the five steps were adapted to account for the effects of the structural configuration of the pressurized cylinder. The damage resistance analysis provided good correlation to the fiber damage region of both the coupon and cylinder specimens. There was little difference in the size of this region in the two specimen types. However, the analysis was not able to predict the distribution of damage through-the-thickness. This was important in assessing the damage tolerance of the cylinders. The damage tolerance analysis was able to predict the residual tensile strength of the coupons. A general methodology to predict the impact damage resistance and damage tolerance of composite structures utilizing

  7. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  8. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative

  9. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  10. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design

  11. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.

  12. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  13. Preparation of a new electro-optic polymer cross-linkable via copper-free thermal Huisgen cyclo-addition and fabrication of optical waveguides by Reactive Ion Etching.

    PubMed

    Cabanetos, Clément; Mahé, Hind; Blart, Errol; Pellegrin, Yann; Montembault, Véronique; Fontaine, Laurent; Adamietz, Frédéric; Rodriguez, Vincent; Bosc, Dominique; Odobel, Fabrice

    2011-06-01

    High-quality trails of ridge waveguides were successfully fabricated using a new cross-linkable polymer (PCC01) by UV photolithography followed by Reactive-Ion Etching (RIE) process. The cross-linking reaction of PCC01 is based on the copper-free Huisgen cyclo-addition between an azide and an acetylene group. The new cross-linkable polymer (PCC01) consists of a structural modification of the previously described materials (Scarpaci et al. Polym. Chem.2011, 2, 157), because the ethynyl group is functionalized by a methyl group instead of the TMS protecting group. This feature prevents the formation of silica (SiO(2)) generated by trimethylsilyl groups and which was stopping the engraving process before completion. Herein, we describe the synthesis, the NLO characterizations, and the fabrication of a high-quality ridge waveguide with PCC01. The new cross-linkable polymer PCC01 not only solves the problems encountered with our previously described polymers, but also presents an enhancement of the electro-optic stability, because d(33) coefficients up to 30 pm/V stable at 150 °C were recorded. © 2011 American Chemical Society

  14. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  15. Fabrication of large area Si cylindric drift detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; Kraner, H.W.; Li, Z.

    1993-04-01

    Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less

  16. Build platform that provides mechanical engagement with additive manufacturing prints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amelia M.

    A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.

  17. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  18. Influence of ageing on self-etch adhesives: one-step vs. two-step systems.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Visintini, Erika; Diolosà, Marina; Turco, Gianluca; Salgarello, Stefano; Di Lenarda, Roberto; Cadenaro, Milena; Breschi, Lorenzo

    2013-02-01

    The aim of this study was to evaluate microtensile bond strength (μTBS) to dentine, interfacial nanoleakage expression, and stability after ageing, of two-step vs. one-step self-etch adhesives. Human molars were cut to expose middle/deep dentine, assigned to groups (n = 15), and treated with the following bonding systems: (i) Optibond XTR (a two-step self-etch adhesive; Kerr), (ii) Clearfil SE Bond (a two-step self-etch adhesive; Kuraray), (iii) Adper Easy Bond (a one-step self-etch adhesive; 3M ESPE), and (iv) Bond Force (a one-step self-etch adhesive; Tokuyama). Specimens were processed for μTBS testing after 24 h, 6 months, or 1 yr of storage in artificial saliva at 37°C. Nanoleakage expression was examined in similarly processed additional specimens. At baseline the μTBS results ranked in the following order: Adper Easy Bond = Optibond XTR ≥Clearfil SE = Bond Force, and interfacial nanoleakage analysis showed Clearfil SE Bond = Adper Easy Bond = Optibond XTR> Bond Force. After 1 yr of storage, Optibond XTR, Clearfil SE Bond, and Adper Easy Bond showed higher μTBS and lower interfacial nanoleakage expression compared with Bond Force. In conclusion, immediate bond strength, nanoleakage expression, and stability over time were not related to the number of steps of the bonding systems, but to their chemical formulations. © 2012 Eur J Oral Sci.

  19. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    PubMed

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  20. Improvements to constitutive material model for fabrics

    NASA Astrophysics Data System (ADS)

    Morea, Mihai I.

    2011-12-01

    The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.

  1. Fabrication of large area woodpile structure in polymer

    NASA Astrophysics Data System (ADS)

    Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.

    2009-02-01

    A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.

  2. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  4. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist

  5. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  6. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    NASA Astrophysics Data System (ADS)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  7. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  8. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  9. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    PubMed Central

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  10. Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at. %) Ni shape memory alloy fabricated by microwave sintering

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.

    2017-12-01

    Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.

  11. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  12. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  13. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  14. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    NASA Astrophysics Data System (ADS)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  15. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray

    PubMed Central

    Ramirez, Lisa S.; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  16. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  17. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.

    PubMed

    Zhang, Panpan; Huang, Ying; Lu, Xin; Zhang, Siyu; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-07-29

    We demonstrated a facile one-step synthesis strategy for the preparation of a large-scale reduced graphene oxide multilayered film doped with gold nanoparticles (RGO/AuNP film) and applied this film as functional nanomaterials for electrochemistry and Raman detection applications. The related applications of the fabricated RGO/AuNP film in electrochemical nonenzymatic H2O2 biosensor, electrochemical oxygen reduction reaction (ORR), and surface-enhanced Raman scattering (SERS) detection were investigated. Electrochemical data indicate that the H2O2 biosensor fabricated by RGO/AuNP film shows a wide linear range, low limitation of detection, high selectivity, and long-term stability. In addition, it was proved that the created RGO/AuNP film also exhibits excellent ORR electrochemical catalysis performance. The created RGO/AuNP film, when serving as SERS biodetection platform, presents outstanding performances in detecting 4-aminothiophenol with an enhancement factor of approximately 5.6 × 10(5) as well as 2-thiouracil sensing with a low concentration to 1 μM. It is expected that this facile strategy for fabricating large-scale graphene film doped with metallic nanoparticles will spark inspirations in preparing functional nanomaterials and further extend their applications in drug delivery, wastewater purification, and bioenergy.

  18. A versatile technique for fabrication of SiC SPM probes

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Schmidt, Daniel; Barrot, Sheetal; Patel, Bhavin

    2008-03-01

    To date SPM probes have largely been fabricated via methods borrowed from the semiconductor industry for fabricating Micro Electro Mechanical Systems. Although these techniques have enabled SPM to see widespread use, the processes put significant limitations on what structures can be made. We report our progress on fabricating SPM cantilevers composed of Silicon Carbide using polymer molding techniques. A pre-ceramic polymer is molded into the desired probe shape and then converted to SiC via pyrolisys. We will also report on progress in using photo-sterolithography for fabrication of even more complex geometries. In addition to opening up a much larger set of probe structures, the use of SiC leads to improved wear resistance of the resulting probes. Among the potential applications, this method enables the fabrication of low spring constant, high resonant frequency cantilevers via cross sectional geometries not accessible to standard fabrication techniques. Such probes are required for high speed tapping and non-contact imaging.

  19. A Microwell-Printing Fabrication Strategy for the On-Chip Templated Biosynthesis of Protein Microarrays for Surface Plasmon Resonance Imaging

    PubMed Central

    Manuel, Gerald; Lupták, Andrej; Corn, Robert M.

    2017-01-01

    A two-step templated, ribosomal biosynthesis/printing method for the fabrication of protein microarrays for surface plasmon resonance imaging (SPRI) measurements is demonstrated. In the first step, a sixteen component microarray of proteins is created in microwells by cell free on chip protein synthesis; each microwell contains both an in vitro transcription and translation (IVTT) solution and 350 femtomoles of a specific DNA template sequence that together are used to create approximately 40 picomoles of a specific hexahistidine-tagged protein. In the second step, the protein microwell array is used to contact print one or more protein microarrays onto nitrilotriacetic acid (NTA)-functionalized gold thin film SPRI chips for real-time SPRI surface bioaffinity adsorption measurements. Even though each microwell array element only contains approximately 40 picomoles of protein, the concentration is sufficiently high for the efficient bioaffinity adsorption and capture of the approximately 100 femtomoles of hexahistidine-tagged protein required to create each SPRI microarray element. As a first example, the protein biosynthesis process is verified with fluorescence imaging measurements of a microwell array containing His-tagged green fluorescent protein (GFP), yellow fluorescent protein (YFP) and mCherry (RFP), and then the fidelity of SPRI chips printed from this protein microwell array is ascertained by measuring the real-time adsorption of various antibodies specific to these three structurally related proteins. This greatly simplified two-step synthesis/printing fabrication methodology eliminates most of the handling, purification and processing steps normally required in the synthesis of multiple protein probes, and enables the rapid fabrication of SPRI protein microarrays from DNA templates for the study of protein-protein bioaffinity interactions. PMID:28706572

  20. Laser additive manufacturing bulk graphene-copper nanocomposites.

    PubMed

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  1. Laser additive manufacturing bulk graphene-copper nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J.

    2017-11-01

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  2. Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition

    NASA Astrophysics Data System (ADS)

    Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric

    2014-06-01

    The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.

  3. Fabrication High Resolution Metrology Target By Step And Repeat Method

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea

    1983-10-01

    Based on the photolithography process generally used to generate high resolution masks for semiconductor I.C.S, we found a very useful industrial application of laser technology.First, we have generated high resolution metrology targets which are used in industrial measurement laser interferometers as difra.ction gratings. Secondi we have generated these targets using step and repeat machine, with He-Ne laser interferometer controlled state, as a pattern generator, due to suitable computer programming.Actually, high resolution metrology target, means two chromium plates, one of which is called the" rule" the other one the "vernier". In Fig.1 we have the configuration of the rule and the vernier. The rule has a succesion of 3 μM lines generated as a difraction grating on a 4 x 4 inch chromium blank. The vernier has several exposed fields( areas) having 3 - 15 μm lines, fields placed on very precise position on the chromium blank surface. High degree of uniformity, tight CD tolerances, low defect density required by the targets, creates specialised problems during processing. Details of the processing, together with experimental results will be presented. Before we start to enter into process details, we have to point out that the dimensional requirements of the reticle target, are quite similar or perhaps more strict than LSI master casks. These requirements presented in Fig.2.

  4. Additive manufacturing: Toward holistic design

    DOE PAGES

    Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...

    2017-03-18

    Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

  5. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength.

    PubMed

    Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar

    2018-08-01

    The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.

    PubMed

    Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing

    2018-06-14

    Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.

  7. Layerless fabrication with continuous liquid interface production.

    PubMed

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  8. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  9. Off-Line Quality Control In Integrated Circuit Fabrication Using Experimental Design

    NASA Astrophysics Data System (ADS)

    Phadke, M. S.; Kackar, R. N.; Speeney, D. V.; Grieco, M. J.

    1987-04-01

    Off-line quality control is a systematic method of optimizing production processes and product designs. It is widely used in Japan to produce high quality products at low cost. The method was introduced to us by Professor Genichi Taguchi who is a Deming-award winner and a former Director of the Japanese Academy of Quality. In this paper we will i) describe the off-line quality control method, and ii) document our efforts to optimize the process for forming contact windows in 3.5 Aim CMOS circuits fabricated in the Murray Hill Integrated Circuit Design Capability Laboratory. In the fabrication of integrated circuits it is critically important to produce contact windows of size very near the target dimension. Windows which are too small or too large lead to loss of yield. The off-line quality control method has improved both the process quality and productivity. The variance of the window size has been reduced by a factor of four. Also, processing time for window photolithography has been substantially reduced. The key steps of off-line quality control are: i) Identify important manipulatable process factors and their potential working levels. ii) Perform fractional factorial experiments on the process using orthogonal array designs. iii) Analyze the resulting data to determine the optimum operating levels of the factors. Both the process mean and the process variance are considered in this analysis. iv) Conduct an additional experiment to verify that the new factor levels indeed give an improvement.

  10. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  11. DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells.

    PubMed

    Wu, Jionghua; Xu, Xin; Zhao, Yanhong; Shi, Jiangjian; Xu, Yuzhuan; Luo, Yanhong; Li, Dongmei; Wu, Huijue; Meng, Qingbo

    2017-08-16

    DMF as an additive has been employed in FAI/MAI/IPA (FA= CH 2 (NH 2 ) 2 , MA = CH 3 NH 3 , IPA = isopropanol) solution for a two-step multicycle spin-coating method in order to prepare high-quality FA x MA 1-x PbI 2.55 Br 0.45 perovskite films. Further investigation reveals that the existence of DMF in the FAI/MAI/IPA solution can facilitate perovskite conversion, improve the film morphology, and reduce crystal defects, thus enhancing charge-transfer efficiency. By optimization of the DMF amount and spin-coating cycles, compact, pinhole-free perovskite films are obtained. The nucleation mechanisms of perovskite films in our multicycle spin-coating process are suggested; that is, the introduction of DMF in the spin-coating FAI/MAI/IPA solution can lead to the formation of an amorphous phase PbX 2 -AI-DMSO-DMF (X = I, Br; A = FA, MA) instead of intermediate phase (MA) 2 Pb 3 I 8 ·2DMSO. This amorphous phase, similar to that in the one-step method, can help FAI/MAI penetrate into the PbI 2 framework to completely convert into the perovskite. As high as 20.1% power conversion efficiency (PCE) has been achieved with a steady-state PCE of 19.1%. Our work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also help further understand the perovskite-crystallization process.

  12. Fabrication of highly efficient ZnO nanoscintillators

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin

    2015-09-01

    Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.

  13. Step Care treatment for smoking cessation

    PubMed Central

    Ebbert, Jon O.; Little, Melissa A.; Klesges, Robert C.; Bursac, Zoran; Johnson, Karen C.; Thomas, Fridtjof; Vander Weg, Mark W.

    2017-01-01

    Abstract We compared the effectiveness of a ‘stepped care’ approach with increasing treatment intensity (‘Step Care’) to one with repeated treatments (‘Recycle’) among cigarette smokers interested in quitting smoking. Step 1 of the Step Care intervention consisted of a single counseling session, nicotine patch for six weeks and telephonic contact. For smokers not achieving tobacco abstinence 6 months after randomization with Step 1, the intensity of the intervention increased to four counseling sessions, bupropion sustained-release, nine telephone calls and three mailings (Step 2). For those not achieving tobacco abstinence 12 months after randomization, smokers received six behavioral counseling sessions, nicotine patch and nicotine gum, nine telephone calls and three mailings (Step 3). The Recycle participants received one session of health behavior counseling, six weeks of the nicotine patch and a telephone call at each step. 270 cigarette smokers were randomized. At 24 months after randomization using an intention to treat analysis, no statistically significant difference was observed in prolonged smoking abstinence between the Step Care and Recycle condition (16.9% versus 9.4%; adjusted OR = 1.88; 95% CI 0.88–4.01; P =0.10). Additional research is needed to explore whether a stepped care intervention increases long-term smoking abstinence rates compared with repeating the same intervention. PMID:28158558

  14. Utilization of curve offsets in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Haseltalab, Vahid; Yaman, Ulas; Dolen, Melik

    2018-05-01

    Curve offsets are utilized in different fields of engineering and science. Additive manufacturing, which lately becomes an explicit requirement in manufacturing industry, utilizes curve offsets widely. One of the necessities of offsetting is for scaling which is required if there is shrinkage after the fabrication or if the surface quality of the resulting part is unacceptable. Therefore, some post-processing is indispensable. But the major application of curve offsets in additive manufacturing processes is for generating head trajectories. In a point-wise AM process, a correct tool-path in each layer can reduce lots of costs and increase the surface quality of the fabricated parts. In this study, different curve offset generation algorithms are analyzed to show their capabilities and disadvantages through some test cases and improvements on their drawbacks are suggested.

  15. Synthesis of nano silver on cellulosic denim fabric producing yellow colored garment with antibacterial properties.

    PubMed

    Maryan, Ali Sadeghian; Montazer, Majid; Harifi, Tina

    2015-01-22

    In this study, an aged-look denim fabric with antibacterial property was prepared in one single step process. For this purpose, the simultaneous antibacterial finishing and discoloration of denim fabric was carried out through reduction of indigo dye and silver nitrate by glucose in alkaline media using a conventional garment washing machine. The uniform distribution of silver nanoparticles on the fiber surface was confirmed by scanning electron microscope and energy dispersive X-ray spectroscopy. The treated fabrics were also characterized by X-ray diffraction (XRD) and Raman spectroscopy. Due to the color changes during the process, the color coordinates of the treated samples were also measured. Findings suggest the potential of the proposed method in producing old-look denim fabric with desirable yellow appearance and reasonable antibacterial activity against Staphylococcus aureus and Escherichia coli with low toxicity for human. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Step-reduced synthesis of starch-silver nanoparticles.

    PubMed

    Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul

    2016-05-01

    In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  18. Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.

    2017-05-01

    A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject’s physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.

  19. Fabrication and Operation of Paper-Based Analytical Devices

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Fan, Z. Hugh

    2016-06-01

    This review focuses on the fabrication techniques and operational components of microfluidic paper-based analytical devices (μPADs). Being low-cost, user-friendly, fast, and simple, μPADs have seen explosive growth in the literature in the last decade. Many different materials and technologies have been employed to fabricate μPADs for various applications, including those that employ patterning, the creation of physical boundaries, and three-dimensional structures. In addition to fabrication techniques, flow control and other operational components in μPADs are of great interest. These components enable μPADs to control flow rates, direct flow paths via valves, sequentially deliver reagents automatically, and display test results, all of which will make μPADs more suitable for point-of-care applications.

  20. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process

    PubMed Central

    Deng, Xiaolong; Yu Nikiforov, Anton; Coenye, Tom; Cools, Pieter; Aziz, Gaelle; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2015-01-01

    An antimicrobial nano-silver non-woven polyethylene terephthalate (PET) fabric has been prepared in a three step process. The fabrics were first pretreated by depositing a layer of organosilicon thin film using an atmospheric pressure plasma system, then silver nano-particles (AgNPs) were incorporated into the fabrics by a dipping-dry process, and finally the nano-particles were covered by a second organosilicon layer of 10-50 nm, which acts as a barrier layer. Different surface characterization techniques like SEM and XPS have been implemented to study the morphology and the chemical composition of the nano-silver fabrics. Based on these techniques, a uniform immobilization of AgNPs in the PET matrix has been observed. The antimicrobial activity of the treated fabrics has also been tested using P. aeruginosa, S. aureus and C. albicans. It reveals that the thickness of the barrier layer has a strong effect on the bacterial reduction of the fabrics. The durability and stability of the AgNPs on the fabrics has also been investigated in a washing process. By doing so, it is confirmed that the barrier layer can effectively prevent the release of AgNPs and that the thickness of the barrier layer is an important parameter to control the silver ions release. PMID:25951432