Science.gov

Sample records for additional fissile material

  1. Fissile material detector

    DOEpatents

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  2. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive)...

  3. Technologies for Fissile Material Detection and Prevention of Fissile Material Introduction into International Shipping

    SciTech Connect

    Richardson, J

    2003-07-01

    Prevention of the introduction of fissile materials into international shipping, and hence into a given country, is a complex problem. Some pieces of the solution to the puzzle are conceptually well defined, but lack definition of a technical pathway and/or operational implementation. Other elements are a little more fuzzy, and some elements are probably undefined at this point in time. This paper reviews the status of the more well-defined elements, and suggests needed additional measures to enhance the probability that fissile materials are not illicitly introduced into distant countries. International commerce proceeds through a number of steps from point of origin to final destination. Each step offers the possibility of a well-defined choke point to monitor and interdict the illicit shipment of fissile materials. However, because there are so many potential points and venues of entry into a large country such as the United States (e.g., air cargo, shipping containers, truck and rail transport, private vehicles, boats and planes, commercial passenger travel), it behooves the world to ensure that fissile material does not illicitly leave its point of origin.

  4. Fissile material production potential in South Asia

    SciTech Connect

    Nayyar, A.H.; Toor, A.H.; Mian, Z.

    1997-01-01

    The cases of India and Pakistan show how civilian nuclear activities could potentially contribute significantly to the production of weapons-grade fissile materials. The paper estimates the amount of weapons-grade plutonium that could have been produced from unsafeguarded power reactors in India if these reactors were operated deliberately for this purpose, and the rate at which Pakistan could accumulate weapons-grade uranium if it used its stockpile of low-enriched uranium as feed material to its enrichment facilities. These estimates are not judgments of what these countries have actually done or intend to do, but are forwarded to call attention to an issue that will have to be addressed under a fissile material production cutoff in South Asia and elsewhere. The prospect of a Fissile Material Cut-off convention raises important questions about the accumulated fissile material stocks in countries which are known to have nuclear weapons capability. We look here at the cases of India and Pakistan. These two countries have followed different routes to produce fissile material: India has reprocessed spent fuel from nuclear reactors to extract plutonium, while Pakistan has relied on uranium enrichment. While there are estimates available of weapons-grade plutonium (WGPu) production in India, they have assumed that the Indian nuclear power program has made no contribution to such production. Similarly, estimates for uranium enrichment in Pakistan have focused on production of highly enriched uranium (HEU) and not examined the stockpiling of low enriched uranium (LEU) and the time it would take to turn such stockpiled material into weapons-grade material. 24 refs., 5 tabs.

  5. Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes

    SciTech Connect

    Forsberg, C.W.

    1997-03-01

    A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

  6. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  7. THE FISSILE MATERIAL TRANSPARENCY TECHNOLOGY DEMONSTRATION (FMTTD)

    SciTech Connect

    L. R. AVENS; J. E. DOYLE; M. F. MULLEN

    2001-06-01

    The United States Department of Defense, Defense Threat Reduction Agency Cooperative Threat Reduction program is supporting the construction of a fissile material storage facility at Mayak in the Russian Federation. Up to 34 tons of weapon-grade plutonium will be stored in the facility to await disposition. In order to meet arms control and nonproliferation objectives, the U.S. Congress has requested assurances that the nuclear material stored at the Mayak facility is derived from dismantled nuclear weapons. The usual approach to identify the origin or state of radioactive materials is to measure the intensity and energy of neutron and gamma radiation emitted. However, the Russian Federation considers such details as isotopic composition and mass to be classified. The solution arrived at by a DOE multilaboratory team is to place the radioactive specimen, the gamma and neutron counters, and all the computational equipment behind an information barrier. In the Fissile Materials Transparency Technology Demonstration (FMTD), this equipment was configured and programmed to measure the following six attributes: isotopic ratio, threshold mass, absence of oxide, presence of plutonium, age, and symmetry. On August 16, 2000, at Los Alamos National Laboratory, a delegation of Russian officials observed the successful demonstration of this new technology (called an Attribute Measurement System with Information Barrier, or AMS/IB). The scientists were able to demonstrate without releasing classified information that the nuclear material sample being tested (a nuclear weapon pit) had the declared weapon-grade plutonium characteristics. Once fully developed, AMS/IB technology will protect sensitive information while providing the United States increased confidence that the mandated Russian fissile materials have been stored. Attribute measurement systems can play a role in a number of U.S.-Russian nuclear security regimes such as the Trilateral Initiative, the Plutonium

  8. Recovery of fissile materials from nuclear wastes

    SciTech Connect

    Forsberg, Charles W.

    1997-12-01

    A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium, and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  9. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  10. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed in § 173.415, limited to the Class 7 (radioactive) materials specified in 10 CFR part 71, subpart... fissile material packages in 10 CFR part 71; or (iii) Any Type AF, Type B(U)F, or Type B(M)F packaging... of fissile materials in 10 CFR part 71, and is approved by the U.S. Nuclear Regulatory Commission...

  11. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed in § 173.415, limited to the Class 7 (radioactive) materials specified in 10 CFR part 71, subpart... fissile material packages in 10 CFR part 71; or (iii) Any Type AF, Type B(U)F, or Type B(M)F packaging... of fissile materials in 10 CFR part 71, and is approved by the U.S. Nuclear Regulatory Commission...

  12. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... listed in § 173.415, limited to the Class 7 (radioactive) materials specified in 10 CFR part 71, subpart... fissile material packages in 10 CFR part 71; or (iii) Any Type AF, Type B(U)F, or Type B(M)F packaging... of fissile materials in 10 CFR part 71, and is approved by the U.S. Nuclear Regulatory Commission...

  13. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... listed in § 173.415, limited to the Class 7 (radioactive) materials specified in 10 CFR part 71, subpart... fissile material packages in 10 CFR part 71; or (iii) Any Type AF, Type B(U)F, or Type B(M)F packaging... meets the standards for packaging of fissile materials in 10 CFR part 71, and is approved by the...

  14. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    SciTech Connect

    Gray, L.W.

    1996-01-08

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  15. Delayed gamma technique for fissile material assay

    SciTech Connect

    Mozin, Vladimir; Tobin, Stephen; Vujie, Jasmina; Hunt, Alan

    2010-01-01

    Research sponsored by the Next Generation Safeguards Initiative are investigating several non-destructive assay techniques for the quantification of fissile plutonium mass in spent nuclear fuel assemblies. AppHcation of the delayed gamma signatures is investigated in this context. The objective of the research is to assess whether the delayed gamma assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards. This effort includes theoretical and experimental components for the optimal combination of interrogation parameters. A new modeling algorithm offering a high level of detail was developed specifically for this purpose and was validated in series of benchmark experiments. Preliminary modeling of the delayed gamma response from spent fuel assemblies was accomplished offering a future direction for the design process.

  16. Disposition of surplus fissile materials via immobilization

    SciTech Connect

    Gray, L.W.; Kan, T.; Sutcliffe, W.G.; McKibben, J.M.; Danker, W.

    1995-07-23

    In the Cold War aftermath, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, the USDOE has undertaken a multifaceted study to select options for storage and disposition of surplus plutonium (Pu). One disposition alternative being considered is immobilization. Immobilization is a process in which surplus Pu would be embedded in a suitable material to produce an appropriate form for ultimate disposal. To arrive at an appropriate form, we first reviewed published information on HLW immobilization technologies to identify forms to be prescreened. Surviving forms were screened using multi-attribute utility analysis to determine promising technologies for Pu immobilization. We further evaluated the most promising immobilization families to identify and seek solutions for chemical, chemical engineering, environmental, safety, and health problems; these problems remain to be solved before we can make technical decisions about the viability of using the forms for long-term disposition of Pu. All data, analyses, and reports are being provided to the DOE Office of Fissile Materials Disposition to support the Record of Decision that is anticipated in Summer of 1996.

  17. Scope and verification of a Fissile Material (Cutoff) Treaty

    SciTech Connect

    Hippel, Frank N. von

    2014-05-09

    A Fissile Material Cutoff Treaty (FMCT) would ban the production of fissile material - in practice highly-enriched uranium and separated plutonium - for weapons. It has been supported by strong majorities in the United Nations. After it comes into force, newly produced fissile materials could only be produced under international - most likely International Atomic Energy Agency - monitoring. Many non-weapon states argue that the treaty should also place under safeguards pre-existing stocks of fissile material in civilian use or declared excess for weapons so as to make nuclear-weapons reductions irreversible. This paper discusses the scope of the FMCT, the ability to detect clandestine production and verification challenges in the nuclear-weapons states.

  18. Scope and verification of a Fissile Material (Cutoff) Treaty

    NASA Astrophysics Data System (ADS)

    von Hippel, Frank N.

    2014-05-01

    A Fissile Material Cutoff Treaty (FMCT) would ban the production of fissile material - in practice highly-enriched uranium and separated plutonium - for weapons. It has been supported by strong majorities in the United Nations. After it comes into force, newly produced fissile materials could only be produced under international - most likely International Atomic Energy Agency - monitoring. Many non-weapon states argue that the treaty should also place under safeguards pre-existing stocks of fissile material in civilian use or declared excess for weapons so as to make nuclear-weapons reductions irreversible. This paper discusses the scope of the FMCT, the ability to detect clandestine production and verification challenges in the nuclear-weapons states.

  19. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Fissile materials-exceptions. 173.453 Section 173.453 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7...

  20. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Authorized fissile materials packages. 173.417 Section 173.417 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND...

  1. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  2. Leo Szilard Lectureship Award: Fissile Materials: A Global Threat

    NASA Astrophysics Data System (ADS)

    Rajaraman, Ramamurti

    2014-03-01

    The world has built up a huge glut of Fissile Materials, posing a potentially devastating threat. While specialists in the field have been aware of this danger for a long time, it was only after President Obama organized the Nuclear Security Summit in 2010 that the attention of the world's political leadership was drawn to it. We will present here an introductory overview of Fissile materials - their definition, significance and their production facilities and stocks in different parts of the world. We will also mention some of the efforts being made to verifiably cap and reduce their stocks as well as the technical and political complications involved in the process.

  3. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... must be contained in a Type A package. The Type A package must also meet the DOT requirements of 49 CFR... 10 Energy 2 2013-01-01 2013-01-01 false General license: Fissile material. 71.22 Section 71.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  4. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must be contained in a Type A package. The Type A package must also meet the DOT requirements of 49 CFR... 10 Energy 2 2011-01-01 2011-01-01 false General license: Fissile material. 71.22 Section 71.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  5. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must be contained in a Type A package. The Type A package must also meet the DOT requirements of 49 CFR... 10 Energy 2 2014-01-01 2014-01-01 false General license: Fissile material. 71.22 Section 71.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  6. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must be contained in a Type A package. The Type A package must also meet the DOT requirements of 49 CFR... 10 Energy 2 2010-01-01 2010-01-01 false General license: Fissile material. 71.22 Section 71.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  7. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must be contained in a Type A package. The Type A package must also meet the DOT requirements of 49 CFR... 10 Energy 2 2012-01-01 2012-01-01 false General license: Fissile material. 71.22 Section 71.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE...

  8. Recent developments in fissile material exemptions for shipping packages

    SciTech Connect

    Sheaffer, M. K., Liu, Y.Y., Wangler, M.E., Keeton, S.C., Fischer, L.E

    1996-10-15

    This paper discusses the regulatory exemptions for shipping packages that contain limited amounts of fissile material and concerns that have arisen over the adequacy of these regulations. The results of an ongoing review of these exemptions by the various regulatory agencies will be presented in the session.

  9. Material control and accountability excess fissile material disposition

    SciTech Connect

    Snowden, S.A.

    1995-12-31

    The surplus fissile materials control and disposition project will present new concerns for safeguarding the surplus special nuclear material. Current methods of material control and accountability as well as physical security will be challenged. The challenges for safeguards will occur in whatever immobilization medium is used; i.e., ceramic, glass or Deep Borehole. If DOE Order 5633.3B is the controlling MC and A order, verification/confirmation measurements and the acceptance of these measurements must be done on large amounts of material in a very short time frame. Furthermore, if the excess material is to be spiked with fission product like 137 Cs, MC and A measurements after spiking need to be well thought out. A methodology and an agreement of what constitutes a valid measurement may need to be agreed to before processing starts. Safeguards concerns relating to immobilization must be considered in parallel with other concerns like criticality, plant design, and decommissioning. A project of this magnitude produces challenges for Material Control and Accountability, as well as physical security.

  10. Controlling Weapons-Grade Fissile Material

    ERIC Educational Resources Information Center

    Rotblat, J.

    1977-01-01

    Discusses the problems of controlling weapons-grade fissionable material. Projections of the growth of fission nuclear reactors indicates sufficient materials will be available to construct 300,000 atomic bombs each containing 10 kilograms of plutonium by 1990. (SL)

  11. DISSOLUTION OF FISSILE MATERIALS CONTAINING TANTALUM METAL

    SciTech Connect

    Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

    2007-05-29

    The dissolution of composite materials containing plutonium (Pu) and tantalum (Ta) metals is currently performed in Phase I of the HB-Line facility. The conditions for the present flowsheet are the dissolution of 500 g of Pu metal in the 15 L dissolver using a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) at 95 C for 4-6 h.[1] The Ta metal, which is essentially insoluble in HNO{sub 3}/fluoride solutions, is rinsed with process water to remove residual acid, and then burned to destroy classified information. During the initial dissolution campaign, the total mass of Pu and Ta in the dissolver charge was limited to nominally 300 g. The reduced amount of Pu in the dissolver charge coupled with significant evaporation of solution during processing of several dissolver charges resulted in the precipitation of a fluoride salt contain Pu. Dissolution of the salt required the addition of aluminum nitrate (Al(NO{sub 3}){sub 3}) and a subsequent undesired 4 h heating cycle. As a result of this issue, HB-Line Engineering requested the Savannah River National Laboratory (SRNL) to optimize the dissolution flowsheet to reduce the cycle time, reduce the risk of precipitating solids, and obtain hydrogen (H{sub 2}) generation data at lower fluoride concentrations.[2] Using samples of the Pu/Ta composite material, we performed three experiments to demonstrate the dissolution of the Pu metal using HNO{sub 3} solutions containing 0.15 and 0.175 M KF. When 0.15 M KF was used in the dissolving solution, 95.5% of the Pu in the sample dissolved in approximately 6 h. The undissolved material included a small amount of Pu metal and plutonium oxide (PuO{sub 2}) solids. Complete dissolution of the metal would have likely occurred if the dissolution time had been extended. This assumption is based on the steady increase in the Pu concentration observed during the last several hours of the experiment. We attribute the formation of PuO{sub 2} to the complexation

  12. Proliferation resistance criteria for fissile material disposition

    SciTech Connect

    Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A.; Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R.; Strait, R.S.

    1995-04-01

    The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  13. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Exemption from classification as fissile material. 71.15 Section 71.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Exemptions § 71.15 Exemption from classification as fissile material. Fissile material meeting the requirements of at least one of...

  14. Fissile material disposition and proliferation risk

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The proliferation risk of a facility is dependent on the material attractiveness, level of safeguards, and physical protection applied to the material in conjunction with an assessment of the impact of the socioeconomic circumstances and threat environment. Proliferation risk is a complementary extension of proliferation resistance. The authors believe a better determination of nuclear material proliferation can be achieved by establishing the proliferation risk for facilities that contain nuclear material. Developing a method that incorporates the socioeconomic circumstances and threat environment inherent to each country enables a global proliferation assessment. In order to effectively reduce the nuclear danger, a broadly based set of criteria is needed that provides the capability to relatively assess a wide range of disposition options/facilities in different countries and still ensure a global decrease in proliferation risk for plutonium.

  15. Photo-fission Methods to detect Fissile Materials

    NASA Astrophysics Data System (ADS)

    Johnson, Micah S.; Glenn, A.; Hartouni, E. P.; Sheets, S. A.; Soltz, R. A.; Danagoulian, A.; Korbly, S. E.; Ledoux, R. J.

    2014-09-01

    A mission objective of various national security agencies is to develop systems that can detect fissile material. There are a myriad of researchers at national laboratories, academic institutions, and industry who are investigating various methods to detect fissile materials. These methods are broken down into active or passive detection systems. Examples of active systems include neutron or photon sources to stimulate and/or scatter from materials. Our focus has been to use photons near the fission barrier of various actinides to excite fission modes and measure the correlated and uncorrelated neutrons. We will present and discuss results from recent measurements. We will present the overall results of our effort and discuss some of the open questions. A mission objective of various national security agencies is to develop systems that can detect fissile material. There are a myriad of researchers at national laboratories, academic institutions, and industry who are investigating various methods to detect fissile materials. These methods are broken down into active or passive detection systems. Examples of active systems include neutron or photon sources to stimulate and/or scatter from materials. Our focus has been to use photons near the fission barrier of various actinides to excite fission modes and measure the correlated and uncorrelated neutrons. We will present and discuss results from recent measurements. We will present the overall results of our effort and discuss some of the open questions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Modeling of fissile material diversion in solvent extraction cascades

    SciTech Connect

    Schneider, A.; Carlson, R.W.

    1980-05-22

    Changes were calculated for measurable parameters of a solvent extraction section of a reprocessing plant resulting from postulated fissile material diversion actions. The computer program SEPHIS was modified to calculate the time-dependent concentrations of uranium and plutonium in each stage of a cascade. The calculation of the inventories of uranium and plutonium in each contactor was also included. The concentration and inventory histories were computed for a group of four sequential columns during start-up and for postulated diversion conditions within this group of columns. Monitoring of column exit streams or of integrated column inventories for fissile materials could provide qualitative indications of attempted diversions. However, the time delays and resulting changes are complex and do not correlate quantitatively with the magnitude of the initiating event.

  17. Shuffler instruments for the nondestructive assay of fissile materials

    SciTech Connect

    Rinard, P.M.

    1991-05-01

    A shuffler is a nondestructive assay instrument used to determine the fissile content of materials. It places an isotopic source of neutrons near the material to induce fissions, withdraws the source, and counts the delayed neutrons. The source is shuffled until a sufficient number of delayed neutrons have been counted. The shuffler technique is generally applied to difficult assay cases. The amount of material present may be very small (a few milligrams), and thus it does not spontaneously emit neutrons of consequence; the amount of material is also below an active well counter's level of sensitivity. On the other hand, the fissile amount may be fairly large, but the rate of spontaneously emitted neutrons may still be low (so a passive neutron count will not work) or the highest assay precision may be desired (favoring a shuffler over an active well counter) even if the material is inhomogeneous (making it difficult to interrogate with thermal neutrons). In all these cases, gamma-ray backgrounds, self- shielding, or matrix effects can make gamma-ray assays impractical. Materials ranging from highly radioactive spent-fuel assemblies to low-level waste drums have been assayed with shufflers, as have leached hulls, various process materials, scrap, and waste. This report presents a theoretical background for shufflers and describes techniques for practical applications. Procedures for assaying mixtures of fissile isotopes, inhomogeneous materials, and flowing liquids are discussed. It is shown how the precision and limits of detection of a shuffler can be calculated for a given neutron background rate. A section on data analysis gives a stepwise procedure for converting the measured counts into an assay value, including random, systematic, and total uncertainties. 31 refs.

  18. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, David M.; Lindquist, Lloyd O.

    1985-01-01

    Given are a method and apparatus for measuring nondestructively and non-invasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. No external neutron-emitting interrogation source or fissile material is used and no scanning is required, although if a profile is desired scanning can be used. As in active assays, here both reactivity and content of fissionable material can be measured. The assay is accomplished by altering the return flux of neutrons into the fuel assembly. The return flux is altered by changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  19. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-10-03

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  20. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  1. Warheads and Fissile Materials:Declarations and Counting

    SciTech Connect

    Sutcliffe, W.G.

    1991-11-05

    This paper reviews some of the issues about verifying the dismantlement of nuclear warheads and controlling nuclear materials in the context of arms control objectives. It is asserted that information about the stockpiles of nuclear warheads and materials is necessary to analyze the impacts and verification requirements of arms control measures including warhead dismantlement and fissile material controls. It is proposed that the US and the Soviets engage in a series of declarations about their stockpiles of nuclear weapons and materials. It is also asserted that currently it is more important to verify that warheads are retired to safe, secure facilities than to verify their dismantlement. It is proposed that production of new or rebuilt warheads be limited to less than the number retired each year. Verifying the number of new and rebuilt warheads deployed and the number retired avoids many of the difficulties in verifying dismantlement and material controls.

  2. Fissile Materials Detection via Neutron Differential Die-Away Technique

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Bochkarev, O. V.; Sklyarov, S. V.

    2014-02-01

    This work is devoted to the differential die-away technique that is widely used for active detection of fissile materials via pulsed neutron generators. The technique allows direct detection of milligram quantities of uranium-235 and plutonium-239 in objects with volumes up to several cubic meters. Our group has demonstrated this technique, creating a special installation based on the commercially produced ING-07T pulsed neutron generator. The installation includes eight proportional 3He-counters mounted inside a polyethylene moderator with a cadmium filter, as well as a polyethylene chamber into which a 70-liter container is loaded for inspection. Preliminary testing showed that the minimum detectable mass of unshielded uranium-235 is ˜3 mg, using a 5.108 n/s neutron yield and 8 min measurement time. When the container is filled with neutron absorbing materials, e.g., iron, the minimum detectable mass increases to ˜30 mg. Use of borated screens further increases the minimum mass that can be detected. The tested installation and/or its modifications can be used for control and detection of fissile materials in various applications from luggage inspection to control containers with nuclear fuel cycle radioactive wastes.

  3. Nuclear archaeology: Verifying declarations of fissile-material production

    SciTech Connect

    Fetter, S. )

    1993-01-01

    Controlling the production of fissile material is an essential element of nonproliferation policy. Similarly, accounting for the past production of fissile material should be an important component of nuclear disarmament. This paper describes two promising techniques that make use of physical evidence at reactors and enrichment facilities to verify the past production of plutonium and highly enriched uranium. In the first technique, the concentrations of long-lived radionuclides in permanent components of the reactor core are used to estimate the neutron fluence in various regions of the reactor, and thereby verify declarations of plutonium production in the reactor. In the second technique, the ratio of the concentration of U-235 to that of U-234 in the tails is used to determine whether a given container of tails was used in the production of low- enriched uranium, which is suitable for reactor fuel, or highly enriched uranium, which can be used in nuclear weapons. Both techniques belong to the new field of [open quotes]nuclear archaeology,[close quotes] in which the authors attempt to document past nuclear weapons activities and thereby lay a firm foundation for verifiable nuclear disarmament. 11 refs., 1 fig., 3 tabs.

  4. Canyon transfer neutron absorber to fissile material ratio analysis. Revision 1

    SciTech Connect

    Clemmons, J.S.

    1994-03-04

    Waste tank fissile material and non-fissile material estimates are used to evaluate criticality safety for the existing sludge inventory and batches of sludge sent to Extended Sludge Processing (ESP). This report documents the weight ratios of several non-fissile waste constituents to fissile waste constituents from canyon reprocessing waste streams. Weight ratios of Fe, Mn, Al, Mi, and U-238 to fissile material are calculated from monthly loss estimates from the F and H Canyon Low Heat Waste (LHW) and High Heat Waste (HHW) streams. The monthly weight ratios for Fe, Mn and U-238 are then compared to calculated minimum safe weight ratios. Documented minimum safe weight ratios for Al and Ni to fissile material are currently not available. Total mass data for the subject sludge constituents is provided along with scatter plots of the monthly weight ratios for each waste stream.

  5. Fissile Material Detection by Differential Die Away Analysis

    NASA Astrophysics Data System (ADS)

    Shaw, Timothy J.; Strellis, Dan A.; Stevenson, John; Keeley, Doug; Gozani, Tsahi

    2009-03-01

    Detection and interdiction of Special Nuclear Material (SNM) in transportation is one of the most critical security issues facing the United States. Active inspection by inducing fission in fissile nuclear materials, such as 235U and 239Pu, provides several strong and unique signatures that make the detection of concealed nuclear materials technically very feasible. Differential Die-Away Analysis (DDAA) is a very efficient, active neutron-based technique that uses the abundant prompt fission neutrons signature. It benefits from high penetrability of the probing and signature neutrons, high fission cross section, high detection sensitivity, ease of deployment and relatively low cost. DDAA can use any neutron source or energy as long as it can be suitably pulsed. The neutron generator produces pulses of neutrons that are directed into a cargo. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons create a new source of (fission) neutrons with a distinctive time profile. An efficient laboratory system was designed, fabricated and tested under a US Government DHS DNDO contract. It was shown that a small uranium sample can be detected in a large variety of cargo types and configurations within practical measurement times using commercial compact (d,T) sources. Using stronger sources and wider detector distribution will further cut inspection time. The system can validate or clear alarms from a primary inspection system such as an automated x-ray system.

  6. Non-proliferation, safeguards, and security for the fissile materials disposition program immobilization alternatives

    SciTech Connect

    Duggan, R.A.; Jaeger, C.D.; Tolk, K.M.; Moore, L.R.

    1996-05-01

    The Department of Energy is analyzing long-term storage and disposition alternatives for surplus weapons-usable fissile materials. A number of different disposition alternatives are being considered. These include facilities for storage, conversion and stabilization of fissile materials, immobilization in glass or ceramic material, fabrication of fissile material into mixed oxide (MOX) fuel for reactors, use of reactor based technologies to convert material into spent fuel, and disposal of fissile material using geologic alternatives. This paper will focus on how the objectives of reducing security and proliferation risks are being considered, and the possible facility impacts. Some of the areas discussed in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threats, and (4) potential proliferation, safeguards, and security issues and impacts on the facilities. Issues applicable to all of the possible disposition alternatives will be discussed in this paper. However, particular attention is given to the plutonium immobilization alternatives.

  7. The Future of Nuclear Archeology: Reducing Legacy Risks of Weapons Fissile Material

    SciTech Connect

    Wood, Thomas W.; Reid, Bruce D.; Toomey, Christopher; Krishnaswami, Kannan; Burns, Kimberly A.; Casazza, Lawrence O.; Daly, Don S.; Duckworth, Leesa L.

    2014-02-18

    This report describes the value proposition for a "nuclear archeological" technical capability and applications program, targeted at resolving uncertainties regarding fissile materials production and use. At its heart, this proposition is that we can never be sure that all fissile material is adequately secure without a clear idea of what "all" means, and that uncertainty in this matter carries risk. We argue that this proposition is as valid today, under emerging state and possible non-state nuclear threats, as it was in an immediate post-Cold-War context, and describe how nuclear archeological methods can be used to verify fissile materials declarations, or estimate and characterize historical fissile materials production independently of declarations.

  8. Update to the Fissile Materials Disposition program SST/SGT transportation estimation

    SciTech Connect

    John Didlake

    1999-11-15

    This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

  9. Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

    2008-11-25

    The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

  10. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  11. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  12. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uranium hexafluoride; and (iii) withstand the test specified in 10 CFR 71.73(c)(4) without rupture of the... 49 Transportation 2 2012-10-01 2012-10-01 false Uranium hexafluoride (fissile, fissile excepted....420 Uranium hexafluoride (fissile, fissile excepted and non-fissile). (a) In addition to any...

  13. Proliferation resistance criteria for fissile material disposition issues

    SciTech Connect

    Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A.; Tolk, K.M.; Mangan, D.L.; Moore, L.

    1995-09-01

    The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  14. Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique

    SciTech Connect

    Menlove, Howard O; Tobin, Stephen J; Menlove, S H

    2008-01-01

    This paper presents a new technique for the measurement of fissile and fertile nuclear materials in spent fuel and plutonium laden materials such as mixed oxide (MOX) fuel. The technique, called differential die-away self-interrogation, is similar to traditional differential die-away analysis, but it does not require a pulsed neutron generator or pulsed beam accelerator, and it can measure the fertile mass in addition to the fissile mass. The new method uses the spontaneous fission neutrons from {sup 244}Cm in spent fuel and {sup 240}Pu effective neutrons in MOX as the 'pulsed' neutron source with an average of {approx} 2.7 neutrons per pulse. The time correlated neutrons from the spontaneous fission and the subsequent induced fissions are analyzed as a function of time to determine the spontaneous fission rate, the induced fast-neutron fissions, and the induced thermal-neutron fissions. The fissile mass is determined from the induced thermal-neutron fissions that are produced by reflected thermal neutrons that originated from the spontaneous fission reaction. The sensitivity of the fissile mass measurement is enhanced by the use of two measurements, with and without a cadmium liner between the sample and the hydrogenous moderator. The fertile mass is determined from the multiplicity analysis of the neutrons detected soon after the initial triggering neutron is detected. The method obtains good sensitivity by the optimal design of two different neutron die-away regions: a short die-away for the neutron detector region and a longer die-away for the sample interrogation region.

  15. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    SciTech Connect

    Forsberg, C.W.; Ferrada, J.J.

    1996-03-19

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials.

  16. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  17. Fissile material smuggling: German politics, hype and reality

    SciTech Connect

    Mueller, H.

    1994-12-01

    The spy novel nightmare scenarios of nuclear smuggling have become reality, and much of the recent news has focused on Germany. But these events must be put in perspective, and a number of apparent {open_quotes}facts{close_quotes} must be examined more carefully. For example, while authorities in Germany have seized weapons-usable material in various incidents that have captured international attention, none of this material is from nuclear weapons or weapons production facilities. Moreover, despite the fact that the number of criminal cases has risen, the quantity of {open_quotes}loose{close_quotes} weapons-usable material is still not significant. Nor are there any indications so far that powerful criminal organizations or buyers from nuclear-ambitious {open_quotes}rogue{close_quotes} states are involved. Rather, the incidents so far involve individuals or small groups of criminals who found that their {open_quotes}buyers{close_quotes} were, more often than not, German security agents working {open_quotes}sting{close_quotes} operations to trap the smugglers and black marketeers or journalists working on a {open_quotes}big story.{close_quotes}

  18. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  19. Assessment and recommendations for fissile-material packaging exemptions and general licenses within 10 CFR Part 71

    SciTech Connect

    Parks, C.V.; Hopper, C.M.; Lichtenwalter, J.L.

    1998-07-01

    This report provides a technical and regulatory assessment of the fissile material general licenses and fissile material exemptions within Title 10 of the Code of Federal Regulations Part 71. The assessment included literature studies and calculational analyses to evaluate the technical criteria; review of current industry practice and concerns; and a detailed evaluation of the regulatory text for clarity, consistency and relevance. Recommendations for potential consideration by the Nuclear Regulatory Commission staff are provided. The recommendations call for a simplification and consolidation of the general licenses and a change in the technical criteria for the first fissile material exemptions.

  20. LANL's Role in the U.S. Fissile Material Disposition Program

    SciTech Connect

    Whitworth, Julia; Kay, Virginia

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  1. Fissile material holdup measurement systems: an historical review of hardware and software

    SciTech Connect

    Chapman, Jeffrey Allen; Smith, Steven E; Rowe, Nathan C

    2015-01-01

    The measurement of fissile material holdup is accomplished by passively measuring the energy-dependent photon flux and/or passive neutron flux emitted from the fissile material deposited within an engineered process system. Both measurement modalities--photon and neutron--require the implementation of portable, battery-operated systems that are transported, by hand, from one measurement location to another. Because of this portability requirement, gamma-ray spectrometers are typically limited to inorganic scintillators, coupled to photomultiplier tubes, a small multi-channel analyzer, and a handheld computer for data logging. For neutron detection, polyethylene-moderated, cadmium-back-shielded He-3 thermal neutron detectors are used, coupled to nuclear electronics for supplying high voltage to the detector, and amplifying the signal chain to the scaler for counting. Holdup measurement methods, including the concept of Generalized Geometry Holdup (GGH), are well presented by T. Douglas Reilly in LA-UR-07-5149 and P. Russo in LA-14206, yet both publications leave much of the evolutionary hardware and software to the imagination of the reader. This paper presents an historical review of systems that have been developed and implemented since the mid-1980s for the nondestructive assay of fissile material, in situ. Specifications for the next-generation holdup measurements systems are conjectured.

  2. Current status and recommended future studies of underground supercriticality of fissile material

    SciTech Connect

    Bowman, C.D.

    1996-06-01

    More than a year has passed since we released our original report pointing out the possibility of natural or induced rearrangement of fissile material underground into a critical mass, the possibility of positive feedback in underground configurations, the confinement of the rock to produce significant yield, and the possibility of venting or explosion. The nuclear weapons and repository storage groups at both Los Alamos and Livermore have been critical of our work while others have defended our calculations on wet and dry criticality. The conditions we identified for positive and negative feedback are no longer contested. The role of confinement of the rock in enhancing the yield from the explosion is still unsettled, and that is addressed later in this paper. The likelihood of confinement, venting, or explosive dispersion also remains unsettled and that is addressed here as well. Some critics of our work have tried to show that the probability of reconfiguration by natural processes is very small. They argue further that emplacement can be done in such a way as to make the probability even smaller. Of course these additional efforts will raise the cost of waste emplacement and the question arises as to how much is enough. The answer to this question seems to not be an easy one.

  3. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  4. FATE OF FISSILE MATERIAL BOUND TO MONOSODIUM TITANATE DURING COOPER CATALYZED PEROXIDE OXIDATION OF TANK 48H WASTE

    SciTech Connect

    Taylor-Pashow, K.

    2012-08-09

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H{sub 2}O{sub 2} with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of {approx}34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to

  5. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal.

    SciTech Connect

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-11-16

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L{sub III} edge and XANES from the cerium L{sub II} edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO{sub 2}, with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations.

  6. Separation and Quantification of Chemically Diverse Analytes in Neutron Irradiated Fissile Materials

    SciTech Connect

    Douglas, Matthew; Friese, Judah I.; Greenwood, Lawrence R.; Farmer, Orville T.; Thomas, Linda MP; Maiti, Tapas C.; Finn, Erin C.; Garofoli, Stephanie J.; Gassman, Paul L.; Huff, Morgan M.; Schulte, Shannon M.; Smith, Steven C.; Thomas, Kathie K.; Bachelor, Paula P.

    2009-10-01

    Quantitative measurement of fission and activation products resulting from neutron irradiation of fissile materials is of interest for applications in environmental monitoring, nuclear waste management, and national security. To overcome mass and spectral interferences, and the relative small quantities of some target analytes, an extensive series of chemical separations is necessary. Based on established separations processes involving co-precipitation, solvent extraction, and ion-exchange and extraction chromatography, we have been evaluating and optimizing a proposed sequence of separation steps to allow for the timely quantification of analytes of interest. For simplicity, much of the chemical separation development work has been performed using stable elements as surrogates for the radioactive material. We have recently evaluated the optimized procedures using an irradiated sample to examine the adequacy of separations for measurement of desired analytes by gamma spectrometry. Here we present the results of this evaluation and describe the radiochemical separations utilized.

  7. 49 CFR 173.467 - Tests for demonstrating the ability of Type B and fissile materials packagings to withstand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tests for demonstrating the ability of Type B and... Type B and fissile materials packagings to withstand accident conditions in transportation. Each Type B... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS...

  8. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    SciTech Connect

    Myers, B. R.; Brummond, W.; Armantrout, G.; Shaw, H.; Jantzen, C. M.; Jostons, A.; McKibben, M.; Strachan, D.; Vienna, J. D.

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between the forms

  9. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Uranium hexafluoride (fissile, fissile excepted and non-fissile). 173.420 Section 173.420 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS...

  10. Fissile solution measurement apparatus

    DOEpatents

    Crane, T.W.; Collinsworth, P.R.

    1984-06-11

    An apparatus for determining the content of a fissile material within a solution by detecting delayed fission neutrons emitted by the fissile material after it is temporarily irradiated by a neutron source. The apparatus comprises a container holding the solution and having a portion defining a neutron source cavity centrally disposed within the container. The neutron source cavity temporarily receives the neutron source. The container has portions defining a plurality of neutron detector ports that form an annular pattern and surround the neutron source cavity. A plurality of neutron detectors count delayed fission neutrons emitted by the fissile material. Each neutron detector is located in a separate one of the neutron detector ports.

  11. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  12. THE EFFECT OF INCREASING TEMPERATURE ON K-EFF FOR FISSILE MATERIAL OUTSIDE REACTORS

    SciTech Connect

    Kessler, S.

    2009-06-09

    Nuclear Criticality Safety Evaluations typically employ room temperature cross sections, material densities, and dimensions. Processes that have been and are in development for conversion of legacy wastes in tanks, e.g., Waste Treatment Project (WTP) at the Hanford Remediation Site and Defense Waste Processing Facility (DWPF) at the Savannah River Site, utilize melters that operate at elevated temperatures, 1500 to 1900 C. The applicability of room temperature data to processes such as these has been questioned. Also questioned was the applicability of room temperature data for the analyses across the Savannah River Site (SRS) where the temperature may be elevated, such as in a postulated fire. This analysis was performed to examine the effect of temperature over the relatively small range encountered in normal and abnormal operations at SRS that does not include DWPF melters. This analysis documented herein is limited to fast systems of fissile metal and oxide cylinders on concrete at temperatures no greater than 640 C, the melting point of plutonium. Because thermal expansion data for various types of structural materials was not readily available, structural materials were not included in the analysis.

  13. ES-3100: A New Generation Shipping Container for Bulk Highly Enriched Uranium and Other Fissile Materials

    SciTech Connect

    Arbital, J.G.; Byington, G.A.; Tousley, D.R.

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the ''Code of Federal Regulations'' (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  14. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.

    2014-06-01

    Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  15. Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States

    SciTech Connect

    Myers, B.R.; Armantrout, G.A.; Erickson, R.

    1995-02-01

    The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

  16. Open literature review of threats including sabotage and theft of fissile material transport in Japan.

    SciTech Connect

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-06-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

  17. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    SciTech Connect

    Forsberg, C.W.; Elam, K.R.

    1995-01-31

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

  18. Fissile material measurements using the differential die-away self interrogation technique

    SciTech Connect

    Schear, Melissa A; Menlove, Howard O; Tobin, Stephen J; Evans, Louise G; Lee, S Y

    2010-01-01

    Currently, there is substantial research effort focused on quantifying plutonium (Pu) mass in spent fuel using non-destructive assay (NDA) techniques. Of the several techniques being investigated for this purpose, Differential Die-Away Self-Interrogation (DDSI) is a recently proposed, neutron-based NDA technique capable of quantifying the total fissile content in an assembly. Unlike the conventional Differential Die-Away (DDA) technique, DOSI does not require an external neutron source for sample interrogation, but rather, uses the spontaneous fission neutrons originating from {sup 244}Cm within the spent fuel for self-interrogation. The essence of the technique lies in the time separation between the detection of spontaneous fission neutrons from {sup 244}Cm and the detection of induced fission neutrons at a later time. The DDSI detector design imposes this time separation by optimizing the die-away times ({tau}) of the detector and sample interrogation regions to obtain an early and late neutron distribution respectively. The ratio of the count rates in the late gate to the early gate for singles, doubles, and triples is directly proportional to the fissile content present in the sample, which has already been demonstrated for simplified fuel cases using the Monte Carlo N-Particle eXtended (MCNPX) code. The current work applies the DDSI concept to more complex samples, specifically spent Pressurized Water Reactor (PWR) assemblies with varying isotopics resulting from a range of initial enrichment, bumup, and cooling time. We assess the feasibility of using the late gate to early gate ratio as a reliable indicator of overall fissile mass for a range of assemblies by defining a {sup 239}Pu effective mass which indicates the mass of {sup 239}Pu that would yield the same DDSI signal as the combined mass of major fissile isotopes present in the sample. This work is important for assessing the individual capability of the DDSI instrument in quantifying fissile mass in

  19. Crystal chemistry of uranium (V) and plutonium (IV) in a titanate ceramic for disposition of surplus fissile material

    NASA Astrophysics Data System (ADS)

    Fortner, J. A.; Kropf, A. J.; Finch, R. J.; Bakel, A. J.; Hash, M. C.; Chamberlain, D. B.

    2002-07-01

    We report X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra for the plutonium LIII and uranium LIII edges in titanate pyrochlore ceramic. The titanate ceramics studied are of the type proposed to serve as a matrix for the immobilization of surplus fissile materials. The samples studied contain approximately 10 wt% fissile plutonium and 20 wt% natural uranium, and are representative of material within the planned production envelope. Based upon natural analogue models, it had been previously assumed that both uranium and plutonium would occupy the calcium site in the pyrochlore crystal structure. While the XANES and EXAFS signals from the plutonium LIII are consistent with this substitution into the calcium site within pyrochlore, the uranium XANES is characteristic of pentavalent uranium. Furthermore, the EXAFS signal from the uranium has a distinct oxygen coordination shell at 2.07 Å and a total oxygen coordination of about 6, which is inconsistent with the calcium site. These combined EXAFS and XANES results provide the first evidence of substantial pentavalent uranium in an octahedral site in pyrochlore. This may also explain the copious nucleation of rutile (TiO 2) precipitates commonly observed in these materials as uranium displaces titanium from the octahedral sites.

  20. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    SciTech Connect

    1995-03-29

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  1. 10 CFR 71.55 - General requirements for fissile material packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... than 5 percent reduction in the total effective volume of the packaging on which nuclear safety is... Section 71.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE... system as may additionally be provided by the surrounding material of the packaging. (c) The...

  2. Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages

    SciTech Connect

    DeClue, J. F.

    2011-06-28

    The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

  3. Neutron-Absorbing Coatings for Safe Storage of Fissile Materials with Enhanced Shielding & Criticality Safety

    SciTech Connect

    Choi, J; Farmer, J; Lee, C; Fischer, L; Boussoufi, M; Liu, B; Egbert, H

    2007-07-03

    Neutron-absorbing Fe-based amorphous-metal coatings have been developed that are more corrosion resistant than other criticality-control materials, including Al-B{sub 4}C composites, borated stainless steels, and Ni-Cr-Mo-Gd alloys. The presence of relatively high concentration of boron in these coatings not only enhances its neutron-absorption capability, but also enables these coatings to exist in the amorphous state. Exceptional corrosion resistance has been achieved with these Fe-based amorphous-metal alloys through additions of chromium, molybdenum, and tungsten. The addition of rare earth elements such as yttrium has lowered the critical cooling rate of these materials, thereby rendering them more easily processed. Containers used for the storage of nuclear materials, and protected from corrosion through the application of amorphous metal coatings, would have greatly enhanced service lives, and would therefore provide greater long-term safety. Amorphous alloy powders have been successfully produced in multi-ton quantities with gas atomization, and applied to several half-scale spent fuel storage containers and criticality control structures with the high-velocity oxy-fuel (HVOF) thermal spray process. Salt fog testing and neutron radiography of these prototypes indicates that such an approach is viable for the production of large-scale industrial-scale facilities and containers. The use of these durable neutron-absorbing materials to coat stainless steel containers and storage racks, as well as vaults, hot-cell facilities and glove boxes could substantially reduce the risk of criticality in the event of an accident. These materials are particularly attractive for shielding applications since they are fire proof. Additionally, layers of other cold and thermal sprayed materials that include carbon and/or carbides can be used in conjunction with the high-boron amorphous metal coatings for the purpose of moderation. For example, various carbides, including boron

  4. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  5. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material. (d) Uranium enriched in uranium-235 to a maximum of 1 percent by weight, and with total plutonium..., and with a minimum nitrogen to uranium atomic ratio (N/U) of 2. The material must be contained in...

  6. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... material. (d) Uranium enriched in uranium-235 to a maximum of 1 percent by weight, and with total plutonium..., and with a minimum nitrogen to uranium atomic ratio (N/U) of 2. The material must be contained in...

  7. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... material. (d) Uranium enriched in uranium-235 to a maximum of 1 percent by weight, and with total plutonium..., and with a minimum nitrogen to uranium atomic ratio (N/U) of 2. The material must be contained in...

  8. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... material. (d) Uranium enriched in uranium-235 to a maximum of 1 percent by weight, and with total plutonium..., and with a minimum nitrogen to uranium atomic ratio (N/U) of 2. The material must be contained in...

  9. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with their definitions in § 173.403, a criticality safety index (CSI) and a transport index (TI). (b... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  10. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with their definitions in § 173.403, a criticality safety index (CSI) and a transport index (TI). (b... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  11. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with their definitions in § 173.403, a criticality safety index (CSI) and a transport index (TI). (b... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  12. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with their definitions in § 173.403, a criticality safety index (CSI) and a transport index (TI). (b... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  13. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with their definitions in § 173.403, a criticality safety index (CSI) and a transport index (TI). (b... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  14. MCNP-to-TORT Radiation Transport Calculations in Support of Mixed Oxide Fuels Testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V.

    1999-11-01

    The United States (US) Department of Energy Fissile Materials Disposition Program (FMDP) began studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium-plutonium oxide (@40X) fuel for commercial light-water reactors(LWRS). As a first step in this program, a test of the utilization of WG-Pu in a LWR environment is being conducted in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power-density spots in the specimens. Therefore, INEEL produced an MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory (ORNL) transformed this boundary source into a discrete -ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code to pinpoint spatial detail. Agreement with average MCNP results were within 5%.

  15. MCNP-to-TORT radiation transport calculations in support of mixed oxide fuels testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V. III

    1998-04-01

    The US (US) Department of Energy Fissile Materials Disposition Program has begun studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium plutonium oxide (MOX) fuel for commercial light water reactors (LWRs). Currently MOX fuel is used commercially in a number of foreign countries, but is not in the US. Most of the experience is with reactor grade plutonium (RG-Pu) in MOX fuel. Therefore, to use WG-Pu in MOX fuel, one must demonstrate that the experience with RG-Pu is relevant. As a first step in this program, the utilization of WG-Pu in a LWR environment must be demonstrated. To accomplish this, a test is to be conducted to investigate some of the unresolved issues. The initial tests will be made in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code. These calculations were made to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power density spots in the specimens. However, a discrete ordinates radiation transport code could pinpoint these spatial details. Therefore, INEEL was tasked with producing a MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory was tasked with transforming this boundary source into a discrete ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code. Thus, the TORT results not only complemented, but also were in agreement with the MCNP results.

  16. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  17. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  18. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  19. 46 CFR 355.5 - Additional material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Additional material. 355.5 Section 355.5 Shipping... STATES CITIZENSHIP § 355.5 Additional material. If additional material is determined to be essential to clarify or support the evidence of U.S. citizenship, such material shall be furnished by...

  20. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  1. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  2. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  3. Additive manufacturing of materials: Opportunities and challenges

    DOE PAGESBeta

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; Peter, William H.; Watkins, Thomas R.; Pannala, Sreekanth

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less

  4. Additive manufacturing of materials: Opportunities and challenges

    SciTech Connect

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; Peter, William H.; Watkins, Thomas R.; Pannala, Sreekanth

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performance computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.

  5. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  6. Microstructural Control of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Brice, D. A.; Samimi, P.; Ghamarian, I.; Fraser, H. L.

    2016-07-01

    In additively manufactured (AM) metallic materials, the fundamental interrelationships that exist between composition, processing, and microstructure govern these materials’ properties and potential improvements or reductions in performance. For example, by using AM, it is possible to achieve highly desirable microstructural features (e.g., highly refined precipitates) that could not otherwise be achieved by using conventional approaches. Simultaneously, opportunities exist to manage macro-level microstructural characteristics such as residual stress, porosity, and texture, the last of which might be desirable. To predictably realize optimal microstructures, it is necessary to establish a framework that integrates processing variables, alloy composition, and the resulting microstructure. Although such a framework is largely lacking for AM metallic materials, the basic scientific components of the framework exist in literature. This review considers these key components and presents them in a manner that highlights key interdependencies that would form an integrated framework to engineer microstructures using AM.

  7. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  8. Interactions between sealing materials and lubricating oil additives

    SciTech Connect

    Winkenbach, R.; Von Arndt, E.M.; Mindermann, H.

    1987-01-01

    Due to the increasingly higher application demands, engine and transmission manufactures are today using lubrication oils with more and more additives. The result is that seal materials are being damaged when exposed to such conditions and such additives. This paper shows the effects of basic oils with, and without, additives on elastomeric materials such as NBR, ACM, MVQ and FPM.

  9. APPLICATION OF NONSPHERICAL FISSILE CONFIGURATION IN WASTE CONTAINERS AT SRS

    SciTech Connect

    Eghbali, D; Michelle Abney, M

    2007-01-03

    Transuranic (TRU) solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 fissile grams equivalent (FGE) {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes the application of nonspherical fissile material configuration in waste containers, resulting in less restrictive mass and spacing limits, increased storage capacity, and several administrative controls for handling and storage of waste containers being modified without compromising safety.

  10. Fissile solubility and monosodium titanate loading tests

    SciTech Connect

    Hobbs, D.T.; Fleischman, S.D.

    1993-02-12

    The solubilities of plutonium and uranium have been determined for alkaline salt solutions having compositions which bound those which will be processed in the In-Tank Precipitation (ITP) process. Loadings of plutonium and uranium onto monosodium titanate (MST) have been determined at temperatures bounding those expected to occur during ITP and using a salt solution which was determined to have the maximum solubility for uranium and plutonium. Fissile loadings increase with decreasing amounts of MST in contact with the salt solutions saturated in plutonium and uranium. At MST concentrations bounding those which are planned for the ITP process, expressions for the maximum loadings (wt %) are determined to be 0.29 - 0.20x[MST] for plutonium and 1.8 - 0.29x[MST] for uranium, where [MST] is the concentration of MST in grams/liter. These expressions are valid over the range of MST concentrations from 0.05 to 0.51 g/L and temperatures of 17{degrees}--74{degrees}C. These loadings are below the individual infinitely safe limits for plutonium and uranium. Additional confirmatory experiments are planned to verify the effects of temperature and multiple contacts of the MST with fresh salt solution on the fissile loadings.

  11. Fissile solubility and monosodium titanate loading tests

    SciTech Connect

    Hobbs, D.T.; Fleischman, S.D.

    1993-02-12

    The solubilities of plutonium and uranium have been determined for alkaline salt solutions having compositions which bound those which will be processed in the In-Tank Precipitation (ITP) process. Loadings of plutonium and uranium onto monosodium titanate (MST) have been determined at temperatures bounding those expected to occur during ITP and using a salt solution which was determined to have the maximum solubility for uranium and plutonium. Fissile loadings increase with decreasing amounts of MST in contact with the salt solutions saturated in plutonium and uranium. At MST concentrations bounding those which are planned for the ITP process, expressions for the maximum loadings (wt %) are determined to be 0.29 - 0.20x[MST] for plutonium and 1.8 - 0.29x[MST] for uranium, where [MST] is the concentration of MST in grams/liter. These expressions are valid over the range of MST concentrations from 0.05 to 0.51 g/L and temperatures of 17[degrees]--74[degrees]C. These loadings are below the individual infinitely safe limits for plutonium and uranium. Additional confirmatory experiments are planned to verify the effects of temperature and multiple contacts of the MST with fresh salt solution on the fissile loadings.

  12. Fissile mass estimation by pulsed neutron source interrogation

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Dubi, C.; Ettedgui, H.; Ocherashvili, A.; Pedersen, B.; Beck, A.; Roesgen, E.; Crochmore, J. M.; Ridnik, T.; Yaar, I.

    2015-06-01

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  13. Electrostatic Levitation for Studies of Additive Manufactured Materials

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  14. Thermodynamically consistent microstructure prediction of additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Cao, Jian; Liu, Wing Kam

    2016-03-01

    Additive manufacturing has risen to the top of research interest in advanced manufacturing in recent years due to process flexibility, achievability of geometric complexity, and the ability to locally modify and optimize materials. The present work is focused on providing an approach for incorporating thermodynamically consistent properties and microstructure evolution for non-equilibrium supercooling, as observed in additive manufacturing processes, into finite element analysis. There are two primary benefits of this work: (1) the resulting prediction is based on the material composition and (2) the nonlinear behavior caused by the thermodynamic properties of the material during the non-equilibrium solution is accounted for with extremely high resolution. The predicted temperature response and microstructure evolution for additively manufactured stainless steel 316L using standard handbook-obtained thermodynamic properties are compared with the thermodynamic properties calculated using the CALculation of PHAse Diagrams (CALPHAD) approach. Data transfer from the CALPHAD approach to finite element analysis is discussed.

  15. Fissile solution dynamics: Student research

    SciTech Connect

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  16. Safety analysis report: packages. GPHS shipping package supplement 2 to the PISA shipping package (packaging of fissile and other radioactive materials). Final report

    SciTech Connect

    Chalfant, G. G.

    1981-06-01

    Safety Analysis Report DPST-78-124-1 is amended to permit shipment of 6 General Purpose Heat Source (GPHS) capsules (max.). Each capsule contains an average of 2330 curies of /sup 238/Pu, and each pair of capsules is contained in a welded stainless steel primary containment vessel, all of which are doubly contained in a flanged secondary containment vessel. This is in addition to the forms discussed in DPST-78-124-1 and Supplement 1.

  17. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  18. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  19. Overview of Materials Qualification Needs for Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.

    2016-03-01

    This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

  20. Development of an Air Transport Type A Fissile Package

    SciTech Connect

    Blanton, P.; Ebert, K.

    2011-07-13

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  1. Long Range, Passive Detection of Fissile Materials

    SciTech Connect

    Fabris, L; Ziock, K P

    2005-02-03

    We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation sources. The instrument was constructed to verify that weak point sources can be detected at considerable distances if one uses imaging to overcome fluctuations in the natural background. The instrument uses a rank-19, one-dimensional coded aperture to cast shadow patterns onto a 0.57 m{sup 2} NaI(Tl) detector composed of 57 individual cubes each 10 cm on a side. These are arranged in a 19 x 3 array. The mask is composed of four-centimeter thick, one-meter high, 10-cm wide lead blocks. The instrument is mounted in the back of a small truck from which images are obtained as one drives through a region.

  2. Hardware implementation of the ORNL fissile mass flow monitor

    SciTech Connect

    McEvers, J.; Sumner, J.; Jones, R.; Ferrell, R.; Martin, C.; Uckan, T.; March-Leuba, J.

    1998-11-01

    This paper provides an overall description of the implementation of the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor, which is part of a Blend Down Monitoring System (BDMS) developed by the US Department of Energy (DOE). The Fissile Mass Flow Monitor is designed to measure the mass flow of fissile material through a gaseous or liquid process stream. It consists of a source-modulator assembly, a detector assembly, and a cabinet that houses all control, data acquisition, and supporting electronics equipment. The development of this flow monitor was first funded by DOE/NE in September 95, and an initial demonstration by ORNL was described in previous INMM meetings. This methodology was chosen by DOE/NE for implementation in November 1996, and the hardware/software development is complete. Successful BDMS installation and operation of the complete BDMS has been demonstrated in the Paducah Gaseous Diffusion Plant (PGDP), which is operated by Lockheed Martin Utility Services, Inc. for the US Enrichment Corporation and regulated by the Nuclear Regulatory Commission. Equipment for two BDMS units has been shipped to the Russian Federation.

  3. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    SciTech Connect

    W. Wallin

    1996-09-03

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective.

  4. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  5. Timing of Getter Material Addition in Cementitious Wasteforms

    NASA Astrophysics Data System (ADS)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  6. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  7. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing

    SciTech Connect

    Park, Sang-In; Choi, Seung-kyum; Rosen, David W; Duty, Chad E

    2014-01-01

    In this paper, a two-step homogenization method is proposed and implemented for evaluating effective mechanical properties of lattice structured material fabricated by the material extrusion additive manufacturing process. In order to consider the characteristics of the additive manufacturing process in estimation procedures, the levels of scale for homogenization are divided into three stages the levels of layer deposition, structural element, and lattice structure. The method consists of two transformations among stages. In the first step, the transformation between layer deposition and structural element levels is proposed to find the geometrical and material effective properties of structural elements in the lattice structure. In the second step, the method to estimate effective mechanical properties of lattice material is presented, which uses a unit cell and is based on the discretized homogenization method for periodic structure. The method is implemented for cubic lattice structure and compared to experimental results for validation purposes.

  8. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  9. Growth of CZT using additionally zone-refined raw materials

    NASA Astrophysics Data System (ADS)

    Knuteson, David J.; Berghmans, Andre; Kahler, David; Wagner, Brian; King, Matthew; Mclaughlin, Sean; Bolotnikov, Aleksey; James, Ralph; Singh, Narsingh B.

    2012-10-01

    Results will be presented for the growth of CdZnTe by the low pressure Bridgman growth technique. To decrease deeplevel trapping and improve detector performance, high purity commercial raw materials will be further zone refined to reduce impurities. The purified materials will then be compounded into a charge for crystal growth. The crystals will be grown in the programmable multi-zone furnace (PMZF), which was designed and built at Northrop Grumman's Bethpage facility to grow CZT on Space Shuttle missions. Results of the purification and crystal growth will be presented as well as characterization of crystal quality and detector performance.

  10. Fabrication of Turbine Disk Materials by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  11. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  12. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  13. CRUSH TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGINGS

    SciTech Connect

    Smith, A.

    2010-07-28

    The 9977 General Purpose Fissile Package (GPFP) was designed in response to the adoption of the crush test requirement in the US regulations for packages for radioactive materials (10 CFR 71). This presentation on crush testing of the 9977 GPFP Reviews origins of Crush Test Requirements and implementation of crush test requirements in 10 CFR 71. SANDIA testing performed to support the rule making is reviewed. The differences in practice, on the part of the US Department of Energy from those required by the NRC for commercial purposes, are explained. The design features incorporated into the 9977 GPFP to enable it to withstand the crush test and the crush tests performed on the 9977 are described. Lessons learned from crush testing of GPFP packagings are given.

  14. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  15. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  16. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  17. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  18. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  19. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation... non-fissile or fissile-excepted uranium hexafluoride. (a) Each offeror of a package containing more than 0.1 kg of uranium hexafluoride must maintain on file for at least two years after the...

  20. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation... non-fissile or fissile-excepted uranium hexafluoride. (a) Each offeror of a package containing more than 0.1 kg of uranium hexafluoride must maintain on file for at least one year after the...

  1. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation... non-fissile or fissile-excepted uranium hexafluoride. (a) Each offeror of a package containing more than 0.1 kg of uranium hexafluoride must maintain on file for at least one year after the...

  2. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  3. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  4. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  5. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials required in the NHPRC grant announcements and in the...

  6. Detector and front-end electronics of a fissile mass flow monitoring system

    SciTech Connect

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-07-20

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described.

  7. 16 CFR 803.20 - Requests for additional information or documentary material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... documentary material. 803.20 Section 803.20 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS... RULES § 803.20 Requests for additional information or documentary material. (a)(1) Persons and... documentary material relevant to the acquisition may be required from one or more persons required to...

  8. 16 CFR 803.20 - Requests for additional information or documentary material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... documentary material. 803.20 Section 803.20 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS... RULES § 803.20 Requests for additional information or documentary material. (a)(1) Persons and... documentary material relevant to the acquisition may be required from one or more persons required to...

  9. 16 CFR 803.20 - Requests for additional information or documentary material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... documentary material. 803.20 Section 803.20 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS... RULES § 803.20 Requests for additional information or documentary material. (a)(1) Persons and... documentary material relevant to the acquisition may be required from one or more persons required to...

  10. 16 CFR 803.20 - Requests for additional information or documentary material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... documentary material. 803.20 Section 803.20 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS... RULES § 803.20 Requests for additional information or documentary material. (a)(1) Persons and... documentary material relevant to the acquisition may be required from one or more persons required to...

  11. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    SciTech Connect

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

  12. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  13. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    SciTech Connect

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  14. 16 CFR 2.20 - Petitions for review of requests for additional information or documentary material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or documentary material issued under 16 CFR 803.20. (b) Second request procedures—(1) Notice. Every request for additional information or documentary material issued under 16 CFR 803.20 shall inform the..., glossaries, proposed form of relief and any appendices containing only sections of statutes or...

  15. 16 CFR 2.20 - Petitions for review of requests for additional information or documentary material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or documentary material issued under 16 CFR 803.20. (b) Second request procedures—(1) Notice. Every request for additional information or documentary material issued under 16 CFR 803.20 shall inform the..., glossaries, proposed form of relief and any appendices containing only sections of statutes or...

  16. 16 CFR 2.20 - Petitions for review of requests for additional information or documentary material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or documentary material issued under 16 CFR 803.20. (b) Second request procedures—(1) Notice. Every request for additional information or documentary material issued under 16 CFR 803.20 shall inform the..., glossaries, proposed form of relief and any appendices containing only sections of statutes or...

  17. 16 CFR 2.20 - Petitions for review of requests for additional information or documentary material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or documentary material issued under 16 CFR 803.20. (b) Second request procedures—(1) Notice. Every request for additional information or documentary material issued under 16 CFR 803.20 shall inform the..., glossaries, proposed form of relief and any appendices containing only sections of statutes or...

  18. 16 CFR 2.20 - Petitions for review of requests for additional information or documentary material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or documentary material issued under 16 CFR 803.20. (b) Second request procedures—(1) Notice. Every request for additional information or documentary material issued under 16 CFR 803.20 shall inform the..., glossaries, proposed form of relief and any appendices containing only sections of statutes or...

  19. 12 CFR 367.15 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... facts. 367.15 Section 367.15 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... Additional proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil... facts material to the proposed suspension and/or exclusion, the contractor shall be afforded...

  20. 12 CFR 367.15 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... facts. 367.15 Section 367.15 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... Additional proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil... facts material to the proposed suspension and/or exclusion, the contractor shall be afforded...

  1. 12 CFR 367.15 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... facts. 367.15 Section 367.15 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... Additional proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil... facts material to the proposed suspension and/or exclusion, the contractor shall be afforded...

  2. 12 CFR 367.15 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facts. 367.15 Section 367.15 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... Additional proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil... facts material to the proposed suspension and/or exclusion, the contractor shall be afforded...

  3. 12 CFR 367.15 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... facts. 367.15 Section 367.15 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... Additional proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil... facts material to the proposed suspension and/or exclusion, the contractor shall be afforded...

  4. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECORDS COMMISSION Grant Administration § 1206.86 What additional materials must I submit with the final narrative report? You must submit the materials determined by the Commission as found in the NHPRC grant announcements or specified in the grant award....

  5. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives.

    PubMed

    Chaitiemwong, N; Hazeleger, W C; Beumer, R R

    2010-08-15

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 degrees C was investigated. The pathogen survived best at 10 degrees C, and better at 25 degrees C than at 37 degrees C on both conveyor belt materials. The reduction in the numbers of the pathogen on belt material with antimicrobial additives in the first 6h at 10 degrees C was 0.6 log unit, which was significantly higher (P<0.05) than the reduction of 0.2 log unit on belt material without additives. Reductions were significantly less (P<0.05) in the presence of food residue. At 37 degrees C and 20% relative humidity, large decreases in the numbers of the pathogen on both conveyor belt materials during the first 6h were observed. Under these conditions, there was no obvious effect of the antimicrobial substances. However, at 25 degrees C and 10 degrees C and high humidity (60-75% rh), a rapid decrease in bacterial numbers on the belt material with antimicrobial substances was observed. Apparently the reduction in numbers of L. monocytogenes on belt material with antimicrobial additives was greater than on belt material without additives only when the surfaces were wet. Moreover, the presence of food debris neutralized the effect of the antimicrobials. The results suggest that the antimicrobial additives in conveyor belt material could help to reduce numbers of microorganisms on belts at low temperatures when food residues are absent and belts are not rapidly dried. PMID:20655607

  6. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    SciTech Connect

    Uckan, Taner; March-Leuba, Jose A; Powell, Danny H; Nelson, Dennis; Radev, Radoslav

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  7. Development for fissile assay in recycled fuel using lead slowing down spectrometer

    SciTech Connect

    Lee, Yong Deok; Je Park, C.; Kim, Ho-Dong; Song, Kee Chan

    2013-07-01

    A future nuclear energy system is under development to turn spent fuels produced by PWRs into fuels for a SFR (Sodium Fast Reactor) through the pyrochemical process. The knowledge of the isotopic fissile content of the new fuel is very important for fuel safety. A lead slowing down spectrometer (LSDS) is under development to analyze the fissile material content (Pu{sup 239}, Pu{sup 241} and U{sup 235}) of the fuel. The LSDS requires a neutron source, the neutrons will be slowed down through their passage in a lead medium and will finally enter the fuel and will induce fission reactions that will be analysed and the isotopic content of the fuel will be then determined. The issue is that the spent fuel emits intense gamma rays and neutrons by spontaneous fission. The threshold fission detector screens the prompt fast fission neutrons and as a result the LSDS is not influenced by the high level radiation background. The energy resolution of LSDS is good in the range 0.1 eV to 1 keV. It is also the range in which the fission reaction is the most discriminating for the considered fissile isotopes. An electron accelerator has been chosen to produce neutrons with an adequate target through (e{sup -},γ)(γ,n) reactions.

  8. Deformation and failure of a superplastic AA5083 aluminum material with a cu addition

    NASA Astrophysics Data System (ADS)

    Green, W. Paul; Kulas, Mary-Anne; Niazi, Amanda; Taleff, Eric M.; Oishi, Keiichiro; Krajewski, Paul E.; McNelley, Terry R.

    2006-09-01

    A modified AA5083 aluminum sheet material containing a Cu addition of 0.61 wt pct has been investigated under conditions relevant to commercial hot-forming technologies. This material was produced by continuous casting followed by industrial hot and cold rolling into sheet. Deformation and failure mechanisms at elevated temperatures were investigated through mechanical testing, thermal analysis, and microscopy. The effects of Cu addition are evaluated by comparisons with data from AA5083 sheet materials without Cu addition, produced both by continuous and direct-chill (DC) casting techniques. At low temperatures and fast strain rates, for which solute-drag (SD) creep governs deformation, the Cu addition slightly increases tensile ductility at 450 °C but does not otherwise alter deformation behaviors. At high temperatures and slow strain rates, for which grainboundary-sliding (GBS) creep governs deformation, the Cu addition decreases flow stress and, at 450 °C, improves tensile ductility. A strong temperature dependence for tensile ductility results from the Cu addition; tensile ductility at 500 °C is notably reduced from that at 450 °C. The Cu addition creates platelike particles at grain boundaries, which produce incipient melting and the observed mechanical behavior.

  9. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  10. A NEW METHDOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY.

    SciTech Connect

    KANE,W.R.; VANIER,P.E.; ZUHOSKI,P.B.; LEMLEY,J.R.

    2000-07-16

    In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: (1) The material is in a standard container, and (2) The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: (A) Measurement of the emitted gamma rays, and (B) Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic ''fingerprint'' of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass. With well-characterized standards, this methodology can provide an accurate measure of the contained fissile material.

  11. DOE NCSP Review of TRUPACT-II/HalfPACT Fissile Limits

    SciTech Connect

    Goluoglu, S.

    2002-03-28

    The U.S. Department of Energy (DOE) Environmental Management (EM) Office of Nuclear Material & Spent Fuel, EM-21, tasked the CSSG to perform a scoping study to determine the feasibility of increasing the fissile mass loading limits for specified TRUPACT-II and HalfPACT packages and containers. The results of the scoping study may provide insights and technical guidance for establishing fissile mass loading limits at waste generator sites and at the waste repository. The goal is to reduce costs of transporting fissile material to the WIPP from EM's various closure sites. This report documents the results of the scoping study and demonstrates that it is feasible to significantly increase the fissile mass loading limits in the TRUPACT-II and HalfPACT packages and containers. Depending upon the particular payload containers used, the number of shipments to WIPP could be reduced by at least a factor of 2 and as much as a factor of 16 and the number of total payload containers required ''down-hole'' at WIPP could be reduced by at least a factor of 2 and as much as about 6. These cost savings result simply from applying a more realistic criticality analysis model rather than the very conservative, hypothetical, bounding analysis used to support the existing fissile mass loading limits. However, the applications of existing and developmental computational tools, nuclear data, and experiments from the DOE Nuclear Criticality Safety Program have the potential to further reduce transportation and disposal container costs on the order of 7% to 17%. It is suggested that EM proceed with an effort to do the required formal analyses and pursue SARP supplements to take advantage of these savings. The success of these analyses are dependent upon the availability of the majority of the infrastructure supported by the DOE Nuclear Criticality Safety Program as defined in the Five-Year Plan for the program. Finally, it should be noted that these potential cost savings are based only on

  12. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  13. Impact of delayed neutron precursor mobility in fissile solution systems

    SciTech Connect

    Kiedrowski, B. C.

    2012-07-01

    A research version of the Monte Carlo software package MCNP6 is modified to incorporate advection and diffusion of delayed neutron precursors, resulting in the emission of delayed neutrons at locations different from the original fission sites. Results of two test problems, a pipe carrying flowing fissile solution and a sphere of fissile solution with precursor diffusion, show that the fission product mobility tends to perturb the fundamental mode, has a negative reactivity effect, and, perhaps most importantly, causes a decrease in the effective delayed neutron fraction. (authors)

  14. Effect of additions of aluminosilicate and silicate materials on the softening temperature of chromite ore

    NASA Astrophysics Data System (ADS)

    Zhdanov, A. V.; Nurmaganbetova, B. N.; Pavlov, V. A.

    2015-07-01

    The temperatures of the beginning and end of softening and the temperature range of softening of the fines of the rich chromite ore of the Donskoy Ore Mining & Processing Plant in Kazakhstan are experimentally determined. The following natural and technical silica-containing materials, which are considered as fluxing additions to decrease the melting temperature of the chromite ore, are investigated: aluminosilicate clays, microsilica, and quartzite of various fractions. The effect of additions of the natural and technical silica-containing materials on the temperatures of the beginning and end of softening and the temperature range of softening of the chromite ore of DODPE is analyzed. The influences of various materials and their fraction compositions on the temperature of softening of the chromite ores are compared.

  15. On the design of novel multifunctional materials by using particulate additives

    NASA Astrophysics Data System (ADS)

    Dunnigan, Ross Daniel

    This thesis has been organized into five chapters. The main focus of this thesis is to design novel multifunctional materials by using particulate additives. Chapter 1 is devoted to reviewing recent studies in additive manufacturing (AM) and other background information. In Chapter 2, the synthesis and characterization of novel Ti3SiC2-reinforced Zn-matrix composites is reported. During this study, all the Zn composites were hot pressed at 500°C for 5 min at a uniaxial pressure of ~150 MPa. Microstructure analysis by SEM (Scanning Electron Microscopy) and phase analysis by XRD (X-ray Diffraction) confirmed that there was minimal interfacial reaction between Ti3SiC 2 particles and the Zn matrix. The addition of Ti3SiC 2 improved the tribological performance of these composites against alumina substrates but did not have any beneficial effect on the mechanical performance. The addition of Ti3SiC2 particulates to metal and polymer matrices show interesting properties. Chapter 3 will focus on additive manufacturing of Ti3SiC2 particulates in a polymer matrix. Waste materials are a big problem in the world. Chapters 4 and 5 focus on recycling materials. The mechanical and tribological properties of the Resin-Nylon and ResinPolyester composites are reported, respectively.

  16. Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode

    NASA Astrophysics Data System (ADS)

    Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz

    Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.

  17. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials.

    PubMed

    He, Xin; Zhang, Yaxin; Shen, Maocai; Zeng, Guangming; Zhou, Mucen; Li, Meirong

    2016-10-01

    The aim of this work was to evaluate the total content and speciation of heavy metals (As, Cr, Cd, Cu, Fe, Mn, Ni, Pb and Zn) during vermicomposting of sewage sludge by Eisenia fetida earthworm with different additive materials (soil, straw, fly ash and sawdust). Results showed that the pH, total organic carbon were reduced, while the electric conductivity and germination index increased after a combined composting - vermicomposting process. The addition of bulking agents accelerated the stabilization of sludge and eliminated its toxicity. The total heavy metals after vermicomposting in 10 scenarios were lowered as compared with the initial values and the control without amendment. BCR sequential extraction indicated that vermicomposting significantly decreased the mobility of all heavy metals by increasing the residual fractions. The activity of earthworms and appropriate addition of amendment materials played a positive role in sequestering heavy metals during the treatment of sewage sludge. PMID:27434304

  18. Stopping the production of fissile materials for weapons

    SciTech Connect

    von Hippel, F.; Albright, D.H.; Levi, B.G.

    1985-09-01

    A halt in producing the essential ingredients of nuclear weapons would be easy to verify. It could, therefore, contribute to tighter control over the amount of weaponry in the superpowers' arsenals. The implications of this action are discussed.

  19. Fissile materials disposition program plutonium immobilization project baseline formulation

    SciTech Connect

    Ebbinghaus, B B; Armantrout, G A; Gray, L; Herman, C C; Shaw, H F; Van Konynenburg, R A

    2000-09-01

    Since 1994 Lawrence Livermore National Laboratory (LLNL), with the help of several other laboratories and university groups, has been the lead laboratory for the Plutonium Immobilization Project (PIP). This involves, among other tasks, the development of a formulation and a fabrication process for a ceramic to be used in the immobilization of excess weapons-usable plutonium. This report reviews the history of the project as it relates to the development of the ceramic form. It describes the sample test plan for the pyrochlore-rich ceramic formulation that was selected, and it specifies the baseline formulation that has been adopted. It also presents compositional specifications (e.g. precursor compositions and mixing recipes) and other form and process specifications that are linked or potentially linked to the baseline formulation.

  20. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by weight, and with total plutonium and uranium-233 content of up to 1 percent of the mass of uranium... exceeding 0.002 percent of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U)...

  1. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by weight, and with total plutonium and uranium-233 content of up to 1 percent of the mass of uranium... exceeding 0.002 percent of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U)...

  2. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by weight, and with total plutonium and uranium-233 content of up to 1 percent of the mass of uranium... exceeding 0.002 percent of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U)...

  3. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by weight, and with total plutonium and uranium-233 content of up to 1 percent of the mass of uranium... exceeding 0.002 percent of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U)...

  4. Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2016-01-01

    This work evaluates the thermal and hydrodynamic performance of pyramidal fin arrays produced using cold spray as an additive manufacturing process. Near-net-shaped pyramidal fin arrays of pure aluminum, pure nickel, and stainless steel 304 were manufactured. Fin array characterization such as fin porosity level and surface roughness evaluation was performed. The thermal conductivities of the three different coating materials were measured by laser flash analysis. The results obtained show a lower thermal efficiency for stainless steel 304, whereas the performances of the aluminum and nickel fin arrays are similar. This result is explained by looking closely at the fin and substrate roughness induced by the cold gas dynamic additive manufacturing process. The multi-material fin array sample has a better thermal efficiency than stainless steel 304. The work demonstrates the potential of the process to produce streamwise anisotropic fin arrays as well as the benefits of such arrays.

  5. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Cates, Michael R.; Franks, Larry A.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  6. Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Drye, Tom; Franc, Alan

    2015-03-01

    Techmer Engineered Solutions (TES) is working with Oak Ridge National Laboratory (ORNL) to develop materials and evaluate their use for ORNL s recently developed Big Area Additive Manufacturing (BAAM) system for tooling applications. The first phase of the project established the performance of some commercially available polymer compositions deposited with the BAAM system. Carbon fiber reinforced ABS demonstrated a tensile strength of nearly 10 ksi, which is sufficient for a number of low temperature tooling applications.

  7. A comparison of dimensional accuracy between three different addition cured silicone impression materials.

    PubMed

    Forrester-Baker, L; Seymour, K G; Samarawickrama, D; Zou, L; Cherukara, G; Patel, M

    2005-06-01

    Ten impressions of a metal implant abutment were made with each of three addition-cured silicone impression materials. Using the technique of co-ordinate metrology, the shoulder region of the abutment and corresponding regions of both impressions and dies made from these impressions were scanned and measured. Comparison of these measurements indicated that the mean dimension measured from the shoulder region for each group of impression materials was significantly different from those taken from the original metal implant abutment. However, when these impressions were cast in a gypsum based die material, none of the measured dimensions taken from the casts were significantly different from those taken from the original metal implant abutment. Thus, any change in measured dimensions occurring during impression making, was compensated for in some way by the casting process. PMID:16011234

  8. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  9. Application of polymer graded-index materials for aberration correction of progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Shitanoki, Yuki; Tagaya, Akihiro; Koike, Yasuhiro

    2009-02-01

    Graded-index (GRIN) progressive addition lens (PAL) was successfully fabricated, and GRIN's potential for aberration correction of PAL was confirmed. GRIN material was prepared by partial diffusion of methyl methacrylate (MMA (nd at polymer = 1.492)) monomer into cross-linked benzyl methacrylate (BzMA (nd at polymer=1.568)) flat gel, and GRINPAL was prepared by polymerization of the GRIN material attached to a mold of commercially available PAL. GRIN polymer materials have been used for various applications such as rod lenses and optical fibers. GRIN represents gradual change of refractive index in a material, which adds or reduces light focusing power of the material. PAL is a multifocal spectacle lens for presbyopia. However, some localized aberrations (especially astigmatism) in PAL have not yet been reduced satisfactorily for decades by optimizing surface geometry of a lens. In this research, we propose to employ GRIN materials for astigmatism reduction of PALs. BzMA flat gel was prepared by UV polymerization of BzMA, crosslinking agent ethylene glycol dimethacrylate (EDMA) and photopolymerization initiator DAROCURE 1173. MMA monomer was diffused into BzMA flat gel from a portion of periphery for several hours. The obtained GRIN material was attached to a mold of commercially available PAL and polymerized by UV. As a result, reduction of astigmatism was confirmed locally in the fabricated PAL and GRIN-PAL using lens meter. In conclusion, GRIN-PAL was successfully fabricated. The validity of GRIN employment for the astigmatism reduction in PAL was demonstrated experimentally.

  10. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2010-04-01

    This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through this process experience temperatures as low as 25 °C during fabrication, in contrast to current metal-matrix fabrication processes which require temperatures of 500 °C and above. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. This research focuses on developing UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol, and electroactive PVDF phases. The research on these composites will focus on: (i) electrical insulation between NiTi and Al phases for strain sensors, investigation and modeling of NiTi-Al composites as tunable stiffness materials and thermally invariant structures based on the shape memory effect; (ii) process development and composite testing for Galfenol-Al composites; and (iii) development of PVDF-Al composites for embedded sensing applications. We demonstrate a method to electrically insulate embedded materials from the UAM matrix, the ability create composites containing up to 22.3% NiTi, and their resulting dimensional stability and thermal actuation characteristics. Also demonstrated is Galfenol-Al composite magnetic actuation of up to 54 μ(see manuscript), and creation of a PVDF-Al composite sensor.

  11. Evaluation of critical materials in five additional advance design photovoltaic cells

    SciTech Connect

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  12. Comparative study of dimensional accuracy of different impression techniques using addition silicone impression material.

    PubMed

    Penaflor, C F; Semacio, R C; De Las Alas, L T; Uy, H G

    1998-01-01

    This study compared dimensional accuracy of the single, double with spacer, double with cut-out and double mix impression technique using addition silicone impression material. A typhodont containing Ivorine teeth model with six (6) full-crown tooth preparations were used as the positive control. Two stone replication models for each impression technique were made as test materials. Accuracy of the techniques were assessed by measuring four dimensions on the stone dies poured from the impression of the Ivorine teeth model. Results indicated that most of the measurements for the height, width and diameter slightly decreased and a few increased compared with the Ivorine teeth model. The double with cut-out and double mix technique presents the least difference from the master model as compared to the two latter impression techniques. PMID:10202524

  13. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  14. Multi-material additive manufacturing of robot components with integrated sensor arrays

    NASA Astrophysics Data System (ADS)

    Saari, Matt; Cox, Bryan; Galla, Matt; Krueger, Paul S.; Richer, Edmond; Cohen, Adam L.

    2015-06-01

    Fabricating a robotic component comprising 100s of distributed, connected sensors can be very difficult with current approaches. To address these challenges, we are developing a novel additive manufacturing technology to enable the integrated fabrication of robotic structural elements with distributed, interconnected sensors and actuators. The focus is on resistive and capacitive sensors and electromagnetic actuators, though others are anticipated. Anticipated applications beyond robotics include advanced prosthetics, wearable electronics, and defense electronics. This paper presents preliminary results for printing polymers and conductive material simultaneously to form small sensor arrays. Approaches to optimizing sensor performance are discussed.

  15. Feasibility of fissile mass assay of spent nuclear fuel using {sup 252}Cf-source-driven frequency-analysis

    SciTech Connect

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1996-10-01

    The feasibility was evaluated using MCNP-DSP, an analog Monte Carlo transport cod to simulate source-driven measurements. Models of an isolated Westinghouse 17x17 PWR fuel assembly in a 1500-ppM borated water storage pool were used. In the models, the fuel burnup profile was represented using seven axial burnup zones, each with isotopics estimated by the PDQ code. Four different fuel assemblies with average burnups from fresh to 32 GWd/MTU were modeled and analyzed. Analysis of the fuel assemblies was simulated by inducing fission in the fuel using a {sup 252}Cf source adjacent to the assembly and correlating source fissions with the response of a bank of {sup 3}He detectors adjacent to the assembly opposite the source. This analysis was performed at 7 different axial positions on each of the 4 assemblies, and the source-detector cross-spectrum signature was calculated for each of these 28 simulated measurements. The magnitude of the cross-spectrum signature follows a smooth upward trend with increasing fissile material ({sup 235}U and {sup 239}Pu) content, and the signature is independent of the concentration of spontaneously fissioning isotopes (e.g., {sup 244}Cm) and ({alpha},n) sources. Furthermore, the cross-spectrum signature is highly sensitive to changes in fissile material content. This feasibility study indicated that the signature would increase {similar_to}100% in response to an increase of only 0.1 g/cm{sup 3} of fissile material.

  16. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.

    PubMed

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-28

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. PMID:25587843

  17. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-01

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode

  18. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  19. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  20. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  1. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGESBeta

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  2. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... materials for animal feed and pet food. 570.14 Section 570.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed...

  3. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... materials for animal feed and pet food. 570.14 Section 570.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed...

  4. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... materials for animal feed and pet food. 570.14 Section 570.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed...

  5. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... materials for animal feed and pet food. 570.14 Section 570.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed...

  6. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... materials for animal feed and pet food. 570.14 Section 570.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed...

  7. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  8. Assessment of neutron dosemeters around standard sources and nuclear fissile objects.

    PubMed

    Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N

    2002-01-01

    In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations. PMID:12382734

  9. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scope of assassination record and additional records and information. 1290.4 Section 1290.4 Parks... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and additional records and information. The term record in assassination record and additional records...

  10. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in scope of assassination record and additional records and information. 1290.4 Section 1290.4 Parks... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and additional records and information. The term record in assassination record and additional records...

  11. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in scope of assassination record and additional records and information. 1290.4 Section 1290.4 Parks... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and additional records and information. The term record in assassination record and additional records...

  12. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard

    2011-01-01

    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  13. Random effects of fissile lumps in molten salt reactors

    SciTech Connect

    Dulla, S.; Ravetto, P.; Prinja, A. K.

    2013-07-01

    The problem of the effect of fissile lumps spatially appearing in a random fashion inside a fluid fuel reactor is addressed. The effect on reactivity is evaluated by means of first-order perturbation theory. The analysis is carried out in diffusion theory with the presence of delayed neutron emissions in one dimensional plane geometry. The estimation of the mean value and standard deviation of the reactivity inserted is performed by Monte Carlo simulations and a deterministic quadrature approach, to compare the methods in terms of computational effort and the accuracy of the results. The results presented show that the effects constitute an important issue in the assessment of these innovative systems. (authors)

  14. Development and calibration of the shielded measurement system for fissile contents measurements on irradiated nuclear fuel in dry storage.

    SciTech Connect

    Mosby, W. R.; Jensen, B. A.

    2002-05-31

    In recent years there has been a trend towards storage of Irradiated Nuclear Fuel (INF) in dry conditions rather than in underwater environments. At the same time, the Department of Energy (DOE) has begun encouraging custodians of INF to perform measurements on INF for which no recent fissile contents measurement data exists. INF, in the form of spent fuel from Experimental Breeder Reactor 2 (EBR-II), has been stored in close-fitting, dry underground storage locations at the Radioactive Scrap and Waste Facility (RSWF) at Argonne National Laboratory-West (ANL-W) for many years. In Fiscal Year 2000, funding was obtained from the DOE Office of Safeguards and Security Technology Development Program to develop and prepare for deployment a Shielded Measurement System (SMS) to perform fissile content measurements on INF stored in the RSWF. The SMS is equipped to lift an INF item out of its storage location, perform scanning neutron coincidence and high-resolution gamma-ray measurements, and restore the item to its storage location. The neutron and gamma-ray measurement results are compared to predictions based on isotope depletion and Monte Carlo neutral-particle transport models to provide confirmation of the accuracy of the models and hence of the fissile material contents of the item as calculated by the same models. This paper describes the SMS and discusses the results of the first calibration and validation measurements performed with the SMS.

  15. Calculation of the minimum critical mass of fissile nuclides

    SciTech Connect

    Wright, R Q; Hopper, Calvin Mitchell

    2008-01-01

    The OB-1 method for the calculation of the minimum critical mass of fissile actinides in metal/water systems was described in a previous paper. A fit to the calculated minimum critical mass data using the extended criticality parameter is the basis of the revised method. The solution density (grams/liter) for the minimum critical mass is also obtained by a fit to calculated values. Input to the calculation consists of the Maxwellian averaged fission and absorption cross sections and the thermal values of nubar. The revised method gives more accurate values than the original method does for both the minimum critical mass and the solution densities. The OB-1 method has been extended to calculate the uncertainties in the minimum critical mass for 12 different fissile nuclides. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the minimum critical mass, either in percent or grams. Results have been obtained for U-233, U-235, Pu-236, Pu-239, Pu-241, Am-242m, Cm-243, Cm-245, Cf-249, Cf-251, Cf-253, and Es-254. Eight of these 12 nuclides are included in the ANS-8.15 standard.

  16. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  17. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory. PMID:18075217

  18. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  19. 45 CFR 1641.10 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facts. 1641.10 Section 1641.10 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  20. 45 CFR 1641.21 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facts. 1641.21 Section 1641.21 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  1. 45 CFR 1641.21 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facts. 1641.21 Section 1641.21 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  2. 45 CFR 1641.21 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facts. 1641.21 Section 1641.21 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  3. 45 CFR 1641.21 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facts. 1641.21 Section 1641.21 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  4. 45 CFR 1641.10 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... facts. 1641.10 Section 1641.10 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  5. 45 CFR 1641.21 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... facts. 1641.21 Section 1641.21 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  6. 45 CFR 1641.10 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facts. 1641.10 Section 1641.10 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  7. 45 CFR 1641.10 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facts. 1641.10 Section 1641.10 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  8. 45 CFR 1641.10 - Additional proceedings as to disputed material facts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facts. 1641.10 Section 1641.10 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL... proceedings as to disputed material facts. (a) In actions not based upon a conviction or civil judgment under... of material fact, the IPA shall be afforded an opportunity to appear (with counsel, if...

  9. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  10. Examining the stability of thermally fissile Th and U isotopes

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Singh, S. K.; Patra, S. K.

    2015-11-01

    The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as α decay and β decay are analyzed. We found that neutron-rich isotopes are stable against α decay, however, they are very unstable against β decay. The lifetime of these nuclei is predicted to be tens of seconds against β decay. If these nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of Th-230228 and U-234228 isotopes.

  11. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  12. The effects of material property assumptions on predicted meltpool shape for laser powder bed fusion based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Teng, Chong; Ashby, Kathryn; Phan, Nam; Pal, Deepankar; Stucker, Brent

    2016-08-01

    The objective of this study was to provide guidance on material specifications for powders used in laser powder bed fusion based additive manufacturing (AM) processes. The methodology was to investigate how different material property assumptions in a simulation affect meltpool prediction and by corrolary how different material properties affect meltpool formation in AM processes. The sensitvity of meltpool variations to each material property can be used as a guide to help drive future research and to help prioritize material specifications in requirements documents. By identifying which material properties have the greatest affect on outcomes, metrology can be tailored to focus on those properties which matter most; thus reducing costs by eliminating unnecessary testing and property charaterizations. Futhermore, this sensitivity study provides insight into which properties require more accurate measurements, thus motivating development of new metrology methods to measure those properties accurately.

  13. Controlling cell-material interactions with polymer nanocomposites by use of surface modifying additives

    NASA Astrophysics Data System (ADS)

    Poole-Warren, L. A.; Farrugia, B.; Fong, N.; Hume, E.; Simmons, A.

    2008-11-01

    Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.

  14. 16 CFR 803.20 - Requests for additional information or documentary material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... documentary material relevant to the acquisition may be required from one or more persons required to file... corporation “X”, and files notification. Under § 801.30, the waiting period begins upon filing by “A,” and “X” must file within 15 days thereafter (10 days if it were a cash tender offer). Assume that before...

  15. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOEpatents

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  16. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  17. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  18. Thermodynamic method of calculating the effect of alloying additives on interphase interaction in composite materials

    NASA Technical Reports Server (NTRS)

    Tuchinsky, L. I.

    1986-01-01

    The effect of alloying additives to the matrix of a composite on the high temperature solubility rate of a single component fiber was analyzed thermodynamically. With an example of binary Ni alloys, with Group IV-VI transition metals reinforced with W fibers, agreement between the calculated and experimental data was demonstrated.

  19. Additional material of the enigmatic Early Miocene mammal Kelba and its relationship to the order Ptolemaiida

    PubMed Central

    Cote, Susanne; Werdelin, Lars; Seiffert, Erik R.; Barry, John C.

    2007-01-01

    Kelba quadeemae, a fossil mammal from the Early Miocene of East Africa, was originally named on the basis of three isolated upper molars. Kelba has previously been interpreted as a creodont, a pantolestid, an insectivoran, and a hemigaline viverrid. The true affinities of this taxon have remained unclear because of the limited material and its unique morphology relative to other Miocene African mammals. New material of Kelba from several East African Miocene localities, most notably a skull from the Early Miocene locality of Songhor in Western Kenya, permits analysis of the affinities of Kelba and documents the lower dentition of this taxon. Morphological comparison of this new material clearly demonstrates that Kelba is a member of the order Ptolemaiida, a poorly understood group whose fossil record was previously restricted to the Oligocene Fayum deposits of northern Egypt. Phylogenetic analysis supports the monophyly of the Ptolemaiida, including Kelba, and recovers two monophyletic clades within the order. We provide new family names for these groups and an emended diagnosis for the order. The discovery of ptolemaiidans from the Miocene of East Africa is significant because it extends the known temporal range of the order by >10 million years and the geographic range by >3,200 km. Although the higher-level affinities of the Ptolemaiida remain obscure, their unique morphology and distribution through a larger area of Africa (and exclusively Africa) lend support to the idea that Ptolemaiida may have an ancient African origin. PMID:17372202

  20. Does the addition of proteases affect the biogas yield from organic material in anaerobic digestion?

    PubMed

    Müller, Liane; Kretzschmar, Jörg; Pröter, Jürgen; Liebetrau, Jan; Nelles, Michael; Scholwin, Frank

    2016-03-01

    The aim of this study was to investigate the biochemical disintegration effect of hydrolytic enzymes in lab scale experiments. Influences of enzyme addition on the biogas yield as well as effects on the process stability were examined. The addition of proteases occurred with low and high dosages in batch and semi-continuous biogas tests. The feed mixture consisted of maize silage, chicken dung and cow manure. Only very high concentrated enzymes caused an increase in biogas production in batch experiments. In semi-continuous biogas tests no positive long-term effects (100 days) were observed. Higher enzyme-dosage led to a reduced biogas-yield (13% and 36% lower than the reference). Phenylacetate and -propionate increased (up to 372 mgl(-1)) before the other volatile fatty acids did. Volatile organic acids rose up to 6.8 gl(-1). The anaerobic digestion process was inhibited. PMID:26741852

  1. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE PAGESBeta

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  2. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives.

    PubMed

    Liang, Cai; Gooneratne, Chinthaka P; Wang, Qing Xiao; Liu, Yang; Gianchandani, Yogesh; Kosel, Jurgen

    2014-09-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. PMID:25587418

  3. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  4. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. PMID:27233044

  5. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xixi; Alemohammad, Hamidreza; Toyserkani, Ehsan

    2013-02-01

    This paper describes a combined fabrication method for creating a bi-material micro-scale coating on fiber Bragg grating (FBG) optical sensors using laser-assisted maskless microdeposition (LAMM) and electroless nickel plating. This bi-material coating alters the sensitivity of the sensor where it also acts as a protective layer. LAMM is used to coat bare FBGs with a 1-2 µm thick conductive silver layer followed by the electroless nickel plating process to increase layer thickness to a desired level ranging from 1 to 80 µm. To identify an optimum coating thickness and predict its effect on the sensor's sensitivity to force and temperature, an optomechanical model is developed in this study. According to the model if the thickness of the Ni layer is 30-50 µm, maximum temperature sensitivity is achieved. Our analytical and experimental results suggest that the temperature sensitivity of the coated FBG with 1 µm Ag and 33 µm Ni is almost doubled compared to a bare FBG with sensitivity of 0.011 ± 0.001 nm °C-1. In contrast, the force sensitivity is decreased; however, this sensitivity reduction is less than the values reported in the literature.

  6. Internet and paper self-help materials for problem drinking: is there an additive effect?

    PubMed

    Cunningham, John A; Humphreys, Keith; Koski-Jännes, Anja; Cordingley, Joanne

    2005-09-01

    The objective of this study was to conduct a preliminary evaluation of an Internet-based intervention for problem drinkers, comparing changes in drinking between respondents who only received the intervention to those who also received a self-help book. After receiving a personalized feedback summary on the Internet, 83 respondents provided complete baseline information and volunteered to participate in a 3-month follow-up survey. Half of the respondents were randomized to receive an additional self-help book. The follow-up was returned by 48 respondents (69% female). Repeated measures ANOVAs were conducted to compare drinking levels at baseline and 3-month follow-up among respondents who only received the Internet-based intervention. There was minimal support for an impact of the Internet intervention alone. In addition, hierarchical regression analyses were conducted to compare respondents in the two intervention conditions on their drinking at follow-up, controlling for baseline consumption. Respondents who received the additional self-help book reported drinking less and experiencing fewer consequences at follow-up as compared to respondents who received only the Internet-based intervention. While the results are promising, they cannot be taken as evidence of the efficacy of Internet-based personalized feedback as a stand-alone intervention because of the absence of a control group that did not receive the intervention. Further research on this topic should be a priority because of the potential for Internet-based interventions to reach problem drinkers underserved by traditional treatment. PMID:15893433

  7. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    NASA Astrophysics Data System (ADS)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  8. Silica nanoparticle addition to control the calcium-leaching in cement-based materials

    NASA Astrophysics Data System (ADS)

    Gaitero, J. J.; Sáez de Ibarra, Y.; Erkizia, E.; Campillo, I.

    2006-05-01

    The calcium leaching of the cement hydrated matrix is of vital importance for constructions like water containers, dams, bridges, etc which have to be in contact with water during their lifetime. The aim of this work is the study of the reduction of such a negative phenomenon by the addition of silica nanoparticles. Several characterisation techniques such as 29Si MAS NMR, X-ray diffraction, mercury intrusion porosimetry and EDX-microanalysis have been used to evaluate the effect of the nanoparticles in the cement matrix nanostructure and in their impact on the evolution of the Ca leaching throughout time. Subsequent analysis of the results indicates that silica nanoparticles can reduce the Ca-leaching both decreasing the amount of portlandite in the matrix and controlling the degradation rate of the C-S-H gel.

  9. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  10. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-01

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  11. Study on Friction and Wear Properties of Silver Matrix Brush Material with Different Additives

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoli; Wang, Wenfang; Hong, Yu; Wu, Yucheng

    2013-07-01

    Friction and wear processes of AgCuX (G, CF and AlN) composites-CuAgV alloy friction pair and effects of different additive content in silver based composite on friction and wear behavior are studied in this paper. The microstructure of the brush wear surface is observed by SEM. The results show that when graphite content is up to 9 wt.%, Ag-Cu-CF-G composite exhibits the best wear properties; when the content of aluminum nitride is up to 0.5 wt.%, Ag-Cu-AlN-G composites has the most comprehensive performance. The wear loss of both composites arises with the increase of both pressure and speed, but when speed reaches a critical value, the increased amplitude of wear loss tends to be steady.

  12. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-05-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  13. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  14. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  15. Significant role of fissility in evaporation residue cross sections as a probe of presaddle nuclear dissipation

    SciTech Connect

    Ye, W.

    2010-01-15

    Using a Langevin model, we explore the role of fissility in probing presaddle nuclear dissipation by calculating the excess of the evaporation residue cross section over its standard statistical-model value as a function of nuclear dissipation strength for nuclei {sup 190}Os and {sup 210}Po, which are taken as two representatives that have the same neutron-to-proton ratio (N/Z) but have a difference in fissility. We find that a large fissility not only amplifies the dissipation effects on the excess of evaporation residues, but also significantly increases the sensitivity of this excess to nuclear dissipation. The results suggest that in experiments, to obtain a more accurate information of nuclear dissipation inside the saddle point by measuring evaporation residue cross sections, it is best to populate among the various compound systems with equal N/Z those with high fissility.

  16. Evaluation of additional head of biceps brachii: a study with autopsy material.

    PubMed

    Ballesteros, L E; Forero, P L; Buitrago, E R

    2014-05-01

    Additional head of the biceps brachii (AHBB) has been reported in different population groups with a frequency of 1-25%. The purpose of this study was to determine the incidence and morphologic expression of the AHBB as determined in a sample of the Colombian population. An exploration was conducted with 106 arms corresponding to unclaimed corpses autopsied at Institute of Legal and Forensic Medicine of Bucaramanga, Colombia. Using medial incision involvingskin, subcutaneous tissue, and brachial fascia, the heads of the biceps and their innervating branches were visualised. One AHBB was observed in 21 (19.8%) of the arms evaluated, with non-significant difference (p = 0.568) per side of presentation: 11 (52.4%) cases on the right side and 10 (47.6%) on the left side. All AHBBs were originated in the infero-medial segment of the humerus, with a mean thickness of 17.8 ± 6.8 mm. In 4 (19%) cases the fascicle was thin, less than 10 mm; in 7 (33.3%) cases it was of medium thickness, between 11 and 20 mm, whereas in 47.6% it was longer than 20 mm. The length of the AHBB was 118.3 ± 26.8 mm; its motor point supplied by the musculocutaneous nerve was located at 101.3 ± 20.9 mm of the bi-epicondylar line. The incidence of AHBB in this study is located at the upper segment of what has been reportedin the literature and could be a morphologic trait of the Colombian population; in agreement with prior studies, the origin was the infero-medial surface of the humerus. PMID:24902098

  17. Experimental rivers: from braided to meandering by addition of cohesive floodplain material

    NASA Astrophysics Data System (ADS)

    Van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.

    2011-12-01

    much more sediment was reworked. Apparently, the lack of bank cohesion allowed more sediment to be available within the channels, which in turn enhanced the braiding tendency. We conclude that the increase of fine cohesive material leads to a decrease in chute cutoffs and the tendency to braid. The upstream moving inflow boundary was a necessary condition for dynamic meandering and braiding.

  18. Determining fissile content in PWR spent fuel assemblies using a passive neutron Albedo reactivity with fission chambers technique

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-01-01

    State regulatory bodies and organizations such as the IAEA that are concerned with preventing the proliferation of nuclear weapons are interested in a means of quantifying the amount of plutonium in a given spent fuel assembly. The complexity of spent nuclear fuel makes the measurement of plutonium content challenging. There are a variety of techniques that can measure various properties of spent nuclear fuel including burnup, and mass of fissile content. No single technique can provide all desired information, necessitating an approach using multiple detector systems and types. This paper presents our analysis of the Passive Neutron Albedo Reactivity Fission Chamber (PNAR-FC) detector system. PNAR-FC is a simplified version of the PNAR technique originally developed in 1997. This earlier research was performed with a high efficiency, {sup 3}He-based system (PNAR-3He) with which multiplicty analysis was performed. With the PNAR technique a portion of the spent fuel assembly is wrapped in a 1 mm thick cadmium liner. Neutron count rates are measured both with and without the cadmium liner present. The ratio of the count rate with the cadmium liner to the count rate without the cadmium liner is calculated and called the cadmium ratio. In the PNAR-3He technique, multiplicity measurements were made and the cadmium ratio was shown to scale with the fissile content of the material being measured. PNAR-FC simplifies the PNAR technique by using only a few fission chambers instead of many {sup 3}He tubes. Using a simplified PNAR-FC technique provides for a cheaper, lighter, and thus more portable detector system than was possible with the PNAR-3He system. The challenge with the PNAR-FC system are two-fold: (1) the change in the cadmium ratio is weaker as a afunction of the changing fissile content relative to multiplicity count rates, and (2) the efficiency for the fission chamber based system are poorer than for the {sup 3}He based detectors. In this paper, we present our

  19. Application of copper nanoparticles as additions to a grinding fluid to increase the quality of grinding of magnetic ceramic materials

    NASA Astrophysics Data System (ADS)

    Krevchik, V. D.; Skryabin, V. A.; Sokolov, A. V.; Men'shova, S. B.; Artemov, I. I.; Prokof'ev, M. V.; Karasev, N. Ya.

    2015-12-01

    The influence of copper nanoparticles in a grinding fluid (GF) used for grinding on the characteristics of the surface layer of ferrite parts and their service properties is studied. Profilograms of the ground surfaces and their roughness are measured. The electromagnetic losses of 10000NN ferrite parts ground in an GF medium with copper nanoparticles are estimated. The use of metal nanoparticles as additions to a grinding fluid is shown to be useful for processing of brittle nonmetallic materials.

  20. Effect of the fissile bead's and thermocouple wires' sizes on the response time of a fission couple

    NASA Astrophysics Data System (ADS)

    Liang, Wenfeng; Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei

    2014-05-01

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires' sizes are simulated using ANSYS workbench. The decrease of wires' diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.

  1. Effect of the fissile bead's and thermocouple wires’ sizes on the response time of a fission couple

    SciTech Connect

    Liang, Wenfeng Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei

    2014-05-15

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires’ sizes are simulated using ANSYS workbench. The decrease of wires’ diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.

  2. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of

  3. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    SciTech Connect

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  4. Mechanical degradation under hydrogen of yttrium doped barium zirconate electrolyte material prepared with NiO additive

    NASA Astrophysics Data System (ADS)

    Ciria, D.; Ben Hassine, M.; Jiménez-Melendo, M.; Iakovleva, A.; Haghi-Ashtiani, P.; Aubin, V.; Dezanneau, G.

    2016-07-01

    Recently, a novel process was presented to fabricate dense yttrium-doped barium zirconate electrolytes with high proton conductivity. This process was based on the use of a NiO additive during reactive sintering. We show here that materials made from this process present a fast degradation of mechanical properties when put in hydrogen-rich conditions, while material made from conventional sintering without NiO aid remains intact in the same conditions. The fast degradation of samples made from reactive sintering, leading to sample failure under highly compressive conditions, is due to the reduction of NiO nanoparticles at grain boundaries as shown from structural and chemical analyses using Transmission Electron Microscopy. By the present study, we alert about the potential risk of cell failure due to this mechanical degradation.

  5. Novel Dental Restorative Materials having Low Polymerization Shrinkage Stress via Stress Relaxation by Addition-Fragmentation Chain Transfer

    PubMed Central

    Park, Hee Young; Kloxin, Christopher J.; Abuelyaman, Ahmed S.; Oxman, Joe D.; Bowman, Christopher N.

    2012-01-01

    Objectives To produce a reduced stress dental restorative material while simultaneously maintaining excellent mechanical properties, we have incorporated an allyl sulfide functional group into norbornene-methacrylate comonomer resins. We hypothesize that the addition-fragmentation chain transfer (AFCT) enabled by the presence of the allyl sulfide relieves stress in these methacrylate-based systems while retaining excellent mechanical properties owing to the high glass transition temperature of norbornene-containing resins. Methods An allyl sulfide-containing dinorbornene was stoichiometrically formulated with a ring-containing allyl sulfide-possessing methacrylate. To evaluate the stress relaxation effect as a function of the allyl sulfide concentration, a propyl sulfide-based dinorbornene, not capable of addition-fragmentation, was also formulated with the methacrylate monomer. Shrinkage stress, the glass transition temperature and the elastic modulus were all measured. The composite flexural strength and modulus were also measured. ANOVA (CI 95%) was conducted to determine differences between the means. Results Increasing the allyl sulfide content in the resin dramatically reduces the final stress in the norbornene-methacrylate systems. Both norbornene-methacrylate resins demonstrated almost zero stress (more than 96% stress reduction) compared with the conventional BisGMA/TEGDMA 70/30 wt% control. Mechanical properties of the allyl sulfide-based dental composites were improved to the point of being statistically indistinguishable from the control BisGMA-TEGDMA by changing the molar ratio between the methacrylate and norbornene functionalities. Significance The allyl sulfide-containing norbornene-methacrylate networks possessed super-ambient Tg, and demonstrated significantly lower shrinkage stress when compared with the control (BisGMA/TEGDMA 70 to 30 wt%). Although additional development remains, these low stress materials exhibit excellent mechanical

  6. Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Roberts, Jon; Li, Huijun

    2016-02-01

    A functionally gradient iron-aluminum wall structure with aluminum composition gradient from 0 at. pct to over 50 at. pct is fabricated using a wire-arc additive manufacturing (WAAM) system. The as-fabricated alloy is investigated using optical microstructure analysis, hardness testing, tensile testing, X-ray diffraction phase characterization, and electron-dispersive spectrometry. The comprehensive analysis of the experimental samples has shown that the WAAM system can be used for manufacturing iron aluminide functionally graded material with full density, desired composition, and reasonable mechanical properties.

  7. Aryl bromides as inexpensive starting materials in the catalytic enantioselective arylation of aryl aldehydes: the additive TMEDA enhances the enantioselectivity.

    PubMed

    Yang, Yong-Xin; Liu, Yue; Zhang, Lei; Jia, Yan-E; Wang, Pei; Zhuo, Fang-Fang; An, Xian-Tao; Da, Chao-Shan

    2014-11-01

    We used aryl bromides as inexpensive starting materials to enantioselectively arylate aldehydes in one pot. Aryl bromides readily transfer aryls to aryllithiums with n-butyllithium, successively to triarylaluminums with aluminum chloride, and then to aryltitaniums with titanium isopropoxide. Finally aryltitaniums arylate aldehydes catalyzed by (S)-H8-BINOL-Ti(Oi-Pr)2 in excellent yields and enantioselectivities. The additive TMEDA evidently suppresses the racemic background reaction promoted by LiCl generated from salt metathesis. This procedure represents a cost-effective and operationally convenient method for enantioenriched diarylmethanols. PMID:25279967

  8. Active-material additives for high-rate lead/acid batteries: have there been any positive advances?

    NASA Astrophysics Data System (ADS)

    McGregor, K.

    Low positive mass utilization poses a major problem for lead/acid batteries, particularly at high discharge rates, and is one of the major factors that limits the specific energy of the battery. The reasons for the incomplete discharge at high rates are generally ascribed to a combination of various polarization phenomena including: (i) poor acid transport from the bulk of the solution in the interior of the plate, and (ii) a continuous decrease in the conductivity of the plates due to formation of non-conductive PbSO 4. One approach to alleviating these problems is to improve the positive-plate porosity and/or conductivity by the incorporation of additives into the positive active-material. The purpose of this paper is to reew recent work with such additives, and to appraise their effectiveness towards raising battery performance.

  9. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    PubMed

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis). PMID:16039695

  10. Counterproliferation of nuclear raw materials. Study project

    SciTech Connect

    Sanders, R.L.

    1996-02-26

    In light of the ongoing INF and START I agreements and the pending ratification of the START II agreement, the quantities of nuclear-weapon-usable `fissile` materials from the former USSR will expand drastically. Some newly rich rogue oil states and terrorist groups with anti-U.S. sentiments may attempt to procure fissile materials in order to manufacture nuclear weapons. This project will explore the scope of the fissile material proliferation problem, describe a number of recent cases where fissile material was illegally diverted, and discuss the U.S. policies, methods and means available to halt or reduce the spread of weapons-usable nuclear material. Finally, it provides recommendations for improvements in the U.S. program and for areas meriting further study.

  11. Estimating the Additional Greenhouse Gas Emissions in Korea: Focused on Demolition of Asbestos Containing Materials in Building.

    PubMed

    Kim, Young-Chan; Hong, Won-Hwa; Zhang, Yuan-Long; Son, Byeung-Hun; Seo, Youn-Kyu; Choi, Jun-Ho

    2016-01-01

    When asbestos containing materials (ACM) must be removed from the building before demolition, additional greenhouse gas (GHG) emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS). The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO₂eq to 132,141 tonCO₂eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide. PMID:27626433

  12. The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Hu, Chiyu; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Conventional tetrabasic lead sulfate used as positive active material additive shows the results of the low effective lead dioxide conversion rate due to the large grain size and crossed the crystal structure. In this paper, we study on a type of nanometer tetrabasic lead sulfate. Through the XRD and SEM test and Material Studio software calculation, the purity of tetrabasic lead sulfate is very high, the grain size of the nanometer 4BS is almost unanimous, and can be controlled below 200 nm. When charged and discharged in 1.75 V-2.42 V with the current density of 40 mA g-1, 80 mA g-1 and 160 mA g-1, the effective lead dioxide conversion rate of nanometer 4BS after formation can achieve to 83.48%, 71.42%, and 66.96%. Subsequently, the nanometer 4BS as additive is added to positive paste of lead-acid battery. When the batteries are tested galvanostatically between 1.75 V and 2.42 V at 0.25 C charge and 0.5 C discharge rates at room temperature. The ratio of adding nanometer 4BS is 0%, 1% and 4% and the initial discharge specific capacities are 60 mAh g-1, 65 mAh g-1 and 68 mAh g-1. After 80 cycles, the initial discharge capacity of positive active material with 1% nanometer 4BS decreased less than 10%, while adding 4% nanometer 4BS, the initial discharge capacity doesn't decrease obviously.

  13. Development of self-interrogation neutron resonance densitometry (sinrd) to measure the fissile content in nuclear fuel

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne Marie

    The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The

  14. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.

    2015-10-01

    The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  15. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  16. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.

    PubMed

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2010-09-01

    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate. PMID:20852000

  17. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-10-13

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  18. Evaluation of the thermal performance of fire fighter protective clothing with the addition of phase change material

    NASA Astrophysics Data System (ADS)

    McCarthy, Lee K.

    Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments they may encounter during operations. FFPC has seen significant advancement in technology over the past few decades. The addition of phase change material (PCM) to FFPC is a new technology with potential to enhance the thermal protection provided by the FFPC. To explore this technology, data from bench-scale experiments involving FFPC with PCMs are compared with a theoretical finite difference heat transfer model. The results demonstrate an effective method to mathematically model the heat transfer and provide insight into the effectiveness of improving the thermal protection of FFPC. The experiments confirm that the latent heat absorbed during the phase change reduces temperatures that might be experienced at the fire fighter's skin surface, advancing the high temperature performance of FFPC.

  19. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    PubMed

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition. PMID:27080407

  20. Global nuclear material control model

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  1. Notable improvement of capacitive performance of highly nanoporous carbon materials simply by a redox additive electrolyte of p-nitroaniline

    NASA Astrophysics Data System (ADS)

    Zhu, Yan Qi; Zhang, Lei; Chen, Xiang Ying; Xiao, Zheng Hui; Zhang, Zhong Jie

    2015-12-01

    Highly nanoporous carbon materials have been produced by a synchronous carbonization/graphitization process, using magnesium citrate serves as the carbon source and nickel nitrate as graphitization catalyst. The carbonization temperature plays a crucial role in determining the porosity and graphitization. The lower temperature favors for the formation of larger porosity, whilst higher temperature for better crystallinity. Resultantly, a high BET surface area of 2587.13 m2 g-1 and large total pore volume of 4.64 cm3 g-1 appear, the case of C-800 sample, thereby resulting in a large specific capacitance of 305.3 F g-1 at 1 A g-1 from the contribution of electric double layer capacitances. More importantly, we demonstrate a novel redox active additive of p-nitroaniline (PNA) into the 6 mol L-1 KOH electrolyte to largely improve the capacitance by the quick self-discharge redox reaction of H+/e-. The C-800-2 sample with the PNA concentration of 2 mmol delivers largely improved capacitance of 502.1 F g-1 at 1 A g-1, which is almost 1.65 fold increase. Apparently, the present PNA is commercially available, and highly effective for elevating the specific capacitance and might be implemented for the wide supercapacitor application.

  2. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  3. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. PMID:23831747

  4. Evaluation Of Glass Density To Support The Estimation Of Fissile Mass Loadings From Iron Concentrations In SB8 Glasses

    SciTech Connect

    Edwards, T. B.; Peeler, D. K.; Kot, W. K.; Gan, H.; Pegg, I. L.

    2013-04-30

    The Department of Energy – Savannah River (DOE-SR) has provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of that guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft® Excel® spreadsheet for the evaluation of fissile loading in Sludge Batch 5 (SB5), Sludge Batch 6 (SB6), Sludge Batch 7a (SB7a), and Sludge Batch 7b (SB7b) glass based on the iron (Fe) concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that the necessary density information be provided to allow SRR to update the Excel® spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 8 (SB8). One of the primary inputs into the fissile loading spreadsheet includes an upper bound for the density of SB8-based glasses. Thus, these bounding density values are to be used to assess the fissile concentration in this glass system. It should be noted that no changes are needed to the underlying structure of the Excel-based spreadsheet to support fissile assessments for SB8. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB8 Waste Acceptance Product Specification (WAPS) sample.

  5. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    NASA Astrophysics Data System (ADS)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  6. Effect of an organic additive on the rheology of an aluminous cement paste and consequences on the densification of the hardened material

    NASA Astrophysics Data System (ADS)

    El Hafiane, Y.; Smith, A.; Bonnet, J. P.; Tanouti, B.

    2005-03-01

    The material used in the present work is Secar 71 (Lafarge) mixed with water containing an organic additive (acetic acid noted HOAc). The rheological behavior of these pastes is studied. The best dispersion is obtained when the mass content of the additive with respect to the cement is equal to 0.5%. The microstructural characterizations of samples aged 4 days at 20° C and 95 % relative humidity reveal a significant increase in the density and a reduction in porosity for very small percentages of additive. The remarkable effect of the acetic acid on the microstructure of hardened material is correlated with its good dispersing action.

  7. Fissile Nuclei Rotation Effect in {sup 235}U(n,{gamma}f) Process

    SciTech Connect

    Danilyan, Gevorg; Krakhotin, Vyacheslav; Kuznetsov, Valery; Novitsky, Vadim; Pavlov, Valery; Shatalov, Pavel; Granz, Peter; Mezei, Ferenz; Russina, Margarita; Wilpert, Thomas; Klenke, Jens

    2009-01-28

    A small shift of an angular distribution of prompt {gamma}-rays relative to the fission axis of {sup 236}U* {sup 235}U(n,{gamma}f) process is presented. This effect has been observed in the experiment at BER-II reactor of BENSC/HMI (Berlin). The sign of the shift depends on the direction of the incident neutron beam polarization. This phenomena can be explained by the rotation of fissile nucleus {sup 236}U*, like the effect that has been observed recently at ILL in ternary fission of {sup 235}U by cold polarized neutrons. The main surprise of this result is the detection of scission gamma-rays radiated by a fissile nucleus during the time interval of the order of 10{sup -21} s before or after the moment of the neck rupture. Detailed measurements of trigger {gamma}-rays energy dependence are in progress at the neutron beam 'MEPHISTO' of FRM-II reactor (Garching)

  8. Improving the damping ability by the addition of Nano SiO2 to the concrete materials

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Teng, Jun

    2009-07-01

    Damping in structures is commonly provided by viscoelastic nonstructural materials. Due to the large volume of structural materials in a structure, the contribution of a structural material to damping can be substantial. In this paper, the experimental investigation on damping ability of concrete materials and its members with Nana SiO2 was carried out by the method of 3-point bending beam damping measurement and cantilever beam free vibration respectively. The microstructure of concrete mix with Nano SiO2 was observed by XRD and SEM, then damping mechanism was discussed. The experimental results show that the damping reinforced effect achieved best with the 4% mixture ratio of Nana SiO2, but the optimal adulteration quantity of Nano SiO2 was 3% of cement weight by the comprehensive consideration of cost, workability, strength and dynamic properties. Nano materials as a mixture increase interfaces, and the non-uniform stress distribution under external force improves frictional damping energy consumption ability of concrete. The experimental results on the damping ratio and the loss tangent of the concrete materials with Nano materials are consistent.

  9. Measuring of fissile isotope partial antineutrino spectra in direct experiment at nuclear reactor

    SciTech Connect

    Sinev, V. V.

    2009-11-15

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta-decay reaction positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  10. Relevance of mesocatalytic hybrid reactors for accumulation of fissile nuclei and energy balance analysis

    NASA Astrophysics Data System (ADS)

    Chigrinov, S. E.; Kievitskaya, A. I.; Petlitskij, V. A.

    1993-05-01

    On the basis of the energy and angular spectra of particles emitted from the lateral surfaces of light element targets, the energy balance of a mesocatalytic hybrid reactor (MCHR) has been estimated, with the dependence upon fuel enrichment, type and volume fraction of coolant in the mesocatalytic and electronuclear channel blankets taken into account. It is shown that it is possible to generate a considerable amount of electric power in an MCHR due to burning up fissile nuclides in an MCHR blanket by choosing appropriate types of fuel composition and coolant. Despite some reduction of the fissile nuclide breeding ratio and of the number of nuclear reactors (NR) in the MCHR-NR system, the primary beam power gain is of the same magnitude as in the case of a natural uranium blanket with a hard neutron spectrum. A simplification in solving ecological, economic and safety problems in nuclear fuel reprocessing can be reached by burning the accumulated fissile nuclides directly in the MCHR blanket

  11. Photofission Analysis for Fissile Dosimeters Dedicated to Reactor Pressure Vessel Surveillance

    NASA Astrophysics Data System (ADS)

    Bourganel, Stéphane; Faucher, Margaux; Thiollay, Nicolas

    2016-02-01

    Fissile dosimeters are commonly used in reactor pressure vessel surveillance programs. In this paper, the photofission contribution is analyzed for in-vessel 237Np and 238U fissile dosimeters in French PWR. The aim is to reassess this contribution using recent tools (the TRIPOLI-4 Monte Carlo code) and latest nuclear data (JEFF3.1.1 and ENDF/B-VII nuclear libraries). To be as exhaustive as possible, this study is carried out for different configurations of fissile dosimeters, irradiated inside different kinds of PWR: 900 MWe, 1300 MWe, and 1450 MWe. Calculation of photofission rate in dosimeters does not present a major problem using the TRIPOLI-4® Monte Carlo code and the coupled neutron-photon simulation mode. However, preliminary studies were necessary to identify the origin of photons responsible of photofissions in dosimeters in relation to the photofission threshold reaction (around 5 MeV). It appears that the main contribution of high enough energy photons generating photofissions is the neutron inelastic scattering in stainless steel reactor structures. By contrast, 137Cs activity calculation is not an easy task since photofission yield data are known with high uncertainty.

  12. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to

  13. Fissile Flow and Enrichment Monitor for GCEP Advanced Safeguards Application

    SciTech Connect

    March-Leuba, Jose A; Uckan, Taner

    2010-01-01

    This paper presents experimental data that demonstrate a concept for a {sup 235}U flow and enrichment monitor (FEMO) based on passive measurements of process equipment in gaseous centrifuge enrichment plants (GCEPs). The primary goal of the FEMO is to prevent, without using pipe penetrations or active interrogation with external sources, the production and diversion of undeclared nuclear material. This FEMO concept utilizes: (1) calibrated measurements of {sup 235}U density in cascade headers, and (2) measurements of pump inlet pressure and volumetric flow rate, which are correlated to the electrical power consumed by the GCEP pumps that transport UF{sub 6} from the cascade to the condensation cylinders. The {sup 235}U density is measured by counting 186 keV emissions using a NaI gamma detector located upstream of the pump. The pump inlet pressure and volumetric flow rate are determined using a correlation that is a function of the measured pump operational parameters (e.g., electric power consumption and rotational frequency) and the pumping configuration. The concept has been demonstrated in a low-pressure flow loop at Oak Ridge National Laboratory.

  14. Measurements on an inventory of mixed fissile materials in shipping containers

    SciTech Connect

    Rinard, P.M.; Krick, M.S.; Kelley, T.A.

    1997-09-01

    An inventory contained a large number of previously unmeasured items, many with both uranium and plutonium. We have assembled a suite of instruments and measured the items in a variety of ways. This report first considers the measurements and deduced results in detail before summarizing the important differences with the declarations of the inventory`s database. The appendices referred to in this report are part of a classified version only and are not attached to this unclassified version. The classified report is by the same authors as this report, has the same title (which is unclassified), and is classified as {open_quotes}SRD.{close_quotes}

  15. Immobilization as a route to surplus fissile materials disposition. Revision 1

    SciTech Connect

    Gray, L.W.; Kan, T.; McKibben, J.M.

    1996-03-15

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed.

  16. Secondary ion mass spectrometry signatures for verifying declarations of fissile-material production.

    PubMed

    Willingham, D; Naes, B E; Burns, K A; Reid, B D

    2015-03-01

    Direct analysis of uranium enrichment facility components were performed using secondary ion mass spectrometry (SIMS). A standard protocol was developed to enable preparation of SIMS samples from a corroded pipe piece without disturbing the corrosion layer. Unique uranium, oxygen and fluorine containing signatures were discovered in the corrosion layer by performing a mass scan of the region of interest from 230 to 280amu. These signatures identified the source of the corrosion layer as uranium hexafluoride (UF6) or an associated hydrolysis product. Isotopic analysis of the corrosion layer determined enrichment of (235)U to a value of 0.0116±0.0019 for the (235)U/(238)U isotopic ratio as compared to the NIST traceable standard (CRM 112-A) with a natural (235)U/(238)U isotopic ratio of 0.007254±0.000004. SIMS depth analysis revealed that the corrosion layer was isotopically homogenous to a depth of ~23.5µm. Optical profilometry measurements prior to and following SIMS depth analysis were used to determine a sputter rate of 0.48nm/s for 18.5keV O(-) ion bombardment of the corrosion layer. The data presented is conclusive evidence that SIMS depth analysis can be used to identify novel nuclear archeology signatures from uranium enrichment components and perform meaningful isotopic analysis of these signatures. PMID:25575376

  17. 10 CFR 71.55 - General requirements for fissile material packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reflection of the containment system by water on all sides, or such greater reflection of the containment... the package and the chemical and physical form of the contents; and (3) There is full reflection by... its contents limited so that it would be subcritical, assuming reflection by 20 cm (7.9 in) of...

  18. 10 CFR 71.55 - General requirements for fissile material packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reflection of the containment system by water on all sides, or such greater reflection of the containment... the package and the chemical and physical form of the contents; and (3) There is full reflection by... its contents limited so that it would be subcritical, assuming reflection by 20 cm (7.9 in) of...

  19. 10 CFR 71.55 - General requirements for fissile material packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reflection of the containment system by water on all sides, or such greater reflection of the containment... the package and the chemical and physical form of the contents; and (3) There is full reflection by... its contents limited so that it would be subcritical, assuming reflection by 20 cm (7.9 in) of...

  20. 10 CFR 71.55 - General requirements for fissile material packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reflection of the containment system by water on all sides, or such greater reflection of the containment... the package and the chemical and physical form of the contents; and (3) There is full reflection by... its contents limited so that it would be subcritical, assuming reflection by 20 cm (7.9 in) of...

  1. Open Skies and monitoring a fissile materials cut-off treaty

    SciTech Connect

    Allentuck, J.; Lemley, J.R.

    1995-09-01

    The Treaty on Open Skies (Open Skies) is intended among other things to provide, in the words of its preamble, means ``to facilitate the monitoring of compliance with existing or future arms control agreements.`` Open Skies permits overflights of the territory of member states by aircraft equipped with an array of sensors of various types. Their types and capabilities are treaty-limited. To find useful application in monitoring a cut-off treaty Open Skies would need to be amended. The number of signatories would need to be expanded so as to provide greater geographical coverage, and restrictions on sensor-array capabilities would need to be relaxed. To facilitate the detection of impending violations of a cut-off convention by Open Skies overflights, the data base provided by parties to the former should include among other things an enumeration of existing and former fuel cycle and research facilities including those converted to other uses, their precise geographic location, and a site plan.

  2. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....73 (“Hypothetical accident conditions”) would be subcritical with optimum interspersed hydrogenous moderation; and (3) The value of “N” cannot be less than 0.5. (b) The CSI must be determined by dividing the number 50 by the value of “N” derived using the procedures specified in paragraph (a) of this...

  3. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....73 (“Hypothetical accident conditions”) would be subcritical with optimum interspersed hydrogenous moderation; and (3) The value of “N” cannot be less than 0.5. (b) The CSI must be determined by dividing the number 50 by the value of “N” derived using the procedures specified in paragraph (a) of this...

  4. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....73 (“Hypothetical accident conditions”) would be subcritical with optimum interspersed hydrogenous moderation; and (3) The value of “N” cannot be less than 0.5. (b) The CSI must be determined by dividing the number 50 by the value of “N” derived using the procedures specified in paragraph (a) of this...

  5. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....73 (“Hypothetical accident conditions”) would be subcritical with optimum interspersed hydrogenous moderation; and (3) The value of “N” cannot be less than 0.5. (b) The CSI must be determined by dividing the number 50 by the value of “N” derived using the procedures specified in paragraph (a) of this...

  6. Addendum 3 to CSAR 80-027, Use of calorimeter 109B for fissile material measurement

    SciTech Connect

    Chiao, T.

    1994-12-05

    This modification to the Plutonium Finishing Plant (PFP) calorimeter system involves removing current calorimeter No. 3 from the water bath and replacing it with a calorimeter that can accommodate larger diameter items (an oversize can). The inside diameters of both the sample and the reference cells will be increased to 5.835 inches at the top opening and to 5.22 inches at the bottom, the 8 inch high measurement zone. This Addendum 3 to Criticality Safety Analysis Report 80-027 examines criticality safety during the use of the modified calorimeter (Calorimeter 109B) with enlarged cell tube diameters to assure that an adequate margin of subcriticality is maintained for all normal and contingency conditions.

  7. Deep borehole disposition of surplus fissile materials-The site selection process

    SciTech Connect

    Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H

    1996-05-01

    One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.

  8. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS... prior sanctioned for animal feed and pet food. Regulations providing for the use of food...

  9. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS... prior sanctioned for animal feed and pet food. Regulations providing for the use of food...

  10. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS... prior sanctioned for animal feed and pet food. Regulations providing for the use of food...

  11. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS... prior sanctioned for animal feed and pet food. Regulations providing for the use of food...

  12. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS... prior sanctioned for animal feed and pet food. Regulations providing for the use of food...

  13. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and...

  14. Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Mitul, Abhangi; Nupur, Jain; Rajnikant, Makwana; Sudhirsinh, Vala; Shrichand, Jakhar; K. Basu, T.; V. S. Rao, C.

    2013-02-01

    The 14 MeV neutrons produced in the D-T fusion reactions have the potential of breeding Uranium-233 fissile fuel from fertile material Thorium-232. In order to estimate the amount of U-233 produced, experiments are carried out by irradiating thorium dioxide pellets with neutrons produced from a 14 MeV neutron generator. The objective of the present work is to measure the reaction rates of 232Th + 1n → 233Th → 233Pa → 233U in different pellet thicknesses to study the self-shielding effects and adopt a procedure for correction. An appropriate assembly consisting of high-density polyethylene is designed and fabricated to slow down the high-energy neutrons, in which Thorium pellets are irradiated. The amount of fissile fuel (233U) produced is estimated by measuring the 312 keV gammas emitted by Protactinium-233 (half-life of 27 days). A calibrated High Purity Germanium (HPGe) detector is used to measure the gamma ray spectrum. The amount of 233U produced by Th232 (n, γ) is calculated using MCNP code. The self-shielding effect is evaluated by calculating the reaction rates for different foil thickness. MCNP calculation results are compared with the experimental values and appropriate correction factors are estimated for self-shielding of neutrons and absorption of gamma rays.

  15. Modulation of the Reactivity of a WO3/Al Energetic Material with Graphitized Carbon Black as Additive

    NASA Astrophysics Data System (ADS)

    Bach, Arnaud; Gibot, Pierre; Vidal, Loïc; Gadiou, Roger; Spitzer, Denis

    2015-10-01

    Although pyrotechnic performance is fundamental, the strong mechanical and electrostatic intrinsic sensitivities of nanothermite energetic composites represent an obstacle to their development. The addition of a ternary component to the classical binary energetic composite appears to be a promising idea to overcome the problem. A carbon black additive (V3G) was used on a WO3/Al nanothermite. The effect of the pristine and modified carbon particles on the mechanical and electrical sensitivities of the composites was measured together with the pyrotechnic properties. The results show a complete desensitization to friction with a ball-milled carbon when the combustion velocity is slightly reduced.

  16. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  17. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE PAGESBeta

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; Luo, Huimin; Qu, Jun

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  18. Modeling the mechanical and aging properties of silicone rubber and foam - stockpile-historical & additively manufactured materials

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.

    2014-09-30

    M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned about are: compression set, load retention, and stress-strain response (modulus).

  19. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    SciTech Connect

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  20. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. PMID:26488900

  1. Effect of additives on mechanical and electrical properties of semi organic non linear material-γ-glycine

    NASA Astrophysics Data System (ADS)

    Ravishankar, M. N.; Chandramani, R.; Prakash, A. P. Gnana

    2012-06-01

    The semi-organic non-linear optical (NLO) crystals of γ-Glycine (G), with additives like Ammonium Oxalate (AO), Barium Nitrate (BN) and Potassium Nitrate (PN) were grown by aqueous solution method. The mechanical properties, dielectric constant, dielectric loss, AC conductivity of the grown crystals were studied. Studies confirm that the grown NLO crystals retain the merits of organic (SHG response and flexibility) and inorganic (good hardness) properties.

  2. Heat treatment and the use of additives to improve the stability of paralytic shellfish poisoning toxins in shellfish tissue reference materials for internal quality control and proficiency testing.

    PubMed

    Burrell, Stephen; Clion, Valentin; Auroy, Virginie; Foley, Barry; Turner, Andrew D

    2015-06-01

    The need for homogenous reference materials stable for paralytic shellfish toxins is vital for the monitoring and quality assurance of these potent neurotoxins in shellfish. Two stabilisation techniques were investigated, heat treatment through autoclaving and the addition of preserving additives into the tissue matrix. Short and long-term stability experiments as well as homogeneity determination were conducted on materials prepared by both techniques in comparison with an untreated control using two LC-FLD methods. Both techniques improved the stability of the matrix and the PSP toxins present compared to the controls. A material was prepared using the combined techniques of heat treatment followed by spiking with additives and data is presented from this optimised reference material as used over a two year period in the Irish national monitoring program and in a development exercise as part of a proficiency testing scheme operated by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe) since 2011. The results were indicative of the long-term stability of the material as evidenced through consistent assigned values in the case of the proficiency testing scheme and a low relative standard deviation of 10.5% for total toxicity data generated over 24 months. PMID:25816999

  3. Evaluation of western shale-oil residue as an additive to petroleum asphalt for use as a pavement crack and joint sealant material

    SciTech Connect

    Harnsberger, P.M.; Wolf, J.M.; Robertson, R.E.

    1992-11-01

    The objective of this study was to perform a preliminary evaluation of using a distillation residue from Green River Formation (western) shale oil as an additive to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. A commercially available rubberized asphalt crack and joint filler material was also tested for comparison. ASTM specification tests for sealant materials used in concrete and asphalt pavements were performed on the sealant materials. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation experiment to evaluate the relaxation and recovery properties of the sealant materials. The results show that the shale-oil modified petroleum asphalts and the neat petroleum asphalt do not pass the extension portion of the ASTM test; however, there is indication of improvement in the adhesive properties of the shale-oil modified asphalts. There is also evidence that the addition of shale-oil residue to the petroleum asphalt, especially at the 20% level, improves the relaxation and recovery properties compared with the petroleum asphalt.

  4. Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

    PubMed Central

    Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B. Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl

    2012-01-01

    Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes. PMID:24958427

  5. Adsorption of peptides at the sample drying step: influence of solvent evaporation technique, vial material and solution additive.

    PubMed

    Pezeshki, Adel; Vergote, Valentijn; Van Dorpe, Sylvia; Baert, Bram; Burvenich, Christian; Popkov, Alexander; De Spiegeleer, Bart

    2009-04-01

    Although the efficient and careful removal of solvent from samples by centrifugal evaporation or freeze-drying methods is an important step in peptidomics, the recovery of peptides has not yet been fully investigated with these sample drying methods. Moreover, the surface adsorption of the peptides by the container and efforts to reduce this adsorption by organic additives is only scarcely elaborated until now. In this experiment, the recovery of five model peptides, i.e. bovine insulin, mouse obestatin, goserelin, buserelin and leucine-enkephalin was investigated applying dimethylsulfoxide (DMSO), dimethylformamide (DMF), polyethylene glycol 400 (PEG 400), mannitol and n-nonyl-beta-d-glucopyranoside (C(9)-Glu) in function of the two applied solvent evaporation processes (freeze-drying vs. centrifugal evaporation) and vial types, i.e. polypropylene (PP) and glass. Under our experimental conditions, drying resulted in a decreased recovery of the model peptides by 10% on average. Insulin showed the lowest recovery value relative to the other model peptides. For both drying methods, recovery of the model peptides was increased when C(9)-Glu was present. Overall, the use of PP vials is proposed for freeze-drying, while glass vials are found to be more suitable for centrifugal evaporation. The presence of PEG 400 in PP vials caused significantly reduced recoveries for all model peptides using centrifugal evaporation, although this was not observed in glass vials. As a general conclusion, applying C(9)-Glu as an additive along with choosing appropriate vial type (i.e. PP for lyophilization and glass for centrifugal evaporation) can avoid or diminish peptide loss during the evaporation procedure. PMID:19150589

  6. Influence of the Density Law on Various Fissile Single Unit and Array Storage Methods

    SciTech Connect

    Huang, S T

    2011-03-02

    The advancement of computational technology has resulted in the wide-spread availability of powerful radiation transport Monte Carlo codes. Prevailing practices today rely heavily on Monte Carlo codes to provide the basis for assessing the reactivity of various fissile systems for nuclear criticality safety (NCS). In 1958, Weinberg and Wigner expressed their concerns on a 'deplorable trend in reactor design - the tendency to substitute a code for a theory'. Unfortunately, their concerns have largely become a reality in many modern NCS practices. lacking the time or information to understand the underlying neutron physics of the fissile system under consideration is indeed a deplorable trend. The purpose of this paper is to demonstrate that many features of criticality hand calculation methods are indeed based upon the fundamentals of the density law and that many correlations of important physics parameters can be more easily understood from such a perspective. Historically, the density law was recognized by many pioneers in the field, including during the Manhattan Project. However, it was by and large an 'oral tradition' in that bits and pieces of great physical insights of the pioneers were scattered in many earlier publications. This paper attempts to bring together some of the 'jewels' of the pioneers which might have been lost or forgotten.

  7. Physics concept on the constellation type fissile fuels and its application to the prospective Th-{sup 233}U reactor

    SciTech Connect

    Jiahua Zhange

    1994-12-31

    In contrast with the conventional nuclear reactor which usually fuelled with one single fissile nuclide, a constellation type fissile fuels reactor consists of a parent nuclide such as {sup 232}Th or {sup 238}U and its whole family of neutron generated daughter nuclides. All of them are regarded as fissile fuels but of quite different fission ability. The concentration of each daughter nuclide is determined by its saturate concentration ratio with the parent nuclide. In such fuel system, the whole fuel consumed by neutron reaction almost completely results in fission production. In this article, some interesting properties of such fuel system, determination of the saturate concentration of each daughter nuclide and applicability to Th-{sup 233}U reactor will be discussed.

  8. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.

    1985-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  9. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

    1984-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  10. On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer

  11. Fission dynamics of intermediate-fissility systems: A study within a stochastic three-dimensional approach

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Nadtochy, P. N.; Di Nitto, A.; Brondi, A.; La Rana, G.; Moro, R.; Rath, P. K.; Ashaduzzaman, M.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Cinausero, M.; Prete, G.; Fabris, D.; Montagnoli, G.; Gelli, N.

    2015-09-01

    The system of intermediate fissility 132Ce has been studied experimentally and theoretically to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation-residue channels together with light charged particle multiplicities in both channels, their spectra, light charged particle-evaporation residue angular correlations, and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using a multidimensional stochastic approach coupled with a Hauser-Feshbach treatment of particle evaporation. The main conclusions are that the full one-body shape-dependent dissipation mechanism allows the reproduction of the full set of experimental data and that after a time τd=5 ×10-21 s from the equilibrium configuration of the compound nucleus, fission decay can occur in a time that can span several orders of magnitude.

  12. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  13. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  14. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    SciTech Connect

    Sinev, V. V.

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  15. Remediation of metal-contaminated soils with the addition of materials--part I: characterization and viability studies for the selection of non-hazardous waste materials and silicates.

    PubMed

    González-Núñez, R; Alba, M D; Orta, M M; Vidal, M; Rigol, A

    2011-11-01

    Contamination episodes in soils require interventions to attenuate their impact. These actions are often based on the addition of materials to increase contaminant retention in the soil and to dilute the contaminant concentration. Here, non-hazardous wastes (such as sugar foam, fly ash and a material produced by the zeolitization of fly ash) and silicates (including bentonites) were tested and fully characterized in the laboratory to select suitable materials for remediating metal-contaminated soils. Data from X-ray fluorescence (XRF), N(2) adsorption/desorption isotherms, X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) analyses revealed the chemical composition, specific surface area and the phases appearing in the materials. A pH titration test allowed the calculation of their acid neutralization capacity (ANC). The metal sorption and desorption capacities of the waste materials and silicates were also estimated. Sugar foam, fly ash and the zeolitic material were the best candidate materials. Sugar foam was selected because of its high ANC (17000 meq kg(-1)), and the others were selected because of their larger distribution coefficients and lower sorption reversibilities than those predicted in the contaminated soils. PMID:22018740

  16. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    SciTech Connect

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.

  17. Effect of the addition of by-product ash of date palms on the mechanical characteristics of gypsum-calcareous materials used in road construction

    NASA Astrophysics Data System (ADS)

    Khellou, A.; Kriker, A.; Hafssi, A.; Belbarka, K.; Baali, K.

    2016-07-01

    The gypsum-calcareous materials, also known as the crusting tuff, are used in the pavement layers of low -traffic road and considered as the materials of first choice in the Saharan region of Algeria. The objective of this paper is to study the mechanical characteristics of tuff of Ouargla town that is situated in the Southeast of Algeria, by adding different percentage of ash resulted from the combustion of by-products of date palms, such as 4%, 8% and l2%, to the tuff. The results obtained have shown a remarkable improvement both in compressive strength at different ages and in the bearing index in the two cases immediate and after immersion in water. These characteristics of the mixture (tuff+ash) reach their maximum values at the 8% of ash addition.

  18. Telechelic Poly(2-oxazoline)s with a biocidal and a polymerizable terminal as collagenase inhibiting additive for long-term active antimicrobial dental materials

    PubMed Central

    Fik, Christoph P.; Konieczny, Stefan; Pashley, David H.; Waschinski, Christian J.; Ladisch, Reinhild S.; Salz, Ulrich; Bock, Thorsten; Tiller, Joerg C.

    2015-01-01

    Although modern dental repair materials show excellent mechanical and adhesion properties, they still face two major problems: First, any microbes that remain alive below the composite fillings actively decompose dentin and thus, subsequently cause secondary caries. Second, even if those microbes are killed, the extracellular proteases such as MMP, remain active and can still degrade collagenousdental tissue. In order to address both problems, a poly(2-methyloxazoline) with a biocidal quaternary ammonium and a polymerizable methacrylate terminal was explored as additive for a commercial dental adhesive. It could be demonstrated that the adhesive rendered the adhesive contact-active antimicrobial against S. mutans at a concentration of only 2.5 wt% and even constant washing with water for 101 days did not diminish this effect. Increasing the amount of the additive to 5 wt% allowed killing S. mutans cells in the tubuli of bovinedentin upon application of the adhesive. Further, the additive fully inhibited bacterial collagenase at a concentration of 0.5 wt% and reduced human recombinant collagenase MMP-9 to 13% of its original activity at that concentration. Human MMPs naturally bound to dentin were inhibited by more than 96% in a medium containing 5 wt% of the additive. Moreover, no adverse effect on the enamel/dentine shear bond strength was detected in combination with a dental composite. PMID:25130877

  19. Development of additives in negative active-material to suppress sulfation during high-rate partial-state-of-charge operation of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Sawai, Ken; Funato, Takayuki; Watanabe, Masashi; Wada, Hidetoshi; Nakamura, Kenji; Shiomi, Masaaki; Osumi, Shigeharu

    Additives in the negative active-material of lead-acid batteries were examined to determine whether they could prevent progressive accumulation of lead sulfate (PbSO 4) in negative plates during high-rate partial-state-of-charge (HRPSoC) operation. This phenomenon is caused by progressive growth of PbSO 4 particles and a lack of conductive paths near these PbSO 4 particles. Barium sulfate (BaSO 4) particles in various sizes and synthetic lignin were added to the negative active-material to control PbSO 4 particle size during HRPSoC cycle-life. Some types of carbon fibres were also added to form conductive paths around the PbSO 4 particles. Synthetic lignin was found to be the most effective additive for improving battery life in HRPSoC cycle-life tests, whereas the other factors such as BaSO 4 size or carbon fibre extended less influence. The growth rate of PbSO 4 particles per cycle was much lower in a cell with synthetic lignin than in a cell with natural lignin.

  20. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  1. Nitrogen and oxygen functionalized hollow carbon materials: The capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte

    NASA Astrophysics Data System (ADS)

    Nie, Yong Fu; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-07-01

    In present work, we have developed a simple but effective template carbonization method for producing hollow carbon materials with high content of nitrogen and oxygen from thiocarbanilide. Among all samples, the NPC-1 exhibits high specific surface area (736 m2 g-1) and large pore volume (5.93 cm3 g-1) with high content of heteroatoms (∼11.25 at% nitrogen and ∼5.74 at% oxygen), which is conducive to the improvement of electrochemical performance. Specifically, the high specific capacitance and excellent cycling stability over 5000 cycles of the NPC-1-based electrode are achieved in 1 mol L-1 H2SO4 electrolyte. Additionally, pyrocatechol and rutin as novel redox additives that can easily cause redox-reactions have been incorporated into H2SO4 electrolyte to improve the capacitances. As a result, the NPC-1-R-0.15 and NPC-1-P-0.15 samples deliver high specific capacitances of 120.5 and 368.7 F g-1 at 2 A g-1, respectively, which are much higher than that of the NPC-1 sample (66.2 F g-1) without redox-additives at same current density. Furthermore, the large energy density of 18.9 and 11.9 Wh kg-1 of the NPC-1-based symmetric supercapacitors have been obtained in H2SO4+pyrocatechol and H2SO4+rutin electrolyte, respectively, and both samples also demonstrate excellent cyclic performance for 5000 cycles.

  2. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties.

    PubMed

    Harabi, Abdelhamid; Guerfa, Fatiha; Harabi, Esma; Benhassine, Mohamed-Tayeb; Foughali, Lazhar; Zaiou, Soumia

    2016-08-01

    The aim of this work was to determine the effect of temperature and boric oxide (B2O3) addition on sintering and mechanical properties of a newly developed dental porcelain (DP) prepared from local Algerian raw materials. Based on a preliminary work, the new selected composition was 75wt.% feldspar, 20wt.% quartz and 5wt.% kaolin. It was prepared by sintering the mixture at different temperatures (1100-1250°C). The optimum sintering conditions gave a relatively higher density (2.47g/cm(3)) and excellent mechanical properties. The three point flexural strength (3PFS) and Martens micro-hardness of dental porcelains were 149MPa and 2600MPa, respectively. This obtained 3PFS value is more than four times greater than that of hydroxyapatite (HA) value (about 37MPa) sintered under the same conditions. However, the sintering temperature was lowered by about 25 and 50°C for 3 and 5wt.% B2O3 additions, respectively. But, it did not improve furthermore the samples density and their mechanical properties. It has also been found that B2O3 additions provoke a glass matrix composition variation which delays the leucite formation during sintering. PMID:27157725

  3. Effect of quarry dust addition on the performance of controlled low-strength material made from industrial waste incineration bottom ash

    NASA Astrophysics Data System (ADS)

    Sivakumar, Naganathan; Hashim, Abdul Razak; Nadzriah, Abdul Hamid Siti

    2012-06-01

    The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste incineration bottom ash, quarry dust, and cement. Tests for fresh density, bleeding, compressive strength, shear strength, hydraulic conductivity, and excavatability were carried out. The compressive strength ranges from 60 kPa to 6790 kPa, the friction angle varies from 5° to 19°, and the cohesion is from 4 to 604 kPa. Most of the mixtures are found to be non-excavatable. It is indicated that the quarry dust addition increases the compressive strength and shear parameters, decreases bleeding, and increases the removability modulus.

  4. Review of information on the radiation chemistry of materials around waste canisters in salt and assessment of the need for additional experimental information

    SciTech Connect

    Jenks, G.H.; Baes, C.F. Jr.

    1980-03-01

    The brines, vapors, and salts precipitated from the brines will be exposed to gamma rays and to elevated temperatures in the regions close to a waste package in the salt. Accordingly, they will be subject to changes in composition brought about by reactions induced by the radiations and heat. This report reviews the status of information on the radiation chemistry of brines, gases, and solids which might be present around a waste package in salt and to assess the need for additional laboratory investigations on the radiation chemistry of these materials. The basic aspects of the radiation chemistry of water and aqueous solutions, including concentrated salt solutions, were reviewed briefly and found to be substantially unchanged from those presented in Jenks's 1972 review of radiolysis and hydrolysis in salt-mine brines. Some additional information pertaining to the radiolytic yields and reactions in brine solutions has become available since the previous review, and this information will be useful in the eventual, complete elucidation of the radiation chemistry of the salt-mine brines. 53 references.

  5. Detection and Identification of Leachables in Vaccine from Plastic Packaging Materials Using UPLC-QTOF MS with Self-Built Polymer Additives Library.

    PubMed

    Zhang, Yun; Sun, Shuqi; Xing, Xuebin; Du, Zhenxia; Guo, Qiaozhen; Yu, Wenlian

    2016-07-01

    The direct contact of plastic parts with the medical products raises the possibility that plastic-related contaminants (leachables) may be present in the finished medical product. The leachable components from plastic materials may impact the safety and efficacy of the final medical product, so identification and determination of the leachables are essential for the safety assessment of medical products. A method to identify main leachables-polymer additives in medical products was developed by ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF MS) and a self-built library. The library contains 174 additives and the information on their names, formulas, structures, retention times, fragments, classifications, origin, and corresponding MS(E) and MSMS spectra. The reliability of the construction process of the library was guaranteed by the system stability and suitability test. Identification parameters of library application, such as mass error, retention times, fragments, and isotope pattern, were evaluated. Leachables in real vaccine and the intermediates were identified using automatic library searching. In vaccine, the peak m/z 239.0887 that could not be assigned by the library was identified as dimethyl 2-hydroxy-1,3-cyclohexanedicarboxylate using a series of elucidation tools. As a result, the concentrations of leachables in vaccine and the intermediates ranged from 0.85 to 21.91 μg/L. PMID:27258161

  6. THERMAL TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGE USING A POOL FIRE

    SciTech Connect

    Smith, A; Cecil May, C; Lawrence Gelder, L; Glenn Abramczyk, G

    2007-02-15

    The 9977/9978 General Purpose Fissile Package (GPFP), has been designed as a cost-effective, user-friendly replacement for the DOT 6M Specification Package for transporting Plutonium and Uranium metals and oxides. To ensure the capability of the 9977 GPFP to withstand the regulatory crush test, urethane foam was chosen for the impact absorbing overpack. As part of the package development it was necessary to confirm that the urethane foam overpack would provide the required protection for the containment vessel during the thermal test portion of the Hypothetical Accident Conditions Sequential Tests. Development tests of early prototypes were performed, using a furnace. Based on the results of the development tests, detailed design enhancements were incorporated into the final design. Examples of the definitive 9977 design configuration were subjected to an all-engulfing pool fire test, as part of the HAC Sequential Tests, to support the application for certification. Testing has confirmed the package's ability to withstand the HAC thermal tests.

  7. Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials.

    PubMed

    Ali, Sikander; Haq, Ikram-ul

    2005-01-01

    The present investigation deals with the promotry effect of different additives and metallic micro minerals on citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. For this, sugar cane bagasse was fortified with sucrose salt medium. Ethanol and coconut oil at 3.0% (v/w) level increased citric acid productivity. Fluoroacetate at a concentration of 1.0 mg/ml bagasse enhanced the yield of citric acid significantly. However, the addition of ethanol and fluoroacetate after 6 h of growth gave the maximum conversion of available sugar to citric acid. In another study, influence of some metallic micro-minerals viz. copper sulphate, molybdenum sulphate, zinc sulphate and cobalt sulphate on microbial synthesis of citric acid using molasses medium was also carried out. It was found that copper sulphate and molybdenum sulphate remarkably enhanced the production of citric acid while zinc sulphate was not so effective. However, cobalt sulphate was the least effective for microbial biosynthesis of citric acid under the same experimental conditions. In case of CuSO(4), the strain of Aspergillus niger MNNG-115 showed enhanced citric productivity with experimental (9.80%) over the control (7.54%). In addition, the specific productivity of the culture at 30 ppm CuSO(4) (Q(p) = 0.012a g/g cells/h) was several folds higher than other all other concentrations. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper productivity of citric acid by CuSO(4) using blackstrap molasses as the basal carbon source. PMID:15678560

  8. Monte Carlo simulations of differential die-away instrument for determination of fissile content in spent fuel assemblies

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Swinhoe, Martyn T.; Tobin, Stephen J.

    2011-10-01

    The differential die-away (DDA) technique has been simulated by using the MCNPX code to quantify its capability of measuring the fissile content in spent fuel assemblies. For 64 different spent fuel cases of various initial enrichment, burnup and cooling time, the count rate and signal to background ratios of the DDA system were obtained, where neutron backgrounds are mainly coming from the 244Cm of the spent fuel. To quantify the total fissile mass of spent fuel, a concept of the effective 239Pu mass was introduced by weighing the relative contribution to the signal of 235U and 241Pu compared to 239Pu and the calibration curves of DDA count rate vs. 239Pu eff were obtained by using the MCNPX code. With a deuterium-tritium (DT) neutron generator of 10 9 n/s strength, signal to background ratios of sufficient magnitude are acquired for a DDA system with the spent fuel assembly in water.

  9. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  10. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  11. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  12. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    PubMed

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. PMID:26025643

  13. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    PubMed

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. PMID:25579924

  14. Determination of fluorine and chlorine in geological materials by induction furnace pyrohydrolysis and standard-addition ion-selective electrode measurement.

    PubMed

    Rice, T D

    1988-03-01

    Fluorine and chlorine in geological materials are volatilized by pyrohydrolysis at about 1150 degrees in a stream of oxygen (1000 ml/min) plus steam in an induction furnace. The catalyst is a 7:2:1 mixture of silica gel, tungstic oxide and potassium dihydrogen phosphate. The sample/catalyst mixture is pyrohydrolysed in a re-usable alumina crucible (already containing four drops of 1 + 3 phosphoric acid) inserted in a silica-enclosed graphite crucible. The absorption solution is buffered at pH 6.5 and spiked with 1.6 mug of fluoride and 16 mug of chloride per g of solution, to ensure rapid and linear electrode response during subsequent standard-addition measurement. The simple plastic absorption vessel has 99.5% efficiency. The 3s limits of detection are 5-10 mug/g and 40-100 mug/g for fluorine and chlorine respectively. The procedure is unsuitable for determining chlorine in coal. PMID:18964490

  15. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Mun, Junyoung; Lim, Sang Hoo; Woo, Sang-Gil; Kim, Ki Jae; Park, Min-Sik; Cho, Woosuk; Song, Jun Ho; Han, Young-Kyu; Yu, Ji-Sang; Kim, Young-Jun

    2016-01-01

    Nickel-rich lithium nickel cobalt manganese oxides have received considerable attention as a promising cathode material, however, they have suffered from poor interfacial stability, especially at high temperature. Here, we suggest a bi-functionalized divinyl sulfone that enhances the applicability of a nickel-rich cathode via stabilization of the electrolyte-electrode interface. The divinyl sulfone forms a protective layer on the cathode surface by electrochemical oxidation reactions and this greatly decreases the internal pressure of the cell via stabilization of the Ni-rich cathode-electrolyte interface. The cell controlled with divinyl sulfone shows remarkable cycling performance with 91.9% capacity retention at elevated temperature even after 100 cycles. Additional electrode analyses and first-principles calculations provide critical spectroscopic evidences to demonstrate the combined effects of the sulfone and vinyl functional groups. Once the divinyl sulfone is electrochemically oxidized, the vinyl functional groups readily participate in further stabilizing sulfone-based solid electrolyte interphase intermediates and afford a durable protective layer on the nickel-rich electrode surface.

  16. Effect of high-pressure/temperature (HP/T) treatments of in-package food on additive migration from conventional and bio-sourced materials.

    PubMed

    Mauricio-Iglesias, M; Jansana, S; Peyron, S; Gontard, N; Guillard, V

    2010-01-01

    Migration was assessed during and after two high-pressure/temperature (HP/T) treatments intended for a pasteurization (800 MPa for 5 min, from 20 to 40 degrees C) and a sterilization treatment (800 MPa for 5 min, from 90 to 115 degrees C) and were compared with conventional pasteurization and sterilization, respectively. The specific migration of actual packaging additives used as antioxidants and ultraviolet light absorbers (Irganox 1076, Uvitex OB) was investigated in a number of food-packaging systems combining one synthetic common packaging (LLDPE) and a bio-sourced one (PLA) in contact with the four food-simulating liquids defined by European Commission regulations. After standard HP/T processing, migration kinetics was followed during the service life of the packaging material using Fourier transform infrared spectrometer (FTIR) spectroscopy. LLDPE withstood the high-pressure sterilization, whereas it melted during the conventional sterilization. No difference was observed on migration from LLDPE for both treatments. In the case of PLA, migration of Uvitex OB was very low or not detectable for all the cases studied. PMID:19809898

  17. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. PMID:26301463

  18. The formation of cyclo-addition adducts in the reaction of an acetylene-terminated material with a bismaleimide: A model compound study for addition-type thermoplastics (ATTs) using metal catalysts

    SciTech Connect

    Soucek, M.D., Pater, R.H.; Ritenour, S.L.

    1993-12-31

    A model compound study using an acetylene-terminated material and a bismaleimide has provided evidence that a diruthenium complex Ru{sub 2}(CO){sub 6}[1,2-({mu}-PPh){sub 2}C{sub 6}H{sub 4}] and a rhodium complex Rh(PPh{sub 3}){sub 3}Cl can catalyze a Diels-Alder type cycloaddition in which acetylene-terminated material acts as a diene and the bismaleimide is a dieneophile. The molten state reaction of N-(3-ethynylphenyl) phthalimide and N-(4-phenoxyphenyl) maleimide with Ru{sub 2}(CO){sub 6}[{mu}-(PhP){sub 2}C{sub 6}H{sub 4}] or Rh(PPh{sub 3}){sub 3}Cl heated to 170{degrees}C led to two major products. The spectral data for the first major product is consistent with a 2:1 Diels-Alder adduct formed from two molecules of the acetylene compound and one molecule of the maleimide. The spectral data for the second major product is consistent with a 2:2 Diels-Alder adduct formed from two molecules of each reactant.

  19. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  20. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.

    2016-05-01

    It is shown that A. Bohr's classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L m in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  1. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  2. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  3. Characterization of a suspect nuclear fuel rod in a case of illegal international traffic of fissile material.

    PubMed

    Capannesi, G; Vicini, C; Rosada, A; Avino, P

    2010-06-15

    This case study describes the characterization of a suspect rod of nuclear fuel seized in Italy: on request of the coroner, the characterization concerned the kind and the conditions of the rod, the amount and the specific characteristics of the species present in it, with particular attention to their possible use chemical and/or nuclear plants. The methodology used was based on radiochemical analyses (gammagraphic and gamma-spectrometry) whereas the comparison was performed by means of a fuel reference element working in the TRIGA nuclear reactor at Research Center of ENEA-Casaccia. The results show clearly how the exhibit was an element of nuclear fuel, how long it was irradiated, and the amount of (239)Pu produced and the (235)U consumed. Finally, even if the seized rod was briefly radiated at the "zero power" and traces of fission products and plutonium were found, it would be still usable as "fresh" fuel in a reactor type TRIGA if it had not been intercepted by Italian police authorities. PMID:20223608

  4. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    SciTech Connect

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.

  5. NUCLEAR FUEL MATERIAL

    DOEpatents

    Goeddel, W.V.

    1962-06-26

    An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

  6. Monte Carlo Modeling of Photon Interrogation Methods for Characterization of Special Nuclear Material

    SciTech Connect

    Pozzi, Sara A; Downar, Thomas J; Padovani, Enrico; Clarke, Shaun D

    2006-01-01

    This work illustrates a methodology based on photon interrogation and coincidence counting for determining the characteristics of fissile material. The feasibility of the proposed methods was demonstrated using a Monte Carlo code system to simulate the full statistics of the neutron and photon field generated by the photon interrogation of fissile and non-fissile materials. Time correlation functions between detectors were simulated for photon beam-on and photon beam-off operation. In the latter case, the correlation signal is obtained via delayed neutrons from photofission, which induce further fission chains in the nuclear material. An analysis methodology was demonstrated based on features selected from the simulated correlation functions and on the use of artificial neural networks. We show that the methodology can reliably differentiate between highly enriched uranium and plutonium. Furthermore, the mass of the material can be determined with a relative error of about 12%. Keywords: MCNP, MCNP-PoliMi, Artificial neural network, Correlation measurement, Photofission

  7. Use of radiation effects for a controlled change in the chemical composition and properties of materials by intentional addition or substitution of atoms of a certain kind

    SciTech Connect

    Gurovich, B. A.; Prikhod'ko, K. E. Kuleshova, E. A.; Maslakov, K. I.; Komarov, D. A.

    2013-06-15

    This study is a continuation of works [1-12] dealing with the field developed by the authors, namely, to widen the possibilities of radiation methods for a controlled change in the atomic composition and properties of thin-film materials. The effects under study serve as the basis for the following two methods: selective atom binding and selective atom substitution. Such changes in the atomic composition are induced by irradiation by mixed beams consisting of protons and other ions, the energy of which is sufficient for target atom displacements. The obtained experimental data demonstrate that the changes in the chemical composition of thin-film materials during irradiation by an ion beam of a complex composition take place according to mechanisms that differ radically from the well-known mechanisms controlling the corresponding chemical reactions in these materials. These radical changes are shown to be mainly caused by the accelerated ioninduced atomic displacements in an irradiated material during irradiation; that is, they have a purely radiation nature. The possibilities of the new methods for creating composite structures consisting of regions with a locally changed chemical composition and properties are demonstrated for a wide class of materials.

  8. Detecting fission from special nuclear material sources

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  9. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    PubMed

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties. PMID:26599826

  10. Preliminary process simulation and analysis of GMODS: Processing of plutonium surplus materials

    SciTech Connect

    Ferrada, J.J.; Nehls, J.W. Jr.; Welch, T.D.; Giardina, J.L.; Forsberg, C.W.; Maliyekkel, A.T.

    1996-01-02

    To address growing concerns in the areas of arms control, control of fissile materials, waste management, and environment and health, the US Department of Energy is studying and evaluating various options for the control and disposal of surplus fissile materials (SFMs). One of the options under consideration is the Glass Material Oxidation and Dissolution System (GMODS) which directly converts plutonium-bearing materials such as metals, ceramics, and organics into a durable-high-quality glass for long-term storage or a waste form for disposal. This study undertook the development of a computer simulation of the GMODS process using FLOW. That computer simulation was used to perform an assessment of how GMODS would handle the treatment of plutonium, rich scrap (RS) and lead scrap (LS), and identify critical process parameters. Among the key process parameters affecting the glass formation were processing temperatures, additives, and the effects of varying them on the final product. This assessment looked at the quantity of glass produced, the quality of the final glass form, and the effect of blending different groups of the feed streams on the glass produced. The model also provided a way to study the current process assumptions and determine in which areas more experimental studies are required. The simulation showed that the glass chemistry postulated in the models is workable. It is expected that the glass chemistry assumed during the modeling process can be verified by the results of the laboratory experiments that are currently being conducted relating to the GMODS process.Further waste characterization, especially of the SFM waste streams not studied in this report, will provide more nearly accurate results and give a more detailed evaluation of the GMODS process.

  11. From chemistry to materials, design and photophysics of functional terbium molecular hybrids from assembling covalent chromophore to alkoxysilanes through hydrogen transfer addition

    SciTech Connect

    Yan Bing . E-mail: byan@tongji.edu.cn; Ma Dongjie

    2006-07-15

    Two silica-based organic-inorganic hybrid materials composed of phenol (PHE) and ethyl-p-hydroxybenzoate derivatives (abbreviated as EPHBA) complexes were prepared via a sol-gel process. The active hydroxyl groups of PHE/EPHBA grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer reaction were used as multi-functional bridged components, which can coordinate to Tb{sup 3+} with carbonyl groups, strongly absorb ultraviolet and effectively transfer energy to Tb{sup 3+} through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to the silica backbone. For comparison, two doped hybrid materials in which rare-earth complexes were just encapsulated in silica-based sol-gel matrices were also prepared. NMR, FT-IR, UV/vis absorption and luminescence spectroscopy were used to investigate the obtained hybrid materials. UV excitation in the organic component resulted in strong green emission from Tb{sup 3+} ions due to an efficient ligand-to-metal energy transfer mechanism. - Graphical abstract: The active hydroxyl groups of phenol/ethyl-p-hydroxybenzoate grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer reaction were used as multi-functional bridged components, which can coordinate to Tb{sup 3+} with carbonyl groups, strongly absorb ultraviolet and effectively transfer energy to Tb{sup 3+} through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to the silica backbone with covalently bonded.

  12. Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents.

    PubMed

    Kim, Ju-Myung; Park, Han-Saem; Park, Jang-Hoon; Kim, Tae-Hee; Song, Hyun-Kon; Lee, Sang-Young

    2014-08-13

    Rapid growth of mobile and even wearable electronics is in pursuit of high-energy-density lithium-ion batteries. One simple and facile way to achieve this goal is the elimination of nonelectroactive components of electrodes such as binders and conductive agents. Here, we present a new concept of monocomponent electrodes comprising solely electroactive materials that are wrapped with an insignificant amount (less than 0.4 wt %) of conducting polymer (PEDOT:PSS or poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate)). The PEDOT:PSS as an ultraskinny surface layer on electroactive materials (LiCoO2 (LCO) powders are chosen as a model system to explore feasibility of this new concept) successfully acts as a kind of binder as well as mixed (both electrically and ionically) conductive film, playing a key role in enabling the monocomponent electrode. The electric conductivity of the monocomponent LCO cathode is controlled by simply varying the PSS content and also the structural conformation (benzoid-favoring coil structure and quinoid-favoring linear or extended coil structure) of PEDOT in the PEDOT:PSS skin. Notably, a substantial increase in the mass-loading density of the LCO cathode is realized with the PEDOT:PSS skin without sacrificing electronic/ionic transport pathways. We envisage that the PEDOT:PSS-skinned electrode strategy opens a scalable and versatile route for making practically meaningful binder-/conductive agent-free (monocomponent) electrodes. PMID:24988178

  13. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    PubMed

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. PMID:23391756

  14. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    SciTech Connect

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. )

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  15. Addition of Tomographic Capabilities to NMIS

    SciTech Connect

    Mullens, J.A.

    2003-03-11

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a {sup 252}Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography measures the interior of an item by making transmission measurements from all angles around the item, whereas NMIS makes the measurements from a single angle. Figure 1 is a standard example of tomographic reconstruction, the Shepp-Logan human brain phantom. The measured quantity is attenuation so high values (white) are highly attenuating areas.

  16. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    DOE PAGESBeta

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highlymore » Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.« less

  17. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    SciTech Connect

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

  18. Nuclear materials safeguards for the future

    SciTech Connect

    Tape, J.W.

    1995-12-31

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  19. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Boden, D. P.; Loosemore, D. V.; Spence, M. A.; Wojcinski, T. D.

    The negative plates of lead-acid batteries subjected to partial-state-of-charge (PSOC) operation fail because of the development of an electrically inert film of lead sulfate on their surfaces. It has been found that carbon additives to the negative active material can significantly increase their cycle life in this type of operation. In this paper we show that various types of carbon, including graphite, carbon black eliminate the surface development of lead sulfate and that, in their presence, the lead sulfate becomes homogeneously distributed throughout the active material. Examination of active material by energy dispersive spectroscopy after extensive cycling shows that lead formed during charge of lead sulfate preferentially deposits on the carbon particles that have been embedded in the active material. Electrochemical studies have been carried out on a number of types of carbon additives having a wide range of properties. These included flake, expanded and synthetic graphite, isotropically graphitized carbon, carbon black and activated carbon. We have investigated their effect on the resistivity and surface areas of the negative active material and also on such electrochemical properties as active material utilization and cycle life. Most of the carbon additives increase the utilization of the active material and impressive increases in cycle life have been obtained with over 6000 capacity turnovers having been achieved. However, at this time, we have not been able to correlate either the type or the properties of the carbon with capacity or cycle life. Further work is needed in this area. The increases that have been achieved in cycle life provide evidence that the lead-acid battery is a viable low cost option for hybrid-electric vehicle use.

  20. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  1. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  2. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  3. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin

    2016-04-01

    In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. PMID:26843408

  4. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 1: Summary of exercise

    SciTech Connect

    Libby, R.A.; Davis, C.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    In a September 1993 address to the United Nations General Assembly, President Clinton announced a new nonproliferation and export control policy that established a framework for US efforts to prevent the proliferation of weapons of mass destruction. The new policy proposed that the US undertake a comprehensive approach to the growing accumulation of fissile material. One of the key elements was for the US to support a special nuclear materials (SNM) multilateral convention prohibiting the production of highly enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside of international safeguards. This policy is often referred to as the President`s Cutoff Initiative or the Fissile Material Cutoff Treaty (FMCT). Because both the US Department of Energy (DOE) and foreign reprocessing facilities similar to PUREX will likely to be inspected under a FMCT, the DOE Office of Arms Control and Nonproliferation, Negotiations and Analysis Division (DOE/NN-41) tasked Pacific Northwest Laboratory (PNL) to perform an information gathering exercise, the PUREX Exercise, using the Plutonium-Uranium Extraction (PUREX) Plant located on the Hanford Site in Washington State. PUREX is a former production reactor fuel reprocessing plant currently undergoing a transition to a ``decontamination and decommissioning (D&D) ready`` mode. The PUREX Exercise was conducted March 29--30, 1994, to examine aspects of the imposition of several possible cutoff regimes and to study verification of non-production of SNM for nuclear weapons purposes or outside of safeguards. A follow-up activity to further examine various additional verification regimes was held at Los Alamos National Laboratory (LANL) on May 10, 1994.

  5. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  6. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    SciTech Connect

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

  7. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

    NASA Astrophysics Data System (ADS)

    Sitler, Steven; Hill, Cody; Raja, Krishnan S.; Charit, Indrajit

    2016-04-01

    Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

  8. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

    NASA Astrophysics Data System (ADS)

    Sitler, Steven; Hill, Cody; Raja, Krishnan S.; Charit, Indrajit

    2016-06-01

    Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

  9. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  10. A novel method for active fissile mass estimation with a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Dubi, C.; Ridnik, T.; Israelashvili, I.; Pedersen, B.

    2013-07-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding "neutron noise". In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected.

  11. Leo Szilard Lectureship Award Talk: Controlling and eliminating nuclear-weapon materials

    NASA Astrophysics Data System (ADS)

    von Hippel, Frank

    2010-02-01

    Fissile material -- in practice plutonium and highly enriched uranium (HEU) -- is the essential ingredient in nuclear weapons. Controlling and eliminating fissile material and the means of its production is therefore the common denominator for nuclear disarmament, nuclear non-proliferation and the prevention of nuclear terrorism. From a fundamentalist anti-nuclear-weapon perspective, the less fissile material there is and the fewer locations where it can be found, the safer a world we will have. A comprehensive fissile-material policy therefore would have the following elements: *Consolidation of all nuclear-weapon-usable materials at a minimum number of high-security sites; *A verified ban on the production of HEU and plutonium for weapons; *Minimization of non-weapon uses of HEU and plutonium; and *Elimination of all excess stocks of plutonium and HEU. There is activity on all these fronts but it is not comprehensive and not all aspects are being pursued vigorously or competently. It is therefore worthwhile to review the situation. )

  12. Analysis of Electron and Antineutrino Energy Spectra from Fissile Samples under Irradiation based on Gross Theory of Beta-decay

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Chiba, S.

    2016-06-01

    We applied the gross theory of β-decay to calculate the reactor electron and antineutrino ({{{bar ν }}{e}}) spectra emitted from 235,238U and 239,241Pu by summing up all the contributions from a large number of decaying fission-products (FPs). We make it clear what kinds of transition types and FP nuclides are important to shape the lepton spectra. After taking the ambiguity in the current data for fission yields and Qβ-values into account, we suggested a possibility that the high-energy part of the widely referred electron-spectra by Schreckenbach et al., almost only one experimental data set available now, might possibly be too low. Arguments on a special role of the odd(Z)-odd(N) nuclides and on the consistency between U-238 and other fissiles in the experimental data lead to the importance of a new and independent measurement of electron energy spectra which could be converted into the reactor {{{bar ν }}{e}} spectra.

  13. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    SciTech Connect

    Bess, C.E.

    1994-04-22

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficient mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.

  14. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    SciTech Connect

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; Kelly, D. G.

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  15. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    DOE PAGESBeta

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; Kelly, D. G.

    2015-03-01

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  16. Substituting water for chlorofluorocarbon liquid in density measuring baths for nuclear weapon components on non-fissile alloys

    SciTech Connect

    Beitscher, S.; Palachek, A.D.

    1991-09-23

    This project was part of a Rocky Flats Plant and Department of Energy weapons complex effort to reduce release of hazardous materials to the atmosphere. Experiments were performed to determine whether deionized water could be substituted for trichlorotrifluoroethane (CFC 113) in the bath of a density measuring system. In the first experiment, 14 parts of seven types were tested: They included shells of beryllium, vanadium, titanium, stainless steel, uranium, a uranium alloy, and casting feed strips of a uranium alloy. Each part was measured for density five times in each medium. The entire experiment was repeated -- the only change being addition of a wetting agent to the water. Two additional experiments were confided to the uranium alloy casting feed strips. As a result of this study, it is recommended that CFC be discontinued as a bath medium for the part types studied in this investigation and that deionized water be substituted.

  17. MCNP-POLIMI Evaluation of Time Dependent Coincidence Between Detectors for Fissile Metal Vs. Oxide Determination

    SciTech Connect

    Pozzi, S. A.; Mihalczo, J. T.

    2002-06-03

    In the past, passive Nuclear Materials Identification System (NMIS) measurements on plutonium metal shells at VNIIEF have shown the sensitivity of the acquired covariance functions to shell mass and thickness for a variety of shell thicknesses from 6 to 30 mm and masses varying from 1829 to 4468g. The technique acquires the time-dependent coincidence distribution between plastic scintillators detecting radiation from the Pu. The measurements showed the sensitivity of the acquired signature to the different spontaneous emission, attenuation, and multiplication properties of the shells. In this work, the MCNP-POLIMI neutron and photon transport code was used to simulate passive measurements on plutonium metal and oxide. The code is a modified version of MCNP, which attempts to calculate more correctly quantities that depend on the second moment of the neutron and gamma distributions, and attempts to model detector pulses as closely as possible. MCNP-POLIMI, together with a post-processing code, can simulate all the time-dependent coincidence distributions measured by NMIS. In particular, the simulations evaluate the time-dependent coincidence distributions between detectors for plutonium samples having mass 2 and 4 kg, in metal and oxide form. This work shows that the time-dependent coincidence distributions between two scintillators measured by NMIS can be used to distinguish metal from oxide.

  18. Imaging special nuclear material with muon-induced neutron emission.

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2015-10-01

    Cosmic ray muons are a ubiquitous source of energetic charged particles that can be used to image high-Z material through significant amounts of shielding. Negative muons which come to rest inside fissile material can be captured into atomic orbitals and induce fission, which may lead to detectable neutron emission. Muon tracks that are correlated with neutron emission can therefore serve as a signal for the presence of fissile material, and laminography with the tagged muon tracks can be performed to produce an image of the neutron emission source. In this presentation, we will discuss results of imaging tests using this technique at Los Alamos National Laboratory, and possible applications in treaty verification.

  19. Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO2/CH4 Selectivity

    SciTech Connect

    Zhang, Zhenjie; Gao, Wen-Yang; Wojtas, Lukasz; Ma, Shengqian; Eddaoudi, Mohamed; Zaworotko, Michael J

    2012-11-26

    Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO3)2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate afforded porph@MOM-11, a microporous metal–organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M+Cl-) in a stoichiometric fashion.

  20. Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi0.5Mn1.5O4 cathode material

    NASA Astrophysics Data System (ADS)

    Yan, Guochun; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xiong, Xunhui

    2014-10-01

    Self-discharge and transition metal dissolution weaknesses bother the application of LiNi0.5Mn1.5O4 cathode material due to the severe oxidation of electrolyte at the high voltage state. A novel additive, 1-propylphosphonic acid cyclic anhydride (PACA), is desirable to prevent this oxidation. CV and charge-discharge results reveal that adding 0.5% PACA can relieve the oxidation of electrolyte. Consequently, the self-discharge and transition metal dissolution are both suppressed effectively, which is validated by self-discharge tests, XPS, and EDX analyses. Moreover, using PACA as an additive enhances the capacity retention capability of LiNi0.5Mn1.5O4 at elevated temperatures significantly.

  1. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    PubMed

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system. PMID:26491812

  2. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    SciTech Connect

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for surface

  3. Determination of Fissile Loadings onto Monosodium Titanate (MST) under Conditions Relevant to the Actinide Removal Process Facility

    SciTech Connect

    Peters, T

    2005-11-15

    This report describes the results of an experimental study to measure the sorption of fissile actinides on monosodium titanate (MST) at conditions relevant to operation of the Actinide Removal Process (ARP). The study examined the effect of a single contact of a large volume of radionuclide-spiked simulant solution with a small mass of MST. The volume of simulant to MST (8.5 L to 0.2 g of MST solids) was designed to mimic the maximum phase ratio that occurs between the multiple contacts of MST and waste solution and washing of the accumulated solids cycle of ARP. This work provides the following results. (1) After a contact time of {approx}2 weeks, we measured the following actinide loadings on the MST (average of solution and solids data), Pu: 2.79 {+-} 0.197 wt %, U: 14.0 {+-} 1.04 wt %, and Np: 0.839 {+-} 0.0178 wt %. (2) The plutonium and uranium loadings reported above are considerably higher than previously reported values. The higher loading result from the very high phase ratio and the high initial mass concentrations of uranium and plutonium. A separate upcoming document details the predicted values for this system versus the results. (3) The strontium DF values measured in these tests proved much lower than those reported previously with simulants having the same bulk chemical composition. The low strontium DF values reflect the very low initial mass concentration of strontium in this simulant (<100 {micro}g/L) compared to that in previous testing (> 600 {micro}g/L).

  4. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    SciTech Connect

    Bathke, C. G.; Wallace, R. K.; Ireland, J. R.; Johnson, M. W.; Hase, Kevin R.; Jarvinen, G. D.; Ebbinghaus, B. B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

    2010-09-01

    This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  5. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    SciTech Connect

    Bathke, Charles G; Wallace, Richard K; Ireland, John R; Johnson, M W; Hase, Kevin R; Jarvinen, Gordon D; Ebbinghaus, Bartley B; Sleaford, Brad A; Bradley, Keith S; Collins, Brian W; Smith, Brian W; Prichard, Andrew W

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  6. Oil additive process

    SciTech Connect

    Bishop, H.

    1988-10-18

    This patent describes a method of making an additive comprising: (a) adding 2 parts by volume of 3% sodium hypochlorite to 45 parts by volume of diesel oil fuel to form a sulphur free fuel, (b) removing all water and foreign matter formed by the sodium hypochlorite, (c) blending 30 parts by volume of 24% lead naphthanate with 15 parts by volume of the sulphur free fuel, 15 parts by volume of light-weight material oil to form a blended mixture, and (d) heating the blended mixture slowly and uniformly to 152F.

  7. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  8. A treaty to ban nuclear smuggling: The next step in nuclear material control?

    SciTech Connect

    Carnahan, B.M.; Smith, J.R.

    1994-10-01

    Since the demise of the Soviet Union, reports have continued to surface that weapons-usable nuclear material has been smuggled out of former Soviet territory into the hands of proliferant states. So far, few examples of nuclear smuggling have involved serious quantities of weapons-usable material, and much purported smuggling has involved attempted fraud rather than an effort to transfer fissile material. In no instance has an actual transfer to a potential proliferant state been verified.

  9. US/Russian program in materials protection, control and accounting at the RRC Kurchatov Institute: 1997--1998

    SciTech Connect

    Sukhoruchkin, V.; Rumyantsev, A.; Shmelev, V.

    1998-12-31

    Six US Department of Energy Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute to improve nuclear material protection, control and accounting (MPC and A) at Kurchatov. In 1997--1998 the primary thrust of this program has been directed to Building 106, which houses a number of test reactors and critical facilities. Substantial improvements in physical protection, upgrades in the physical inventory taking procedures, installation of equipment for the computerized materials accounting system, and installation of nuclear material portal monitors and neutron-based measurement equipment are being carried out at this facility. Software for the computerized accounting system, named KI-MACS, has been developed at Kurchatov and the system has been fully integrated with the bar code printing and reading equipment, electronic scales, and nondestructive assay equipment provided under this program. Additional 1997--1998 activities at Kurchatov include continuation of a tamper indicating device program, vulnerability assessments of several facilities, hosting of a Russian-American Workshop on Fissile Material Control and Accountability at Critical Facilities, and the development of accounting procedures for transfers of nuclear materials between material balance areas.

  10. An Assessment of the Attractiveness of Material Associated with a MOX Fuel Cycle from a Safeguards Perspective

    SciTech Connect

    Bathke, Charles G; Wallace, Richard K; Ireland, John R; Johnson, M W; Hase, Kevin R; Jarvinen, Gordon D; Ebbinghaus, Bartley B; Sleaford, Brad W; Collins, Brian A; Robel, Martin; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  11. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  12. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  13. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  14. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  15. Nonuniform character of the population of spin projections K for a fissile nucleus at the scission point and anisotropies in the angular distributions of fragments originating from the induced fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Kadmensky, S. S.

    2012-11-15

    It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.

  16. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  17. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any

  18. Manipulating crystallization with molecular additives.

    PubMed

    Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D

    2014-01-01

    Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications. PMID:24579880

  19. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  20. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects. PMID:24772784

  1. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  2. 78 FR 42805 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ] ACTION: Notice of Opening of Additional Nixon Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the...

  3. 76 FR 27092 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  4. 77 FR 31400 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  5. 76 FR 35918 - Nixon Presidential Historical Materials; Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials; Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  6. 77 FR 58179 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration ACTION: Notice of opening of additional materials SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  7. 75 FR 68384 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of Opening of Additional Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  8. 75 FR 30863 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard...

  9. Additive usage levels.

    PubMed

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  10. An additional middle cuneiform?

    PubMed Central

    Brookes-Fazakerley, S.D.; Jackson, G.E.; Platt, S.R.

    2015-01-01

    Additional cuneiform bones of the foot have been described in reference to the medial bipartite cuneiform or as small accessory ossicles. An additional middle cuneiform has not been previously documented. We present the case of a patient with an additional ossicle that has the appearance and location of an additional middle cuneiform. Recognizing such an anatomical anomaly is essential for ruling out second metatarsal base or middle cuneiform fractures and for the preoperative planning of arthrodesis or open reduction and internal fixation procedures in this anatomical location. PMID:26224890

  11. Additive Manufacturing of Hybrid Circuits

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  12. Carbamate deposit control additives

    SciTech Connect

    Honnen, L.R.; Lewis, R.A.

    1980-11-25

    Deposit control additives for internal combustion engines are provided which maintain cleanliness of intake systems without contributing to combustion chamber deposits. The additives are poly(oxyalkylene) carbamates comprising a hydrocarbyloxyterminated poly(Oxyalkylene) chain of 2-5 carbon oxyalkylene units bonded through an oxycarbonyl group to a nitrogen atom of ethylenediamine.

  13. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    NASA Astrophysics Data System (ADS)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  14. Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials

    SciTech Connect

    Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

    2001-04-01

    The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

  15. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  16. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  17. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  18. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  19. Additional Types of Neuropathy

    MedlinePlus

    ... A A Listen En Español Additional Types of Neuropathy Charcot's Joint Charcot's Joint, also called neuropathic arthropathy, ... can stop bone destruction and aid healing. Cranial Neuropathy Cranial neuropathy affects the 12 pairs of nerves ...

  20. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  1. Laser Additive Manufacturing of Gas Permeable Structures

    NASA Astrophysics Data System (ADS)

    Klahn, C.; Bechmann, F.; Hofmann, S.; Dinkel, M.; Emmelmann, C.

    Laser additive manufacturing offers a variety of new design possibilities. In mold making laser additive manufactured inserts with conformal cooling channels are already state of the art. Pneumatic ejectors for injection molds are a new application for laser additive manufacturing. The pneumatic ejectors require a durable gas permeable material. This material is produced by placing the scan vectors for the laser additive manufacturing process in a defined pattern. Trials with different plastics proofed the function and reliability of the pneumatic ejector concept in the injection molding cycle.

  2. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  3. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  4. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  5. Additives in fibers and fabrics.

    PubMed

    Barker, R H

    1975-06-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  6. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  7. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  8. Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.

    SciTech Connect

    Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J.

    2010-01-01

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

  9. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  10. Multifunctional fuel additives

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-26

    This paper discusses a composition comprising a major amount of a liquid hydrocarbyl fuel and a minor low-temperature flow properties improving amount of an additive product of the reaction of a suitable diol and product of a benzophenone tetracarboxylic dianhydride and a long-chain hydrocarbyl aminoalcohol.

  11. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  12. [Use of partially hydrolyzed and untreated straw meal in the feeding of breeding sows. 3. Nutrient digestibility, feed passage time and mineral balance with the addition of variously treated straw materials compared to concentrate feeding alone].

    PubMed

    Münchow, H; Häger, H; Bergner, H

    1986-01-01

    In studies with 16 breeding sows of the country species the feed value of straw materials and their fitness for use were ascertained in a long-term experiment. On the feeding basis of a concentrate ration (IV) untreated (I), HCl treated (II = HCl treatment without steaming) and partly hydrolysed straw meal (III = HCl treatment with subsequent steaming) were tested. In the course of the experiment and at a nutrient level of 1 (maintenance requirement), the digestibility of the organic matter of the ration and that of some major and trace elements, N and mineral balances as well as feed passage rate and water excretion in faeces were ascertained at selected measuring times. The following mean results were achieved: The integration of all straw materials tested lead to a significant reduction of the digestibility of the organic matter of the total ration, the least negative effect was caused by partly hydrolysed straw meal (III). The fractions crude protein, crude fibre and N-free extracts were mainly affected. Straw meal integration had a gravidity-conditioned influence on the daily N balance. Increased N excretion in faeces could only be compensated by non-pregnant animals by a decreased N excretion in urine. The mineral balance (Ca, P, Na, Cu and Mn) remained largely uninfluenced by the straw supplement. The feed passage rate was reduced by the use of all straw meal variants to ca. 50% of the value measured after the sole feeding of concentrate (IV). Feed passage rate and water excretion in faeces were approximately reciprocal. The digestibility of the organic matter of the straw materials ascertained according to the difference method amounted to 7.4 (I), 18.1 (II) and 27.9% (III); that of the N-free extracts in the same sequence to 10.0, 22.0 and 34.9%. The calculated energetic feed value was for I = 70.7, for II = 154.9 and for III = 240.7 EFUpig/kg DM. PMID:3741131

  13. Boron addition to alloys

    SciTech Connect

    Coad, B. C.

    1985-08-20

    A process for addition of boron to an alloy which involves forming a melt of the alloy and a reactive metal, selected from the group consisting of aluminum, titanium, zirconium and mixtures thereof to the melt, maintaining the resulting reactive mixture in the molten state and reacting the boric oxide with the reactive metal to convert at least a portion of the boric oxide to boron which dissolves in the resulting melt, and to convert at least portion of the reactive metal to the reactive metal oxide, which oxide remains with the resulting melt, and pouring the resulting melt into a gas stream to form a first atomized powder which is subsequently remelted with further addition of boric oxide, re-atomized, and thus reprocessed to convert essentially all the reactive metal to metal oxide to produce a powdered alloy containing specified amounts of boron.

  14. Tackifier for addition polyimides

    NASA Technical Reports Server (NTRS)

    Butler, J. M.; St.clair, T. L.

    1980-01-01

    A modification to the addition polyimide, LaRC-160, was prepared to improve tack and drape and increase prepeg out-time. The essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers. The modified version takes advantage of a reactive, liquid plasticizer which is used in place of solvent and helps solve a major problem of maintaining good prepeg tack and drape, or the ability of the prepeg to adhere to adjacent plies and conform to a desired shape during the lay up process. This alternate solventless approach allows both longer life of the polymer prepeg and the processing of low void laminates. This approach appears to be applicable to all addition polyimide systems.

  15. [Biologically active food additives].

    PubMed

    Velichko, M A; Shevchenko, V P

    1998-07-01

    More than half out of 40 projects for the medical science development by the year of 2000 have been connected with the bio-active edible additives that are called "the food of XXI century", non-pharmacological means for many diseases. Most of these additives--nutricevtics and parapharmacevtics--are intended for the enrichment of food rations for the sick or healthy people. The ecologicaly safest and most effective are combined domestic adaptogens with immuno-modulating and antioxidating action that give anabolic and stimulating effect,--"leveton", "phytoton" and "adapton". The MKTs-229 tablets are residue discharge means. For atherosclerosis and general adiposis they recommend "tsar tablets" and "aiconol (ikhtien)"--on the base of cod-liver oil or "splat" made out of seaweed (algae). All these preparations have been clinically tested and received hygiene certificates from the Institute of Dietology of the Russian Academy of Medical Science. PMID:9752776

  16. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  17. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  18. Hydrocarbon fuel additive

    SciTech Connect

    Ambrogio, S.

    1989-02-28

    This patent describes the method of fuel storage or combustion, wherein the fuel supply contains small amounts of water, the step of adding to the fuel supply an additive comprising a blend of a hydrophilic agent chosen from the group of ethylene glycol, n-butyl alcohol, and cellosolve in the range of 22-37% by weight; ethoxylated nonylphenol in the range of 26-35% by weight; nonylphenol polyethylene glycol ether in the range of 32-43% by weight.

  19. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  20. Additive manufacturing of hybrid circuits

    DOE PAGESBeta

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  1. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  2. Cermet materials

    DOEpatents

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  3. Performance Boosting Additive

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mainstream Engineering Corporation was awarded Phase I and Phase II contracts from Goddard Space Flight Center's Small Business Innovation Research (SBIR) program in early 1990. With support from the SBIR program, Mainstream Engineering Corporation has developed a unique low cost additive, QwikBoost (TM), that increases the performance of air conditioners, heat pumps, refrigerators, and freezers. Because of the energy and environmental benefits of QwikBoost, Mainstream received the Tibbetts Award at a White House Ceremony on October 16, 1997. QwikBoost was introduced at the 1998 International Air Conditioning, Heating, and Refrigeration Exposition. QwikBoost is packaged in a handy 3-ounce can (pressurized with R-134a) and will be available for automotive air conditioning systems in summer 1998.

  4. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  5. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  6. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  7. SIPSEY WILDERNESS AND ADDITIONS, ALABAMA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Mory, Peter C.

    1984-01-01

    On the basis of geologic, geochemical, and mineral surveys the Sipsey Wilderness and additions are deemed to have little promise for the occurrence of metallic mineral resources. Although limestone, shale, and sandstone resources that occur in the area are physically suitable for a variety of uses, similar materials are available outside the area closer to transportation routes and potential markets. A small amount of coal has been identified in the area, occurring as nonpersistent beds less than 28 in. thick. Oil and (or) natural gas resources may be present if suitable structural traps exist in the subsurface. Therefore, the area has a probable oil and gas potential. Small amounts of asphaltic sandstone and limestone, commonly referred to as tar sands, may also occur in the subsurface. 5 refs.

  8. 76 FR 62856 - Nixon Presidential Historical Materials: Opening of Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of Nixon Presidential Historical Materials by the Richard Nixon...

  9. Neutron Correlations in Special Nuclear Materials, Experiments and Simulations

    SciTech Connect

    Verbeke, J; Dougan, A; Nakae, L; Sale, K; Snyderman, N

    2007-06-05

    Fissile materials emit neutrons with an unmistakable signature that can reveal characteristics of the material. We describe here measurements, simulations, and predicted signals expected and prospects for application of neutron correlation measurement methods to detection of special nuclear materials (SNM). The occurrence of fission chains in SNM can give rise to this distinctive, measurable time correlation signal. The neutron signals can be analyzed to detect the presence and to infer attributes of the SNM and surrounding materials. For instance, it is possible to infer attributes of an assembly containing a few kilograms of uranium, purely passively, using detectors of modest size in a reasonable time. Neutron signals of three radioactive sources are shown to illustrate the neutron correlation and analysis method. Measurements are compared with Monte Carlo calculations of the authenticated sources.

  10. Fernald vacuum transfer system for uranium materials repackaging

    SciTech Connect

    Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

    2002-02-24

    The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

  11. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  12. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  13. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... uranium hexafluoride; and (iii) withstand the test specified in 10 CFR 71.73(c)(4) without rupture of the... below the minimum value specified in the following table: Packaging model Minimum thickness; millimeters... so that it will: (i) withstand a hydraulic test at an internal pressure of at least 1.4 MPa (200...

  14. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... uranium hexafluoride; and (iii) withstand the test specified in 10 CFR 71.73(c)(4) without rupture of the... filling and during periodic inspection and test, packagings must be cleaned in accordance with American... below the minimum value specified in the following table: Packaging model Minimum thickness;...

  15. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... uranium hexafluoride; and (iii) withstand the test specified in 10 CFR 71.73(c)(4) without rupture of the... filling and during periodic inspection and test, packagings must be cleaned in accordance with American... below the minimum value specified in the following table: Packaging model Minimum thickness;...

  16. Energetic additive manufacturing process with feed wire

    SciTech Connect

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  17. Radcalc: An Analytical Tool for Shippers of Radioactive Material and Waste

    SciTech Connect

    Kapoor, A.K.; Stuhl, L.A.

    2008-07-01

    The U.S. Department of Energy (DOE) ships radioactive materials in support of its research and development, environmental restoration, and national defense activities. The Radcalc software program assists personnel working on behalf of DOE in packaging and transportation determinations (e.g., isotopic decay, decay heat, regulatory classification, and gas generation) for shipment of radioactive materials and waste. Radcalc performs: - The U.S. Department of Transportation determinations and classifications (i.e., activity concentration for exempt material Type A or B, effective A1/A2, limited quantity, low specific activity, highway route controlled quantity, fissile quantity, fissile excepted, reportable quantity, list of isotopes required on shipping papers) - DOE calculations (i.e., transuranic waste, Pu-239 equivalent curies, fissile-gram equivalents) - The U.S. Nuclear Regulatory Commission packaging category (i.e., Category I, II, or III) - Dose-equivalent curie calculations - Radioactive decay calculations using a novel decay methodology and a decay data library of 1,867 isotopes typical of the range of materials encountered in DOE laboratory environments - Hydrogen and helium gas calculations - Pressure calculations. Radcalc is a validated and cost-effective tool to provide consistency, accuracy, reproducibility, timeliness, quality, compliance, and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. Hundreds of shippers and engineers throughout the DOE Complex routinely use this software to automate various determinations and to validate compliance with the regulations. The effective use of software by DOE sites contributes toward minimizing risk involved in radioactive waste shipments and assuring the safety of workers and the public. (authors)

  18. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOEpatents

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  19. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic

  20. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE PAGESBeta

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; Kapsimalis, Roger J.

    2016-06-23

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  1. A GENERALIZED METHOD FOR CHARACTERIZATION OF 235U AND 239PU CONTENT USING SHORT-LIVED FISSION PRODUCT GAMMA SPECTROSCOPY

    SciTech Connect

    Knowles, Justin R; Skutnik, Steven E; Glasgow, David C; Kapsimalis, Roger J

    2016-01-01

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.

  2. 33 CFR 154.1125 - Additional response plan requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Additional... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries...

  3. 33 CFR 154.1125 - Additional response plan requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Additional... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries...

  4. 33 CFR 154.1125 - Additional response plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Additional... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries...

  5. 33 CFR 154.1125 - Additional response plan requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Additional... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries...

  6. 33 CFR 154.1125 - Additional response plan requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Additional... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries...

  7. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. PMID:25500631

  8. Hardfacing material

    DOEpatents

    Branagan, Daniel J.

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  9. Additive Construction with Mobile Emplacement (ACME)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.

  10. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  11. Doses to railroad workers from shipments of radioactive materials

    SciTech Connect

    Fields, D.E.; Cottrell, W.D.

    1988-01-01

    Fissile and high-level radioactive wastes are currently transported over long distances by truck and by rail transportation systems. The primary form of fissile material is spent reactor fuel. Transportation operations within DOE are controlled through the Transportation Operations and Management System. DOE projected increases in the rate of shipments have generated concern by railroad companies that railroad workers may be exposed to levels of radiation sufficiently high that a radiation protection program may need to be implemented. To address railroad company concerns, the Health and Safety Research Division at Oak Ridge National Laboratory has estimated doses to railroad workers for two exposure scenarios that were constructed using worker activity data obtained from CSX Transportation for crew and maintenance workers. This characterization of railroad worker activity patterns includes a quantitative evaluation of the duration and rate of exposure. These duration and exposure rate values were evaluated using each of three exposure rate vs. distance models to generate exposure estimates. 14 refs., 1 tab.

  12. Sintering additives for zirconia ceramics

    SciTech Connect

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  13. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  14. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  15. Routine inspection effort required for verification of a nuclear material production cutoff convention

    SciTech Connect

    Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

    1996-11-01

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.

  16. Theory of atomic additivity in molecular hyperpolizabilities

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1987-01-01

    Hyperpolarizability is a function of frequency. This is called dispersion. Because of the Kramers-Kronig relations, researchers expect that a material that is dispersing light is also absorbing it. Where there is both dispersion and absorption, the molecular polarizabilities are complex functions of the frequency. This led researchers to consider atomic additivity in both the real and imaginary parts of the ordinary and hyperpolarizabilities. This effort is desirable not only from a theoretical point of view, but also because of the existence of a large body of complex refractive index data, which may be used to test the additivity principle with the complex valued ordinary dipole polarizability.

  17. Incorporation of additives into polymers

    DOEpatents

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  18. Deciphering the roles of multiple additives in organocatalyzed Michael additions.

    PubMed

    Günler, Z Inci; Companyó, Xavier; Alfonso, Ignacio; Burés, Jordi; Jimeno, Ciril; Pericàs, Miquel A

    2016-05-21

    The synergistic effects of multiple additives (water and acetic acid) on the asymmetric Michael addition of acetone to nitrostyrene catalyzed by primary amine-thioureas (PAT) were precisely determined. Acetic acid facilitates hydrolysis of the imine intermediates, thus leading to catalytic behavior, and minimizes the formation of the double addition side product. In contrast, water slows down the reaction but minimizes catalyst deactivation, eventually leading to higher final yields. PMID:27128165

  19. 49 CFR 172.203 - Additional description requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Additional description requirements. 172.203 Section 172.203 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS,...

  20. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.