Science.gov

Sample records for additional freshwater forcing

  1. Response of the Arctic Freshwater Budget to Extreme NAO Forcing

    NASA Astrophysics Data System (ADS)

    Condron, A.; Winsor, P.

    2007-12-01

    Freshwater release from the Arctic to the deepwater convective regions of the Labrador and Nordic Seas is understood to play an important role in steering decadal global climate variability. An observed freshening of the North Atlantic since the mid-1960s appears to be related to changes in the export of freshwater from the Arctic, and the persistence of a high North Atlantic Oscillation (NAO) during this period. However, the specific response of the Arctic freshwater budget to the NAO is unclear. To investigate this response we use a high resolution (1/3 degree) regional version of the ocean-only MITgcm forced for 12 years with daily NCEP reanalysis data from 1992-2001. At this resolution the model resolves the major Arctic transport pathways, including the Bering Strait and Canadian Archipelago. We ran the model twice, keeping all reanalysis fields the same in both cases, but repeat the wind field of two contrasting NAO years in each run for the extreme negative and positive NAO phases of 1969 and 1989, respectively. Our results highlight a clear response in the Arctic freshwater budget to NAO forcing. Repeat NAO negative wind forcing results in virtually all freshwater being retained in the Arctic. In contrast, repeat NAO positive forcing increases the freshwater export out of the Arctic, primarily via the Fram Strait (54%) and Canadian Archipelago (29%), and results in a total loss in freshwater storage of 14000 km3. We find that the freshwater export via these two pathways increases by virtually the same amount (approx 700 km3 per yr) between the two forcing scenarios, highlighting the important role that the Canadian Archipelago plays in redistributing the freshwater of the Arctic.

  2. Additive empirical force field for hexopyranose monosaccharides

    PubMed Central

    Guvench, Olgun; Greene, Shannon N.; Kamath, Ganesh; Brady, John W.; Venable, Richard M.; Pastor, Richard W.; MacKerell, Alexander D.

    2010-01-01

    We present an all-atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all-atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the α- and β-anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas-phase and condensed-phase properties of small-molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute – water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc-pVTZ//MP2/6-31G(d) level of theory. Though not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well-reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids. PMID:18470966

  3. Toward more realistic freshwater forcing experiments of the 8.2 ka event

    NASA Astrophysics Data System (ADS)

    Morrill, C.; Wagner, A. J.; Ward, E. M.; Otto-Bliesner, B. L.; Rosenbloom, N. A.

    2015-12-01

    The 8.2 ka event is a key test case for simulating the coupled climate response to changes in the Atlantic Meridional Overturning Circulation (AMOC). Most previous model experiments of this event were forced by the drainage of proglacial Lake Agassiz-Ojibway into the Hudson Bay and entering the Atlantic Ocean through the Hudson Strait. This drainage contained enough water to raise global sea level about 0.2 meters or more, but it likely had a short duration on the order of one year. Recent advances in quantifying the meltwater forcing associated with the 8.2 ka event point towards a forcing larger than the drainage of Lake Agassiz-Ojibway, probably involving the collapse of the Hudson Bay ice dome and raising global sea level on the order of 1.5 to 3.0 meters. Using the Community Climate System Model version 3 (CCSM3), we show that this larger forcing yields a better match to paleoclimate proxy records. Despite these improvements in forcing magnitude in model simulations, the forcing itself is still generally applied in an unrealistic geographic manner, across most of the Labrador Sea rather than only along the Labrador coast. We present additional experiments using the CCSM3, with an ocean model resolution only slightly coarser than that used in previous eddy-resolving simulations, to test the sensitivity to freshwater forcing location. When revised freshwater forcing is applied across the Labrador Sea, the AMOC is reduced by about 40% and climate anomalies compare well with proxy records of the 8.2 ka event in terms of magnitude and duration. When the forcing is added only along the Labrador coast, however, most meltwater joins the subtropical gyre and travels to the subtropics with minor impact to the AMOC (about 10% decrease). It is likely that model biases in the placement of the North Atlantic Current remain an important limitation for correctly simulating the 8.2 ka event, though the effects of icebergs or alternative freshwater sources cannot be completely

  4. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    PubMed

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  5. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing

    NASA Astrophysics Data System (ADS)

    Brown, Nicolas; Galbraith, Eric D.

    2016-08-01

    It is well known that glacial periods were punctuated by abrupt climate changes, with large impacts on air temperature, precipitation, and ocean circulation across the globe. However, the long-held idea that freshwater forcing, caused by massive iceberg discharges, was the driving force behind these changes has been questioned in recent years. This throws into doubt the abundant literature on modelling abrupt climate change through "hosing" experiments, whereby the Atlantic Meridional Overturning Circulation (AMOC) is interrupted by an injection of freshwater to the North Atlantic: if some, or all, abrupt climate change was not driven by freshwater input, could its character have been very different than the typical hosed experiments? Here, we describe spontaneous, unhosed oscillations in AMOC strength that occur in a global coupled ocean-atmosphere model when integrated under a particular background climate state. We compare these unhosed oscillations to hosed oscillations under a range of background climate states in order to examine how the global imprint of AMOC variations depends on whether or not they result from external freshwater input. Our comparison includes surface air temperature, precipitation, dissolved oxygen concentrations in the intermediate-depth ocean, and marine export production. The results show that the background climate state has a significant impact on the character of the freshwater-forced AMOC interruptions in this model, with particularly marked variations in tropical precipitation and in the North Pacific circulation. Despite these differences, the first-order patterns of response to AMOC interruptions are quite consistent among all simulations, implying that the ocean-sea ice-atmosphere dynamics associated with an AMOC weakening dominate the global response, regardless of whether or not freshwater input is the cause. Nonetheless, freshwater addition leads to a more complete shutdown of the AMOC than occurs in the unhosed oscillations

  6. Influence of the freshwater forcing pathway on the AMOC during 8.2k event

    NASA Astrophysics Data System (ADS)

    Hu, A.; Otto-Bliesner, B. L.; Small, J.; Rosenbloom, N. A.

    2015-12-01

    The collapse of the proglacial lakes Agassiz and Ojibway and the discharge of the lake water into the Hudson Bay were identified as the cause of the cold event occurred around 8.2 thousand years before present day (8.2kybp). This event has been widely studied using coupled climate models by adding freshwater forcing into the subpolar North Atlantic. However, results from the coarse resolution coupled models differ from that of a high resolution forced standalone ocean model simulation. Here we use a state-of-art fully coupled high-resolution climate model with 1/10 degree horizontal resolution for the ocean and sea ice, and ¼ degree for the atmosphere and land components to study the influence of the freshwater forcing to the Atlantic Meridional Overturning Circulation (AMOC). In this simulation, 2 Sv freshwater is added into the North Atlantic along a narrow band of west Baffin Bay to North of Labrador Sea for two years, then the freshwater forcing is switched off. Our preliminary results show that AMOC weakens by over 30% within the first 10 years, and recovers afterwards. The added freshwater were partly transported into the subpolar North Atlantic and partly into the subtropical gyre. The latter part was carried by Gulf Stream into the subpolar North Atlantic about 25 years later.

  7. Role of the Freshwater Forcing on the Atlantic Thermohaline Circulation in Climate Changes

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Kitoh, A.

    2005-12-01

    Effects of the freshwater forcing changes on the thermohaline circulation (THC) differ depending on as to which regimes the circulation is in. This fact is obvious from the considerations based on the simple conceptual box models like Stommel 1961 or Rahmstorf 1996. However, the THC regime of the real Atlantic is not obvious including the problem as to whether such a simple view is applicable or not. In this study, the authors try to determine the Atlantic THC regime of the MRI-CGCM2 from an analysis of a partially coupled experiment, where the greenhouse gas concentrations are fixed to the present-day values but the ocean surface freshwater flux is taken from a transient global warming experiment. Such an experiment is thought to show the role of freshwater forcing more clearly then a fully coupled transient global warming simulation. Analyses show that the salt content of the northern North Atlantic increases in the case of global warming as a long-term response although the water flux over there makes the surface water fresher. It stabilize (or enhance) the Atlantic THC as a long-term response. This response of the THC to an increased freshwater forcing suggests that the THC of the MRI-CGCM2 is in the thermohaline driven regime in the context of the boxmodels. The freshwater flux adjustment used in the MRI-CGCM2 make the problem somewhat complicated. However, a consideration based on the box model and the Atlantic freshwater budget suggests that this result can be generalized to other AOGCMs and/or the real world.

  8. Linking the 8.2 ka Event and its Freshwater Forcing in the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Hoffman, Jeremy S.; Carlson, Anders E.; Winsor, Kelsey; Klinkhammer, Gary P.; LeGrande, Allegra N.; Andrews, John T.; Strasser, C.

    2012-01-01

    The 8.2 ka event was the last deglacial abrupt climate event. A reduction in the Atlantic meridional overturning circulation (AMOC) attributed to the drainage of glacial Lake Agassiz may have caused the event, but the freshwater signature of Lake Agassiz discharge has yet to be identified in (delta)18O of foraminiferal calcite records from the Labrador Sea, calling into question the connection between freshwater discharge to the North Atlantic and AMOC strength. Using Mg/Ca-paleothermometry, we demonstrate that approx. 3 C of near-surface ocean cooling masked an 1.0 % decrease in western Labrador Sea (delta)18O of seawater concurrent with Lake Agassiz drainage. Comparison with North Atlantic (delta)18O of seawater records shows that the freshwater discharge was transported to regions of deep-water formation where it could perturb AMOC and force the 8.2 ka event.

  9. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  10. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    PubMed Central

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  11. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    NASA Astrophysics Data System (ADS)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m-2 year-1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  12. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-29

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  13. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  14. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  15. The sea level response to ice sheet freshwater forcing in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Slangen, Aimée B. A.; Lenaerts, Jan T. M.

    2016-10-01

    We study the effect of a realistic ice sheet freshwater forcing on sea-level change in the fully coupled Community Earth System Model (CESM) showing not only the effect on the ocean density and dynamics, but also the gravitational response to mass redistribution between ice sheets and the ocean. We compare the ‘standard’ model simulation (NO-FW) to a simulation with a more realistic ice sheet freshwater forcing (FW) for two different forcing scenario’s (RCP2.6 and RCP8.5) for 1850–2100. The effect on the global mean thermosteric sea-level change is small compared to the total thermosteric change, but on a regional scale the ocean steric/dynamic change shows larger differences in the Southern Ocean, the North Atlantic and the Arctic Ocean (locally over 0.1 m). The gravitational fingerprints of the net sea-level contributions of the ice sheets are computed separately, showing a regional pattern with a magnitude that is similar to the difference between the NO-FW and FW simulations of the ocean steric/dynamic pattern. Our results demonstrate the importance of ice sheet mass loss for regional sea-level projections in light of the projected increasing contribution of ice sheets to future sea-level rise.

  16. Freshwater inflows and seasonal forcing strongly influence macrofaunal assemblages in Mediterranean coastal lagoons

    NASA Astrophysics Data System (ADS)

    Prado, Patricia; Caiola, Nuno; Ibáñez, Carles

    2014-06-01

    Coastal lagoons of the Ebro Delta (Catalonia, Spain) are part of the Ebro Delta Natural Park managed by regional government authorities. Coastal lagoons have persistently received freshwater inputs from the Ebro River from May to November that have altered their natural ecology and hydrological cycle. In this study, we evaluate the seasonal effect of contrasting salinity regimes (polyhaline in the Tancada lagoon, mesohaline in the Encanyissada and oligohaline in the Clot lagoon) on the composition, abundance, species richness, alpha diversity and biomass of benthic macrofauna communities, and we assess the relative contribution of local environmental variables to the observed patterns. Additional sampling was conducted in the largest lagoon (Encanyissada) in order to assess variability at lower spatial scale. At both spatial scales (i.e., among-lagoon and within-lagoon), species richness and diversity tended to increase at higher salinities, particularly in summer. At the assemblage level, significantly different groupings were also found among lagoons and among zones of the Encanyissada lagoon, with more distinctive differences also in summer. Environmental factors accounted for up to 56-60% of the variation in macrofaunal assemblages at both spatial scales, with salinity and temperature accounting for the largest contributions (approx. 14% and 10%, respectively), whereas biomass was mostly controlled by temperature and nutrients. Distinctive oxygen and organic matter levels across the lagoons were also associated with the freshwater influx and displayed significant contributions to observed patterns. Our study shows that the low salinity regime and/or other factors related to long-term inputs of freshwater shape the community of macrofauna within the lagoons, a central trophic resource for most of the local species of fish and aquatic birds. Restoration of these systems to their natural hydrological functioning without further inputs of freshwater and higher

  17. Atmospheric forcing on the Canadian Arctic Archipelago freshwater outflow and implications for the Labrador Sea variability

    NASA Astrophysics Data System (ADS)

    Houssais, Marie-NoëLle; Herbaut, Christophe

    2011-08-01

    The variability of the freshwater export through the Canadian Arctic Archipelago (CAA) is analyzed using a hindcast simulation forced by surface atmospheric forcing from the ERA40 reanalysis (1958-2001). Although the two channels representing the archipelago in the model are both sensitive to the along-channel sea surface height (SSH) gradient, they appear to have very distinct behaviors. The outflow to Lancaster Sound is shown to be largely controlled by the magnitude of the upstream SSH gradient across McClure Strait. The gradient shows a close link to the wind stress curl in the western Arctic but also to a large-scale SSH anomaly pattern which has a strong signal over the shelf to the south of McClure Strait. The latter has, however, little statistical connection to the SSH variability in the Beaufort Gyre. By contrast, the outflow through Nares Strait responds preferentially to SSH variations in the northern Baffin Bay which are remotely forced by air-sea heat exchanges in the Labrador Sea. The variability is largely coherent between the two outflows and is controlled by a dipolar atmospheric pattern reminiscent of the North Atlantic/Arctic Oscillation. When entering the subpolar gyre, the CAA freshwater outflow remains confined to the Labrador shelf with little impact on the salinity of the interior Labrador Sea and potentially on the convection. The latter is represented by a distinct mode of salinity variability in the western subpolar gyre which is rather influenced by the variability of the sea ice export through Fram Strait.

  18. The competition of freshwater and radiation in forcing the ocean during El Nino

    SciTech Connect

    Schneider, N.; Barnett, T.P.

    1995-05-01

    The relative roles of heat and freshwater fluxes in forcing the tropical Pacific on interannual timescales are investigated using sophisticated atmospheric and oceanic general circulation models. Interannual density flux anomalies due to anomalous precipitation and shortwave and longwave radiation are highly correlated since they all depend on clouds. Their respective contributions to the anomalous surface density flux are of comparable magnitude, with precipitation and longwave anomalies opposing shortwave radiation. This implies that anomalous radiation and precipitation associated with the eastward shift of the centers of deep convection during El Nino change the density flux little since they largely balance. This near cancellation also causes the evaporative component to dominate interannual anomalies of the density flux in the eastern Pacific and in the Indian Ocean and implies that anomalous net surface density fluxes there can be approximated by anomalous evaporation alone. However, in the central and western Pacific, evaporative anomalies are negatively correlated to shortwave anomalies as well, and interannual anomalies of the net density flux are therefore small and deviate considerable from the evaporative component alone. Forcing an oceanic circulation model with the interannual anomalies of the fluxes of heat and freshwater alone yields salinity and temperature anomalies of the same order as observed. Model salinity anomalies explain approximately half of the observations, while temperature anomalies have reversed signs compared to observations. This reflects the negative feedback between surface heat fluxes and the warming caused by interannual anomalies of the wind not included in this simulation. Over most of the tropical ocean, interannual anomalies of surface density are dominated by temperature anomalies. In the central Pacific salinity anomalies diminish up to half of the effect of temperature. 28 refs., 18 figs., 1 tab.

  19. Effects Of Five Years Of Nitrogen And Phosphorus Additions On A Zizaniopsis miliacea Tidal Freshwater Marsh

    EPA Science Inventory

    The purpose of this experiment was to determine if nitrogen (N) or phosphorus (P) acts as the limiting nutrient for tidal freshwater marsh vegetation. To answer this question, we added N, P, and N + P to a tidal freshwater marsh dominated by Zizaniopsis miliacea (Michx.) ...

  20. Additive CHARMM force field for naturally occurring modified ribonucleotides

    PubMed Central

    Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D.

    2016-01-01

    More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26841080

  1. Additive CHARMM force field for naturally occurring modified ribonucleotides.

    PubMed

    Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D; Nilsson, Lennart

    2016-04-15

    More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all-atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. PMID:26841080

  2. Additive CHARMM force field for naturally occurring modified ribonucleotides.

    PubMed

    Xu, You; Vanommeslaeghe, Kenno; Aleksandrov, Alexey; MacKerell, Alexander D; Nilsson, Lennart

    2016-04-15

    More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all-atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs.

  3. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G.; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia

    2016-05-01

    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000-2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and δ18O data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.

  4. Invasion of Nostocales (cyanobacteria) to Subtropical and Temperate Freshwater Lakes - Physiological, Regional, and Global Driving Forces.

    PubMed

    Sukenik, Assaf; Hadas, Ora; Kaplan, Aaron; Quesada, Antonio

    2012-01-01

    Similar to the increased number of studies on invasive plants and animals in terrestrial and aquatic ecosystems, many reports were recently published on the invasion of Nostocales (cyanobacteria) to freshwater environments worldwide. Invasion and proliferation of Nostocales in new habitats have the potential to significantly alter the structure of the native community and to modify ecosystem functioning. But most importantly, they influence the water quality due to a variety of toxic compounds that some species produce. Therefore a special attention was given to the invasion and persistence of toxic cyanobacteria in many aquatic ecosystems. Here we summarize the currently published records on the invasion of two Nostocales genera, Cylindrospermopsis and Aphanizomenon, to lakes and water reservoirs in subtropical and temperate zones. These invading species possess traits thought to be common to many invasive organisms: high growth rate, high resource utilization efficiency and overall superior competitive abilities over native species when local conditions vary. Assuming that dispersion routes of cyanobacteria have not been changed much in recent decades, their recent establishment and proliferation in new habitats indicate changes in the environment under which they can exploit their physiological advantage over the native phytoplankton population. In many cases, global warming was identified as the major driving force for the invasion of Nostocales. Due to this uncontrollable trend, invasive Nostocales species are expected to maintain their presence in new habitats and further expand to new environments. In other cases, regional changes in nutrient loads and in biotic conditions were attributed to the invasion events.

  5. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    SciTech Connect

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  6. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific.

    PubMed

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-01-01

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  7. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China.

    PubMed

    Zhang, Lihua; Song, Changchun; Nkrumah, Philip N

    2013-09-01

    It has widely been documented that nitrogen (N) stimulates plant growth and net primary production. But how N affects net ecosystem CO2 exchange (NEE) is still dispute. We conduct an experimental study to assess the response of NEE to N addition in a freshwater marsh. Experimental treatments involved elevated N and control treatments on triplicate 1 m(2) plots. Gas exchange, air temperature, plant biomass and leaf area as well as N% of leaf were measured from 2004 to 2005. The results indicated that N addition initially decreased the CO2 sequestration but the trend changed in the second year. It was concluded that N addition enhanced the greenhouse effect in marshland as far as global warming potential (GWP) is concerned. This increase was attributed to a substantial increase in CH4 and N2O emissions after N addition. We recommended long-term studies to further clarify the effect of N addition on NEE. PMID:23727568

  8. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  9. Distribution and additive partitioning of diversity in freshwater mollusk communities in Southern Brazilian streams.

    PubMed

    Martello, Alcemar R; Hepp, Luiz U; Kotzian, Carla B

    2014-03-01

    Additive partitioning of species diversity is a promising approach for analyzing patterns of diversity in mollusk communities, especially their spatial distribution. Our aims were to assess the distribution of mollusk communities in Southern Brazilian streams, and to evaluate the partitioning of community diversity at different spatial scales. The study was carried out in the lower course of the Toropi River, one of the main tributaries of the Ibicui River Basin, in Southern Brazil. Four microbasins were considered: Sertão da Mata, Ribeirão, Tororaipi and Chiniquá, and sampling were undertaken in autumn, April and May 2009. Six sites were sampled in each stream: two in 1st-order segments, two in 2nd-order segments, and two in 3rd-order segments. All species found and the community as a whole, exhibited a clumped distribution. However, the variance-to-mean ratios for the Drepanotrema kermatoides and Heleobia bertoniana were higher than those of other species, suggesting a higher degree of aggregation. The additive partitioning of the species richness showed that the observed richness at smallest scale (alpha=within streams) represented 20.7%, and among-streams (beta1) represented 10.5% of the total richness. The richness and Shannon diversity index observed at the alpha scale, were higher than those observed at the first level of beta diversity scale (beta1=among-streams). The interaction between passive dispersal, tolerance to changes in some environmental variables, abiotic factors, and clumped distribution might have determined the spatial distribution of the communities studied. The greatest variation at the larger scales of analysis, involving among-orders and among-microbasins (beta2 and beta3, respectively) components, was expected, considering that the increase in distance leads to greater differences in richness (higher beta diversity). In conclusion, our results showed that the clumped distribution influenced the partition of the diversity of the

  10. CHARMM General Force Field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields

    PubMed Central

    Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D.

    2010-01-01

    The widely used CHARMM additive all-atom force field includes parameters for proteins, nucleic acids, lipids and carbohydrates. In the present paper an extension of the CHARMM force field to drug-like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present paper in the context of the model systems, pyrrolidine, and 3-phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all-CHARMM” simulations on drug-target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. PMID:19575467

  11. DIGIT FORCE ADJUSTMENTS DURING FINGER ADDITION/REMOVAL IN MULTI-DIGIT PREHENSION

    PubMed Central

    Budgeon, Mark K.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2008-01-01

    We explored adjustments in multi-digit coordinated action on a hand-held object with finger addition and removal. The subjects (n= 7) kept a vertically oriented handle at rest using a prismatic grasp as if holding a glass of liquid and then either added one finger to the grasp—the index (I) or little (L) finger—or removed one finger. Three external torques were applied on the apparatus: clockwise, counterclockwise, and no torque. The individual digit forces and moments were recorded with 6-component sensors. The change in grasping force depended on the function of the manipulated finger, i.e. on whether the finger resisted external torque (torque agonist) or assisted it (torque antagonist). There was a significant increase of the grasping force when an antagonist was added or when an agonist was removed. These force increases were not necessary for slipping prevention: the normal forces prior to the manipulation were large enough to prevent slipping. All other finger manipulations exhibited no significant change in the grip force, except for the antagonist removal during the supination efforts (after removing the I finger the grasping force decreased). In contrast, the changes in the tangential force depended on the manipulated finger, not on the finger function with respect to external torque. There was a significant thumb force increase when the I finger was added or when the L finger was removed; opposite changes were seen when the L finger was added or the I finger was removed. The changes of the virtual finger (VF) tangential force were equal and opposite to the thumb tangential force alterations; these opposite changes caused changes in the moments these forces generated. The changes in the moments of the tangential forces were counterbalanced by the opposite changes in the moments of normal forces such that the total moment remained constant and the handle orientation was maintained. At the level of individual finger (IF) forces two strategies of error

  12. Improvement in topology measurement accuracy of atomic force microscope using additional sensor

    NASA Astrophysics Data System (ADS)

    Yoon, Yeomin; Jeong, Jiseong; Kim, Junsup; Park, Kyihwan

    2015-07-01

    The topology image of an atomic force microscope is obtained by picking up a controlled output of a force-feedback loop that is proportional to the height of a sample under the assumption that no dynamics in a z-axis actuator exist. However, the dynamic effects such as hysteresis and creep in a PZT driving z-axis actuator cannot be ignored. To solve this problem, a strain-gage sensor is used as an additional sensor, which enables measurement of the absolute displacement of a z-axis PZT nano scanner. The advantage of using an additional sensor is experimentally provided and validated in topology images.

  13. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world.

    PubMed

    Petry, A C; Guimarães, T F R; Vasconcellos, F M; Hartz, S M; Becker, F G; Rosa, R S; Goyenola, G; Caramaschi, E P; Díaz de Astarloa, J M; Sarmento-Soares, L M; Vieira, J P; Garcia, A M; Teixeira de Mello, F; de Melo, F A G; Meerhoff, M; Attayde, J L; Menezes, R F; Mazzeo, N; Di Dario, F

    2016-07-01

    The relationships between fish composition, connectivity and morphometry of 103 lagoons in nine freshwater ecoregions (FEOW) between 2·83° S and 37·64° S were evaluated in order to detect possible congruence between the gradient of species richness and similarities of assemblage composition. Most lagoons included in the study were <2 km(2) , with a maximum of 3975 km(2) in surface area. Combined surface area of all lagoons included in the study was 5411 km(2) . Number of species varied locally from one to 76. A multiple regression revealed that latitude, attributes of morphometry and connectivity, and sampling effort explained a large amount of variability in species richness. Lagoon area was a good predictor of species richness except in low latitude ecoregions, where lagoons are typically small-sized and not affected by marine immigrants, and where non-native fish species accounted for a significant portion of species richness. Relationships between species and area in small-sized lagoons (<2 km(2) ) is highly similar to the expected number in each ecoregion, with systems located between 18·27° S and 30·15° S attaining higher levels of species richness. Similarities in species composition within the primary, secondary and peripheral or marine divisions revealed strong continental biogeographic patterns only for species less tolerant or intolerant to salinity. Further support for the FEOW scheme in the eastern border of South America is therefore provided, and now includes ecotonal systems inhabited simultaneously by freshwater and marine species of fishes. PMID:27401481

  14. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world.

    PubMed

    Petry, A C; Guimarães, T F R; Vasconcellos, F M; Hartz, S M; Becker, F G; Rosa, R S; Goyenola, G; Caramaschi, E P; Díaz de Astarloa, J M; Sarmento-Soares, L M; Vieira, J P; Garcia, A M; Teixeira de Mello, F; de Melo, F A G; Meerhoff, M; Attayde, J L; Menezes, R F; Mazzeo, N; Di Dario, F

    2016-07-01

    The relationships between fish composition, connectivity and morphometry of 103 lagoons in nine freshwater ecoregions (FEOW) between 2·83° S and 37·64° S were evaluated in order to detect possible congruence between the gradient of species richness and similarities of assemblage composition. Most lagoons included in the study were <2 km(2) , with a maximum of 3975 km(2) in surface area. Combined surface area of all lagoons included in the study was 5411 km(2) . Number of species varied locally from one to 76. A multiple regression revealed that latitude, attributes of morphometry and connectivity, and sampling effort explained a large amount of variability in species richness. Lagoon area was a good predictor of species richness except in low latitude ecoregions, where lagoons are typically small-sized and not affected by marine immigrants, and where non-native fish species accounted for a significant portion of species richness. Relationships between species and area in small-sized lagoons (<2 km(2) ) is highly similar to the expected number in each ecoregion, with systems located between 18·27° S and 30·15° S attaining higher levels of species richness. Similarities in species composition within the primary, secondary and peripheral or marine divisions revealed strong continental biogeographic patterns only for species less tolerant or intolerant to salinity. Further support for the FEOW scheme in the eastern border of South America is therefore provided, and now includes ecotonal systems inhabited simultaneously by freshwater and marine species of fishes.

  15. Additive manufacturing of a monolithic optical force sensor based on polarization modulation.

    PubMed

    Nierenberger, Mathieu; Lecler, Sylvain; Pfeiffer, Pierre; Geiskopf, François; Guilhem, Mathieu; Renaud, Pierre

    2015-08-01

    One of the specific interests of optical sensors is their compatibility with harsh environments. The polarization modulated force sensor we propose offers this advantage, in addition to low cost and ease of manufacturing thanks to its acrylate 3D printed monolithic design. All the polarization control is indeed achieved using the geometry of a single component making unnecessary future alignments. The complex geometry of the transducer is obtained thanks to the 3D printing process. This process and the resulting material optical properties are described. The sensor concept and the fabrication method are experimentally investigated. A monolithic force sensor in the required range of 20 N is exhibited for application in the field of MR-compatible robotics. The potentiality of 3D printing for optical application in the design of the force sensor is illustrated.

  16. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  17. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Zhang, Ke; Ouyang, Qi

    2006-09-01

    We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the introduction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns of hexagons, stripes, and labyrinths which oscillate at half of the forcing frequency. Both the noise strength and the correlation time control the pattern formation. The system transits from homogeneous to hexagons, stripes, and to labyrinths successively as the noise strength is adjusted. Good frequency-locked patterns are only sustained by the colored noise and a finite time correlation is necessary. At the limit of white noise with zero temporal correlation, irregular patterns which are only nearly resonant come out as the noise strength is adjusted. The phenomenon induced by colored noise in the forced reaction-diffusion system is demonstrated to correspond to noise-induced Turing instability in the corresponding forced complex Ginzburg-Landau equation.

  18. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems.

    PubMed

    Wang, Hongli; Zhang, Ke; Ouyang, Qi

    2006-09-01

    We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the introduction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns of hexagons, stripes, and labyrinths which oscillate at half of the forcing frequency. Both the noise strength and the correlation time control the pattern formation. The system transits from homogeneous to hexagons, stripes, and to labyrinths successively as the noise strength is adjusted. Good frequency-locked patterns are only sustained by the colored noise and a finite time correlation is necessary. At the limit of white noise with zero temporal correlation, irregular patterns which are only nearly resonant come out as the noise strength is adjusted. The phenomenon induced by colored noise in the forced reaction-diffusion system is demonstrated to correspond to noise-induced Turing instability in the corresponding forced complex Ginzburg-Landau equation. PMID:17025732

  19. Matching of additive and polarizable force fields for multiscale condensed phase simulations

    PubMed Central

    Baker, Christopher M.; Best, Robert B.

    2013-01-01

    Inclusion of electronic polarization effects is one of the key aspects in which the accuracy of current biomolecular force fields may be improved. The principal drawback of such approaches is the computational cost, which typically ranges from 3 – 10 times that of the equivalent additive model, and may be greater for more sophisticated treatments of polarization or other many-body effects. Here, we present a multiscale approach which may be used to enhance the sampling in simulations with polarizable models, by using the additive model as a tool to explore configuration space. We use a method based on information theory to determine the charges for an additive model that has optimal overlap with the polarizable one, and we demonstrate the feasibility of enhancing sampling via a hybrid replica exchange scheme for several model systems. An additional advantage is that, in the process, we obtain a systematic method for deriving charges for an additive model that will be the natural complement to its polarizable parent. The additive charges are found by an effective coarse-graining of the polarizable force field, rather than by ad hoc procedures. PMID:23997691

  20. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  1. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    PubMed

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  2. The force-field derivation and application of explosive/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2016-10-01

    The inter-molecular force-field across RDX/(paraffin, fluoropolymer) interfaces are derived from first-principles calculated energies under the GGA+vdW functional. Based on the force-field, the polycrystal structures of mixture explosives are obtained, and a set of thermodynamic properties are calculated, including the elastic constants, thermal expansion coefficient, heat capacity, isothermal curve and the Hugoniot curve. The results are in good agreement with the available experiments, and provide a reasonable prediction about the properties of plastic bonded explosives. We find that the thermal expansion coefficient of a multi-component explosive is not only determined by the properties of the components, but is also affected by the thermal stress at the explosive/additive interfaces.

  3. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  4. Influence of Polarization on Carbohydrate Hydration: A Comparative Study Using Additive and Polarizable Force Fields.

    PubMed

    Pandey, Poonam; Mallajosyula, Sairam S

    2016-07-14

    Carbohydrates are known to closely modulate their surrounding solvent structures and influence solvation dynamics. Spectroscopic investigations studying far-IR regions (below 1000 cm(-1)) have observed spectral shifts in the libration band (around 600 cm(-1)) of water in the presence of monosaccharides and polysaccharides. In this paper, we use molecular dynamics simulations to gain atomistic insight into carbohydrate-water interactions and to specifically highlight the differences between additive (nonpolarizable) and polarizable simulations. A total of six monosaccharide systems, α and β anomers of glucose, galactose, and mannose, were studied using additive and polarizable Chemistry at HARvard Macromolecular Mechanics (CHARMM) carbohydrate force fields. Solvents were modeled using three additive water models TIP3P, TIP4P, and TIP5P in additive simulations and polarizable water model SWM4 in polarizable simulations. The presence of carbohydrate has a significant effect on the microscopic water structure, with the effects being pronounced for proximal water molecules. Notably, disruption of the tetrahedral arrangement of proximal water molecules was observed due to the formation of strong carbohydrate-water hydrogen bonds in both additive and polarizable simulations. However, the inclusion of polarization resulted in significant water-bridge occupancies, improved ordered water structures (tetrahedral order parameter), and longer carbohydrate-water H-bond correlations as compared to those for additive simulations. Additionally, polarizable simulations also allowed the calculation of power spectra from the dipole-dipole autocorrelation function, which corresponds to the IR spectra. From the power spectra, we could identify spectral signatures differentiating the proximal and bulk water structures, which could not be captured from additive simulations. PMID:27266974

  5. Influence of Additional Tensile Force on Springback of Tube Under Rotary Draw Bending

    NASA Astrophysics Data System (ADS)

    E, Daxin; Guan, Zhiping; Chen, Jisheng

    2012-11-01

    According to the characteristics of tube under rotary draw bending, the formulae were derived to calculate the springback angles of tubes subjected to combined bending and additional tension. Especially, as the neutral layer (NL) moves to the inner concave surface of the bend, the analytical values agree very well with the experimental results. The analysis shows that the additional tensile force causes the movement of the NL toward the bending center and makes the deformation behavior under rotary draw bending or numerically controlled (NC) bending different with that under pure bending, and also it could enlarge the springback angle if taking the movement of the NL into consideration. In some range, the springback angle would increase slightly with larger wall thickness/diameter ratio and decrease with wall thinning. The investigation could provide reference for the analysis of rotary draw bending, the design of NC tube bender and the related techniques.

  6. Note: vibration reduction control of an atomic force microscope using an additional cantilever.

    PubMed

    Kim, Chulsoo; Jung, Jongkyu; Park, Kyihwan

    2011-11-01

    Since an atomic force microscope is used to measure sub-nanometer level precision, it is sensitive to external vibration. If the vibration can be measured by using an additional sensor, we can obtain the vibration-free signal by subtracting the vibration signal from the signal containing the vibration. To achieve a highly effective vibration rejection ratio, it is important to decide where to locate the additional sensor. This is because the vibration measured at the sensing position should have the same phase as that of the vibration in the signal. Vibration reduction control using this electrical sensing method is verified through time domain analysis and topology images of a standard grid sample.

  7. Transferability and additivity of dihedral parameters in polarizable and nonpolarizable empirical force fields.

    PubMed

    Zgarbová, Marie; Rosnik, Andreana M; Luque, F Javier; Curutchet, Carles; Jurečka, Petr

    2015-09-30

    Recent advances in polarizable force fields have revealed that major reparameterization is necessary when the polarization energy is treated explicitly. This study is focused on the torsional parameters, which are crucial for the accurate description of conformational equilibria in biomolecules. In particular, attention is paid to the influence of polarization on the (i) transferability of dihedral terms between molecules, (ii) transferability between different environments, and (iii) additivity of dihedral energies. To this end, three polarizable force fields based on the induced point dipole model designed for use in AMBER are tested, including two recent ff02 reparameterizations. Attention is paid to the contributions due to short range interactions (1-2, 1-3, and 1-4) within the four atoms defining the dihedral angle. The results show that when short range 1-2 and 1-3 polarization interactions are omitted, as for instance in ff02, the 1-4 polarization contribution is rather small and unlikely to improve the description of the torsional energy. Conversely, when screened 1-2 and 1-3 interactions are included, the polarization contribution is sizeable and shows potential to improve the transferability of parameters between different molecules and environments as well as the additivity of dihedral terms. However, to reproduce intramolecular polarization effects accurately, further fine-tuning of the short range damping of polarization is necessary.

  8. Transferability and additivity of dihedral parameters in polarizable and nonpolarizable empirical force fields.

    PubMed

    Zgarbová, Marie; Rosnik, Andreana M; Luque, F Javier; Curutchet, Carles; Jurečka, Petr

    2015-09-30

    Recent advances in polarizable force fields have revealed that major reparameterization is necessary when the polarization energy is treated explicitly. This study is focused on the torsional parameters, which are crucial for the accurate description of conformational equilibria in biomolecules. In particular, attention is paid to the influence of polarization on the (i) transferability of dihedral terms between molecules, (ii) transferability between different environments, and (iii) additivity of dihedral energies. To this end, three polarizable force fields based on the induced point dipole model designed for use in AMBER are tested, including two recent ff02 reparameterizations. Attention is paid to the contributions due to short range interactions (1-2, 1-3, and 1-4) within the four atoms defining the dihedral angle. The results show that when short range 1-2 and 1-3 polarization interactions are omitted, as for instance in ff02, the 1-4 polarization contribution is rather small and unlikely to improve the description of the torsional energy. Conversely, when screened 1-2 and 1-3 interactions are included, the polarization contribution is sizeable and shows potential to improve the transferability of parameters between different molecules and environments as well as the additivity of dihedral terms. However, to reproduce intramolecular polarization effects accurately, further fine-tuning of the short range damping of polarization is necessary. PMID:26224547

  9. Simulation of uphill/downhill running on a level treadmill using additional horizontal force.

    PubMed

    Gimenez, Philippe; Arnal, Pierrick J; Samozino, Pierre; Millet, Guillaume Y; Morin, Jean-Benoit

    2014-07-18

    Tilting treadmills allow a convenient study of biomechanics during uphill/downhill running, but they are not commonly available and there is even fewer tilting force-measuring treadmill. The aim of the present study was to compare uphill/downhill running on a treadmill (inclination of ± 8%) with running on a level treadmill using additional backward or forward pulling forces to simulate the effect of gravity. This comparison specifically focused on the energy cost of running, stride frequency (SF), electromyographic activity (EMG), leg and foot angles at foot strike, and ground impact shock. The main results are that SF, impact shock, and leg and foot angle parameters determined were very similar and significantly correlated between the two methods, the intercept and slope of the linear regression not differing significantly from zero and unity, respectively. The correlation of oxygen uptake (V̇O2) data between both methods was not significant during uphill running (r=0.42; P>0.05). V̇O2 data were correlated during downhill running (r=0.74; P<0.01) but there was a significant difference between the methods (bias=-2.51 ± 1.94 ml min(-1) kg(-1)). Linear regressions for EMG of vastus lateralis, biceps femoris, gastrocnemius lateralis, soleus and tibialis anterior were not different from the identity line but the systematic bias was elevated for this parameter. In conclusion, this method seems appropriate for the study of SF, leg and foot angle, impact shock parameters but is less applicable for physiological variables (EMG and energy cost) during uphill/downhill running when using a tilting force-measuring treadmill is not possible.

  10. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  11. The additive effects of quinine on antidepressant drugs in the forced swimming test in mice.

    PubMed

    Guo, W Y; Todd, K G; Bourin, M; Hascoet, M

    1995-09-01

    The aim of this study was to investigate if quinine plus antidepressant drugs (ADS) leads to an additive effect in the forced swimming test. Quinine (0.125, 0.5 mg/kg) and ADS (subactive doses) were given IP 45 and 30 min, respectively, before the test. When combined with QUIN, all drugs that act via inhibition of 5-HT uptake (imipramine, amitriptyline, citalopram, paroxetine, fluoxetine and fluvoxamine) significantly increased the swimming time of mice. Among trazodone, mianserin and iprindole (atypical ADS), only iprindole combined with quinine decreased the immobility (increased swimming) of the animals. The specific noradrenaline (NA) uptake inhibitors, desipramine and viloxazine, but not maprotiline, were also found to reduce the immobility time when pretreated with quinine. The mixed monoamine oxidase (MAO) inhibitor (pargyline) and MAO-A inhibitor (moclobemide) also shortened the period of immobility whereas the MAO-B inhibitor (nialamide) and the dopamine (DA) uptake inhibitor (bupropion) did not. Quinine's additive effects on several types of ADS is likely a result of blockade of potassium channels.

  12. Additive effects of clonidine and antidepressant drugs in the mouse forced-swimming test.

    PubMed

    Malinge, M; Bourin, M; Colombel, M C; Larousse, C

    1988-01-01

    In the mouse forced-swimming model, dose-dependent reversal of immobility was induced by the alpha-agonist clonidine given IP 30 min before testing. In addition, three preferential inhibitors of 5-HT uptake (citalopram, indalpine and fluvoxamine) had similar activity in the dose range 8-16 mg/kg as did the 5-HT1 agonist 8-OH-DPAT (1-4 mg/kg). Pretreatment with alpha-methyl-paratyrosine (100 mg/kg) did not prevent clonidine (1 mg/kg) action, suggesting that there was mediation by alpha post-junctional receptors. The effect of clonidine was unaltered by prazosin (2 mg/kg) and reversed by yohimbine (4 mg/kg) and 5-MeODMT (1 mg/kg), whereas it was potentiated by reserpine (2.5 mg/kg), methysergide (2 mg/kg) and ketanserin (8 mg/kg). Moreover, an ineffective dose of clonidine (0.06 mg/kg at 45 min pre-testing) made active subthreshold doses of various antidepressants (given at 30 min pre-testing): imipramine (4 mg/kg), amitriptyline (1 mg/kg), maprotiline (8 mg/kg), citalopram (2 mg/kg), indalpine, fluvoxamine and mianserin (4 mg/kg), viloxazine (2 mg/kg). Similar interactions were found with iprindole and nialamide (32 mg/kg), which were inactive alone up to 64 mg/kg, and 8-OH-DPAT (0.5 mg/kg) but not with major and minor tranquillizers. It is suggested that one effect of antidepressants might be the triggering of different relationships between alpha-2 and 5-HT mechanisms.

  13. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  14. Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients.

    PubMed

    Rosická, Dana; Sembera, Jan

    2013-01-01

    : The need may arise to be able to simulate the migration of groundwater nanoparticles through the ground. Transportation velocities of nanoparticles are different from that of water and depend on many processes that occur during migration. Unstable nanoparticles, such as zero-valent iron nanoparticles, are especially slowed down by aggregation between them. The aggregation occurs when attracting forces outweigh repulsive forces between the particles. In the case of iron nanoparticles that are used for remediation, magnetic forces between particles contribute to attractive forces and nanoparticles aggregate rapidly. This paper describes the addition of attractive magnetic forces and repulsive electrostatic forces between particles (by 'particle', we mean both single nanoparticles and created aggregates) into a basic model of aggregation which is commonly used. This model is created on the basis of the flow of particles in the proximity of observed particles that gives the rate of aggregation of the observed particle. By using a limit distance that has been described in our previous work, the flow of particles around one particle is observed in larger spacing between the particles. Attractive magnetic forces between particles draw the particles into closer proximity and result in aggregation. This model fits more closely with rapid aggregation which occurs between magnetic nanoparticles.

  15. Kara Sea freshwater transport through Vilkitsky Strait: Variability, forcing, and further pathways toward the western Arctic Ocean from a model and observations

    NASA Astrophysics Data System (ADS)

    Janout, Markus A.; Aksenov, Yevgeny; Hölemann, Jens A.; Rabe, Benjamin; Schauer, Ursula; Polyakov, Igor V.; Bacon, Sheldon; Coward, Andrew C.; Karcher, Michael; Lenn, Yueng-Djern; Kassens, Heidemarie; Timokhov, Leonid

    2015-07-01

    Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10-20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.

  16. Addition of Electrostatic Forces to EDEM with Applications to Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos; Curry, David

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carryout experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM Tm, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. In this paper we will present overview of the theoretical calculations and experimental data and their comparison to the results of the DEM simulations. We will also discuss current plans to revise the DEM software with advanced electrodynamic and mechanical algorithms.

  17. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling

    PubMed Central

    Guvench, Olgun; Mallajosyula, Sairam S.; Raman, E. Prabhu; Hatcher, Elizabeth; Vanommeslaeghe, Kenno; Foster, Theresa J.; Jamison, Francis W.; MacKerell, Alexander D.

    2011-01-01

    Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model. PMID:22125473

  18. Additive effect of lithium and clonidine with 5-HT1A agonists in the forced swimming test.

    PubMed

    Hascoet, M; Bourin, M; Khimake, S

    1994-03-01

    1. The aim of the present work was to demonstrate the possible additive effect of lithium and clonidine with 5-HT1a agonists in the forced swimming test. 2. Anti-depressant like effects of 5-HT1a agonists was investigated using forced swimming test. When administered alone, only 8-OH-DPAT reduced the immobility time in mice. 3. 5-HT1a agonists were then tested in combination with clonidine or lithium. Only gepirone and ipsapirone pretreated by either lithium or clonidine reduced immobility time in the forced swimming test. 4. The authors conclude that lithium and clonidine might be useful to predict antidepressant-like activity of new compounds.

  19. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  20. Freshwater macroinvertebrates

    SciTech Connect

    Quigley, M.A.

    1982-06-01

    Major aspects of the biology of freshwater macroinvertebrates with emphasis on man-induced environmental changes were reviewed in this report with 183 references. The effects of both chemical and physical environmental alteration are examined. The population dynamics of the macroinvertebrates are controlled by factors such as food and feeding habits, periodicity and drift, productivity and animal-sediment interactions.(KRM)

  1. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE PAGES

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  2. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium.

    PubMed

    Hart, Katarina; Foloppe, Nicolas; Baker, Christopher M; Denning, Elizabeth J; Nilsson, Lennart; Mackerell, Alexander D

    2012-01-10

    The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles ε and ζ (BI = ε-ζ < 0 and BII = ε-ζ > 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.

  3. Marine and freshwater toxins.

    PubMed

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  4. Lessons Learned at the Idaho National Laboratory for the Entry into Force of the U.S. Additional Protocol

    SciTech Connect

    Jeffrey C. Joe; Shauna A. Hoiland

    2009-07-01

    For a number of years, the Idaho National Laboratory (INL) has been preparing for the entry into force of the U.S. Additional Protocol (AP). These preparations included attending training, participating in tabletop exercises, preparing draft declarations, developing INL-specific guidance documents, preparing for and hosting a mock complementary access visit, and preparing declarations for official submittal. All of these activities, the training materials, and software developed by other U.S. DOE national laboratories (PNNL, ORNL, LANL, and BNL) were very helpful in preparing for the entry into force of the AP. As with any endeavor of this size and complexity, however, there are always instances where even the best preparations and advanced planning do not anticipate every challenge. As the DOE's lead nuclear energy research and development facility, the INL faced many unique challenges. The majority of research conducted at the INL is nuclear fuel cycle related, most of which is not protected by the National Security Exclusion. This paper describes the lessons learned from the INL’s experience of preparing for the entry into force of the AP, specifically how translating and implementing general principles into actual activities proved to be one of many challenges, and provides general suggestions on how to respond effectively and efficiently to routine annual data calls and other AP requests.

  5. Resonance scattering and radiation force calculations for an elastic cylinder using the translational addition theorem for cylindrical wave functions

    SciTech Connect

    Mitri, F. G.

    2015-09-15

    The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.

  6. Resonance scattering and radiation force calculations for an elastic cylinder using the translational addition theorem for cylindrical wave functions

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-09-01

    The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf's translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.

  7. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Brim-Box, Jayne; Tepley, Alan J.

    2015-01-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1–September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982–2003; PC1mussel) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1discharge; r = −0.88; P < 0.0001). PC1mussel and PC1discharge were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change.

  8. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest.

    PubMed

    Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J

    2015-02-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change. PMID:25258169

  9. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest.

    PubMed

    Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J

    2015-02-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change.

  10. Inferring processes from spatial patterns: the role of directional and non-directional forces in shaping fish larvae distribution in a freshwater lake system.

    PubMed

    Bertolo, Andrea; Blanchet, F Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre

    2012-01-01

    Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models.

  11. Freshwater Flow Charts - 1995

    SciTech Connect

    Kaiper, G V

    2003-11-21

    This report covers the following: (1) Explanation of Charts Showing Freshwater Flow in 1995; (2) Estimated U.S. Freshwater Flow in 1995 (chart); (3) Estimated California Freshwater Flow in 1995 (chart); (4) Estimated New Mexico Freshwater Flow in 1995 (chart); and (5) Web locations and credits.

  12. Arctic freshwater export: Status, mechanisms, and prospects

    NASA Astrophysics Data System (ADS)

    Haine, Thomas W. N.; Curry, Beth; Gerdes, Rüdiger; Hansen, Edmond; Karcher, Michael; Lee, Craig; Rudels, Bert; Spreen, Gunnar; de Steur, Laura; Stewart, Kial D.; Woodgate, Rebecca

    2015-02-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈ 5000 km3 - about 25% - being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200 ± 730 km3 yr- 1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice. Coupled climate models project continued freshening of the Arctic during the 21st century, with a total gain of about 50,000 km3 for the Arctic, CAA, and Baffin Bay (an increase of about 50%) by 2100. Understanding of the mechanisms controlling freshwater emphasizes the importance of Arctic surface winds, in addition to the sources of freshwater. The wind can modify the storage, release, and pathways of freshwater on timescales of O(1-10) months. Discharges of excess freshwater through Fram or Davis straits appear possible, triggered by changes in the wind, but are hard to predict. Continued measurement of the fluxes and storage of freshwater is needed to observe changes such as these.

  13. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade.

    PubMed

    Guo, W; Todd, K; Bourin, M; Hascoet, M; Kouadio, F

    1996-08-01

    Evidence in the literature suggests that the modulatory effects of antidepressant drugs (ADS) on neuronal excitability, via the inhibition of K+ channels, may be the final common pathway of pharmacological action. Therefore, we tested the hypothesis that combining the ATP-sensitive K+ channel blocker glyburide with a variety of ADS would produce an additive effect and decrease the immobility time of mice in the forced swimming test (FST). Glyburide (GLY, IP, 30 and 50 mg/kg) and subactive doses of ADS were administered 45 and 30 min, respectively, prior to behavioral testing. Results showed that when combined with GLY, ADS whose main pharmacological effect is one of 5-HT uptake blockade (imipramine, amitriptyline, citalopram, paroxetine, fluoxetine, and fluvoxamine) were more effective in decreasing the amount of time mice were immobile, than when these drugs were administered alone. Some noradrenaline uptake inhibiting ADS (desipramine and viloxazine, but not maprotiline) were also significantly more effective in decreasing immobility time when combined with GLY than when administered alone. Pretreatment with GLY was found to have no effect on the dopamine uptake inhibitor bupropion, and out of the atypical ADS tested (trazodone, mianserine and iprindole), only coadministration with iprindole decreased the immobility time. Only the specific MAO-A inhibitor moclobemide was observed to have an antiimmobility effect when combined with GLY. Neither MAO-B specific (RO 16 6491) nor mixed MAO inhibitors (nialamide and pargyline) interacted with GLY to produce antiimmobility effects. These results corroborate and extend our previous report of the ADS enhancing effects of quinine in the same behavioral model, and suggest that the additive effects of quinine and GLY on ADS in FST are a result of K+ channel blockade.

  14. Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes

    SciTech Connect

    Cultrone, G.

    2005-12-15

    We have studied the carbonation process in different types of mortars, with and without pozzolana or air-entraining additives, subject to a CO{sub 2}-rich atmosphere and compared the results with those of similar naturally carbonated mortars. We used X-ray diffraction technique to demonstrate that high CO{sub 2} concentrations favour a faster, more complete carbonation process with 8 days being sufficient to convert portlandite into 90 wt.% calcite. Full carbonation, however, is not reached during the life-span of the tests, not even in forced carbonation experiments. This could be due to at least one of the following phenomena: a premature drying of samples during carbonation reaction, the temperature at which the carbonation process was carried out or the reduction of pore volume occupied by newly formed calcite crystals. This last option seems to be the least probable. We observed a more prolific development of calcite crystals in the pores and fissures through which the carbonic anhydride flows. Under natural conditions, carbonation is much slower and similar levels are not reached for 6 months. These differences suggest that the carbonation process is influenced by the amount of CO{sub 2} used. Both the mineralogy and texture of mortars vary depending on the type of additive used but the speed of the portlandite-calcite transformation does not change significantly. Pozzolana produces hydraulic mortars although the quantity of calcium aluminosilicate crystals is low. The air-entraining agent significantly alters the texture of the mortars creating rounded pores and eliminating or reducing the drying cracks.

  15. Why are freshwater fish so threatened?

    USGS Publications Warehouse

    Closs, Gerard P.; Angermeier, Paul; Darwall, William R.T.; Balcombe, Stephen R.

    2015-01-01

    Understanding why so many freshwater fish species are threatened requires some understanding of their biology, diversity, distribution, biogeography and ecology, but also some appreciation of the social, economic and political forces that are causing humans to destroy the natural ecosystems upon which we all ultimately depend. To begin to understand the diversity of freshwater fishes, we first need to consider the processes that generated and continue to sustain the diversity of species we see today. Based on an understanding of how freshwater fish diversity is generated and sustained, we consider how vulnerable or resilient various freshwater fishes are to the range of anthropogenic impacts that impinge on freshwater ecosystems. Finally, we discuss how social, political and economic drivers influence human impacts on natural systems, and the changes needed to current models of development that can lead to a sustainable future for humans and the diverse range of freshwater fish species with which we share our planet. The aim of this chapter is to provide an overview of the key issues and threats driving the declines in freshwater fish diversity identified in Chapter 1; subsequent chapters provide more detail on the key issues and address our options for developing a sustainable future for freshwater fishes.

  16. Simulation of salinity variability and the related freshwater flux forcing in the tropical Pacific: An evaluation using the Beijing normal university earth system model (BNU-ESM)

    NASA Astrophysics Data System (ADS)

    Zhi, Hai; Zhang, Rong-Hua; Lin, Pengfei; Wang, Lanning

    2015-11-01

    The climatology and interannual variability of sea surface salinity (SSS) and freshwater flux (FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model (BNU-ESM). The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth (MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature (SST) in the equatorial Pacific is identified. As a response to El Niño-Southern Oscillation (ENSO), the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Niño, a positive FWF anomaly in the western-central Pacific (an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Niño is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.

  17. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S. B.; Celik, S.

    2016-02-01

    We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature ( T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

  18. Interannual variations of freshwater in Hornsund

    NASA Astrophysics Data System (ADS)

    Dølven, Knut Ola; Falck, Eva

    2015-04-01

    Hornsund is a fjord situated at the south-west coast of Spitsbergen. The main goal of this study is to calculate and describe the interannual variations of freshwater content in Hornsund. In addition to this, we aim to trace the freshwater sources to the fjord and calculate the fractional contributions from these by using oxygen isotope data. The mixing between these freshwater sources and oceanic waters is described as well as the general summer hydrography of the fjord. Calculation of freshwater content is based on Conductivity-Temperature-Depth data obtained in July of 2001 to 2014. Oxygen isotope data are obtained in Autumn 2013/2014 and Spring 2014. The freshwater in Hornsund is assumed to be provided by either meteoric freshwater sources (glacial melt/precipitation/river-runoff) or the melting of sea ice. Both sources can be produced locally or advected into the fjord. The fraction of the ¹⁸O isotope (δ¹⁸O) is an effective tracer for freshwater sources in the Arctic due to the progressive depletion of this isotope in water molecules during poleward atmospheric transport (Ostlund and Hut, 1984). Calculation of fractional contribution from the two freshwater sources is done based on a method presented in Ostlund and Hut (1984), where the mass-balance, salinity-balance and δ¹⁸O-balance are utilized to calculate the fractions of seawater, meteoric water and sea ice meltwater. Preliminary results show freshwater content varying between 0.211km³ and 1.068km³, based on a reference salinity of 34.2. In Autumn 2013, meteoric water was the largest contributor of freshwater to the fjord. However, there was a significant contribution of sea ice meltwater which had a deeper vertical distribution than the meteoric water. References: H. G. Ostlund and G. Hut. 1984. Arctic Ocean water mass balance from isotope data. Journal of Geophysical Research: Oceans 89(C4):6373-6381

  19. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation.

    PubMed Central

    Kraft, T; Chalovich, J M; Yu, L C; Brenner, B

    1995-01-01

    Previously we showed that stiffness of relaxed fibers and active force generated in single skinned fibers of rabbit psoas muscle are inhibited in parallel by actin-binding fragments of caldesmon, an actin-associated protein of smooth muscle, under conditions in which a large fraction of cross-bridges is weakly attached to actin (ionic strength of 50 mM and temperature of 5 degrees C). These results suggested that weak cross-bridge attachment to actin is essential for force generation. The present study provides evidence that this is also true for physiological ionic strength (170 mM) at temperatures up to 30 degrees C, suggesting that weak cross-bridge binding to actin is generally required for force generation. In addition, we show that the inhibition of active force is not a result of changes in cross-bridge cycling kinetics but apparently results from selective inhibition of weak cross-bridge binding to actin. Together with our previous biochemical, mechanical, and structural studies, these findings support the proposal that weak cross-bridge attachment to actin is an essential intermediate on the path to force generation and are consistent with the concept that isometric force mainly results from an increase in strain of the attached cross-bridge as a result of a structural change associated with the transition from a weakly bound to a strongly bound actomyosin complex. This mechanism is different from the processes responsible for quick tension recovery that were proposed by Huxley and Simmons (Proposed mechanism of force generation in striated muscle. Nature. 233:533-538.) to represent the elementary mechanism of force generation. Images FIGURE 1 PMID:7647245

  20. Contamination of the freshwater ecosystem by pesticides

    USGS Publications Warehouse

    Cope, Oliver B.

    1966-01-01

    A large part of our disquieting present-day pesticide problem is intimately tied to the freshwater ecosystem. Economic poisons are used in so many types of terrain to control so many kinds of organisms that almost all lakes and streams are likely to be contaminated. In addition to accidental contamination many pesticides are deliberately applied directly to fresh waters for suppression of aquatic animals or plants. The problem is intensified because of the extreme susceptibility of freshwater organisms. The complexity of freshwater environments and their variety makes it difficult to comprehend the total effect of pesticides.

  1. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  2. Cable Bacteria in Freshwater Sediments.

    PubMed

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.

  3. Changing Arctic Ocean freshwater pathways.

    PubMed

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  4. Additive effects of lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotoninergic system.

    PubMed

    Nixon, M K; Hascoet, M; Bourin, M; Colombel, M C

    1994-06-01

    In the mouse forced swimming test (FST) pretreatment with a subactive dose of lithium (1 mEq/kg), given IP 45 min before the test, facilitated the antidepressant activity of iprindole, fluoxetine, and moclobemide (given IP 30 min before the test). These antidepressants (ADS) were not active alone in the FST in this study. Moreover, when subactive lithium was combined with a wide range of ADS, each given at subactive doses, those ADS with serotoninergic properties (e.g. imipramine, citalopram, paroxetine, fluoxetine, trazodone, mianserin, and moclobemide) significantly reduced immobility times. ADS acting primarily on noradrenaline (NA) or dopamine (DA) systems (desipramine, maprotiline, viloxazine, and bupropion) did not significantly decrease immobility when given in combination with lithium. This was also the case for RO 16 6491 [a reversible, B specific monoamine oxidase inhibitor (MAOI)], nialamide, and pargyline (both irreversible, mixed MAOIs). The anti-immobility effect of iprindole in combination with lithium suggests either a direct or indirect action on the serotonin (5HT) system by this ADS whose mechanism of action remains obscure. These results, using an animal behavioral model of depression and combining our present knowledge of the acute action of various ADS, support the hypothesis that the potentiation by lithium of ADS is via direct 5HT mechanisms, indirectly via a NA/5HT link, and/or by second messenger systems. Lithium may also facilitate the expression of antidepressant activity of ADS not active by themselves in the FST.

  5. Lessons learned during the training exercise for the entry into force of the U.S. additional protocol in the DOE complex

    SciTech Connect

    Boyer, Brian D

    2009-01-01

    In 2008 in anticipation of the United States bringing into force the Additional Protocol in early 2009 DOE/NNSA planned and executed training exercises in the conduct of Additional Protocol complementary access activities. Brookhaven National Laboratory and Los Alamos National Laboratory together produced the exercises designed to prepare the following types of DOE laboratories for complementary access - weapons laboratories, nuclear engineering laboratories, and science laboratories. This panel provides a forum to discuss and summarize the results and lessons learned from the 2008 exercise.

  6. Conservation and protection of Georgia's freshwater wetlands

    SciTech Connect

    Turner, M.J.J.

    1989-01-01

    Georgia's freshwater wetlands are a valuable natural resource. Despite this fact, they are vanishing at an alarming rate. One objective of the research presented in this dissertation was to try to determine why freshwater wetlands have been so little esteemed historically that their destruction has until lately drawn little attention. In addition, it was hoped that this research would lead to conclusions about the extent of Georgia's freshwater wetlands and the status of their conservation and protection. A further goal of the study was to generate ideas about how better to protect this resource, and to examine policy issues that must be addressed in association with the problem. Interest in freshwater wetlands is part of a continuum of interests and events associated with environmental awareness that has its roots in the late 1800's and early 1900's. An understanding of the history of the environmental movement and the maturation of environmental philosophy provides needed background against which the issues associated with preservation of freshwater wetlands must be viewed. The first two chapters are thus devoted to an exploration of the history of environmental awareness and activism. In the third chapter, historical material about freshwater wetlands in the, US is presented. The final section is dedicated to a discussion of freshwater wetlands in Georgia. Georgia's boundaries encompass five physiographic provinces. Freshwater wetlands are found in all of these regions, but the type of wetland varies among them. In the northern part of the state, freshwater wetlands are scarce, but in the southern half of the state they are so common as to be considered a dominant feature of the landscape. Among the threats to Georgia's wetlands are urban development, agricultural conversion, impoundment, and pollution.

  7. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  8. On the forced flow of salty water in a loop

    NASA Astrophysics Data System (ADS)

    Dewar, W. K.; Huang, R. X.

    1996-04-01

    The buoyancy-driven flow of salty water in a loop is computed. This problem belongs to the general class of the convective behavior of solutal fluids, a specific example of which is the oceanic thermohaline circulation. The two cases of freshwater flux forcing and so-called virtual salt flux forcing are compared and contrasted. The former is an exact statement of the saline forcing of the ocean by the atmosphere, while the latter is an approximation used in many climate models. Analytical solutions appropriate to both cases are presented for broad parameter ranges and ultimately encapsulated in the form of bifurcation maps. These allow for comparisons between the behaviors predicted for the two cases. Furthermore, the solutions are supported by means of numerical experimentation. It is found that a simple loop model, forced by a steady flux, can possess multiple solutions, either stationary solutions and limit cycles or distinctly different limit cycles. This result is closely related to climate models. In addition, this study transcends climate applications and applies to the more general classical problem of convection in a loop. The novel aspect here is the application of freshwater flux to a salty fluid. The effect on density of this forcing is different from that due to the application of heat to a thermally sensitive fluid. Surprising and counter-intuitive behaviors have been found which reflect these differences. As an example, in the limit where diffusion is weak relative to freshwater flux, a δ-function-like salinity profile appears if freshwater flux conditions are used. Models using a virtual salt flux approximation, or a relaxation condition, yield a low mode solution for these parameters. In contrast, the virtual salt flux equations can be obtained from the freshwater-forced equations by a systematic expansion in one limit where diffusion dominates freshwater flux. Numerical experiments are used to examine the comparisons between virtual salt flux and

  9. Modeling the influence of atmospheric leading modes on the variability of the Arctic freshwater cycle

    NASA Astrophysics Data System (ADS)

    Niederdrenk, L.; Sein, D.; Mikolajewicz, U.

    2013-12-01

    Global general circulation models show remarkable differences in modeling the Arctic freshwater cycle. While they agree on the general sinks and sources of the freshwater budget, they differ largely in the magnitude of the mean values as well as in the variability of the freshwater terms. Regional models can better resolve the complex topography and small scale processes, but they are often uncoupled, thus missing the air-sea interaction. Additionally, regional models mostly use some kind of salinity restoring or flux correction, thus disturbing the freshwater budget. Our approach to investigate the Arctic hydrologic cycle and its variability is a regional atmosphere-ocean model setup, consisting of the global ocean model MPIOM with high resolution in the Arctic coupled to the regional atmosphere model REMO. The domain of the atmosphere model covers all catchment areas of the rivers draining into the Arctic. To account for all sinks and sources of freshwater in the Arctic, we include a discharge model providing terrestrial lateral waterflows. We run the model without salinity restoring but with freshwater correction, which is set to zero in the Arctic. This allows for the analysis of a closed freshwater budget in the Artic region. We perform experiments for the second half of the 20th century and use data from the global model MPIOM/ECHAM5 performed with historical conditions, that was used within the 4th Assessment Report of the IPCC, as forcing for our regional model. With this setup, we investigate how the dominant modes of large-scale atmospheric variability impact the variability in the freshwater components. We focus on the two leading empirical orthogonal functions of winter mean sea level pressure, as well as on the North Atlantic Oscillation and the Siberian High. These modes have a large impact on the Arctic Ocean circulation as well as on the solid and liquid export through Fram Strait and through the Canadian archipelago. However, they cannot explain

  10. Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA.

    PubMed

    Denning, Elizabeth J; Priyakumar, U Deva; Nilsson, Lennart; Mackerell, Alexander D

    2011-07-15

    Here, we present an update of the CHARMM27 all-atom additive force field for nucleic acids that improves the treatment of RNA molecules. The original CHARMM27 force field parameters exhibit enhanced Watson-Crick base pair opening which is not consistent with experiment, whereas analysis of molecular dynamics (MD) simulations show the 2'-hydroxyl moiety to almost exclusively sample the O3' orientation. Quantum mechanical (QM) studies of RNA related model compounds indicate the energy minimum associated with the O3' orientation to be too favorable, consistent with the MD results. Optimization of the dihedral parameters dictating the energy of the 2'-hydroxyl proton targeting the QM data yielded several parameter sets, which sample both the base and O3' orientations of the 2'-hydroxyl to varying degrees. Selection of the final dihedral parameters was based on reproduction of hydration behavior as related to a survey of crystallographic data and better agreement with experimental NMR J-coupling values. Application of the model, designated CHARMM36, to a collection of canonical and noncanonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27. The results also indicate the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2'-hydroxyl moiety and support a model whereby the 2'-hydroxyl can enhance the probability of conformational transitions in RNA.

  11. Additional hemodynamic measurements with an esophageal Doppler monitor: a preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting.

    PubMed

    Atlas, Glen; Brealey, David; Dhar, Sunil; Dikta, Gerhard; Singer, Meryvn

    2012-12-01

    The esophageal Doppler monitor (EDM) is a minimally-invasive hemodynamic device which evaluates both cardiac output (CO), and fluid status, by estimating stroke volume (SV) and calculating heart rate (HR). The measurement of these parameters is based upon a continuous and accurate approximation of distal thoracic aortic blood flow. Furthermore, the peak velocity (PV) and mean acceleration (MA), of aortic blood flow at this anatomic location, are also determined by the EDM. The purpose of this preliminary report is to examine additional clinical hemodynamic calculations of: compliance (C), kinetic energy (KE), force (F), and afterload (TSVR(i)). These data were derived using both velocity-based measurements, provided by the EDM, as well as other contemporaneous physiologic parameters. Data were obtained from anesthetized patients undergoing surgery or who were in a critical care unit. A graphical inspection of these measurements is presented and discussed with respect to each patient's clinical situation. When normalized to each of their initial values, F and KE both consistently demonstrated more discriminative power than either PV or MA. The EDM offers additional applications for hemodynamic monitoring. Further research regarding the accuracy, utility, and limitations of these parameters is therefore indicated.

  12. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286

  13. Freshwater Marsh. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview describes how the freshwater marsh is an important natural resource for plant, animal, and human populations and how the destruction of marshes causes…

  14. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; et al

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  15. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    SciTech Connect

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S.; Case, David A.; Brooks, Charles L.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  16. The relaxation of intrinsic compressive stress in complementary metal-oxide-semiconductor transistors by additional N ion implantation treatment with atomic force microscope-Raman stress extraction

    NASA Astrophysics Data System (ADS)

    Liao, M.-H.; Chen, C.-H.; Chang, L.-C.; Yang, C.; Kao, S.-C.

    2012-05-01

    Based on the stress extraction and measurement by atomic force microscope-Raman technique with the nanometer level space resolution, the high compressive stress about 550 MPa on the Si active region (OD) is observed for the current complementary metal-oxide-semiconductor (CMOS) transistor. During the thermal budget for the standard manufacture process of the current CMOS transistor, the difference of thermal expansion coefficients between Si and Shallow Trench Isolation (STI) oxide results in this high compressive stress in Si OD and further degrades the electron carrier mobility seriously. In order to relax this intrinsic processed compressive stress in Si OD and try to recover this performance loss, the novel process is proposed in this work in addition to the usage of one-side pad SiN layer. With this novel process of additional N-ion implantation (IMP) treatment in STI oxide, it can be found that the less compressive stress about 438 MPa in Si OD can be achieved by the smaller difference of thermal expansion coefficients between Si and N-doped SiO2 STI oxide. The formation of Si-N bonding in N-doped SiO2 STI region can be monitored by Fourier transform infrared spectroscopy spectra and thermal expansion coefficients for Si, SiO2, and SiN are 2.6 ppm/K, 0.4 ppm/K, and 2.87 ppm/K, respectively. The effective relaxation of intrinsic processed compressive stress in Si OD about 112 MPa (from 550 MPa to 438 MPa) by this proposed additional N IMP treatment contributes ˜14% electron carrier mobility enhancement/recovery. The experimental electrical data agree well with the theoretical piezoelectricity calculation for the strained-Si theory.

  17. Davis Pond Freshwater Prediversion Biomonitoring Study: Freshwater Fisheries and Eagles

    USGS Publications Warehouse

    Jenkins, Jill A.; Bourgeois, E. Beth; Jeske, Clint W.

    2008-01-01

    In January 2001, the construction of the Davis Pond freshwater diversion structure was completed by the U.S. Army Corps of Engineers. The diversion of freshwater from the Mississippi River is intended to mitigate saltwater intrusion from the Gulf of Mexico and to lessen the concomitant loss of wetland areas. In addition to the freshwater inflow, Barataria Bay basin would receive nutrients, increased flows of sediments, and water-borne and sediment-bound compounds. The purpose of this biomonitoring study was, therefore, to serve as a baseline for prediversion concentrations of selected contaminants in bald eagle (Haliaeetus leucocephalus) nestlings (hereafter referred to as eaglets), representative freshwater fish, and bivalves. Samples were collected from January through June 2001. Two similarly designed postdiversion studies, as described in the biological monitoring program, are planned. Active bald eagle nests targeted for sampling eaglet blood (n = 6) were generally located southwest and south of the diversion structure. The designated sites for aquatic animal sampling were at Lake Salvador, at Lake Cataouatche, at Bayou Couba, and along the Mississippi River. Aquatic animals representative of eagle prey were collected. Fish were from three different trophic levels and have varying feeding strategies and life histories. These included herbivorous striped mullet (Mugil cephalus), omnivorous blue catfish (Ictalurus furcatus), and carnivorous largemouth bass (Micropterus salmoides). Three individuals per species were collected at each of the four sampling sites. Freshwater Atlantic rangia clams (Rangia cuneata) were collected at the downstream marsh sites, and zebra mussels (Dreissena spp.) were collected on the Mississippi River. The U.S. Geological Survey (USGS) Biomonitoring of Environmental Status and Trends (BEST) protocols served as guides for fish sampling and health assessments. Fish are useful for monitoring aquatic ecosystems because they accumulate

  18. Committee on Natural Toxins and Food Allergens. Marine and freshwater toxins.

    PubMed

    Hungerford, James M

    2005-01-01

    . Lawrence, Health Canada). These 2 methods were recommended by the Task Force for review by AOAC in September 2004. The group also discussed future priority directions, aspects of interlaboratory studies and official methods of analysis, other methods validation issues, future meetings, and funding. In addition to the Task Force meeting, 2 subgroup meetings were held. One subgroup addressed strategies to replace the mouse bioassay for brevetoxins with alternative modern methods based on ELISA or LC/mass spectrometry (MS). Brevetoxin metabolites, toxicity issues, and extraction conditions as well as future field studies were addressed in detail. The receptor binding assay (RBA)/saxitoxins subgroup addressed several aspects of the methodology, radiolabeled saxitoxin, and comparisons of mouse bioassay and RBA response. Both subgroups were productive and were seen as very useful by the participants. Task Force attendees generally agreed that subgroups are the most effective means of progressing towards validation of new methods and of ensuring thorough discussions of methods under consideration. By the time of their next meeting (April 2005) at the "Marine and Freshwater Toxins Analysis: 1st Joint Symposium and AOAC Task Force Meeting" in Baiona, Spain, the Task Force will have several well developed new subgroups in the areas of okadaic acid and dinophysis toxins, yessotoxins, domoic acids, and ciguatoxins. Some of the subgroups will hold face-to-face meetings in Spain and others will meet at future symposia or joint meetings. It is likely that training sessions will be associated with multiple Task Force meetings planned for 2005. Details on these meetings can be found on the Task Force Web site. Although the Task Force has experienced rapid growth, the addition of new members to the group, especially industry and government stakeholders, is encouraged. Task Force member Michael Quilliam, NRC Canada, provided the information given below on a joint CODEX group of special

  19. Committee on Natural Toxins and Food Allergens. Marine and freshwater toxins.

    PubMed

    Hungerford, James M

    2005-01-01

    . Lawrence, Health Canada). These 2 methods were recommended by the Task Force for review by AOAC in September 2004. The group also discussed future priority directions, aspects of interlaboratory studies and official methods of analysis, other methods validation issues, future meetings, and funding. In addition to the Task Force meeting, 2 subgroup meetings were held. One subgroup addressed strategies to replace the mouse bioassay for brevetoxins with alternative modern methods based on ELISA or LC/mass spectrometry (MS). Brevetoxin metabolites, toxicity issues, and extraction conditions as well as future field studies were addressed in detail. The receptor binding assay (RBA)/saxitoxins subgroup addressed several aspects of the methodology, radiolabeled saxitoxin, and comparisons of mouse bioassay and RBA response. Both subgroups were productive and were seen as very useful by the participants. Task Force attendees generally agreed that subgroups are the most effective means of progressing towards validation of new methods and of ensuring thorough discussions of methods under consideration. By the time of their next meeting (April 2005) at the "Marine and Freshwater Toxins Analysis: 1st Joint Symposium and AOAC Task Force Meeting" in Baiona, Spain, the Task Force will have several well developed new subgroups in the areas of okadaic acid and dinophysis toxins, yessotoxins, domoic acids, and ciguatoxins. Some of the subgroups will hold face-to-face meetings in Spain and others will meet at future symposia or joint meetings. It is likely that training sessions will be associated with multiple Task Force meetings planned for 2005. Details on these meetings can be found on the Task Force Web site. Although the Task Force has experienced rapid growth, the addition of new members to the group, especially industry and government stakeholders, is encouraged. Task Force member Michael Quilliam, NRC Canada, provided the information given below on a joint CODEX group of special

  20. Acidification of freshwaters

    SciTech Connect

    Cresser, M.S.; Edwards, A.C.

    1987-01-01

    This volume gives an account that draws not only on the main branches of chemistry but also on soil physics, chemistry, hydrology, meteorology, geography, geology, plant physiology, soil microbiology and zoology. The author examine the numerous interacting physical, chemical, and biological, processes that regulate the acidity of freshwaters, a phenomenon that has various causes, including precipitation; acidifying pollutions; and the interaction of plants, soils and water. The relative importance of the different processes is examined.

  1. Freshwater wetlands and wildlife

    SciTech Connect

    Sharitz, R.R.; Gibbons, J.W.

    1989-01-01

    This volume is a product of the Freshwater Wetlands and Wildlife symposium held in Charleston, South Carolina, on March 24--27, 1986 and contains 94 papers. The stimulus for the symposium came from our interest in augmenting the findings of the long-term research programs on freshwater wetlands and wildlife that have been carried out on the US Department of Energy's Savannah River Site in South Carolina. The symposium provided a forum on an international scale for the exchange of data about freshwater ecosystems: their functions, uses, and their future. The papers in this volume address issues related to natural, man-managed, and degraded ecosystems. The volume is divided into two sections. The first section deals with the functions and values of wetlands, including their use as habitat for plants and animals, their role in trophic dynamics, and their basic processes. The second section treats the subject of their status and management, including techniques for assessing their value, laws for protecting them, and plans for properly managing them. Individual papers will be indexed and entered separately on the energy data base.

  2. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Papa, Fabrice; Bala, Sujit K.; Pandey, Rajesh K.; Durand, Fabien; Gopalakrishna, V. V.; Rahman, Atiqur; Rossow, William B.

    2012-11-01

    This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than ˜4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from ˜2180 m3/s (6.5%) over the Brahmaputra to ˜1458 m3/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of ˜16% for 2009-2011 and ˜17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of ˜12500 m3/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.

  3. Physical modeling of the effects of climate change on freshwater lenses

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Houben, G.

    2012-04-01

    The investigation of the fragile equilibrium between fresh and saline water on oceanic islands is of major importance for a sustainable management and protection of freshwater lenses. Overexploitation will lead to salt water intrusion (up-coning), in turn causing damages or even destruction of a lens in the long term. We have performed a series of experiments on the laboratory scale to investigate and visualize processes of freshwater lenses under different boundary conditions. In addition these scenarios were numerically simulated using the finite-element model FEFLOW. Results were also compared to analytical solutions for problems regarding e.g. mean travel times of flow paths within a freshwater lens. On the laboratory scale, a cross section of an island was simulated by setting up a sand-box model (200 cm x 50 cm x 5 cm). Lens dynamics are driven by density contrasts of saline and fresh water, recharge rate and Kf-values of the medium. We used a time-dependent, sequential application of the tracers uranine, eosine and indigotine, to represent different recharge events. With a stepwise increase of freshwater recharge, we could show that the maximum thickness of the lens increased in a non-linear behavior. Moreover we measured that the degradation of a freshwater lens after turning off the precipitation does not follow the same function as its development does. This means that a steady state freshwater lens does not degrade as fast as it develops under constant recharge. On the other side, we could show that this is not true for a partial degradation of the lens due to passing forces, like anthropogenic pumping or climate change. This is, because the recovery to equilibrium is always a quasi asymptotic process. Thus, times of re-equilibration to steady state will take longer after e.g. a drought, than the degradation during the draught itself. This behavior could also be verified applying the numerical finite-element model FEFLOW. In addition, numerical

  4. Evolution of the Freshwater Eels

    NASA Astrophysics Data System (ADS)

    Aoyama, Jun; Tsukamoto, Katsumi

    The freshwater anguillid eels have an unusual life history and world-wide distribution. Questions about the phylogenetic relationships of this group and how their long spawning migrations and larval phase may contribute to their global distribution have not been addressed. This paper is first presentation of molecular phylogeny of Anguilla species, and based on this phylogenetic tree we suggest new aspect of the evolution of this group. Namely, ancestral eels originated during the Eocene or earlier, in the western Pacific Ocean near present-day Indonesia. A group derived from this ancestor dispersed westward, probably by larval transport in the global circum-equatorial current through the northern edge of the Tethys Sea. This group split into the ancestor of the European and American eels, which entered into the Atlantic Ocean, and a second group, which dispersed southward and split into the east African species and Australian species. Thus the world-wide distribution of the eel family can be understood from knowledge of continental drift, ocean currents, a specialized larva and evolutionary forces favoring dispersal and speciation of segregated gene pool.

  5. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  6. Effects of pollution on freshwater organisms

    SciTech Connect

    Phipps, G.L.; Harden, M.J.; Leonard, E.N.; Roush, T.H; Spehar, D.L.; Stephan, C.E.; Pickering, Q.H.; Buikema, A.L. Jr.

    1984-06-01

    This review includes subjects in last year's reviews on effects of pollution on freshwater invertebrates and effects of pollution on freshwater fish and amphibians. This review also includes information on the effects of pollution on freshwater plants. 625 references.

  7. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  8. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  9. Sperm in "parhenogenetic" freshwater gastrotrichs.

    PubMed

    Weiss, M J; Levy, D P

    1979-07-20

    Freshwater members of the phylum Gastrotricha have been considered obligate parthenogens. In Lepidodermelia squammata, the species for which there is most evidence for parthenogenesis, sperm have been discovered. This finding will necessitate reexamination of the nature of sexuality and life cycles and of the concept of "species" in freshwater gastrotrichs. PMID:17747043

  10. Sperm in "parhenogenetic" freshwater gastrotrichs.

    PubMed

    Weiss, M J; Levy, D P

    1979-07-20

    Freshwater members of the phylum Gastrotricha have been considered obligate parthenogens. In Lepidodermelia squammata, the species for which there is most evidence for parthenogenesis, sperm have been discovered. This finding will necessitate reexamination of the nature of sexuality and life cycles and of the concept of "species" in freshwater gastrotrichs.

  11. Freshwater fluxes in the Berau estuary and shelf during peak river discharge conditions

    NASA Astrophysics Data System (ADS)

    Van Der Vegt, M.; Tarya, A.; Hoitink, A.

    2011-12-01

    The Berau Continental Shelf is located close to the Equator in the Indonesian Archipelago, hosting a complex of coral reefs and atolls along its oceanic edge. It is important to understand how river water, sediments, and other materials derived from land are carried to reefs by physical mechanisms, since they can have beneficial as well as negative effects. Furthermore, at several of the atolls unique seagrass meadows are found. These ecosystems need exclusively marine conditions and are intolerant to freshwater. In the Berau Continental shelf much uncertainty remains about how much of the riverine water reaches the reefs and the atolls. In a recent study we showed that tides are the main contributor to the spreading of freshwater at the Berau Continental Shelf under average conditions: relatively small river discharge, weak winds, strong tides. A three-dimensional model (ECOMSED) was calibrated and validated with observational data collected in the context of the East Kalimantan Research Programme. Data-model comparison showed high skill scores and small systematic errors. Model analysis has shown that tides effect the plume by causing vertical mixing, by stratifying the plume due to tidal straining and by transporting freshwater. This causes the depth-integrated freshwater transport to be mainly north-eastward, toward the barrier reef. Under these average conditions freshwater does not reach the atolls. The main aim of this study is to study plume dynamics at the Berau shelf during peak river discharge and peak wind conditions. Because the Berau delta is urbanizing rapidly increasing peak river discharges and sediment loads are expected. In addition, although the yearly mean wind is small, peak wind events concurrent with peak floods might push the stratified top layer of the water column towards the reefs and atolls. Using the results of a hydrological model we estimated realistic peak values of the river discharge based on scenarios for the economical

  12. Urban growth, climate change, and freshwater availability

    PubMed Central

    McDonald, Robert I.; Green, Pamela; Balk, Deborah; Fekete, Balazs M.; Revenga, Carmen; Todd, Megan; Montgomery, Mark

    2011-01-01

    Nearly 3 billion additional urban dwellers are forecasted by 2050, an unprecedented wave of urban growth. While cities struggle to provide water to these new residents, they will also face equally unprecedented hydrologic changes due to global climate change. Here we use a detailed hydrologic model, demographic projections, and climate change scenarios to estimate per-capita water availability for major cities in the developing world, where urban growth is the fastest. We estimate the amount of water physically available near cities and do not account for problems with adequate water delivery or quality. Modeled results show that currently 150 million people live in cities with perennial water shortage, defined as having less than 100 L per person per day of sustainable surface and groundwater flow within their urban extent. By 2050, demographic growth will increase this figure to almost 1 billion people. Climate change will cause water shortage for an additional 100 million urbanites. Freshwater ecosystems in river basins with large populations of urbanites with insufficient water will likely experience flows insufficient to maintain ecological process. Freshwater fish populations will likely be impacted, an issue of special importance in regions such as India's Western Ghats, where there is both rapid urbanization and high levels of fish endemism. Cities in certain regions will struggle to find enough water for the needs of their residents and will need significant investment if they are to secure adequate water supplies and safeguard functioning freshwater ecosystems for future generations. PMID:21444797

  13. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Carlson, Anders E.; Clark, Peter U.

    2012-12-01

    We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (˜26-19 ka) was terminated by a rapid 5-10 m sea level rise at 19.0-19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8-20 m from ˜19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ˜14.6 ka (meltwater pulse 1A, ˜14-15 m) includes contributions of 6.5-10 m from Northern Hemisphere ice sheets, of which 2-7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0-15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ˜8.4-8.2 ka to the Labrador Sea causing the 8.2 ka event.

  14. Terrestrial freshwater lenses in stable riverine settings: Occurrence and controlling factors

    NASA Astrophysics Data System (ADS)

    Werner, Adrian D.; Laattoe, Tariq

    2016-05-01

    Rivers in arid and semiarid regions often traverse saline aquifers, creating buoyant freshwater lenses in the adjoining riparian and floodplain zones. The occurrence of freshwater lenses where the river is otherwise gaining saline groundwater appears counterintuitive, given that both hydraulic and density forces act toward the river. In this paper, an analytical solution is presented that defines the extent of a stable, sharp-interface terrestrial freshwater lens (in cross section) in a riverine environment that otherwise contains saline groundwater moving toward the river. The method is analogous to the situation of an island freshwater lens, except in the riverine setting, the saltwater is mobile and the lens is assumed to be stagnant. The solution characterizes the primary controlling factors of riverine freshwater lenses, which are larger for situations involving lower hydraulic conductivities and rates of saltwater discharge to the river. Deeper aquifers, more transmissive riverbeds, and larger freshwater-saltwater density differences produce more extensive lenses. The analytical solution predicts the parameter combinations that preclude the occurrence of freshwater lenses. The utility of the solution as a screening method to predict the occurrence of terrestrial freshwater lenses is demonstrated by application to parameter ranges typical of the South Australian portion of the River Murray, where freshwater lenses occur in only a portion of the neighboring floodplains. Despite assumptions of equilibrium conditions and a sharp freshwater-saltwater interface, the solution for predicting the occurrence of riverine freshwater lenses presented in this study has immediate relevance to the management of floodplains in which freshwater lenses are integral to biophysical conditions.

  15. Mechanical challenges to freshwater residency in sharks and rays.

    PubMed

    Gleiss, Adrian C; Potvin, Jean; Keleher, James J; Whitty, Jeff M; Morgan, David L; Goldbogen, Jeremy A

    2015-04-01

    Major transitions between marine and freshwater habitats are relatively infrequent, primarily as a result of major physiological and ecological challenges. Few species of cartilaginous fish have evolved to occupy freshwater habitats. Current thought suggests that the metabolic physiology of sharks has remained a barrier to the diversification of this taxon in freshwater ecosystems. Here, we demonstrate that the physical properties of water provide an additional constraint for this species-rich group to occupy freshwater systems. Using hydromechanical modeling, we show that occurrence in fresh water results in a two- to three-fold increase in negative buoyancy for sharks and rays. This carries the energetic cost of lift production and results in increased buoyancy-dependent mechanical power requirements for swimming and increased optimal swim speeds. The primary source of buoyancy, the lipid-rich liver, offers only limited compensation for increased negative buoyancy as a result of decreasing water density; maintaining the same submerged weight would involve increasing the liver volume by very large amounts: 3- to 4-fold in scenarios where liver density is also reduced to currently observed minimal levels and 8-fold without any changes in liver density. The first data on body density from two species of elasmobranch occurring in freshwater (the bull shark Carcharhinus leucas, Müller and Henle 1839, and the largetooth sawfish Pristis pristis, Linnaeus 1758) support this hypothesis, showing similar liver sizes as marine forms but lower liver densities, but the greatest negative buoyancies of any elasmobranch studied to date. Our data suggest that the mechanical challenges associated with buoyancy control may have hampered the invasion of freshwater habitats in elasmobranchs, highlighting an additional key factor that may govern the predisposition of marine organisms to successfully establish in freshwater habitats. PMID:25573824

  16. [Geographic variations in freshwater molluscs].

    PubMed

    Vinarskiĭ, M V

    2012-01-01

    The phenomenon of geographic variation is known in practically all taxa of living beings. However, the reality of this phenomenon in freshwater molluscs (snails and bivalves) has many times been questioned in the past. It was accepted that these animals do not demonstrate spatially-oriented variation, where specific "local race" is arisen in each specific habitat. Till the beginning of 1970s, there was no statistical evidence that geographic clines in freshwater molluscs really exist. However, a few species of freshwater molluscs has been studied in this respect so far, therefore it is almost impossible to draw any general patterns of geographical variation in this group of animals. Most species of freshwater molluscs studied to the date exhibit statistically significant decrease of their body size in the south-north direction. Perhaps, it may be explained by decrease of the duration of the growth season in high latitudes. Some species of freshwater snails demonstrate clinal changes in shell proportions. This allows to reject subspecies separation within these species since diagnostic characters of such "subspecies" may blur when geographic variation is taken into consideration. The data on geographic variation in anatomical traits in freshwater molluscs is much more scarce. At least one species of pond snails (Lymnaea terebra) demonstrates clinal variation in proportions of the copulative apparatus in the south-north direction. Further studies of geographic variation in freshwater molluscs should reveal whether it is truly adaptive, i.e. whether geographical clines have underlying genetic basis. Otherwise, the clines may arise as a result of direct modifying effect of a habitat.

  17. Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions.

    PubMed

    Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John

    2014-01-01

    Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem

  18. Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions

    PubMed Central

    Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John

    2014-01-01

    Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem

  19. Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions.

    PubMed

    Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John

    2014-01-01

    Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem

  20. Field Study Manual to Freshwater and Estuarine Habitats.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta.

    This field studies manual, developed by biology students in the 1971 Georgia Governor's Honors Program, was designed for collection of data pertinent to freshwater and estuarine habitats. In addition to the various methods of sampling the ecosystem and for quantification of the data, instructions for dividing the field study into three logical…

  1. Effects of pollution on freshwater fish and amphibians

    SciTech Connect

    Pickering, Q.H.; Hunt, E.P.; Phipps, G.L.; Roush, T.H.; Smith, W.E.; Spehar, D.L.; Stephan, C.E.; Tanner, D.K.

    1983-06-01

    A literature review is presented dealing with studies on the effects of pollution on freshwater fish and amphibians. The pollutants studied included acid mine drainage, PCBs, cadmium, lead, naphthalene, plutonium, in addition to several studies dealing with pH effects. (JMT)

  2. Strain induced freshwater pumping in the Liverpool Bay ROFI

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Polton, J.

    2009-04-01

    Understanding the fate of freshwater run-off and corresponding nutrient and pollution loads is of critical importance for the development of accurate predictive models and coastal management tools. A key element of such studies is the identification and understanding of the interaction between stratification, current structure, turbulence and mixing. Here we present a new series of measurements made in the Liverpool Bay region of freshwater influence (ROFI) during spring 2004 where freshwater maintained horizontal density gradients and strong tidal currents interact to produce strain induced periodic stratification (SIPS). During stratification tidal current profiles are significantly modified such that the tidal flow deviates from the otherwise rectilinear E-W axis generating counter rotating upper and lower mixed layers which result in a net flow of near surface freshwater offshore. Additionally, this process produces a shear layer that is sufficient to drive local instability producing isolated patches of enhanced mid-water mixing several orders of magnitude above background levels O[10-3 m2s-1] measured using a 25 hour series of profiles of the FLY turbulence profiler. The regularity and persistence of this feature will have important consequences on the net flux of freshwater in the bay and would have implications on local coastal management strategy. We therefore investigate the long term effects of this process using the 6 year dataset collected nearby as part of Proudman Oceanographic Laboratory's Coastal Observatory and we test the ability of a state-of-the-art 3-D hydrodynamical model (POLCOMS) to reproduce observations.

  3. The response of the central Arctic Ocean stratification to freshwater perturbations

    NASA Astrophysics Data System (ADS)

    Pemberton, P.; Nilsson, J.

    2016-01-01

    Using a state-of-the-art coupled ice-ocean-circulation model, we perform a number of sensitivity experiments to examine how the central Arctic Ocean stratification responds to changes in river runoff and precipitation. The simulations yield marked changes in the cold halocline and the Arctic Atlantic layer. Increased precipitation yields a warming of the Atlantic layer, which primarily is an advective signal, propagated through the St. Anna Trough, reflecting air-sea heat flux changes over the Barents Sea. As the freshwater supply is increased, the anticyclonic Beaufort Gyre is weakened and a greater proportion of the Arctic Ocean freshwater is exported via the Fram Strait, with nearly compensating export decreases through the Canadian Arctic Archipelago. The corresponding reorganization of the freshwater pool appears to be controlled by advective processes, rather than by the local changes in the surface freshwater flux. A simple conceptual model of the Arctic Ocean, based on a geostrophically controlled discharge of the low-salinity water, is introduced and compared with the simulations. Key predictions of the conceptual model are that the halocline depth should decrease with increasing freshwater input and that the Arctic Ocean freshwater storage should increase proportionally to the square root of the freshwater input, which are in broad qualitative agreement with the sensitivity experiments. However, the model-simulated rate of increase of the freshwater storage is weaker, indicating that effects related to wind forcing and rerouting of the freshwater-transport pathways play an important role for the dynamics of the Arctic Ocean freshwater storage.

  4. Inhabitants of the Fresh-Water Community.

    ERIC Educational Resources Information Center

    Jorgensen, Joseph; Schroeder, Marlene

    This learner's guide is designed to assist middle school students in studying freshwater organisms. Following a brief introduction to freshwater ecology, simple line drawings facilitate the identification of plants and animals common to Florida's freshwater ecosystems. Emphasis of the short text which accompanies each illustration is upon the…

  5. Methods for preparing synthetic freshwaters.

    PubMed

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis. PMID:11902783

  6. Freshwater biodiversity: importance, threats, status and conservation challenges.

    PubMed

    Dudgeon, David; Arthington, Angela H; Gessner, Mark O; Kawabata, Zen-Ichiro; Knowler, Duncan J; Lévêque, Christian; Naiman, Robert J; Prieur-Richard, Anne-Hélène; Soto, Doris; Stiassny, Melanie L J; Sullivan, Caroline A

    2006-05-01

    Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge

  7. Freshwater biodiversity: importance, threats, status and conservation challenges.

    PubMed

    Dudgeon, David; Arthington, Angela H; Gessner, Mark O; Kawabata, Zen-Ichiro; Knowler, Duncan J; Lévêque, Christian; Naiman, Robert J; Prieur-Richard, Anne-Hélène; Soto, Doris; Stiassny, Melanie L J; Sullivan, Caroline A

    2006-05-01

    Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge

  8. Groundwater Exploration in Freshwater/Saline Layered Aquifers - Southern Bangladesh.

    NASA Astrophysics Data System (ADS)

    McKelvey, P. A.; Rahman, M.

    2001-05-01

    A major urban water supply and sanitation project is being implemented in the southern coastal districts of Bangladesh, by the Governments of Bangladesh and Denmark (DPHE/DANIDA). Due to the poor quality and reliability of surface water in the coastal districts, the source for these schemes will be groundwater. However, the abstraction of large quantities of water is complicated by the fact that the shallow aquifers are thin and of poor hydraulic quality. In addition, there is saline water underlying the shallow aquifer and, in recent years, arsenic has been discovered in many shallow wells throughout Bangladesh. Over the majority of the coastal districts, a thick freshwater sand underlies the saline aquifers, at depths below 200 m. This freshwater unit is bounded by thick clays which protect it from overlying and underlying saline water. The deep aquifer has been exploited in some of the project towns but in a few areas no freshwater aquifers had been located. An exploration programme was undertaken in each of these towns to prove the location of the freshwater sands and to help plan the location and depth of production well drilling. The first exploration stage was to locate any existing deep hand pumped wells and to carry out a water quality survey. Generally, this was sufficient to prove the existence of a thick freshwater aquifer. However, exact well depths and geological data were usually lacking and an exploration well was usually required. In three of the project towns, no deep aquifers had been exploited by existing hand pumped wells and geophysical surveys were undertaken to identify the locations of freshwater aquifers. These surveys comprised resistivity sounding both within the towns and in outlying areas within a feasible pumping distance. In two cases, freshwater aquifers were inferred from the geophysical surveys and exploration drilling was undertaken to prove the resource. Exploration drilling was undertaken by local contractors using hand

  9. Climate and local abundance in freshwater fishes

    PubMed Central

    Knouft, Jason H.; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  10. Climate and local abundance in freshwater fishes.

    PubMed

    Knouft, Jason H; Anthony, Melissa M

    2016-06-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  11. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    SciTech Connect

    Sandoval, M Analisa; Uribe, Eva C; Sandoval, Marisa N; Boyer, Brian D; Stevens, Rebecca S

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describes how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.

  12. Regional hydroclimate response to freshwater fluxes from the Fennoscandian Ice Sheet during the Last Termination

    NASA Astrophysics Data System (ADS)

    Muschitiello, F.; Dokken, T. M.; Pausata, F. S. R.; Smittenberg, R.; Wohlfarth, B.

    2015-12-01

    Resolving the effects of freshwater forcing during the last glacial-interglacial transition, the Last Termination, is critical to our comprehension of rapid climate change. In particular, the role of Fennoscandian Ice Sheet (FIS) and freshwater from the eastern seaboard of the North Atlantic has been entirely disregarded in the context of the abrupt regional hydroclimate shifts that characterized this period. Here we infer freshwater input variations from the FIS to the Nordic Seas based on two accurately dated hydroclimate reconstructions from lake sediment records from Southern Sweden and one SST reconstruction from the Nordic Seas. The records indicate a number of abrupt freshwater discharges into the Nordic Seas at the start of the Bølling interstadial and during the Allerød interstadial. We observe that these intervals of enhanced FIS freshwater outflow correspond to different modalities of hydroclimate regime shifts in Greenland. Using a set of climate model simulations, we show that the dominant Greenland hydroclimate state can be influenced by the degree of FIS freshwater recirculation in the Nordic Seas, which redirects the excess of sea ice partitioned into the Barents Sea towards the eastern Greenland Current. The tradeoff between buildup and recirculation of sea ice in the Nordic Seas generate large-scale sea-level pressure anomalies that may explain the sign and magnitude of the isotopic and temperature changes inferred from Greenland and North European reconstructions. We conclude that air-sea interactions in the North Atlantic are more sensitive to Fennoscandian freshwater forcing than previously thought. These results could help to solve the problematic relationship between origin, timing and magnitude of freshwater perturbations and abrupt deglacial changes in North Atlantic Ocean circulation in numerical simulations.

  13. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  14. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  15. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  16. Freshwater ecosystems--structure and response.

    PubMed

    Jones, J G

    2001-10-01

    Before it is possible to predict the impact of human activities on the natural environment it is necessary to understand the forces that drive and, therefore, control that environment. This paper is concerned with the freshwater component of the aquatic environment. The driving forces involved (some of which are under man's control) can be divided into the physical and the chemical, but the response is, almost entirely, biological. Although most impacts of the food processing industry might be perceived to be on running waters, this is not always the case, but we can apply the same basic rules to both static and running waters. The physical forces that determine how a lake functions are as follows. In early spring, in the temperate zone, the temperature of the surface water in lakes rises and the sunlight input increases. This results in stratification of the water body. The cooler, deeper water is separated, physically, by gravity. This isolated water plays a very different role in the function of the lake and is analogous to how a river works. Man's activities drive these systems by our input of inorganic and organic substances. The inorganic inputs, particularly of phosphorous, stimulate undesirable algal growths, some of which may produce particularly dangerous toxins. We must now accept that climate change, driven by man, will exacerbate these problems. Organic inputs from the food industry, i.e., carbohydrates, lipids, and proteins, will all impact lakes and rivers by increasing the biological oxygen demand. The worst case scenario is total loss of oxygen from the water as a result of microbial activity. Lipids create the greatest oxygen demand but carbohydrates (more easily biodegradable) also result in unsightly "sewage fungus." Protein waste can be degraded to produce ammonia and sulfide, both of which produce toxicity problems. Bioremediation processes, particularly phytoremediation, can alleviate these problems in a cost-effective manner and this paper

  17. Toxicities of selected substances to freshwater biota

    SciTech Connect

    Hohreiter, D.W.

    1980-05-01

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  18. Freshwater bryozoa of Tonle Sap, Cambodia.

    PubMed

    Hirose, Masato; Mawatari, Shunsuke F

    2007-06-01

    We identified a collection of freshwater bryozoans from Tonle Sap (meaning Tonle Lake), Cambodia, a body of water fed by the Mekong River and characterized by extreme fluctuations in water level between the wet and dry seasons. The collection also included specimens from the moat of Angkor Wat, located at the north end of the lake. We found four phylactolaemate species (Plumatella bombayensis, Plumatella casmiana, Plumatella vorstmani, Hyalinella lendenfeldi) and one ctenostome species (Hislopia cambodgiensis) from the lake, and only a single, additional phylactolaemate species (Plumatella javanica) from the moat. We provide brief descriptions of these species, photographs of colonies for some, and photomicrographs by light and scanning electron microscopy (SEM) of statoblasts. None of the species encountered in this study is endemic to Cambodia, and the wide distributions of the species are possibly related to the dispersability of floatoblasts by birds. We briefly discuss some of the taxonomic problems surrounding Hislopia cambodgiensis.

  19. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  20. Establishing a database of radionuclide transfer parameters for freshwater wildlife.

    PubMed

    Yankovich, T; Beresford, N A; Fesenko, S; Fesenko, J; Phaneuf, M; Dagher, E; Outola, I; Andersson, P; Thiessen, K; Ryan, J; Wood, M D; Bollhöfer, A; Barnett, C L; Copplestone, D

    2013-12-01

    Environmental assessments to evaluate potentials risks to humans and wildlife often involve modelling to predict contaminant exposure through key pathways. Such models require input of parameter values, including concentration ratios, to estimate contaminant concentrations in biota based on measurements or estimates of concentrations in environmental media, such as water. Due to the diversity of species and the range in physicochemical conditions in natural ecosystems, concentration ratios can vary by orders of magnitude, even within similar species. Therefore, to improve model input parameter values for application in aquatic systems, freshwater concentration ratios were collated or calculated from national grey literature, Russian language publications, and refereed papers. Collated data were then input into an international database that is being established by the International Atomic Energy Agency. The freshwater database enables entry of information for all radionuclides listed in ICRP (1983), in addition to the corresponding stable elements, and comprises a total of more than 16,500 concentration ratio (CRwo-water) values. Although data were available for all broad wildlife groups (with the exception of birds), data were sparse for many organism types. For example, zooplankton, crustaceans, insects and insect larvae, amphibians, and mammals, for which there were CRwo-water values for less than eight elements. Coverage was most comprehensive for fish, vascular plants, and molluscs. To our knowledge, the freshwater database that has now been established represents the most comprehensive set of CRwo-water values for freshwater species currently available for use in radiological environmental assessments. PMID:23103210

  1. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  2. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    PubMed

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates.

  3. Pesticide toxicity index for freshwater aquatic organisms

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.

    2001-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 75 of the 83 pesticide compounds measured in NAWQA samples, but with a wide range of bioassays per compound (1 to 65). There were a total of 2,824 bioassays for the 75 compounds, including 287 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a nonlethal response) for freshwater cladocerans, 585 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 1,952 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups.While the PTI does not determine whether water in a sample is toxic, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or

  4. Variations in egg characteristics of ruffe Gymnocephalus cernua inhabiting brackish and freshwater environments

    NASA Astrophysics Data System (ADS)

    Svirgsden, Roland; Albert, Anu; Rohtla, Mehis; Taal, Imre; Saks, Lauri; Verliin, Aare; Kesler, Martin; Hubel, Kalvi; Vetemaa, Markus; Saat, Toomas

    2015-09-01

    Egg characteristics of teleost fishes are affected by various abiotic and biotic factors. In order to reproduce successfully, freshwater fishes inhabiting brackish environments must alter their reproductive characteristics, including egg properties, to increased osmotic pressure. Ruffe Gymnocephalus cernua was used as a model species to compare egg characteristics between fish populations inhabiting brackish and freshwater environments. Fish from the brackish environment had larger eggs with higher energy content than the individuals originating from freshwater. In freshwater, eggs from the first batch were larger than from the second. Female size correlated positively with egg size in the brackish water population. In freshwater, this correlation was evident only with eggs from the first batch. Only a weak positive correlation was found between fish condition and egg size in females from the brackish water population. Egg size variation did not differ between sites, nor was it correlated with mean egg size or any other maternal traits within populations. These results indicate significant modifications in reproductive strategies between brackish and freshwater ruffe populations. Additionally, results show that at least in freshwater, the first batch of eggs is of the highest quality and therefore more important for reproduction.

  5. Selecting reliable and robust freshwater macroalgae for biomass applications.

    PubMed

    Lawton, Rebecca J; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m⁻² day⁻¹), lowest ash content (3-8%), lowest water content (fresh weigh: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO₂ across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential

  6. Selecting Reliable and Robust Freshwater Macroalgae for Biomass Applications

    PubMed Central

    Lawton, Rebecca J.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m−2 day−1), lowest ash content (3–8%), lowest water content (fresh weigh: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO2 across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential

  7. Effects of Pollution on Freshwater Fish.

    ERIC Educational Resources Information Center

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  8. Freshwater Biological Traits Database (Final Report)

    EPA Science Inventory

    Cover of the <span class=Freshwater Biological Traits Database Final Report"> This final report discusses the development of a database of freshwater biolo...

  9. Freshwater Ecology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    Freshwater ecosystems include lakes, ponds, streams, rivers, and certain types of wetlands. This literature and resources guide is not intended to be a comprehensive bibliography on freshwater ecology; the guide is designed--as the name of the series implies--to put the reader or student "on target." Other literature guides related to freshwater…

  10. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.

    PubMed

    Terekhanova, Nadezhda V; Logacheva, Maria D; Penin, Aleksey A; Neretina, Tatiana V; Barmintseva, Anna E; Bazykin, Georgii A; Kondrashov, Alexey S; Mugue, Nikolai S

    2014-10-01

    Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes

  11. Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus

    PubMed Central

    Terekhanova, Nadezhda V.; Logacheva, Maria D.; Penin, Aleksey A.; Neretina, Tatiana V.; Barmintseva, Anna E.; Bazykin, Georgii A.; Kondrashov, Alexey S.; Mugue, Nikolai S.

    2014-01-01

    Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes

  12. Freshwater for resilience: a shift in thinking.

    PubMed Central

    Folke, Carl

    2003-01-01

    Humanity shapes freshwater flows and biosphere dynamics from a local to a global scale. Successful management of target resources in the short term tends to alienate the social and economic development process from its ultimate dependence on the life-supporting environment. Freshwater becomes transformed into a resource for optimal management in development, neglecting the multiple functions of freshwater in dynamic landscapes and its fundamental role as the bloodstream of the biosphere. The current tension of these differences in worldview is exemplified through the recent development of modern aquaculture contrasted with examples of catchment-based stewardship of freshwater flows in dynamic landscapes. In particular, the social and institutional dimension of catchment management is highlighted and features of social-ecological systems for resilience building are presented. It is concluded that this broader view of freshwater provides the foundation for hydrosolidarity. PMID:14728796

  13. Freshwater to seawater transitions in migratory fishes

    USGS Publications Warehouse

    Zydlewski, Joseph; Michael P. Wilkie,

    2012-01-01

    The transition from freshwater to seawater is integral to the life history of many fishes. Diverse migratory fishes express anadromous, catadromous, and amphidromous life histories, while others make incomplete transits between freshwater and seawater. The physiological mechanisms of osmoregulation are widely conserved among phylogenetically diverse species. Diadromous fishes moving between freshwater and seawater develop osmoregulatory mechanisms for different environmental salinities. Freshwater to seawater transition involves hormonally mediated changes in gill ionocytes and the transport proteins associated with hypoosmoregulation, increased seawater ingestion and water absorption in the intestine, and reduced urinary water losses. Fishes attain salinity tolerance through early development, gradual acclimation, or environmentally or developmentally cued adaptations. This chapter describes adaptations in diverse taxa and the effects of salinity on growth. Identifying common strategies in diadromous fishes moving between freshwater and seawater will reveal the ecological and physiological basis for maintaining homeostasis in different salinities, and inform efforts to conserve and manage migratory euryhaline fishes.

  14. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.

    PubMed

    Eerkes-Medrano, Dafne; Thompson, Richard C; Aldridge, David C

    2015-05-15

    Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5 mm), have reached high densities (e.g., 100,000 items per m(3)) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs

  15. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.

    PubMed

    Eerkes-Medrano, Dafne; Thompson, Richard C; Aldridge, David C

    2015-05-15

    Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5 mm), have reached high densities (e.g., 100,000 items per m(3)) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs

  16. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  17. First report of the characterization of the pathophysiological mechanisms caused by the freshwater catfish Pimelodus maculatus (order: Siluriformes).

    PubMed

    Sarmiento, Beatriz Elena; Rangel, Marisa; Gonçalves, Jacqueline Coimbra; Pereira, Lilibete; Rego, Solange; Campos, Leandro Ambrósio; Haddad, Vidal; Mortari, Márcia Renata; Schwartz, Elisabeth F

    2015-07-01

    Injuries caused by aquatic animals in Brazil in most cases are provoked by marine and freshwater catfish. Pimelodus maculatus is a freshwater catfish very common in Brazilian basins that causes frequent accidents mainly amongst fishermen, and whose venom characteristics and pathological mechanisms of the venom are poorly known. In the present study for the first time, we have characterized the main pathophysiological mechanisms associated with the clinical manifestation (pain, local inflammation and edema) of the envenomations caused by P. maculatus crude venom. It was estimated that the crude venom of one P. maculatus stinger contains approximately 100 μg of protein, likely the quantity involved in the envenomation. P. maculatus crude venom induced marked nociceptive and edematogenic effects and caused vascular permeability alterations at doses from 30 to 100 μg/animal. Additionally, P. maculatus crude venom caused a decrease in the contraction force in in situ frog heart, did not cause hemorrhage or alterations in clotting times (prothrombin time and activated partial thromboplastin time), but induced significant changes in the levels of CK and its isoenzyme CK-MB in mice. In the present work, we present a correlation between the effects obtained experimentally and the main symptoms observed in the human accidents provoked by P. maculatus. PMID:25911957

  18. Combined ecological risks of nitrogen and phosphorus in European freshwaters.

    PubMed

    Azevedo, Ligia B; van Zelm, Rosalie; Leuven, Rob S E W; Hendriks, A Jan; Huijbregts, Mark A J

    2015-05-01

    Eutrophication is a key water quality issue triggered by increasing nitrogen (N) and phosphorus (P) levels and potentially posing risks to freshwater biota. We predicted the probability that an invertebrate species within a community assemblage becomes absent due to nutrient stress as the ecological risk (ER) for European lakes and streams subjected to N and P pollution from 1985 to 2011. The ER was calculated as a function of species-specific tolerances to NO3(-) and total P concentrations and water quality monitoring data. Lake and stream ER averaged 50% in the last monitored year (i.e. 2011) and we observed a decrease by 22% and 38% in lake and stream ER (respectively) of river basins since 1985. Additionally, the ER from N stress surpassed that of P in both freshwater systems. The ER can be applied to identify river basins most subjected to eutrophication risks and the main drivers of impacts.

  19. The freshwater artisanal fishery of Patos Lagoon.

    PubMed

    Ceni, G; Fontoura, N F; Cabral, H N

    2016-07-01

    In this study data relative to the fishery in the freshwater area of the Patos Lagoon are analysed, and the dynamics, fishing gears used and catches evaluated. The results reveal the existence of two fishery strategies: forbidden mesh size gillnets (FMG; <35 mm; square measure) and allowed mesh size gillnets (AMG; ≥35 mm; square measure). In total, 31 species were caught (AMG = 27 and FMG = 24), but selectivity due to mesh size was significant (P < 0·001). The FMG may be very harmful since it captures individuals of most species below size at first maturity, including the target species, the armoured catfish Loricariichthys anus (61% of the total catch). In addition, this gear is used throughout the year, including the closed season (CS; November to January), when the target species is reproducing. Target species for the AMG are larger in size, comprising mainly the mullet Mugil liza, the marine catfish Genidens barbus and the whitemouth croaker Micropogonias furnieri. AMS gillnets were not used during the CS. The use of FMG reveals the need for effective fishery law enforcement and the need for additional studies to assess the status of populations of the exploited species. PMID:27250698

  20. The freshwater artisanal fishery of Patos Lagoon.

    PubMed

    Ceni, G; Fontoura, N F; Cabral, H N

    2016-07-01

    In this study data relative to the fishery in the freshwater area of the Patos Lagoon are analysed, and the dynamics, fishing gears used and catches evaluated. The results reveal the existence of two fishery strategies: forbidden mesh size gillnets (FMG; <35 mm; square measure) and allowed mesh size gillnets (AMG; ≥35 mm; square measure). In total, 31 species were caught (AMG = 27 and FMG = 24), but selectivity due to mesh size was significant (P < 0·001). The FMG may be very harmful since it captures individuals of most species below size at first maturity, including the target species, the armoured catfish Loricariichthys anus (61% of the total catch). In addition, this gear is used throughout the year, including the closed season (CS; November to January), when the target species is reproducing. Target species for the AMG are larger in size, comprising mainly the mullet Mugil liza, the marine catfish Genidens barbus and the whitemouth croaker Micropogonias furnieri. AMS gillnets were not used during the CS. The use of FMG reveals the need for effective fishery law enforcement and the need for additional studies to assess the status of populations of the exploited species.

  1. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  2. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  3. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  4. 40 CFR 35.1605-3 - Publicly owned freshwater lake.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Publicly owned freshwater lake. 35.1605... Owned Freshwater Lakes § 35.1605-3 Publicly owned freshwater lake. A freshwater lake that offers public... maintaining the public access and recreational facilities of this lake or other publicly owned...

  5. 40 CFR 35.1605-3 - Publicly owned freshwater lake.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Publicly owned freshwater lake. 35.1605... Owned Freshwater Lakes § 35.1605-3 Publicly owned freshwater lake. A freshwater lake that offers public... maintaining the public access and recreational facilities of this lake or other publicly owned...

  6. 40 CFR 35.1605-3 - Publicly owned freshwater lake.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Publicly owned freshwater lake. 35.1605... Owned Freshwater Lakes § 35.1605-3 Publicly owned freshwater lake. A freshwater lake that offers public... maintaining the public access and recreational facilities of this lake or other publicly owned...

  7. 40 CFR 35.1605-3 - Publicly owned freshwater lake.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Publicly owned freshwater lake. 35.1605... Owned Freshwater Lakes § 35.1605-3 Publicly owned freshwater lake. A freshwater lake that offers public... maintaining the public access and recreational facilities of this lake or other publicly owned...

  8. 40 CFR 35.1605-3 - Publicly owned freshwater lake.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Publicly owned freshwater lake. 35.1605... Owned Freshwater Lakes § 35.1605-3 Publicly owned freshwater lake. A freshwater lake that offers public... maintaining the public access and recreational facilities of this lake or other publicly owned...

  9. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  10. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  11. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae

    PubMed Central

    Ditsche, Petra; Michels, Jan; Kovalev, Alexander; Koop, Jochen; Gorb, Stanislav

    2014-01-01

    While terrestrial insects can usually attach directly to a substrate, for aquatic insects the situation is more complicated owing to the presence of a biofilm on the primary substrates. This important fact has been neither the subject of investigation nor commonly taken into account in the interpretation of functional aspects of attachment in mobile freshwater animals. In this study, we investigate the impact of a biofilm on the attachment of living mayfly larvae. We performed in vivo attachment experiments in a flow channel using different substrates with defined surface roughness. Additionally, we measured friction forces directly generated by dissected tarsal claws on the same substrates. On substrates with smooth or slightly rough surfaces, which have little or no surface irregularities large enough for the claws to grasp, the presence of a biofilm significantly increases the friction force of claws. Consequently, larvae can endure higher flow velocities on these smooth substrates. The opposite effect takes place on rough substrates, where the friction force of claws decreases in the presence of a biofilm. Consequently, a biofilm is a critical ecological structure for these larvae, and other aquatic organisms, not only as a food source but also as a factor influencing attachment ability. PMID:24352675

  12. A new source of freshwater for Antarctica's coastal waters

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-06-01

    Research into submarine groundwater discharge (SGD), predominantly regarding its prevalence as a source of freshwater and nutrients to coastal ecosystems, has recently grown in prominence. Using a new groundwater discharge sensor specifically designed for use in the cold polar ocean, Uemura et al. measured the flows of freshwater streaming through the Antarctic subsurface and into the surrounding coastal waters. The researchers found that SGD rates measured in Lützow-Holm Bay in eastern Antarctica showed important differences from SGD rates measured elsewhere on Earth. At midlatitudes, discharge rates drop with increasing ocean depth, while the Antarctic flows were relatively consistent despite differences in depth among the seven survey sites scattered throughout the bay. In addition, the measured average flow rates, ranging from 0.85 × 10-7 to 9.5 × 10-7 meters per second, were 10-100 times higher than flow rates at similar depths made at midlatitudes. The authors also found that SDG rates oscillated with a period of 12.8 hours, peaking at low tide. Further, the discharge rates roughly tracked the size of the tide, having higher peaks in spring, when tides were strongest. The researchers propose that the most likely source of the freshwater flow is meltwater formed beneath the massive glaciers surrounding the bay. (Geophysical Research Letters, doi:10.1029/2010GL046394, 2011)

  13. Hidden diversity in the freshwater planktonic diatom Asterionella formosa.

    PubMed

    Van den Wyngaert, S; Möst, M; Freimann, R; Ibelings, B W; Spaak, P

    2015-06-01

    Many freshwater and marine algal species are described as having cosmopolitan distributions. Whether these widely distributed morphologically similar algae also share a similar gene pool remains often unclear. In the context of island biogeography theory, stronger spatial isolation deemed typical of freshwater lakes should restrict gene flow and lead to higher genetic differentiation among lakes. Using nine microsatellite loci, we investigate the genetic diversity of a widely distributed freshwater planktonic diatom, Asterionella formosa, across different lakes in Switzerland and the Netherlands. We applied a hierarchical spatial sampling design to determine the geographical scale at which populations are structured. A subset of the isolates was additionally analysed using amplified fragment length polymorphism (AFLP) markers. Our results revealed complex and unexpected population structure in A. formosa with evidence for both restricted and moderate to high gene flow at the same time. Different genetic markers (microsatellites and AFLPs) analysed with a variety of multivariate methods consistently revealed that genetic differentiation within lakes was much stronger than among lakes, indicating the presence of cryptic species within A. formosa. We conclude that the hidden diversity found in this study is expected to have implications for the further use of A. formosa in biogeographical, conservation and ecological studies. Further research using species-level phylogenetic markers is necessary to place the observed differentiation in an evolutionary context of speciation.

  14. Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).

    PubMed

    Klobučar, Göran I V; Malev, Olga; Šrut, Maja; Štambuk, Anamaria; Lorenzon, Simonetta; Cvetković, Želimira; Ferrero, Enrico A; Maguire, Ivana

    2012-03-01

    Genotoxicity of freshwater pollution was assessed by measuring DNA damage in haemocytes of caged freshwater crayfish Astacus leptodactylus by the means of Comet assay and micronucleus test, integrated with the measurements of physiological (total protein concentration) and immunological (total haemocyte count) haemolymph parameters as biomarkers of undergone stress. Crayfish were collected at the reference site (River Mrežnica) and exposed in cages for 1 week at three polluted sites along the Sava River (Zagreb, Sisak, Krapje). The long term pollution status of these locations was confirmed by chemical analyses of sediments. Statistically significant increase in DNA damage measured by the Comet assay was observed at all three polluted sites comparing to the crayfish from reference site. In addition, native crayfish from the mildly polluted site (Krapje) cage-exposed on another polluted site (Zagreb) showed lower DNA damage than crayfish from the reference site exposed at the same location indicating adaptation and acclimatisation of crayfish to lower levels of pollution. Micronuclei induction showed similar gradient of DNA damage as Comet assay, but did not reach the statistical significance. Observed increase in total haemocyte count and total protein content in crayfish from polluted environments in the Sava River also confirmed stress caused by exposure to pollution. The results of this study have proved the applicability of caging exposure of freshwater crayfish A. leptodactylus in environmental genotoxicity monitoring using Comet assay and micronucleus test.

  15. Effects of pollution on freshwater invertebrates

    SciTech Connect

    Buikema, A.L. Jr.; Fenfield, E.F.; Pittinger, C.A.

    1983-06-01

    A literature review of studies on the effects of pollution on freshwater invertebrates is presented. PCBs, insecticides, and fungicides were the main pollutants studied, along with NH/sub 3/, Cd, Cr, Cu, Hg, and Zn. (JMT)

  16. The effects of the herbicide atrazine on freshwater snails.

    PubMed

    Gustafson, Kyle D; Belden, Jason B; Bolek, Matthew G

    2015-07-01

    Atrazine has been shown to affect freshwater snails from the subcellular to community level. However, most studies have used different snail species, methods, endpoints, and atrazine exposure concentrations, resulting in some conflicting results and limiting our understanding. The goal of this study was to address these concerns by (1) investigating the acute and chronic effects of atrazine on four species of freshwater snails (Biomphalaria glabrata, Helisoma trivolvis, Physa acuta, and Stagnicola elodes) using the same methods, endpoints, and concentrations, and (2) summarizing the current literature pertaining to the effects of atrazine on freshwater snails. We conducted a 48 h acute toxicity test with an atrazine concentration higher than what typically occurs in aquatic environments (1000 µg/L). Additionally, we exposed snails to environmentally relevant atrazine concentrations (0, 0.3, 3, and 30 µg/L) for 28 days and assessed snail survival, growth, and reproduction. We also summarized all known literature pertaining to atrazine effects on freshwater snails. The literature summary suggests snails are often affected by environmentally relevant atrazine concentrations at the subcellular and cellular levels. These effects are typically not transitive to effects on survival, growth, or reproduction at the same concentrations. Our acute exposures corroborate the general trend of no direct effect on snail populations as atrazine did not directly affect the survival of any of the four snail species. Similarly, environmentally relevant concentrations did not significantly affect the survival, growth, or reproduction of any snail species. These results indicate that, in the absence of other possible stressors, the direct effects of environmentally relevant atrazine concentrations may not be realized at the snail population level.

  17. Predicting spatial similarity of freshwater fish biodiversity

    PubMed Central

    Azaele, Sandro; Muneepeerakul, Rachata; Maritan, Amos; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2009-01-01

    A major issue in modern ecology is to understand how ecological complexity at broad scales is regulated by mechanisms operating at the organismic level. What specific underlying processes are essential for a macroecological pattern to emerge? Here, we analyze the analytical predictions of a general model suitable for describing the spatial biodiversity similarity in river ecosystems, and benchmark them against the empirical occurrence data of freshwater fish species collected in the Mississippi–Missouri river system. Encapsulating immigration, emigration, and stochastic noise, and without resorting to species abundance data, the model is able to reproduce the observed probability distribution of the Jaccard similarity index at any given distance. In addition to providing an excellent agreement with the empirical data, this approach accounts for heterogeneities of different subbasins, suggesting a strong dependence of biodiversity similarity on their respective climates. Strikingly, the model can also predict the actual probability distribution of the Jaccard similarity index for any distance when considering just a relatively small sample. The proposed framework supports the notion that simplified macroecological models are capable of predicting fundamental patterns—a theme at the heart of modern community ecology. PMID:19359481

  18. Estimated freshwater withdrawals in Washington, 2010

    USGS Publications Warehouse

    Lane, Ron C.; Welch, Wendy B.

    2015-03-18

    The amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power was estimated for state, county, and eastern and western regions of Washington during calendar year 2010. Withdrawals of freshwater for offstream uses were estimated to be about 4,885 million gallons per day. The total estimated freshwater withdrawals for 2010 was approximately 15 percent less than the 2005 estimate because of decreases in irrigation and thermoelectric power withdrawals.

  19. Freshwater Commercial Bycatch: an Understated Conservation Problem

    SciTech Connect

    Raby, Graham D.; Colotelo, Alison HA; Blouin-Demers, Gabriel; Cooke, Steven J.

    2011-04-01

    Commercial fisheries bycatch in marine systems has been regarded as a global conservation concern by environmental groups, scientists, government, and the public for decades. Fortunately, some headway has been made to mitigate the negative impacts of bycatch in marine environments. In a survey of the literature, we found that despite freshwater commercial fisheries yields comprising 11% of the global commercial catch, bycatch research focusing on freshwater commercial fisheries represented only {approx}3% of the total bycatch literature. This paucity of research is particularly alarming given that freshwater animals and habitats are some of the world's most imperiled. The limited inland bycatch literature that does exist includes examples of population declines attributed to commercial bycatch (e.g., freshwater dolphins in the Yangtze River in China) and illustrates that in some systems bycatch can be substantial (e.g., lake trout bycatch in the Laurentian Great Lakes). Encouraging results from the marine realm can serve as models for bycatch research in freshwater, and lead to measurable gains in conservation of freshwater ecosystems. We summarize existing work on inland bycatch in an effort to draw attention to this understated and understudied conservation problem.

  20. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  1. Commissioned Review. Carbon: freshwater plants

    USGS Publications Warehouse

    Keeley, J.E.; Sandquist, D.R.

    1992-01-01

    δ13C values for freshwater aquatic plant matter varies from −11 to −50‰ and is not a clear indicator of photosynthetic pathway as in terrestrial plants. Several factors affect δ13C of aquatic plant matter. These include: (1) The δ13C signature of the source carbon has been observed to range from +1‰ for HCO3− derived from limestone to −30‰ for CO2 derived from respiration. (2) Some plants assimilate HCO3−, which is –7 to –11‰ less negative than CO2. (3) C3, C4, and CAM photosynthetic pathways are present in aquatic plants. (4) Diffusional resistances are orders of magnitude greater in the aquatic environment than in the aerial environment. The greater viscosity of water acts to reduce mixing of the carbon pool in the boundary layer with that of the bulk solution. In effect, many aquatic plants draw from a finite carbon pool, and as in terrestrial plants growing in a closed system, biochemical discrimination is reduced. In standing water, this factor results in most aquatic plants having a δ13C value similar to the source carbon. Using Farquhar's equation and other physiological data, it is possible to use δ13C values to evaluate various parameters affecting photosynthesis, such as limitations imposed by CO2 diffusion and carbon source.

  2. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton.

    PubMed

    Lefèvre, Emilie; Roussel, Balbine; Amblard, Christian; Sime-Ngando, Télesphore

    2008-01-01

    Eukaryotic microorganisms have been undersampled in biodiversity studies in freshwater environments. We present an original 18S rDNA survey of freshwater picoeukaryotes sampled during spring/summer 2005, complementing an earlier study conducted in autumn 2004 in Lake Pavin (France). These studies were designed to detect the small unidentified heterotrophic flagellates (HF, 0.6-5 microm) which are considered the main bacterivores in aquatic systems. Alveolates, Fungi and Stramenopiles represented 65% of the total diversity and differed from the dominant groups known from microscopic studies. Fungi and Telonemia taxa were restricted to the oxic zone which displayed two fold more operational taxonomic units (OTUs) than the oxycline. Temporal forcing also appeared as a driving force in the diversification within targeted organisms. Several sequences were not similar to those in databases and were considered as new or unsampled taxa, some of which may be typical of freshwater environments. Two taxa known from marine systems, the genera Telonema and Amoebophrya, were retrieved for the first time in our freshwater study. The analysis of potential trophic strategies displayed among the targeted HF highlighted the dominance of parasites and saprotrophs, and provided indications that these organisms have probably been wrongfully regarded as bacterivores in previous studies. A theoretical exercise based on a new 'parasite/saprotroph-dominated HF hypothesis' demonstrates that the inclusion of parasites and saprotrophs may increase the functional role of the microbial loop as a link for carbon flows in pelagic ecosystems. New interesting perspectives in aquatic microbial ecology are thus opened. PMID:18545660

  3. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton.

    PubMed

    Lefèvre, Emilie; Roussel, Balbine; Amblard, Christian; Sime-Ngando, Télesphore

    2008-06-11

    Eukaryotic microorganisms have been undersampled in biodiversity studies in freshwater environments. We present an original 18S rDNA survey of freshwater picoeukaryotes sampled during spring/summer 2005, complementing an earlier study conducted in autumn 2004 in Lake Pavin (France). These studies were designed to detect the small unidentified heterotrophic flagellates (HF, 0.6-5 microm) which are considered the main bacterivores in aquatic systems. Alveolates, Fungi and Stramenopiles represented 65% of the total diversity and differed from the dominant groups known from microscopic studies. Fungi and Telonemia taxa were restricted to the oxic zone which displayed two fold more operational taxonomic units (OTUs) than the oxycline. Temporal forcing also appeared as a driving force in the diversification within targeted organisms. Several sequences were not similar to those in databases and were considered as new or unsampled taxa, some of which may be typical of freshwater environments. Two taxa known from marine systems, the genera Telonema and Amoebophrya, were retrieved for the first time in our freshwater study. The analysis of potential trophic strategies displayed among the targeted HF highlighted the dominance of parasites and saprotrophs, and provided indications that these organisms have probably been wrongfully regarded as bacterivores in previous studies. A theoretical exercise based on a new 'parasite/saprotroph-dominated HF hypothesis' demonstrates that the inclusion of parasites and saprotrophs may increase the functional role of the microbial loop as a link for carbon flows in pelagic ecosystems. New interesting perspectives in aquatic microbial ecology are thus opened.

  4. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  5. Freshwater and heat transports from global ocean synthesis

    NASA Astrophysics Data System (ADS)

    Valdivieso, M.; Haines, K.; Zuo, H.; Lea, D.

    2014-01-01

    An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989-2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40-50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004-2010.

  6. Quantifying Greenland freshwater flux underestimates in climate models

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Piecuch, Christopher G.; Chaudhuri, Ayan H.

    2016-05-01

    Key processes regulating the mass balance of the Greenland Ice Sheet (GIS) are not represented in current-generation climate models. Here using output from 19 different climate models forced with a high-end business-as-usual emissions pathway, we compare modeled freshwater fluxes (FWF) to a parameterization based on midtropospheric temperature. By the mid 21st century, parameterized GIS FWF is 478 ± 215 km3 yr-1 larger than modeled—over 3 times the 1992-2011 rate of GIS mass loss. By the late 21st century, ensemble mean parameterized GIS FWF anomalies are comparable to FWF anomalies over the northern North Atlantic Ocean, equivalent to approximately 11 cm of global mean sea level rise. The magnitude and spread of these underestimates underscores the need for assessments of the coupled response of the ocean to increased FWF that recognize: (1) the widely varying freshwater budgets of each model and (2) uncertainty in the relationship between GIS FWF and atmospheric temperature.

  7. Global estimation of freshwater fluxes and freshwater oceanic transport from satellite data

    SciTech Connect

    Gautier, C.; Peterson, P.; Jones, C.

    1996-12-01

    The exchange of moisture and heat fluxes across the ocean-atmosphere interface exerts a strong influence on the oceanic and atmospheric circulations, and therefore on the maintenance of the climate system equilibrium. Observational measurements of these fluxes over large areas of the ocean`s surface are limited by the lack of in-situ data. This paper reports research efforts to estimate the freshwater budget and freshwater oceanic transport using remotely sensed data. Six years (1988--1993) of surface evaporation estimated with satellite and in-situ data re combined with satellite-derived precipitation to compute the freshwater budget and freshwater oceanic transport. The interannual variability of the freshwater budget and oceanic transport eliminates are examined for two contrasting events: the La Nina of 1988--89 and the El Nino condition during 1991--92, one of the longest El Nino episodes on record. Possible implications for future climate change are discussed.

  8. Combining Ballast Water Exchange and Treatment To Maximize Prevention of Species Introductions to Freshwater Ecosystems.

    PubMed

    Briski, Elizabeta; Gollasch, Stephan; David, Matej; Linley, R Dallas; Casas-Monroy, Oscar; Rajakaruna, Harshana; Bailey, Sarah A

    2015-08-18

    The most effective way to manage species transfers is to prevent their introduction via vector regulation. Soon, international ships will be required to meet numeric ballast discharge standards using ballast water treatment (BWT) systems, and ballast water exchange (BWE), currently required by several countries, will be phased out. However, there are concerns that BWT systems may not function reliably in fresh and/or turbid water. A land-based evaluation of simulated "BWE plus BWT" versus "BWT alone" demonstrated potential benefits of combining BWE with BWT for protection of freshwater ecosystems. We conducted ship-based testing to compare the efficacy of "BWE plus BWT" versus "BWT alone" on voyages starting with freshwater ballast. We tested the hypotheses that there is an additional effect of "BWE plus BWT" compared to "BWT alone" on the reduction of plankton, and that taxa remaining after "BWE plus BWT" will be marine (low risk for establishment at freshwater recipient ports). Our study found that BWE has significant additional effect on the reduction of plankton, and this effect increases with initial abundance. As per expectations, "BWT alone" tanks contained higher risk freshwater or euryhaline taxa at discharge, while "BWE plus BWT" tanks contained mostly lower risk marine taxa unlikely to survive in recipient freshwater ecosystems.

  9. Filling gaps in a large reserve network to address freshwater conservation needs.

    PubMed

    Hermoso, Virgilio; Filipe, Ana Filipa; Segurado, Pedro; Beja, Pedro

    2015-09-15

    Freshwater ecosystems and biodiversity are among the most threatened at global scale, but efforts for their conservation have been mostly peripheral to terrestrial conservation. For example, Natura 2000, the world's largest network of protected areas, fails to cover adequately the distribution of rare and endangered aquatic species, and lacks of appropriate spatial design to make conservation for freshwater biodiversity effective. Here, we develop a framework to identify a complementary set of priority areas and enhance the conservation opportunities of Natura 2000 for freshwater biodiversity, using the Iberian Peninsula as a case study. We use a systematic planning approach to identify a minimum set of additional areas that would help i) adequately represent all freshwater fish, amphibians and aquatic reptiles at three different target levels, ii) account for key ecological processes derived from riverscape connectivity, and iii) minimize the impact of threats, both within protected areas and propagated from upstream unprotected areas. Addressing all these goals would need an increase in area between 7 and 46%, depending on the conservation target used and strength of connectivity required. These new priority areas correspond to subcatchments inhabited by endangered and range restricted species, as well as additional subcatchments required to improve connectivity among existing protected areas and to increase protection against upstream threats. Our study should help guide future revisions of the design of Natura 2000, while providing a framework to address deficiencies in reserve networks for adequately protecting freshwater biodiversity elsewhere. PMID:26203875

  10. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  11. Atmospheric freshwater fluxes and their effect on the global thermohaline circulation

    SciTech Connect

    Zaucker, F.; Stocker, T.F.; Broecker, W.S.

    1994-06-15

    Atmospheric water vapor fluxes were derived from a 1-year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium-Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those of two data sets based on a climatology and on simulations with an atmospheric general circulation model (AGCM). Zonal transports agree fairly well at all latitudes outside the tropics, where fluxes are about double for the AGCM data set. Meridional fluxes of the AGCM and ECMWF data sets show close agreement, while the climatological fluxes are generally smaller with a considerable northward shift in the southern hemisphere. Atmosphere-to-ocean freshwater fluxes were derived from the three data sets. Not only is there substantial disagreement between the data sets, but their zonal averages over the Atlantic, Pacific, and Indian Ocean basins show little resemblance to the respective restoring freshwater fluxes from a 2-dimensional ocean model. If the ocean model is forced with the observed and modeled atmospheric fluxes, we find that the mode of ocean circulation is determined mostly the net flux to the high-latitude oceans and the amount of freshwater exported from the Atlantic basin. The latitudinal structure of the freshwater fluxes in low-latitudes and midlatitudes has little influence on the modeled thermohaline circulation. The fluxes derived from the climatology and ECMWF permit North Atlantic Deep Water (NADW) formation, but a strong freshwater input to the Southern Ocean inhibits Antarctic Bottom Water formation. The AGCM transports so much moisture to the Arctic Ocean that NADW formation is shut down, resulting in a ocean circulation mode of southern sinking in all three ocean basins.

  12. Quantitative centrifugation to extract benthic protozoa from freshwater sediments.

    PubMed

    Starink, M; Bär-Gilissen, M J; Bak, R P; Cappenberg, T E

    1994-01-01

    TWO METHODS FOR EXTRACTING PROTISTS FROM FRESHWATER SEDIMENT ARE DESCRIBED: (i) an adapted isopycnic centrifugation technique for sandy and gyttja-like sediments and (ii) a rate zonal centrifugation technique for sediments rich in particulate organic material (litter-like sediments). The recoveries of protists during isopycnic centrifugation in media of several densities were compared. No significant losses in sodium diatrizoate and Percoll were recorded. After known amounts of nanoflagellates were added to azoic sediments, the protists were extracted and counted. For sandy sediments, we found 100% recovery, and for the gyttja-like sediments we found a maximum recovery of 94%. The recovery of protozoa extracted from litter-like sediments, characteristic of littoral systems, depends on a given centrifugal force, on time, and on the dimensions of the flagellates. A recovery model which takes into account cell dimensions and centrifugation characteristics gives the minimum expected recovery.

  13. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  14. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  15. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  16. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  17. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  18. Effects of Pollution on Freshwater Organisms.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the effects of anthropogenic pollutants on freshwater organisms. It begins with two broad sections: research reviews and broad field studies and surveys. This is followed by reviews of research categorized in sections to reflect the pollutant class. These sections include wastewater, stormwater and non-point source pollution, nutrients, sediment cap materials and suspended clays, botanical extracts, surfactants, metals, persistent organic pollutants, pharmaceuticals, endocrine disruptors, pesticides, petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), ionic liquids, and nanomaterials. The final section includes works describing innovations in the field of freshwater pollution research. PMID:27620107

  19. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  20. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  1. Dispersion Of Crude Oil And Petroleum Products In Freshwater

    EPA Science Inventory

    The objective of this research was to investigate the relationship between dispersion effectiveness in freshwater and the surfactant composition for fresh and weathered crude oil. Although limited research on the chemical dispersion of crude oil and petroleum products in freshwat...

  2. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment.

    PubMed

    Bakker, Elisabeth S; Nolet, Bart A

    2014-11-01

    The abundance of primary producers is controlled by bottom-up and top-down forces. Despite the fact that there is consensus that the abundance of freshwater macrophytes is strongly influenced by the availability of resources for plant growth, the importance of top-down control by vertebrate consumers is debated, because field studies yield contrasting results. We hypothesized that these bottom-up and top-down forces may interact, and that consumer impact on macrophyte abundance depends on the nutrient status of the water body. To test this hypothesis, experimental ponds with submerged vegetation containing a mixture of species were subjected to a fertilization treatment and we introduced consumers (mallard ducks, for 8 days) on half of the ponds in a full factorial design. Over the whole 66-day experiment fertilized ponds became dominated by Elodea nuttallii and ponds without extra nutrients by Chara globularis. Nutrient addition significantly increased plant N and P concentrations. There was a strong interactive effect of duck presence and pond nutrient status: macrophyte biomass was reduced (by 50%) after the presence of the ducks on fertilized ponds, but not in the unfertilized ponds. We conclude that nutrient availability interacts with top-down control of submerged vegetation. This may be explained by higher plant palatability at higher nutrient levels, either by a higher plant nutrient concentration or by a shift towards dominance of more palatable plant species, resulting in higher consumer pressure. Including nutrient availability may offer a framework to explain part of the contrasting field observations of consumer control of macrophyte abundance. PMID:25194349

  3. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment.

    PubMed

    Bakker, Elisabeth S; Nolet, Bart A

    2014-11-01

    The abundance of primary producers is controlled by bottom-up and top-down forces. Despite the fact that there is consensus that the abundance of freshwater macrophytes is strongly influenced by the availability of resources for plant growth, the importance of top-down control by vertebrate consumers is debated, because field studies yield contrasting results. We hypothesized that these bottom-up and top-down forces may interact, and that consumer impact on macrophyte abundance depends on the nutrient status of the water body. To test this hypothesis, experimental ponds with submerged vegetation containing a mixture of species were subjected to a fertilization treatment and we introduced consumers (mallard ducks, for 8 days) on half of the ponds in a full factorial design. Over the whole 66-day experiment fertilized ponds became dominated by Elodea nuttallii and ponds without extra nutrients by Chara globularis. Nutrient addition significantly increased plant N and P concentrations. There was a strong interactive effect of duck presence and pond nutrient status: macrophyte biomass was reduced (by 50%) after the presence of the ducks on fertilized ponds, but not in the unfertilized ponds. We conclude that nutrient availability interacts with top-down control of submerged vegetation. This may be explained by higher plant palatability at higher nutrient levels, either by a higher plant nutrient concentration or by a shift towards dominance of more palatable plant species, resulting in higher consumer pressure. Including nutrient availability may offer a framework to explain part of the contrasting field observations of consumer control of macrophyte abundance.

  4. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (unionidae) early life stages

    USGS Publications Warehouse

    Augspurger, T; Dwyer, F.J.; Ingersoll, C.G.; Kane, C.M.

    2007-01-01

    Freshwater mussels (family Unionidae, also referred to as freshwater pearly mussels, unionids, or naiades) are one of North America’s most endangered faunal groups. Near unanimity exists in characterizations of the imperilment of these ecologically, economically, and culturally important bivalve mollusks. Freshwater mussels are a renewable resource supporting a shell industry in the United States valued at $40–50 million annually [1]. In addition to being a food source for aquatic and terrestrial vertebrates, this diverse fauna helps stabilize sediment [2] and provides critical nutrient and energy cycling in streams and lakes by filtering phytoplankton, bacteria, and particulate organic matter from the water column [3]. Thirty-five species of freshwater mussels are extinct [4], 70 species are listed as threatened or endangered under the U.S. Endangered Species Act (www.fws.gov/endangered/wildlife.html), and nearly 180 species are identified as critically imperiled or vulnerable (www.natureserve.org/explorer). Declines in freshwater mussels are not unique to North America [5], but because the taxon reaches its greatest richness here, impacts are especially noteworthy.

  5. K-Pg extinction patterns in marine and freshwater environments: The impact winter model

    NASA Astrophysics Data System (ADS)

    Robertson, Douglas S.; Lewis, William M.; Sheehan, Peter M.; Toon, Owen B.

    2013-07-01

    Chicxulub asteroid impact produced massive extinction in terrestrial environments most likely through an intense heat pulse and subsequent widespread fires. Aquatic environments were shielded from this heat and fire but nevertheless showed massive extinction in marine environments and, for reasons unexplained, far less extinction in freshwater environments. Extinction in marine environments resulted from the effects of an "impact winter" caused by dust and smoke in the atmosphere that extinguished sunlight at the Earth's surface for a period of months to years. The resulting cessation of photosynthesis caused a globally extensive extinction of phytoplankton taxa. Because aquatic ecosystems, unlike terrestrial environments, are strongly dependent on daily photosynthetic output by autotrophs, loss of phytoplankton likely caused catastrophic mortality and extinction in aquatic ecosystems. Other potential causes of mortality in aquatic ecosystems include lower ambient temperatures and anoxia due to the lack of photosynthetic oxygen. Inland waters, although probably subject to high mortality, showed lower proportionate extinction than marine environments probably because of the greater potential among the freshwater taxa for dormancy, the greater efficiency of reaeration by rapid flow to offset oxygen demand, abundant thermal refugia fed by groundwater at moderate temperatures, and preadaptation of freshwater taxa to a great degree of environmental variability. In addition, detrital feeders appear to have had low extinction rates in either marine or freshwater environments, but again freshwater taxa would have been favored by higher renewal rates of detrital organic matter as a result of their direct hydrologic contact with soil.

  6. Biodiversity of freshwater sponges (Porifera: Spongillina) from northeast Brazil: new species and notes on systematics.

    PubMed

    Nicacio, Gilberto; Pinheiro, Ulisses

    2015-07-03

    Systematics and distribution of freshwater sponges is still poorly understood worldwide. This may be due to the scarcity of records, and the limited information about morphological traits used for taxonomy. Brazil has reportedly high species richness in the Neotropical Region; however, this diversity is likely to be significantly underestimated given that there are still many unexplored and poorly sampled areas, mainly in the north and northeast regions. We present here new locality records and taxonomic notes on three families and ten species of freshwater Porifera from northeast Brazil: Metaniidae (1), Potamolepidae (2) and Spongillidae (7). A new species of freshwater sponge is described here (Ephydatia caatingae sp.nov.). Additional notes on the systematics and biogeography of most of these species are also presented.

  7. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus).

    PubMed

    Aoyama, Yuta; Moriya, Natsumi; Tanaka, Shingo; Taniguchi, Tomoko; Hosokawa, Hiroshi; Maegawa, Shingo

    2015-08-01

    The zebrafish (Danio rerio) has become a powerful model organism for studying developmental processes and genetic diseases. However, there remain several problems in previous rearing methods. In this study, we demonstrate a novel method for rearing zebrafish larvae by using a new first food, freshwater rotifers (Brachionus calyciflorus). Feeding experiments indicated that freshwater rotifers are suitable as the first food for newly hatched larval fish. In addition, we revisited and improved a feeding schedule from 5 to 40 days postfertilization. Our feeding method using freshwater rotifers accelerated larval growth. At 49 dpf, one pair out of 10 pairs successfully produced six fertilized eggs. At 56, 63, and 71 dpf, 6 out of the 10 pairs constantly produced normal embryos. Our method will improve the husbandry of the zebrafish.

  8. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus)

    PubMed Central

    Aoyama, Yuta; Moriya, Natsumi; Tanaka, Shingo; Taniguchi, Tomoko; Hosokawa, Hiroshi

    2015-01-01

    Abstract The zebrafish (Danio rerio) has become a powerful model organism for studying developmental processes and genetic diseases. However, there remain several problems in previous rearing methods. In this study, we demonstrate a novel method for rearing zebrafish larvae by using a new first food, freshwater rotifers (Brachionus calyciflorus). Feeding experiments indicated that freshwater rotifers are suitable as the first food for newly hatched larval fish. In addition, we revisited and improved a feeding schedule from 5 to 40 days postfertilization. Our feeding method using freshwater rotifers accelerated larval growth. At 49 dpf, one pair out of 10 pairs successfully produced six fertilized eggs. At 56, 63, and 71 dpf, 6 out of the 10 pairs constantly produced normal embryos. Our method will improve the husbandry of the zebrafish. PMID:25938499

  9. The freshwater snails (Gastropoda) of Iran, with descriptions of two new genera and eight new species

    PubMed Central

    Glöer, Peter; Pešić, Vladimir

    2012-01-01

    Abstract Using published records and original data from recent field work and revision of Iranian material of certain species deposited in the collections of the Natural History Museum Basel, the Zoological Museum Berlin, and Natural History Museum Vienna, a checklist of the freshwater gastropod fauna of Iran was compiled. This checklist contains 73 species from 34 genera and 14 families of freshwater snails; 27 of these species (37%) are endemic to Iran. Two new genera, Kaskakia and Sarkhia, and eight species, i.e., Bithynia forcarti, Bithynia starmuehlneri, Bithynia mazandaranensis, Pseudamnicola georgievi, Kaskakia khorrasanensis, Sarkhia sarabensis, Valvata nowsharensis and Acroloxus pseudolacustris are described as new to science; Ecrobia grimmi (Clessin & Dybowski, 1888), Heleobia dalmatica (Radoman, 1974) and Hippeutis complanatus (Linnaeus, 1758) are reported for the first time from Iran. Additional field work is highly desirable for a more appropriate evaluation of the extant freshwater snail biodiversity in Iran. PMID:22977349

  10. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here for additional data file.

    PubMed Central

    McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-01-01

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  11. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  12. Heat, salt, and freshwater budgets for a glacial fjord in Greenland

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.; Straneo, F.

    2015-12-01

    Fjords link the ocean and outlet glaciers of the Greenland ice sheet. As the ice sheet loses mass - potentially triggered by submarine melting - measurements of ocean heat transport in fjords are increasingly being used to diagnose submarine melting and freshwater fluxes. The full budgets that underlie such methods, however, have been largely neglected. Here, we present complete heat, salt, and mass budgets for glacial fjords and new equations for inferring the freshwater fluxes of submarine melting and runoff. Building on estuarine studies of salt budgets, this method includes a decomposition of the fjord transports (into barotropic, exchange, and fluctuating components) that is crucial for conserving mass in the budgets and appropriately accounting for temporal variability. These methods are applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. We find two different regimes seasonally that align with the seasonal variations in fjord drivers: shelf variability from barrier winds and freshwater forcing. Our results highlight many important components of fjord budgets, particularly iceberg melting, heat/salt storage and barotropic fluxes, that have been neglected in previous estimates of submarine melting.

  13. Traceable periodic force calibration

    NASA Astrophysics Data System (ADS)

    Schlegel, Ch; Kieckenap, G.; Glöckner, B.; Buß, A.; Kumme, R.

    2012-06-01

    A procedure for dynamic force calibration using sinusoidal excitations of force transducers is described. The method is based on a sinusoidal excitation of force transducers equipped with an additional top mass excited with an electrodynamic shaker system. The acting dynamic force can in this way be determined according to Newton's law as mass times acceleration, whereby the acceleration is measured on the surface of the top mass with the aid of laser interferometers. The dynamic sensitivity, which is the ratio of the electrical output signal of the force transducer and the acting dynamic force, is the main point of interest of such a dynamic calibration. In addition to the sensitivity, the parameter stiffness and damping of the transducer can also be determined. The first part of the paper outlines a mathematical model to describe the dynamic behaviour of a transducer. This is followed by a presentation of the traceability of the measured quantities involved and their uncertainties. The paper finishes with an example calibration of a 25 kN strain gauge force transducer.

  14. 40 CFR 35.1605-2 - Freshwater lake.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Freshwater lake. 35.1605-2 Section 35... STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned Freshwater Lakes § 35.1605-2 Freshwater lake. Any inland pond, reservoir, impoundment, or other similar body...

  15. 40 CFR 35.1605-2 - Freshwater lake.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Freshwater lake. 35.1605-2 Section 35... STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned Freshwater Lakes § 35.1605-2 Freshwater lake. Any inland pond, reservoir, impoundment, or other similar body...

  16. 40 CFR 35.1605-2 - Freshwater lake.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Freshwater lake. 35.1605-2 Section 35... STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned Freshwater Lakes § 35.1605-2 Freshwater lake. Any inland pond, reservoir, impoundment, or other similar body...

  17. 40 CFR 35.1605-2 - Freshwater lake.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Freshwater lake. 35.1605-2 Section 35... STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned Freshwater Lakes § 35.1605-2 Freshwater lake. Any inland pond, reservoir, impoundment, or other similar body...

  18. 40 CFR 35.1605-2 - Freshwater lake.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Freshwater lake. 35.1605-2 Section 35... STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned Freshwater Lakes § 35.1605-2 Freshwater lake. Any inland pond, reservoir, impoundment, or other similar body...

  19. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  20. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  1. Mathematical Explorations: Freshwater Scarcity: A Proportional Representation

    ERIC Educational Resources Information Center

    King, Alessandra

    2014-01-01

    Middle school students' mathematical understanding benefits from connecting mathematics to other content areas in the curriculum. This month's activity explores the issue of the scarcity of freshwater, a natural resource (activity sheets are included). This activity concentrates on the critical areas mentioned in the Common Core State…

  2. Effects of Pollution on Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Buikema, A. L., Jr.; Herricks, E. E.

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater invertebrates, covering publications of 1976-77. Some of the areas covered are: (1) toxicant effects on invertebrates; (2) microcosm and community effects, and (3) biological control of aquatic life. A list of 123 references is also presented. (HM)

  3. Effects of pollution on freshwater invertebrates

    SciTech Connect

    Buikema

    1982-06-01

    The biological effects of acid rain, chlorination, heavy metals and other forms of pollution on freshwater invertebrates are examined in this review. Several methods for evaluating chronic toxicity to pesticide residues and synthetic fuels components are reviewed. The effects of pollutants is reviewed in detail for cladocera, amphipods, isopods, decapods, aquatic insects, molluscs, worms, and protozoa.(KRM)

  4. Toxicity of vanadium to different freshwater organisms

    SciTech Connect

    Beusen, J.M.; Neven, B.

    1987-08-01

    The aim of this study is to determine the acute and subchronic toxicity of vanadium for various species of freshwater fish. The long-term toxicity and the effect of vanadium on the reproduction of Daphnia magna is also evaluated and compared with the toxicity of other metals.

  5. 2008 NWFSC Tidal Freshwater Genetics Results

    SciTech Connect

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  6. Macrophytes: Freshwater Forests of Lakes and Rivers.

    ERIC Educational Resources Information Center

    McDermid, Karla J.; Naiman, Robert J.

    1983-01-01

    Physical, chemical, and biological effects on macrophytes (aquatic plants) on the freshwater ecosystem are discussed. Research questions and issues related to these organisms are also discussed, including adaptations for survival in a wet environment, ecological consequences of large-scale macrophyte eradication, seasonal changes in plant…

  7. Tetanus after envenomations caused by freshwater stingrays.

    PubMed

    Torrez, Pasesa P Q; Quiroga, Mariana M; Said, Renato; Abati, Paulo A M; França, Francisco O S

    2015-04-01

    Injuries caused by freshwater stingray are common in several regions of South America, although they are underreported. The riverside inhabitants are the main victims in the Amazonian and Midwest regions of South America. The fishermen are injured mainly in the new focus of colonization of the rivers by freshwater stingrays. With the increasing population in these regions, where freshwater stingrays are found, there has been a significant increase in injuries within the general population. The highest increase occurred among tourists from other regions, where these animals are not known, when visiting these areas. The envenomations from the stingray causes prolonged and intense pain, both local and regionally. Generally these are associated with other local inflammatory manifestations, such as swelling and erythema. The injury often progresses to necrosis and it is considered potentially tetanogenic. A secondary infection is also a frequent local complication and most frequently is caused by Aeromonas species, usually Aeromonas hydrophila. Herein we report the first 2 cases of tetanus after freshwater stingray injuries: a 51-year-old men who had tetanus and recovered without sequel and the second a 67-year-old men who had severe tetanus and a deep, necrotizing soft-tissue infection with sepsis, septic shock and evolution to death. PMID:25576234

  8. Thiaminase activity in native freshwater mussels

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Sweet, Stephanie; Galbraith, Heather S.; Honeyfield, Dale C.

    2015-01-01

    Thiamine (vitamin B1) deficiency in the Great Lakes has been attributed to elevated levels of thiaminase I enzyme activity in invasive prey species; however, few studies have investigated thiaminase activity in native prey species. Some of the highest levels of thiaminase activity have been measured in invasive dreissenid mussels with little understanding of background levels contributed by native freshwater mussels (Bivalvia: Unionidae). In this study, thiaminase activity was measured in two freshwater mussel species, Elliptio complanata and Strophitus undulatus, from the Delaware and Susquehanna River drainage basins located in north eastern United States. Thiaminase activity was also measured in gravid and non-gravid S. undulatus. Average thiaminase activity differed significantly between species (7.2 and 42.4 μmol/g/min, for E. complanata and S. undulatus respectively) with no differences observed between drainage basins. Gravid S. undulatus had significantly lower thiaminase activity (28.0 μmol/g/min) than non-gravid mussels (42.4 μmol/g/min). Our results suggest that a suite of factors may regulate thiaminase activity in freshwater mussels and that native freshwater mussel thiaminase activity is within the range observed for invasive dreissenids. These results add to our understanding of the complexities in identifying the ecological conditions that set the stage for thiamine deficiency.

  9. Depleting groundwater resources mitigating surface freshwater scarcity - a trend in the recent past

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Van Beek, L. P.; Bierkens, M. F.

    2011-12-01

    During the past decades, human water use more than doubled, yet available surface freshwater resources are finite. As a result, water scarcity has become prevalent in many (semi-)arid regions of the world (e.g., India, Pakistan, North East China, the MENA region). In such regions, the demand often exceeds the available surface freshwater resources primarily due to heavy irrigation which requires large volumes of water in a certain time of the year, when groundwater is additionally used to supplement the deficiency. Excessive groundwater pumping, however, often leads to overexploitation, i.e. groundwater abstraction exceeding groundwater recharge. Here, we quantified globally the impact of depleting groundwater resources on mitigating surface freshwater scarcity and the trend between 1960 and 2000 at a spatial resolution of 0.5 degree. We downscaled available country statistics of groundwater abstraction to 0.5 degree, while we simulated groundwater recharge with the global hydrological model PCR-GLOBWB at the same spatial resolution considering not only natural groundwater recharge but also artificial recharge, i.e. return flow from irrigation. Water scarcity was estimated by confronting computed water demand for livestock, irrigation, industry and households with simulated surface freshwater availability (PCR-GLOBWB) at 0.5 degree. We thus performed a simulation run with/without groundwater pumping to assess the impact on alleviating surface freshwater scarcity. The results indicated that in many of (semi-)arid regions (e.g., North Wet India, North East Pakistan, North East China, West and Central USA, Central Mexico, North Iran, Central Saudi Arabia) large amounts of groundwater abstraction significantly mitigates the intensity of surface freshwater scarcity, while depleting the resources. Our estimate of global groundwater depletion reached close to 280 km3/yr. In most of the MENA region, the intensity of surface freshwater scarcity was eased by 30% up to 50% as

  10. A Freshwater Starvation Mechanism for Dansgaard-Oeschger Cycles

    NASA Astrophysics Data System (ADS)

    Wolff, E. W.; Hewitt, I.; Fowler, A.; Clark, C.; Evatt, G. W.; Munday, D. R.; Stokes, C.

    2014-12-01

    for the absence of the events during interglacials and around the time of glacial maxima. Heinrich events, delivering additional freshwater into the Atlantic during a Greenland stadial, play no direct role in this mechanism, but would serve to delay the switch to faster AMOC.

  11. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Muschitiello, Francesco; Pausata, Francesco S. R.; Watson, Jenny E.; Smittenberg, Rienk H.; Salih, Abubakr A. M.; Brooks, Stephen J.; Whitehouse, Nicola J.; Karlatou-Charalampopoulou, Artemis; Wohlfarth, Barbara

    2015-11-01

    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ~12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ~180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.

  12. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas

    PubMed Central

    Muschitiello, Francesco; Pausata, Francesco S. R.; Watson, Jenny E.; Smittenberg, Rienk H.; Salih, Abubakr A. M.; Brooks, Stephen J.; Whitehouse, Nicola J.; Karlatou-Charalampopoulou, Artemis; Wohlfarth, Barbara

    2015-01-01

    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∼12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100–12,880 years ago generates a hydroclimate dipole with drier–colder conditions in Northern Europe and wetter–warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∼180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas. PMID:26573386

  13. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Watson, Jenny E; Smittenberg, Rienk H; Salih, Abubakr A M; Brooks, Stephen J; Whitehouse, Nicola J; Karlatou-Charalampopoulou, Artemis; Wohlfarth, Barbara

    2015-11-17

    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∼12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∼180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.

  14. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Watson, Jenny E; Smittenberg, Rienk H; Salih, Abubakr A M; Brooks, Stephen J; Whitehouse, Nicola J; Karlatou-Charalampopoulou, Artemis; Wohlfarth, Barbara

    2015-01-01

    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∼12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∼180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas. PMID:26573386

  15. Enumeration, Isolation, and Characterization of Beggiatoa from Freshwater Sediments †

    PubMed Central

    Strohl, William R.; Larkin, John M.

    1978-01-01

    An accurate most-probable-number enumeration method was developed for counting the number of Beggiatoa trichomes from various freshwater sediments. The medium consisted of extracted hay, diluted soil extract, 0.05% acetate, and 15 to 35 U of catalase per ml. The same enrichment medium, but without the acetate, was the best enrichment medium from which to obtain pure cultures because it supported good growth of the beggiatoas without allowing them to be overgrown by other bacteria. A total of 32 strains of Beggiatoa were isolated from seven different freshwater habitats and partially characterized. The strains were separated into five groups based on several preliminary characteristics. Four of the groups contained cells with trichomes of approximately the same diameter (1.5 to 2.7 μm) and may be Beggiatoa leptomitiformis or an unnamed species. The fifth group appeared to be Beggiatoa alba. With the exception of three strains, all of the strains deposited sulfur in the presence of hydrogen sulfide, and all strains grew heterotrophically and deposited poly-β-hydroxybutyrate and volutin when grown on acetate supplemented with low concentrations of other organic nutrients. Thin sections of sulfur-bearing trichomes indicated that the sulfur granules were external to the cytoplasmic membrane and that they were surrounded by an additional membrane. Images PMID:16345330

  16. Toxicity of tributyltin (TBT) to the freshwater planarian Schmidtea mediterranea.

    PubMed

    Ofoegbu, Pearl U; Simão, Fátima C P; Cruz, Andreia; Mendo, Sónia; Soares, Amadeu M V M; Pestana, João L T

    2016-04-01

    The freshwater planarian Schmidtea mediterranea, one of the best characterized animal models for regeneration research and developmental biology, is being recognised as a useful species for ecotoxicological studies. Sensitive endpoints related to planarians' behaviour and regeneration can be easily evaluated after exposure to environmental stressors. In this work the sensitivity of S. mediterranea to a gradient of environmentally relevant concentrations of TBT was studied using multiple endpoints like survival, locomotion, head regeneration and DNA damage. In addition, a feeding assay based on planarian's predatory behaviour was performed. Results indicated that TBT is toxic to planarians with LC50's of 1.87 μg L(-1) Sn and 1.31 μg L(-1) Sn at 48 h and 96 h of exposure respectively. Sub-lethal exposures to TBT significantly reduced locomotion and feeding, delayed head regeneration and caused DNA damage in planarians. The behavioural endpoints (feeding and locomotion) and head regeneration were the most sensitive parameters followed by DNA damage. Similar to other aquatic model organisms, S. mediterranea showed high sensitivity towards TBT exposure. Based on our results, and though further research is required concerning their sensitivity to other pollutants, the use of freshwater planarians as a model species in ecotoxicology is discussed.

  17. Multi proxy chemical properties of freshwater sapropel

    NASA Astrophysics Data System (ADS)

    Stankevica, Karina; Rutina, Liga; Burlakovs, Juris; Klavins, Maris

    2014-05-01

    Freshwater sapropel is organic rich lake sediment firstly named "gyttja" by Hampus van Post in 1862. It is composed of organic remains such as shell detritus, plankton, chitin of insects, spores of higher plants and mineral part formed in eutrophic lake environments. The most appropriate environments for the formation of sapropel are in shallow, overgrown post-glacial lakes and valleys of big rivers in boreal zone, while thick deposits of such kind of organic sediments rarely can be found in lakes on permafrost, mountainous regions or areas with increased aridity. Organic lake sediments are divided in 3 classes according the content of organic matter and mineral part: biogenic, clastic and mixed. The value of sapropel as natural resource increases with the content of organic matter and main applications of sapropel are in agriculture, medicine, cosmetic and chemical industry. The research of sapropel in Latvia has shown that the total amount of this natural resource is close to 2 billion m3 or ~500 million tons. Sapropel has fine, dispersed structure and is plastic, but colour due to the high natural content of phosphorus usually is dark blue, later after drying it becomes light blue. Main research of the sapropel nowadays is turned to investigation of interactions among organic and mineral part of the sapropel with living organisms thus giving the inside look in processes and biological activity of the formation. From the chemical point of view sapropel contains lipids (bitumen), water-soluble substances that are readily hydrolyzed, including humic and fulvic acids, cellulose and the residual part, which does not hydrolyze. In this work we have analyzed the class of organic sapropel: peaty, cyanobacterial and green algal types, as well as siliceous sapropel, in order to determine the presence of biologically active substances, including humic substances, proteins and enzymes as well as to check free radical scavenging activity. Samples were collected from lakes

  18. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Engel, Katja; Stearns, Jennifer C.; Masella, Andre P.; Pawliszyn, Richard; Neufeld, Josh D.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology. PMID:21858055

  19. Salinity tolerances of two Australian freshwater turtles, Chelodina expansa and Emydura macquarii (Testudinata: Chelidae)

    PubMed Central

    Bower, Deborah S.; Scheltinga, David M.; Clulow, Simon; Clulow, John; Franklin, Craig E.; Georges, Arthur

    2016-01-01

    Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa, exposed to freshwater (0‰) and brackish water (15‰, representing a hyperosmotic environment). Brackish water is common in the Murray–Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15‰ water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa. Individuals of both species reduced feeding in 15‰ water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles. PMID:27757236

  20. The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella

    PubMed Central

    2011-01-01

    Background Publication of the first diatom genome, that of Thalassiosira pseudonana, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated T. pseudonana as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world's oceans. Results The natural distribution of T. pseudonana spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) T. pseudonana marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, T. pseudonana is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of T. pseudonana and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that T. pseudonana is more appropriately classified by its original name, Cyclotella nana. Cyclotella contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of T. pseudonana. Conclusions The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of T. pseudonana, and the genes underlying those traits, might differ from those of strictly marine diatoms. The freshwater ancestry of T. pseudonana might therefore confound generalizations about the physiological and metabolic properties of marine diatoms. The freshwater component of T. pseudonana's history merits careful consideration in the interpretation of experimental data collected for this important model species. PMID:21569560

  1. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    PubMed

    Sauder, Laura A; Engel, Katja; Stearns, Jennifer C; Masella, Andre P; Pawliszyn, Richard; Neufeld, Josh D

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  2. The freshwater transport and dynamics of the western Maine coastal current

    USGS Publications Warehouse

    Geyer, W.R.; Signell, R.P.; Fong, D.A.; Wang, Jingyuan; Anderson, D.M.; Keafer, B.A.

    2004-01-01

    Observations in the Gulf of Maine, USA, were used to characterize the freshwater transport, temporal variability and dynamics of the western Maine coastal current. These observations included moored measurements, multiple hydrographic surveys, and drifter releases during April-July of 1993 and 1994. There is a strong seasonal signal in salinity and along-shore velocity of the coastal current, caused by the freshwater inputs of the rivers entering the western Gulf. Surface salinity within the coastal current during the spring freshet is typically 2psu below ambient, and along-shore currents in the surface layer are directed southwestward at speeds of 0.10-0.20ms-1, occasionally reaching 0.50ms-1. The plume thickness is typically 10-20m in water depths of 50-100m, thus it is well isolated from the bottom over most of its areal extent. The along-coast freshwater transport within the plume varies considerably due to variations in wind stress, but on time scales of weeks to months it follows the variations of riverine input, with a time lag consistent with the advective velocity. Less than half of the transport of the coastal current is explained by the baroclinic gradient; the barotropic forcing associated with the larger-scale dynamics of the Gulf of Maine accounts for about 60% of the transport. The volume of freshwater transport in the coastal current exceeds the local riverine input of fresh water by 30%, suggesting a significant contribution of freshwater transport from the St. John River, 500km northeastward. The measurements within the western Maine coastal current, however, indicate a significant decrease in the baroclinic transport of fresh water along the coast, with an e-folding scale of approximately 200km. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  4. Mesozooplankton affinities in a recovering freshwater estuary

    NASA Astrophysics Data System (ADS)

    Chambord, Sophie; Maris, Tom; Colas, Fanny; Van Engeland, Tom; Sossou, Akoko-C.; Azémar, Frédéric; Le Coz, Maïwen; Cox, Tom; Buisson, Laetitia; Souissi, Sami; Meire, Patrick; Tackx, Michèle

    2016-08-01

    Water quality of the Scheldt estuary (Belgium/The Netherlands) has considerably improved in recent years, especially in the upstream, freshwater reaches. Within the zooplankton community, the copepod Eurytemora affinis, typically abundant in brackish water and quasi-absent from freshwater before 2007, has since substantially developed in the latter, where it now represents 90% of the crustacean mesozooplankton community. Simultaneously, cyclopoid copepod abundance has greatly decreased, while cladoceran abundance did not change. The study aim was: 1) to verify if the zooplankton community described for the period 2007-2009 by Mialet et al. (2011) has stabilized until present, and 2) to look for the environmental conditions favouring E. affinis development and causing changes in the upstream freshwater zooplankton community. The 2002-2012 temporal evolution of the zooplankton distribution at three stations in the upstream freshwater Scheldt estuary was analyzed. Water quality remained better after 2007 than before, and some factors revealed continuous improvement in annual mean concentrations (e.g. increase in O2, decrease in BOD5 and NH4sbnd N concentration). The increase in oxygen and the decrease in NH4sbnd N concentration, together with low discharge during summer were the main environmental factors explaining the development and timing of E. affinis in the upstream freshwater reach. In this reach, E. affinis maximal abundance is shifted to higher temperatures (summer) compared to its typical maximum spring abundance peak in the brackish zone of the Scheldt estuary and in most temperate estuaries. The changes in zooplankton community followed a temporal and spatial gradient induced by the spatio-temporal evolution of water quality improvement. The most downstream station (3) allowed E. affinis development (oxygen concentration > 4 mg L-1; NH4sbnd N concentration < 2 mg L-1, discharge (Q) < 50 m3 s-1) from 2007 onwards, and this station showed the highest E

  5. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  6. Can the freshwater bacterial communities shift to the "marine-like" taxa?

    PubMed

    Zhang, Lei; Gao, Guang; Tang, Xiangming; Shao, Keqiang

    2014-11-01

    A mesocosm experiment was used to study the response of a freshwater bacterial community to increasing salinity. Bacterial community composition in the control and saline groups was analyzed using polymerase chain reaction (PCR)-terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA genes, followed by clonal sequencing of eight selected samples. Cluster analysis and phylogenetic analysis revealed that the bacterial communities in pre- and post-salt addition samples were significantly different. Detailed analysis showed: (i) the existing bacterial taxa markedly declined from freshwater to hypersaline habitats, although some taxa maintain balanced growth over a small salinity range through inter-genus changes in community structures; (ii) the addition of salt induced a clear shift in the community structure toward a striking increase in the relative abundance of the latent "marine-like" genera (e.g., Alcanivorax and Roseovarius). The reasons may be that freshwater bacteria adapt to live in low salt concentrations and low osmotic pressure. They were not adapted to high concentrations of salt, and their acute response to increasing salinity resulted in significantly decreased numbers. However, as the salinity increases, rare members of the ever-present community (rare or dormant bacterial taxa in the "microbial seed bank") rise to the fore, while previous dominant members drop away. This study provides direct evidence for bacterial succession from halosensitive taxa in freshwater to halotolerant ones in response to water salinization.

  7. Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake▿

    PubMed Central

    Deutzmann, Jörg S.; Schink, Bernhard

    2011-01-01

    Anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow 14CO2 formation from 14CH4 in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas 14CO2 formation without and with sulfate addition was negligible, addition of nitrate increased 14CO2 formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of the pmoA and 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions. PMID:21551281

  8. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Drift, C. van der; Vogels, G.D.

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 {micro}mol of DMS was stoichiometrically converted into 112 {micro}mol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, the study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  9. The Microstructure of the Cultured Freshwater Pearl

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Ramirez, D. A.

    2012-04-01

    Pearls are composite materials of calcium carbonate polymorphs (calcite and aragonite) and organic macromolecules (polysaccharides and proteins) which contain genes and transcription factors that direct the formation of calcite and aragonite polygonal tiles, including their shape, size, and geometrical accommodation. These biologically derived instructions are transmitted from donor mussel shell mantle tissue by inserting seed grafts into freshwater production mussels. In this paper the internal and external freshwater pearl structure for the cultured triangle mussel Hyriopsis cumingii is examined by light optical microscopy, scanning electron microscopy, and x-ray diffraction. Pearl interior crystal structure evolves as mainly concentric calcite tile layers from the seed sac, with mixtures of aragonite polygonal (hexagonal-like) tiles. Within about 0.8-1 mm from the ideal (curved) pearl surface, the aragonite tiles form as continuous, overlapping layers 300-400 nm thick, with interlamellar organic material.

  10. Effects of Acid rain on freshwater ecosystems.

    PubMed

    Schindler, D W

    1988-01-01

    Acid-vulnerable areas are more numerous and widespread than believed 7 years ago. Lakes and streams in acid-vulnerable areas of northeastern North America have suffered substantial declines in acid-neutralizing capacity, the worst cases resulting in biological damage. Many invertebrates are very sensitive to acidification, with some disappearing at pH values as high as 6.0. However, the recent rate of acidification of lakes is slower than once predicted, in part the result of decreases in sulfur oxide emissions. A discussion of some of the processes that have contributed to the acidification of lakes as well as those that have protected acid-sensitive freshwaters is presented. The author is in the Department of Fisheries and Oceans, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.

  11. Three new ascomycetes from freshwater in China.

    PubMed

    Hu, Dian-Ming; Cai, Lei; Hyde, Kevin D

    2012-01-01

    Three new freshwater ascomycetes, Diaporthe aquatica sp. nov. (Diaporthaceae), Ophioceras aquaticus sp. nov. (Magnaporthaceae) and Togninia aquatica sp. nov. (Togniniaceae), are described and illustrated based on morphological and molecular data (ITS, 18S, 28S rDNA sequences). Diaporthe aquatica is characterized by globose to subglobose, black ascomata with long necks, broadly cylindrical to obclavate asci, and small, ellipsoidal to fusiform, one-septate, hyaline ascospores; it is unusual among Diaporthe species in the fact that it lacks a stroma and has freshwater habitat. Ophioceras aquaticus is characterized by globose ascomata with a long beak, cylindrical, eight-spored asci with J- subapical rings and 3-5-septate filiform ascospores with slightly acute ends. Togninia aquatica is characterized by globose ascomata with long necks, clavate and truncate asci clustered on distinct ascogenous hyphae, and small, reniform, hyaline ascospores. Differences among the new taxa and similar species are discussed. PMID:22684292

  12. Superhydrophobic resistance to dynamic freshwater biofouling inception.

    PubMed

    Krishnan, K Ghokulla; Malm, Peter; Loth, Eric

    2015-01-01

    Superhydrophobic nanotextured surfaces have gained increased usage in various applications due to their non-wetting and self-cleaning abilities. The aim of this study was to investigate nanotextured surfaces with respect to their resistance to the inception of freshwater biofouling at transitional flow conditions. Several coatings were tested including industry standard polyurethane (PUR), polytetrafluoroethylene (PTFE), capstone mixed polyurethane (PUR + CAP) and nanocomposite infused polyurethane (PUR + NC). Each surface was exposed to freshwater conditions in a lake at 4 m s(-1) for a duration of 45 min. The polyurethane exhibited the greatest fouling elements, in terms of both height and number of elements, with the superhydrophobic nanocomposite based polyurethane (PUR + NC) showing very little to no fouling. A correlation between the surface characteristics and the degree of fouling inception was observed.

  13. Freshwater aquatic plant biomass production in Florida

    SciTech Connect

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  14. The Molecular Diversity of Freshwater Picoeukaryotes Reveals High Occurrence of Putative Parasitoids in the Plankton

    PubMed Central

    Lefèvre, Emilie; Roussel, Balbine; Amblard, Christian; Sime-Ngando, Télesphore

    2008-01-01

    Eukaryotic microorganisms have been undersampled in biodiversity studies in freshwater environments. We present an original 18S rDNA survey of freshwater picoeukaryotes sampled during spring/summer 2005, complementing an earlier study conducted in autumn 2004 in Lake Pavin (France). These studies were designed to detect the small unidentified heterotrophic flagellates (HF, 0.6–5 µm) which are considered the main bacterivores in aquatic systems. Alveolates, Fungi and Stramenopiles represented 65% of the total diversity and differed from the dominant groups known from microscopic studies. Fungi and Telonemia taxa were restricted to the oxic zone which displayed two fold more operational taxonomic units (OTUs) than the oxycline. Temporal forcing also appeared as a driving force in the diversification within targeted organisms. Several sequences were not similar to those in databases and were considered as new or unsampled taxa, some of which may be typical of freshwater environments. Two taxa known from marine systems, the genera Telonema and Amoebophrya, were retrieved for the first time in our freshwater study. The analysis of potential trophic strategies displayed among the targeted HF highlighted the dominance of parasites and saprotrophs, and provided indications that these organisms have probably been wrongfully regarded as bacterivores in previous studies. A theoretical exercise based on a new ‘parasite/saprotroph-dominated HF hypothesis’ demonstrates that the inclusion of parasites and saprotrophs may increase the functional role of the microbial loop as a link for carbon flows in pelagic ecosystems. New interesting perspectives in aquatic microbial ecology are thus opened. PMID:18545660

  15. Estimated freshwater withdrawals in Texas, 1990

    USGS Publications Warehouse

    Lurry, Dee L.

    1994-01-01

    This report presents 1990 freshwater withdrawal estimates for Texas by source and category. Withdrawal source is either ground water or surface water. Withdrawal categories include: self-supplied irrigation, thermoelectric-power generation, water supply, industrial and mining, and other (domestic, commercial, livestock). Withdrawal data are aggregated by county, major aquifer, and principal river basin. Only the four major categories of irrigation, thermoelectric-power generation, water supply, and industrial and mining are illustrated in this report, although all data are tabulated.

  16. Effects of pollution on freshwater fish

    SciTech Connect

    Spehar, R.L.; Christensen, G.M.; Curtis, C.; Lemke, A.E.; Norberg, T.J.; Pickering, Q.H.

    1982-06-01

    An extensive review of the literature with 353 references dealing with the toxicity of inorganic and organic pollutants, and industrial and municipal effluents on fish is presented. Indices of water quality such as dissolved gases and pH were discussed. A very detailed summary with over 200 entries of the acute and chronic toxicity of inorganic and organic pollutants to freshwater fish is presented as a table.(KRM)

  17. Freshwater peat on the continental shelf

    USGS Publications Warehouse

    Emery, K.O.; Wigley, R.L.; Bartlett, A.S.; Rubin, M.; Barghoorn, E.S.

    1967-01-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west.

  18. Freshwater peat on the continental shelf.

    PubMed

    Emery, K O; Wigley, R L; Bartlett, A S; Rubin, M; Barghoorn, E S

    1967-12-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west. PMID:17801856

  19. Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S.

    SciTech Connect

    David Feldman; Amanda Slough; Gary Garrett

    2008-06-01

    There is a myriad of uses to which our country's freshwater supply is currently committed. Together with increasing quantities of consumption, there are growing constraints on water availability. In our future there will be two elements of consumption at the forefront of concern: availability and efficiency. Availability of freshwater is the most important of these and is the subject of this report. To use water efficiently, we must first have it. Efficiency is key to ensuring availability for future needs. As population grows and economic and technology demands increase - especially for thermoelectric power - needs for freshwater will also increase. Thus, using our limited supplies of freshwater must be done as efficiently as possible. Thermoelectric generating industry is the largest user of our nation's water resources, including fresh, surface, ground, and saline water. Saline water use accounts for approximately 30% of thermoelectric use, while the remaining 70% is from freshwater sources. The U.S. Geological Survey (USGS) estimates that thermoelectric generation accounts for roughly 136,000 million gallons per day (MGD), or 39% of freshwater withdrawals. This ranks slightly behind agricultural irrigation as the top source of freshwater withdrawals in the U.S. in 2000. For Americans to preserve their standard of living and maintain a thriving economy it is essential that greater attention be paid to freshwater availability in efforts to meet energy demands - particularly for electric power. According to projections by the Energy Information Administration's (EIA) Annual Energy Outlook 2006 (AEO 2006) anticipated growth of thermoelectric generating capacity will be 22% between 2005 and 2030. In the 2007 Report, EIA estimates that capacity to grow from approximately 709 GW in 2005 to 862 GW in 20303. These large increases in generating capacity will result in increased water demands by thermoelectric power plants and greater competition over water between the

  20. Pesticides in Brazilian freshwaters: a critical review.

    PubMed

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions. PMID:27367607

  1. Monitoring Global Freshwater Resources with GRACE

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Famiglietti, J. S.; Velicogna, I.; Swenson, S. C.; Chambers, D. P.

    2011-12-01

    Freshwater resources include surface waters, groundwater, and seasonal snowpack. Given adequate ground based measurements, all of these can be monitored effectively, however, outside of the developed world such measurements often are not systematic and the data not centralized, and as a result reports of freshwater availability may be largely anecdotal. Even in the developed world it can be difficult to quantify changes in groundwater storage over large scales. Owing to its global coverage, satellite remote sensing has become a valuable tool for freshwater resources assessment. In particular, the Gravity Recovery and Climate Experiment (GRACE) has demonstrated an unequaled ability to monitor total terrestrial water storage including groundwater at regional to continental scales. In this presentation we will identify apparent trends in terrestrial water storage observed by GRACE over the past nine years and attempt to explain their origins and predict whether they are likely to continue. Trends in certain regions where groundwater extraction has significantly depleted aquifers, including northern India and California's Central Valley, will be discussed in detail.

  2. Pesticides in Brazilian freshwaters: a critical review.

    PubMed

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.

  3. Pesticide toxicity index for freshwater aquatic organisms, 2nd edition

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.; Moran, Patrick W.; Nowell, Lisa H.

    2006-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups. Although the PTI does not determine whether water in a sample is

  4. Estimated withdrawals and use of freshwater in New Hampshire, 1990

    USGS Publications Warehouse

    Medalie, Laura; Horn, M.A.

    1994-01-01

    Estimated freshwater withdrawals during 1990 in New Hampshire totaled about 422 million gallons per day from ground-water and surface-water sources. The largest withdrawals were for thermoelectric-power generation (60 percent), public supply (23 percent), and industrial use (9 percent). Most withdrawals, 358 million gallons per day, were made from surface- water sources, as compared to 63.7 million gallons per day from ground-water sources. The largest with- drawals were in the Merrimack river basin (322 million gallons per day). An additional 46,000 million gallons per day was used instream for hydroelectric-power generation, primarily in the Upper Androscoggin and Upper Connecticut River subbasins. Other information describing water-use patterns is shown in tables, bar graphs, pie charts, maps, and accompanying text. The data are aggregated by river basin (hydrologic cataloging unit), and all values are reported in million gallons per day.

  5. Modifications of traps to reduce bycatch of freshwater turtles

    USGS Publications Warehouse

    Bury, R. Bruce

    2011-01-01

    Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.

  6. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  7. Plastics and other anthropogenic debris in freshwater birds from Canada.

    PubMed

    Holland, Erika R; Mallory, Mark L; Shutler, Dave

    2016-11-15

    Plastics in marine environments are a global environmental issue. Plastic ingestion is associated with a variety of deleterious health effects in marine wildlife, and is a focus of much international research and monitoring. However, little research has focused on ramifications of plastic debris for freshwater organisms, despite marine and freshwater environments often having comparable plastic concentrations. We quantified plastic and other anthropogenic debris in 350 individuals of 17 freshwater and one marine bird species collected across Canada. We determined freshwater birds' anthropogenic debris ingestion rates to be 11.1% across all species studied. This work establishes that plastics and other anthropogenic debris are a genuine concern for management of the health of freshwater ecosystems, and provides a baseline for the prevalence of plastic and other anthropogenic debris ingestion in freshwater birds in Canada, with relevance for many other locations.

  8. Plastics and other anthropogenic debris in freshwater birds from Canada.

    PubMed

    Holland, Erika R; Mallory, Mark L; Shutler, Dave

    2016-11-15

    Plastics in marine environments are a global environmental issue. Plastic ingestion is associated with a variety of deleterious health effects in marine wildlife, and is a focus of much international research and monitoring. However, little research has focused on ramifications of plastic debris for freshwater organisms, despite marine and freshwater environments often having comparable plastic concentrations. We quantified plastic and other anthropogenic debris in 350 individuals of 17 freshwater and one marine bird species collected across Canada. We determined freshwater birds' anthropogenic debris ingestion rates to be 11.1% across all species studied. This work establishes that plastics and other anthropogenic debris are a genuine concern for management of the health of freshwater ecosystems, and provides a baseline for the prevalence of plastic and other anthropogenic debris ingestion in freshwater birds in Canada, with relevance for many other locations. PMID:27476006

  9. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  10. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  11. Application of adaptive cluster sampling to low-density populations of freshwater mussels

    USGS Publications Warehouse

    Smith, D.R.; Villella, R.F.; Lemarie, D.P.

    2003-01-01

    Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.

  12. On the dynamics of a response to volume flux forcing

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Koehl, Armin; Stammer, Detlef

    2015-04-01

    The dynamical impact of surface volume flux forcing on the global oceans circulation is investigated for the period 1949-2011. As part of the study an ocean circulation model is forced in two ways using NCEP surface freshwater forcing: a virtual salt flux version and a volume flux version. The resulting differences in the circulation can be described by the Goldsbrough-Stommel circulation. This barotropic circulation is on the order of 1 Sv, weakens the mean flow of the world oceans and changes the sea level. The meridional freshwater and heat transport differences between these two versions are about 5% of the mean transports. Decomposing these transports into overturning and gyre components, reveals that it is the overturning component that dominates the transport differences that are caused by the volume flux forcing. The overturning freshwater and heat transports induced by the volume flux weaken the mean overturning related transports of the world oceans expect for the southern Pacific-Indian oceans. Furthermore, the volume flux also has impact on the meridional overturning circulation. The overturning transport differences are on the order of 0.1 Sv, which at the surface are described by the volume transports of the volume flux forcing.

  13. Strategic forces

    SciTech Connect

    Not Available

    1990-10-01

    The Air Force now plans to retain the Minuteman II and III missile force through fiscal year 2008. Introduced about 25 years ago, these missiles have served as a nuclear deterrence for longer than initially envisioned. Over the extended lives of the systems, questions have arisen over their continued reliability and operational effectiveness, particularly the Minuteman II system. Limited flight testing, due to a shortage of test missiles, and reduced reliability caused by age-related deterioration of guidance computers and propulsion motors are two factors undermining confidence in the Minuteman II. GAO believes that the Minuteman II could be retired before 1998 as presently contemplated under an assumption of a Strategic Arms Reduction Talks agreement. An alternative would be to reinstate the Air Force's plans to replace deteriorated missile components and acquire the assets needed to resume flight testing at rates necessary to restore and sustain confidence in the system's performance through fiscal year 2008. However, on the basis of current test schedules, GAO is concerned that components to test the missile's warheads will be depleted by about 1999.

  14. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    PubMed Central

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E.; Feldman, Mark; Forstner, Michael R. J.

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  15. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    PubMed

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  16. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    PubMed

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  17. Impact of resource availability on species composition and diversity in freshwater nematodes.

    PubMed

    Michiels, Iris C; Traunspurger, Walter

    2005-01-01

    This study investigates the long-term effects of resource availability in a freshwater nematode community. We carried out a mesocosm experiment where natural nematode communities were exposed to nutrient addition/depletion over 2 years. Compared to the nutrient-addition treatment, species richness and diversity were strongly reduced upon nutrient depletion. The functional group of bacterial feeders particularly suffered severely from nutrient depletion. The decrease in diversity of bacterial feeders was linked to reduced species richness and diversity of large omnivorous species, as predicted by trophic-dynamic models. Tilman's (1976) statement, that under low nutrient levels the best competitor dominates the system, was applicable in our system. Upon nutrient depletion, resource depletion led to a monoculture of 1 small bacterial feeder, but even after 2 years of resource depletion, up to 16 species still coexisted. Our results provide strong evidence that freshwater nematode systems can be regulated by nutrient competition. PMID:15365809

  18. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify

  19. A Multivariate Analysis of Freshwater Variability over West Africa

    NASA Astrophysics Data System (ADS)

    Andam-Akorful, S. A.; He, X.; Ferreira, V. G.; Quaye-Ballard, J. A.

    2015-12-01

    As one of the most vulnerable regions to climate change, West Africa (WA) has since the 1970s suffered sustained reduction in rainfall amounts, leading to droughts and associated negative impacts on its water resources. Although rainfall rates have been reported to have experienced a degree of recovery, dry conditions persist. Additionally, the region faces perennial flooding, thus resulting in a highly variable hydrologic regime due to the extreme climate conditions. This therefore necessitates routine monitoring of the WA's freshwater reserves and its response to climate variations at the short and long term scales to aid sustainable use and management. However, this monitoring is hampered by data deficiency issues within the region. Consequently, dynamics leading to changes in water availability over the region are not completely understood. In this work, the recent flux and state of freshwater availability over WA from 1979 to 2013 is assessed by investigating the coupled variability of GRACE-derived terrestrial water storage (TWS) and its changes (TWSC) estimates with rainfall, evapotranspiration, and land surface air temperature (LSAT), as well as, major global and regional teleconnection indices using complex principal component analysis and wavelet transforms. Since GRACE covers a relatively short period, and thereby present challenges for long to medium term analyses, Artificial Neural Network (ANN) is employed to extend the GRACE series to 1979. The results from the ANN proved to be robust upon evaluation; spatially-averaged series for major basins and sub-climatic zones, as well as, the whole of WA presented RMSE, Nash-Sutcliffe efficient, and coefficient of determination (R2) of 11.83 mm, 0.76 and 0.89 respectively. Overall, the results obtained from this study indicate that, sustained increase in water flux, in terms of TWSC, contributed to a resurgence in freshwater reserves in the 21st century over WA from the low levels in the late 20th century

  20. Carbohydrate force fields

    PubMed Central

    Foley, B. Lachele; Tessier, Matthew B.; Woods, Robert J.

    2014-01-01

    Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion. PMID:25530813

  1. Reassessing the planetary boundary for freshwater consumption

    NASA Astrophysics Data System (ADS)

    Gerten, Dieter; Pastor, Amandine; Jägermeyr, Jonas; Hoff, Holger; Rockström, Johan; Kummu, Matti

    2014-05-01

    This presentation reviews the conceptual and quantitative foundation of the recently suggested 'planetary boundary' for freshwater (i.e. the volume of human 'blue' water consumption that is deemed to be tolerable; see Rockström et al. in Nature 2009). It also proposes ways forward to refine and reassess this planetary boundary. As a key element of such a revision we provide a bottom-up quantification of local water availabilities taking account of environmental flow requirement in a spatially explicit manner and using five different methods to estimate these flow requirements with a global dynamic hydrology and vegetation model (LPJmL). Our analysis suggests that the planetary boundary for freshwater consumption may adopt a value of about 2800 km3 yr-1 (which is the average of an uncertainty range of 1100-4500 km3 yr-1). This is notably lower than the original suggestion based on a simpler top-down analysis that relied on some global estimates of environmental flow requirements (4,000 km3 yr-1, the lower value of an uncertainty range of 4000-6000 km3 yr-1). Although assessed with spatial detail, this new estimate remains provisional, pending further refinement by analyses of local water accessibility and further constraints up-scaled to the global domain, including study of cascading impacts on Earth system properties. Nonetheless, with a current blue water consumption of >1,700 km3 yr-1, it appears that the freshwater boundary appears is being approached fast, and perhaps faster than suggested earlier. Thus, design opportunities to remain within this boundary are imperative - we argue that their comprehensive quantification requires analysis of tradeoffs with other planetary boundaries such as those for land use and climate change.

  2. Exchanges of volume, heat and freshwater through the Canadian Arctic Archipelago: a numerical study.

    NASA Astrophysics Data System (ADS)

    Grivault, Nathan; Hu, Xianmin; Myers, Paul G.

    2016-04-01

    The Canadian Arctic Archipelago (CAA) is a tangle of shallow basins interlinked by narrow straits. It is the main pathway of liquid freshwater from the Arctic Ocean to North Atlantic. It also receives runoff from the Mackenzie River and the glaciers of the different islands that composes the archipelago. This study is based on a set of numerical experiments using a regional configuration of the coupled ocean/sea-ice general circulation model NEMO. We consider a long-term hindcast (1958-2014) as well as the more recent period (2002-2014) using high resolution inter-annual forcing from Environment Canada. We used an improved mapping of runoff to ensure correct amounts of freshwater are added to the system. We evaluate the flow pathways through the CAA, as well as the transport of volume, heat and freshwater. Results are evaluated against observational sections. We also look at the variability and the dynamics driving it. Passive tracers are used to complement the analysis.

  3. Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models

    NASA Astrophysics Data System (ADS)

    Ding, Yanni; Carton, James A.; Chepurin, Gennady A.; Steele, Michael; Hakkinen, Sirpa

    2016-04-01

    This study examines the processes governing the seasonal response of the Arctic Ocean and sea ice to surface forcings as they appear in historical simulations of 14 Coupled Model Intercomparison Project Phase 5 coupled climate models. In both models and observations, the seasonal heat budget is dominated by a local balance between net surface heating and storage in the heat content of the ocean and in melting/freezing of sea ice. Observations suggest ocean heat storage is more important than sea ice melt, while in most of these models, sea ice melt dominates. Seasonal horizontal heat flux divergence driven by the seasonal cycle of volume transport is only important locally. In models and observations, the dominant terms in the basin-average seasonal freshwater budget are the storages of freshwater between the ocean and sea ice, and the exchange between the two. The largest external source term is continental discharge in early summer, which is an order of magnitude smaller. The appearance of sea ice (extent and volume) and also ocean stratification in both the heat and freshwater budgets provides two links between the budgets and provides two mechanisms for feedback. One consequence of such an interaction is the fact that models with strong/weak seasonal surface heating also have strong/weak seasonal haline and temperature stratification.

  4. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  5. Freshwater aspects of anadromous salmonid enhancement

    USGS Publications Warehouse

    Gould, Rowan W.

    1982-01-01

    Freshwater enhancement of anadromous salmonid populations has been practiced in the United States and Canada since the late 1800's. Reduction of natural spawning habitat and increasing fishing pressure make artificial enhancement a possible alternative to declining populations. Enhancement of anadromous salmonids involved improvement of the natural environment and reducing natural mortality. Methods of enhancement include fishways, spawning and rearing channels, stream rehabilitation, lake fertilization, environmental management, and artificial propagation techniques. Five Pacific salmon species and steelhead trout are commonly enhanced, primarily in watershed entering the Pacific Ocean and Great Lakes. Enhancement efforts contribute heavily to a commercial and sport industry realizing over $1.5 billion.

  6. Mitochondrial phylogeography of New Zealand freshwater crayfishes, Paranephrops spp.

    PubMed

    Apte, S; Smith, P J; Wallis, G P

    2007-05-01

    Tectonic movement at the boundary of the Indo-Australian and Pacific Plates during the Miocene and Pliocene is recognized as a driving force for invertebrate speciation in New Zealand. Two endemic freshwater crayfish (koura) species, Paranephrops planifrons White 1842 and Paranephrops zealandicus White 1842, represent good model taxa to test geological hypotheses because, due to their low dispersal capacity and life history, geographical restriction of populations may be caused by vicariant processes. Analysis of a mitochondrial DNA marker (cytochrome oxidase subunit I) reveals not two, but three major koura lineages. Contrary to expectation, the cryptic West Coast group appears to be more closely related to P. zealandicus than to P. planifrons and has diverged earlier than the final development (Late Pleistocene) of Cook Strait. Our date estimates suggest that koura lineage diversification probably coincided with early to mid-Alpine orogeny in the mid-Pliocene. Estimates of node ages and the phylogenies are inconsistent with both ancient Oligocene and recent postglacial Pleistocene range expansion, but suggest central to north colonization of North Island and west to east movement in South Island during mid- to late Pliocene. Crypsis and paraphyly of the West Coast group suggest that morphological characters presently used to classify koura species could be misleading. PMID:17444900

  7. Hotspots in ground and surface water carbon fluxes through a freshwater to marine (mangrove) transition zone

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Welti, N.; Hayes, M.; Lockington, D. A.

    2014-12-01

    The transfer of carbon and water from coastal freshwater wetlands to intertidal and marine zones is significant for sustaining ecosystem processes, particularly within mangroves environments. Large increases in carbon and nutrient fluxes within spatially confined zones (hotspots) are significant as drivers for broader cycling. How these processes relate to the transfers between surface and groundwater systems, as well as the transition from freshwater to marine environments, remains poorly understood. We investigated the flux of carbon and water from a freshwater wetland, to a saltmarsh and then mangroves, both within the main surface channel and within a comprehensive shallow groundwater bore network. We were able to characterise the main spatial trends in water gradients and mixing (using salinity, hydraulic gradients, stable water isotopes, and temperature) over seasonal cycles. In addition, at the same time we investigated the changes in dissolved organic carbon concentration and quality (fluorescence, UV), as well as nutrients (NO3, NH4). This revealed the river and tidal channel to be a significant export pathway for organic carbon, which was generally highly aromatic and recalcitrant. However, we also found that isolated sections of the brackish groundwater mixing zone between freshwater and marine provided a consistently high DOC 'hotspot' of very high quality carbon. This hotspot has high lateral groundwater gradients and therefore likely transports this carbon to the rest of the mangrove subsurface, where it is rapidly assimilated. These results imply large spatial heterogeneity in the carbon cycling between freshwater and marine environments, and have significant implications for the processing of the organic matter, and therefore also the respiration of greenhouse gases such as CO2 and CH4.

  8. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event

    PubMed Central

    Carlson, Anders E.; Clark, Peter U.; Haley, Brian A.; Klinkhammer, Gary P.; Simmons, Kathleen; Brook, Edward J.; Meissner, Katrin J.

    2007-01-01

    The Younger Dryas cold interval represents a time when much of the Northern Hemisphere cooled from ≈12.9 to 11.5 kiloyears B.P. The cause of this event, which has long been viewed as the canonical example of abrupt climate change, was initially attributed to the routing of freshwater to the St. Lawrence River with an attendant reduction in Atlantic meridional overturning circulation. However, this mechanism has recently been questioned because current proxies and dating techniques have been unable to confirm that eastward routing with an increase in freshwater flux occurred during the Younger Dryas. Here we use new geochemical proxies (ΔMg/Ca, U/Ca, and 87Sr/86Sr) measured in planktonic foraminifera at the mouth of the St. Lawrence estuary as tracers of freshwater sources to further evaluate this question. Our proxies, combined with planktonic δ18Oseawater and δ13C, confirm that routing of runoff from western Canada to the St. Lawrence River occurred at the start of the Younger Dryas, with an attendant increase in freshwater flux of 0.06 ± 0.02 Sverdrup (1 Sverdrup = 106 m3·s−1). This base discharge increase is sufficient to have reduced Atlantic meridional overturning circulation and caused the Younger Dryas cold interval. In addition, our data indicate subsequent fluctuations in the freshwater flux to the St. Lawrence River of ≈0.06–0.12 Sverdrup, thus explaining the variability in the overturning circulation and climate during the Younger Dryas. PMID:17420461

  9. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event

    USGS Publications Warehouse

    Carlson, A.E.; Clark, P.U.; Haley, B.A.; Klinkhammer, G.P.; Simmons, K.; Brook, E.J.; Meissner, K.J.

    2007-01-01

    The Younger Dryas cold interval represents a time when much of the Northern Hemisphere cooled from ???12.9 to 11.5 kiloyears B.P. The cause of this event, which has long been viewed as the canonical example of abrupt climate change, was initially attributed to the routing of freshwater to the St. Lawrence River with an attendant reduction in Atlantic meridional overturning circulation. However, this mechanism has recently been questioned because current proxies and dating techniques have been unable to confirm that eastward routing with an increase in freshwater flux occurred during the Younger Dryas. Here we use new geochemical proxies (??Mg/Ca, U/Ca, and 87Sr/86Sr) measured in planktonic foraminifera at the mouth of the St. Lawrence estuary as tracers of freshwater sources to further evaluate this question. Our proxies, combined with planktonic ??18Oseawater and ??13C, confirm that routing of runoff from western Canada to the St. Lawrence River occurred at the start of the Younger Dryas, with an attendant increase in freshwater flux of 0.06 ?? 0.02 Sverdrup (1 Sverdrup = 106 m3??s-1). This base discharge increase is sufficient to have reduced Atlantic meridional overturning circulation and caused the Younger Dryas cold interval. In addition, our data indicate subsequent fluctuations in the freshwater flux to the St. Lawrence River of ???0.06-0.12 Sverdrup, thus explaining the variability in the overturning circulation and climate during the Younger Dryas. ?? 2007 by The National Academy of Sciences of the USA.

  10. Recent radiation in a marine and freshwater dinoflagellate species flock

    PubMed Central

    Annenkova, Nataliia V; Hansen, Gert; Moestrup, Øjvind; Rengefors, Karin

    2015-01-01

    Processes of rapid radiation among unicellular eukaryotes are much less studied than among multicellular organisms. We have investigated a lineage of cold-water microeukaryotes (protists) that appear to have diverged recently. This lineage stands in stark contrast to known examples of phylogenetically closely related protists, in which genetic difference is typically larger than morphological differences. We found that the group not only consists of the marine-brackish dinoflagellate species Scrippsiella hangoei and the freshwater species Peridinium aciculiferum as discovered previously but also of a whole species flock. The additional species include Peridinium euryceps and Peridinium baicalense, which are restricted to a few lakes, in particular to the ancient Lake Baikal, Russia, and freshwater S. hangoei from Lake Baikal. These species are characterized by relatively large conspicuous morphological differences, which have given rise to the different species descriptions. However, our scanning electron microscopic studies indicate that they belong to a single genus according to traditional morphological characterization of dinoflagellates (thecal plate patterns). Moreover, we found that they have identical SSU (small subunit) rDNA fragments and distinct but very small differences in the DNA markers LSU (large subunit) rDNA, ITS2 (internal transcribed spacer 2) and COB (cytochrome b) gene, which are used to delineate dinoflagellates species. As some of the species co-occur, and all four have small but species–specific sequence differences, we suggest that these taxa are not a case of phenotypic plasticity but originated via recent adaptive radiation. We propose that this is the first clear example among free-living microeukaryotes of recent rapid diversification into several species followed by dispersion to environments with different ecological conditions. PMID:25603395

  11. Recent radiation in a marine and freshwater dinoflagellate species flock.

    PubMed

    Annenkova, Nataliia V; Hansen, Gert; Moestrup, Øjvind; Rengefors, Karin

    2015-08-01

    Processes of rapid radiation among unicellular eukaryotes are much less studied than among multicellular organisms. We have investigated a lineage of cold-water microeukaryotes (protists) that appear to have diverged recently. This lineage stands in stark contrast to known examples of phylogenetically closely related protists, in which genetic difference is typically larger than morphological differences. We found that the group not only consists of the marine-brackish dinoflagellate species Scrippsiella hangoei and the freshwater species Peridinium aciculiferum as discovered previously but also of a whole species flock. The additional species include Peridinium euryceps and Peridinium baicalense, which are restricted to a few lakes, in particular to the ancient Lake Baikal, Russia, and freshwater S. hangoei from Lake Baikal. These species are characterized by relatively large conspicuous morphological differences, which have given rise to the different species descriptions. However, our scanning electron microscopic studies indicate that they belong to a single genus according to traditional morphological characterization of dinoflagellates (thecal plate patterns). Moreover, we found that they have identical SSU (small subunit) rDNA fragments and distinct but very small differences in the DNA markers LSU (large subunit) rDNA, ITS2 (internal transcribed spacer 2) and COB (cytochrome b) gene, which are used to delineate dinoflagellates species. As some of the species co-occur, and all four have small but species-specific sequence differences, we suggest that these taxa are not a case of phenotypic plasticity but originated via recent adaptive radiation. We propose that this is the first clear example among free-living microeukaryotes of recent rapid diversification into several species followed by dispersion to environments with different ecological conditions. PMID:25603395

  12. Recent radiation in a marine and freshwater dinoflagellate species flock.

    PubMed

    Annenkova, Nataliia V; Hansen, Gert; Moestrup, Øjvind; Rengefors, Karin

    2015-08-01

    Processes of rapid radiation among unicellular eukaryotes are much less studied than among multicellular organisms. We have investigated a lineage of cold-water microeukaryotes (protists) that appear to have diverged recently. This lineage stands in stark contrast to known examples of phylogenetically closely related protists, in which genetic difference is typically larger than morphological differences. We found that the group not only consists of the marine-brackish dinoflagellate species Scrippsiella hangoei and the freshwater species Peridinium aciculiferum as discovered previously but also of a whole species flock. The additional species include Peridinium euryceps and Peridinium baicalense, which are restricted to a few lakes, in particular to the ancient Lake Baikal, Russia, and freshwater S. hangoei from Lake Baikal. These species are characterized by relatively large conspicuous morphological differences, which have given rise to the different species descriptions. However, our scanning electron microscopic studies indicate that they belong to a single genus according to traditional morphological characterization of dinoflagellates (thecal plate patterns). Moreover, we found that they have identical SSU (small subunit) rDNA fragments and distinct but very small differences in the DNA markers LSU (large subunit) rDNA, ITS2 (internal transcribed spacer 2) and COB (cytochrome b) gene, which are used to delineate dinoflagellates species. As some of the species co-occur, and all four have small but species-specific sequence differences, we suggest that these taxa are not a case of phenotypic plasticity but originated via recent adaptive radiation. We propose that this is the first clear example among free-living microeukaryotes of recent rapid diversification into several species followed by dispersion to environments with different ecological conditions.

  13. Gastrotricha: A Marine Sister for a Freshwater Puzzle

    PubMed Central

    Todaro, M. Antonio; Dal Zotto, Matteo; Jondelius, Ulf; Hochberg, Rick; Hummon, William D.; Kånneby, Tobias; Rocha, Carlos E. F.

    2012-01-01

    Background Within an evolutionary framework of Gastrotricha Marinellina flagellata and Redudasys fornerise bear special interest, as they are the only Macrodasyida that inhabit freshwater ecosystems. Notwithstanding, these rare animals are poorly known; found only once (Austria and Brazil), they are currently systematised as incertae sedis. Here we report on the rediscovery of Redudasys fornerise, provide an account on morphological novelties and present a hypothesis on its phylogenetic relationship based on molecular data. Methodology/Principal Findings Specimens were surveyed using DIC microscopy and SEM, and used to obtain the 18 S rRNA gene sequence; molecular data was analyzed cladistically in conjunction with data from 42 additional species belonging to the near complete Macrodasyida taxonomic spectrum. Morphological analysis, while providing new information on taxonomically relevant traits (adhesive tubes, protonephridia and sensorial bristles), failed to detect elements of the male system, thus stressing the parthenogenetic nature of the Brazilian species. Phylogenetic analysis, carried out with ML, MP and Bayesian approaches, yielded topologies with strong nodal support and highly congruent with each other. Among the supported groups is the previously undocumented clade showing the alliance between Redudasys fornerise and Dactylopodola agadasys; other strongly sustained clades include the densely sampled families Thaumastodermatidae and Turbanellidae and most genera. Conclusions/Significance A reconsideration of the morphological traits of Dactylopodola agadasys in light of the new information on Redudasys fornerise makes the alliance between these two taxa very likely. As a result, we create Anandrodasys gen. nov. to contain members of the previously described D. agadasys and erect Redudasyidae fam. nov. to reflect this novel relationship between Anandrodasys and Redudasys. From an ecological perspective, the derived position of Redudasys, which is deeply

  14. Toxicity of brominated volatile organics to freshwater biota.

    PubMed

    Binet, Monique T; Stauber, Jenny L; Adams, Merrin S; Rhodes, Stuart; Wech, Janine

    2010-09-01

    As part of a larger study investigating the fate and effects of brominated volatile organic compounds (VOCs) in contaminated groundwaters discharging to surface waters, the toxicity of 1,2 dibromoethene (DBE) and 1,1,2-tribromoethene (TriBE) to freshwater aquatic biota was investigated. Their toxicity to bacteria (Microtox(R)), microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), duckweed (Lemna sp.) and midges (Chironomus tepperi) was determined after careful optimization of the test conditions to minimize chemical losses throughout the tests. In addition, concentrations of DBE and TriBE were carefully monitored throughout the bioassays to ensure accurate calculation of toxicity values. 1,2-Dibromoethene showed low toxicity to most species, with concentrations to cause 50% lethality or effect (LC/EC50 values) ranging from 28 to 420 mg/L, 10% lethality or effect (LC/EC10 values) ranging from 18 to 94 mg/L and no-observed-effect concentrations (NOECs) ranging from 22 to 82 mg/L. 1,1,2-Tribromoethene was more toxic than DBE, with LC/EC50 values of 2.4 to 18 mg/L, LC/EC10 values of 0.94 to 11 mg/L and NOECs of 0.29 to 13 mg/L. Using these limited data, together with data from the only other published study on TriBE, moderate-reliability water quality guidelines (WQGs) were estimated from species sensitivity distributions. The proposed guideline trigger values for 95% species protection with 50% confidence were 2 mg/L for DBE and 0.03 mg/L for TriBE. The maximum concentrations of DBE and TriBE in nearby surface waters (3 and 1 microg /L, respectively) were well below these WQGs, so the risk to the freshwater environment receiving contaminated groundwater inflows was considered to be low, with hazard quotients <1 for both VOCs. Environ.

  15. Prospects for monitoring freshwater ecosystems towards the 2010 targets

    PubMed Central

    Revenga, C; Campbell, I; Abell, R; de Villiers, P; Bryer, M

    2005-01-01

    Human activities have severely affected the condition of freshwater ecosystems worldwide. Physical alteration, habitat loss, water withdrawal, pollution, overexploitation and the introduction of non-native species all contribute to the decline in freshwater species. Today, freshwater species are, in general, at higher risk of extinction than those in forests, grasslands and coastal ecosystems. For North America alone, the projected extinction rate for freshwater fauna is five times greater than that for terrestrial fauna—a rate comparable to the species loss in tropical rainforest. Because many of these extinctions go unseen, the level of assessment and knowledge of the status and trends of freshwater species are still very poor, with species going extinct before they are even taxonomically classified. Increasing human population growth and achieving the sustainable development targets set forth in 2002 will place even higher demands on the already stressed freshwater ecosystems, unless an integrated approach to managing water for people and ecosystems is implemented by a broad constituency. To inform and implement policies that support an integrated approach to water management, as well as to measure progress in halting the rapid decline in freshwater species, basin-level indicators describing the condition and threats to freshwater ecosystems and species are required. This paper discusses the extent and quality of data available on the number and size of populations of freshwater species, as well as the change in the extent and condition of natural freshwater habitats. The paper presents indicators that can be applied at multiple scales, highlighting the usefulness of using remote sensing and geographical information systems technologies to fill some of the existing information gaps. Finally, the paper includes an analysis of major data gaps and information needs with respect to freshwater species to measure progress towards the 2010 biodiversity targets. PMID

  16. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  17. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  18. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Geological Survey Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater... titled ``Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and...

  19. The global status of freshwater fish age validation studies and a prioritization framework for future research

    USGS Publications Warehouse

    Pope, Kevin L.; Hamel, Martin J.; Pegg, Mark A.; Spurgeon, Jonathan J.

    2016-01-01

    Age information derived from calcified structures is commonly used to estimate recruitment, growth, and mortality for fish populations. Validation of daily or annual marks on age structures is often assumed, presumably due to a lack of general knowledge concerning the status of age validation studies. Therefore, the current status of freshwater fish age validation studies was summarized to show where additional effort is needed, and increase the accessibility of validation studies to researchers. In total, 1351 original peer-reviewed articles were reviewed from freshwater systems that studied age in fish. Periodicity and age validation studies were found for 88 freshwater species comprising 21 fish families. The number of age validation studies has increased over the last 30 years following previous calls for more research; however, few species have validated structures spanning all life stages. In addition, few fishes of conservation concern have validated ageing structures. A prioritization framework, using a combination of eight characteristics, is offered to direct future age validation studies and close the validation information gap. Additional study, using the offered prioritization framework, and increased availability of published studies that incorporate uncertainty when presenting research results dealing with age information are needed.

  20. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2016-09-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that

  1. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2014-12-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that

  2. Freshwater fluxes through the Western Fram Strait

    NASA Astrophysics Data System (ADS)

    Meredith, Michael; Heywood, Karen; Dennis, Paul; Goldson, Laura; White, Rowan; Fahrbach, Eberhard; Schauer, Ursula; Østerhus, Svein

    Two hydrographic and δ18O transects across Fram Strait (Aug-Sept 1997, 1998) are used to examine freshwater contributions to the East Greenland Current (EGC). The EGC featured up to ˜16% meteoric water in both years, but was made comparatively more saline through the formation of up to ˜11 m of sea ice. We derive meteoric water fluxes of ˜3680 km³yr-1 in Aug-Sept 1997, and ˜2000 km³yr-1 in Aug-Sept 1998. The 1997 and 1998 data show a long-term mean sea ice flux through Fram Strait around half the long-term mean meteoric water flux. A 1991 δ18O section [Bauch et al., 1995] yielded a very similar ratio. Our 1998 section reveals fresh, low-δ18O water on the East Greenland shelf whose comparatively large volume constitutes a potentially significant contribution to the total freshwater flux through Fram Strait. Such fluxes are important to the regional and global thermohaline circulation; we suggest that efforts towards monitoring both the EGC and East Greenland shelf waters are thus required.

  3. Ecogeomorphological feedbacks in a tidal freshwater marsh

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Engelhardt, K.

    2013-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.

  4. Reclaiming freshwater sustainability in the Cadillac Desert

    PubMed Central

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H. W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%. PMID:21149727

  5. Microbial degradation of microcystin in Florida's freshwaters.

    PubMed

    Ramani, A; Rein, K; Shetty, K G; Jayachandran, K

    2012-02-01

    Presence of microcystin (MC), a predominant freshwater algal toxin and a suspected liver carcinogen, in Florida's freshwaters poses serious health threat to humans and aquatic species. Being recalcitrant to conventional physical and chemical water treatment methods, biological methods of MC removal is widely researched. Water samples collected from five sites of Lake Okeechobee (LO) frequently exposed to toxic Microcystis blooms were used as inoculum for enrichment with microcystin LR (MC-LR) supplied as sole C and N source. After 20 days incubation, MC levels were analyzed using high performance liquid chromatography (HPLC). A bacterial consortium consisting of two isolates DC7 and DC8 from the Indian Prairie Canal sample showed over 74% toxin degradation at the end of day 20. Optimal temperature requirement for biodegradation was identified and phosphorus levels did not affect the MC biodegradation. Based on 16S rRNA sequence similarity the isolate DC8 was found to have a match with Microbacterium sp. and the DC7 isolate with Rhizobium gallicum (AY972457). PMID:21611743

  6. Management and the conservation of freshwater ecosystems

    USGS Publications Warehouse

    Wipfli, Mark S.; Richardson, John S.

    2015-01-01

    Riparian and freshwater ecosystems are typically tightly coupled, especially in their natural states, and the linkages that couple them frequently exert strong influence on their associated invertebrate and fish fauna (e.g. Gregory et al., 1991; Naiman et al., 2010). Riparian habitats, and the condition of these habitats, further plays a key role in the ecology of these fresh waters, influencing critical processes such as water, nutrient and sediment delivery and dynamics; prey resources for fish and other consumers, and other organic materials exchanged between aquatic and terrestrial habitats (Nakano et al., 1999; Naiman et al., 2010); light and water temperature dynamics that in turn affect food web processes and fish metabolism and growth; aquatic physical habitat (wood); and terrestrial consumers that prey upon fishes (Bisson & Bilby, 1998; Naiman et al., 2010; Wipfli & Baxter, 2010). These processes in turn directly or indirectly influence fishes in freshwater systems (Wang et al., 2001; Pusey & Arthington, 2003; Allan, 2004; Richardson et al., 2010a).

  7. Reclaiming freshwater sustainability in the Cadillac Desert.

    PubMed

    Sabo, John L; Sinha, Tushar; Bowling, Laura C; Schoups, Gerrit H W; Wallender, Wesley W; Campana, Michael E; Cherkauer, Keith A; Fuller, Pam L; Graf, William L; Hopmans, Jan W; Kominoski, John S; Taylor, Carissa; Trimble, Stanley W; Webb, Robert H; Wohl, Ellen E

    2010-12-14

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%. PMID:21149727

  8. Reclaiming freshwater sustainability in the Cadillac Desert

    USGS Publications Warehouse

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  9. Heart Rate Sensor for Freshwater Mussels

    NASA Astrophysics Data System (ADS)

    Just, C. L.; Vial, D. P.; Kruger, A.; Niemeier, J. J.; Lee, H. W.; Schroer, H. W.

    2014-12-01

    Researchers have long been interested the cardiac activity of mollusks. First, it is important as a basic measure of the animal's metabolism. Further, activities such as feeding and burrowing affect heart rate, as do environmental factors such as water salinity, water temperature, exposure, and predation. We have developed a small, noninvasive sensor for measuring freshwater mussel heart rate. Its working principle is as follows. An infrared (IR) light-emitting diode is placed in contact with the mussel shell. Some of the IR penetrates through the shell, reflects off internal organs, and traverses back. A photodetector detects this IR, and electronics condition the signal. The heartbeat of the animal modulates the IR, allowing one to measure the heart rate. The technique is widely-used in finger heart-rate monitors in humans. The sensors do not have to be positioned above the heart and several locations on the mussel shell work well. The sensor is small (8 mm × 10 mm) and consumes less than 1 mA, and has a simple one-wire interface that allows for easy integration into data acquisition hardware. We present heart rate measurements for the common pocketbook (lampsilis cardium) freshwater mussel.

  10. Reclaiming freshwater sustainability in the Cadillac Desert.

    PubMed

    Sabo, John L; Sinha, Tushar; Bowling, Laura C; Schoups, Gerrit H W; Wallender, Wesley W; Campana, Michael E; Cherkauer, Keith A; Fuller, Pam L; Graf, William L; Hopmans, Jan W; Kominoski, John S; Taylor, Carissa; Trimble, Stanley W; Webb, Robert H; Wohl, Ellen E

    2010-12-14

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  11. Institutional development of freshwater fish stocking in Mexico.

    PubMed

    Ibáñez, A L; Pérez-Ramírez, M; García-Calderón, J L

    2014-12-01

    By using freshwater fish stocking information from the Mexican government, this work described the current situation of the national stocking and its associated fishery policy. There is a lack of effective freshwater stocking programmes as a result of limited fisheries management, unharmonized fisheries regulations and institutional performance. The fry production has decreased from 140 to 20 million in the past 11 years.

  12. Freshwater clams as bioconcentrators of avian influenza virus in water.

    PubMed

    Huyvaert, Kathryn P; Carlson, Jenny S; Bentler, Kevin T; Cobble, Kacy R; Nolte, Dale L; Franklin, Alan B

    2012-10-01

    We report experimental evidence for bioconcentration of a low-pathogenicity avian influenza virus (H6N8) in the tissue of freshwater clams. Our results support the concept that freshwater clams may provide an effective tool for use in the early detection of influenza A viruses in aquatic environments. PMID:22925022

  13. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    SciTech Connect

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburst spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.

  14. Estimates of volume, heat and freshwater budgets for the Arctic Mediterranean and North Atlantic in relation to the main physical processes: Insight from the EU-NACLIM observations

    NASA Astrophysics Data System (ADS)

    Rudels, Bert; Hansen, Bogi; Karstensen, Johannes; McCarthy, Gerard; Quadfasel, Detlef

    2016-04-01

    The EU NACLIM (North Atlantic Climate) project aims to understand the forcing of the North Atlantic circulation and its importance for the climate of northwestern Europe. NACLIM comprises extensive modelling studies of the atmosphere, ocean and climate, but here mainly the oceanographic observations are presented. The core observation areas are the North Atlantic Subpolar Gyre and the Greenland-Scotland Ridge, separating the North Atlantic from the Arctic Mediterranean Sea. These are the areas, where the waters of the lower limb of the Meridional Overturning Circulation (MOC) are formed and sink into the deep North Atlantic to return southward, mainly in the Deep Western Boundary Current (DWBC). The exchanges across the Greenland-Scotland Ridge, both the northward flowing Atlantic and the returning dense waters, have been monitored over decades, as have the circulation in the Subpolar gyre and the convection and mode water formation in the Labrador Sea. These studies are extended southward to the RAPID array located in the Subtropical gyre at 26oN to capture the MOC further south, and northward into the Arctic Mediterranean Sea and the formation area of the densest water in the DWBC. In the Subtropical gyre the ocean circulation is mainly forced by the wind, while in the Subpolar gyre the atmospheric influence, in addition to wind forcing, also has a large thermodynamic component, changing the characteristics of the water masses and the density structure of the gyre. The importance of cooling and freshwater input increases in the Arctic Mediterranean Sea. Variability and a recent declining trend of the MOC strength have been observed in the Subtropical gyre at the RAPID array. By contrast, both the northward flow across the Greenland-Scotland Ridge and the overflows have remained steady during the observation periods. An increased atmospheric freshwater flux does not appear to affect the dense water formation in the Arctic Mediterranean, mainly because the low

  15. Toxicity of triclosan, penconazole and metalaxyl on Caulobacter crescentus and a freshwater microbial community as assessed by flow cytometry.

    PubMed

    Johnson, David R; Czechowska, Kamila; Chèvre, Nathalie; van der Meer, Jan Roelof

    2009-07-01

    Biocides are widely used for domestic hygiene, agricultural and industrial applications. Their widespread use has resulted in their introduction into the environment and raised concerns about potential deleterious effects on aquatic ecosystems. In this study, the toxicity of the biocides triclosan, penconazole and metalaxyl were evaluated with the freshwater bacterium Caulobacter crescentus and with a freshwater microbial community using a combination of single- and double-stain flow cytometric assays. Growth of C.  crescentus and the freshwater community were repressed by triclosan but not by penconazole or metalaxyl at concentrations up to 250 μM. The repressive effect of triclosan was dependent on culture conditions. Caulobacter crescentus was more sensitive to triclosan when grown with high glucose at high cell density than when grown directly in sterilized lake water at low cell density. This suggests that the use of conventional growth conditions may overestimate biocide toxicity. Additional experiments showed that the freshwater community was more sensitive to triclosan than C.  crescentus, with 10 nM of triclosan being sufficient to repress growth and change the phylogenetic composition of the community. These results demonstrate that isolate-based assays may underestimate biocide toxicity and highlight the importance of assessing toxicity directly on natural microbial communities. Because 10 nM of triclosan is within the range of concentrations observed in freshwater systems, these results also raise concerns about the risk of introducing triclosan into the environment. PMID:19239485

  16. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM

    NASA Astrophysics Data System (ADS)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and

  17. Recent changes in the freshwater composition east of Greenland

    NASA Astrophysics Data System (ADS)

    Steur, L.; Pickart, R. S.; Torres, D. J.; Valdimarsson, H.

    2015-04-01

    Results from three hydrographic surveys across the East Greenland Current between 2011 and 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, δ18O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and 2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a shorter pathway of Pacific water through the interior Arctic to Fram Strait.

  18. Proceedings of the global climate change and freshwater ecosystems

    SciTech Connect

    Firth, P.; Fisher, S.G.

    1992-01-01

    This book discusses global climate change which is a certainty. The Earth's climate has never remained static for long and the prospect for human-accelerated climate change in the near future appears likely. Freshwater systems are intimately connected to climate in several ways. They may influence, or even drive, global atmospheric processes affecting climate (e.g., biogenic gas emissions from freshwater wetlands). They may be sensitive early indicators of climate change because they integrate the atmospheric and terrestrial events occurring in their catchments. And, of course, they will be affected by climate change. Freshwater hydrological processes, freshwater resources, and freshwater ecosystems have historically responded to climatic shifts and we fully expect that they will continue to do so. Climate-induced changes may include altered water temperatures, runoff, nutrient flux, discharge, flow regime, lake and aquifer levels, water quality, ice cover, suspended load, primary and secondary production, trophic dynamics, organism ranges, and migration patterns.

  19. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  20. Freshwater river diversions for marsh restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area

    NASA Astrophysics Data System (ADS)

    Kearney, Michael S.; Riter, J. C. Alexis; Turner, R. Eugene

    2011-08-01

    The restoration of Louisiana's coastal wetlands will be one of the largest, most costly and longest environmental remediation projects undertaken. We use Landsat data to show that freshwater diversions, a major restoration strategy, have not increased vegetation and marsh coverage in three freshwater diversions operating for ˜19 years. Two analytic methods indicate no significant changes in either relative vegetation or overall marsh area from 1984 to 2005 in zones closest to diversion inlets. After Hurricanes Katrina and Rita, these zones sustained dramatic and enduring losses in vegetation and overall marsh area, whereas the changes in similar marshes of the adjacent reference sites were relatively moderate and short-lived. We suggest that this vulnerability to storm damage reflects the introduction of nutrients in the freshwater diversions (that add insignificant amounts of additional sediments), which promotes poor rhizome and root growth in marshes where below-ground biomass historically played the dominant role in vertical accretion.

  1. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status.

    PubMed

    Dai, Yu; Yang, Yuyin; Wu, Zhen; Feng, Qiuyuan; Xie, Shuguang; Liu, Yong

    2016-05-01

    Both planktonic and sediment bacterial assemblages are the important components of freshwater lake ecosystems. However, their spatiotemporal shift and the driving forces remain still elusive. Eutrotrophic Dianchi Lake and mesotrophic Erhai Lake are the largest two freshwater lakes on the Yunnan Plateau (southwestern China). The present study investigated the spatiotemporal shift in both planktonic and sediment bacterial populations in these two plateau freshwater lakes at different trophic status. For either lake, both water and sediment samples were collected from six sampling locations in spring and summer. Bacterioplankton community abundance in Dianchi Lake generally far outnumbered that in Erhai Lake. Sediment bacterial communities in Erhai Lake were found to have higher richness and diversity than those in Dianchi Lake. Sediments had higher bacterial community richness and diversity than waters. The change patterns for both planktonic and sediment bacterial communities were lake-specific and season-specific. Either planktonic or sediment bacterial community structure showed a distinct difference between in Dianchi Lake and in Erhai Lake, and an evident structure difference was also found between planktonic and sediment bacterial communities in either of these two lakes. Planktonic bacterial communities in both Dianchi Lake and Erhai Lake mainly included Proteobacteria (mainly Alpha-, Beta-, and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Cyanobacteria, and Firmicutes, while sediment bacterial communities were mainly represented by Proteobacteria (mainly Beta- and Deltaproteobacteria), Bacteroidetes, Chlorobi, Nitrospirae, Acidobacteria, and Chloroflexi. Trophic status could play important roles in shaping both planktonic and sediment bacterial communities in freshwater lakes.

  2. On the Relative Importance of Freshwater Fluxes and Variability From the Arctic Ocean into the North Atlantic

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Clement Kinney, J. L.; Jakacki, J.

    2007-12-01

    We use a high resolution coupled ice-ocean model of the Pan-Arctic region forced with realistic atmospheric data to investigate the variability of freshwater content within the Arctic Ocean as well as sea ice and liquid freshwater fluxes into the North Atlantic during 1979-2004. Modeled fluxes are validated against recently published estimates. Results are analyzed to compare the relative contribution of the total combined liquid and solid freshwater flux through the two main pathways: Fram-Denmark Strait (FDS) and the Canadian Arctic Archipelago- Davis-Hudson Strait (CAADHS). Our results suggest the relative importance of the freshwater flux through CAADHS into the Labrador Sea. This implies the need for ocean models to adequately represent mass and property fluxes through the narrow and shallow passages of the Canadian Archipelago and Davis and Hudson Straits. We argue that this requirement must be satisfied to advance studies of the Atlantic Meridional Overturning Circulation (MOC) and especially its variability. Given the recent record sea ice melt in the Arctic Ocean, it is critical that global ocean and climate models improve their skill in simulating and predicting effects of changing exports from the Arctic Ocean into the North Atlantic.

  3. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be

  4. Performance of different force fields in force probe simulations.

    PubMed

    Schlesier, Thomas; Diezemann, Gregor

    2013-02-14

    We present detailed force probe molecular dynamic simulations of mechanically interlocked dimeric calix[4]arene-catenanes, comparing the results obtained using three different commonly used force fields (GROMOS G53a5, OPLS-AA, and AMBER GAFF). The model system is well characterized as a two-state system consisting of a closed compact and an elongated structure. Both states are stabilized by a different hydrogen-bond network, and complete separation of the dimer is prevented by the mechanical lock of the entangled aliphatic loops. The system shows fully reversible rebinding meaning that after bond rupture the system rejoins when the external force is relaxed. We present a detailed study of quantities determined in simulations using a force ramp, like the rupture force and rejoin force distributions. Additionally, we analyze the dynamics of the hydrogen-bond network. We find that the results obtained from using the different force fields qualitatively agree in the sense that always the fully reversible behavior is found. The details, like the mean rupture forces, however, do depend on the particular force field. Some of the differences observed can be traced back to differences in the strength of the hydrogen-bond networks.

  5. Transient Changes in the Biosphere as a Result of Freshwater Hosing

    NASA Astrophysics Data System (ADS)

    dePolo, P.; Morel, V.; Matsumoto, K.

    2013-12-01

    The influx of large amounts of freshwater into the North Atlantic Ocean over the course of deglaciation after the Last Glacial Maximum (LGM) has been linked with abrupt climactic shifts like the Heinrich 1 and the Younger Dryas stadials. Using the Minnesota Earth System Model for Ocean biogeochemistry (MESMO-2E), an earth system model of intermediate complexity, we evaluate the effects of a range of volumes of freshwater upon terrestrial and marine biota in equilibrated states of both LGM and modern pre-industrial boundary conditions. Preliminary analysis of the model outputs reveals a qualitative similarity between simulations that started from significantly different initial states. Additional sensitivity experiments determining the relative contributions of climate indicators (e.g. temperature and precipitation) to the success of marine and terrestrial biota will be presented.

  6. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    NASA Astrophysics Data System (ADS)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  7. Mortality of Inshore Marine Mammals in Eastern Australia Is Predicted by Freshwater Discharge and Air Temperature

    PubMed Central

    Meager, Justin J.; Limpus, Colin

    2014-01-01

    Understanding environmental and climatic drivers of natural mortality of marine mammals is critical for managing populations effectively and for predicting responses to climate change. Here we use a 17-year dataset to demonstrate a clear relationship between environmental forcing and natural mortality of inshore marine mammals across a subtropical-tropical coastline spanning a latitudinal gradient of 13° (>2000 km of coastline). Peak mortality of inshore dolphins and dugongs followed sustained periods of elevated freshwater discharge (9 months) and low air temperature (3 months). At a regional scale, these results translated into a strong relationship between annual mortality and an index of El Niño-Southern Oscillation. The number of cyclones crossing the coastline had a comparatively weak effect on inshore marine mammal mortality, and only in the tropics. Natural mortality of offshore/migratory cetaceans was not predicted by freshwater discharge, but was related to lagged air temperature. These results represent the first quantitative link between environmental forcing and marine mammal mortality in the tropics, and form the basis of a predictive tool for managers to prepare responses to periods of elevated marine mammal mortality. PMID:24740149

  8. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  9. Prosthecomicrobium and Ancalomicrobium: New Prosthecate Freshwater Bacteria

    PubMed Central

    Staley, James T.

    1968-01-01

    Direct microscopic examination of natural freshwater samples reveals a variety of small microorganisms having elaborate cellular appendages. Several strains have been isolated from crude cultures containing low concentrations of organic nutrients. All of the isolates are procaryotic. They are aerobic chemoorganotrophs that require vitamins for growth. Because they cannot be assigned to any of the existing bacterial genera, two new genera are proposed: Ancalomicrobium for organisms which have several long appendages and which reproduce by budding; Prosthecomicrobium for organisms which have many short appendages tapering toward a blunt tip and which reproduce by binary fission. Gas vacuoles have been found in strains of each genus. The term prostheca is proposed for the rigid appendages of procaryotic cells bounded by the cell wall, and is defined to include the structures on these new bacteria, as well as the stalks of the caulobacters and the hyphae of the hyphomicrobia. Images PMID:4870285

  10. Estimated Freshwater Withdrawals in Oklahoma, 1990

    USGS Publications Warehouse

    Lurry, Dee L.; Tortorelli, Robert L.

    1996-01-01

    This report presents 1990 freshwater withdrawal estimates for Oklahoma by source and category. Withdrawal source is either ground water or surface water. Withdrawal categories include: irrigation, water supply, livestock, thermoelectric-power generation, domestic and commercial, and industrial and mining. Withdrawal data are aggregated by county, major aquifer, and principal river basin. Only the four major categories of irrigation, water supply, livestock, and thermoelectric-power generation are illustrated in this report, although data for all categories are tabulated. The U.S. Geological Survey (USGS) established the National Water-Use Information Program in 1977 to collect uniform, current, and reliable information on water use. The Oklahoma District of the USGS and the Oklahoma Water Resources Board participate in a cooperative program to collect and publish water-use information for Oklahoma. Data contained in this report were made available through the cooperative program.

  11. Carcinogens and cancers in freshwater fishes.

    PubMed Central

    Black, J J; Baumann, P C

    1991-01-01

    Epizootics of neoplasms in freshwater fish species are considered in relation to circumstantial and experimental evidence that suggest that some epizootics of neoplasia of hepatocellular, cholangiocellular, epidermal, and oral epithelial origin may be causally related to contaminant exposure. Although there is concern for the safety of consuming fish affected with neoplasms, this concern may be misdirected as direct transmission of cancer by ingesting cancerous tissue would seem unlikely. Of greater concern is the matter of toxic and cancer-causing chemicals present in edible fish that exhibit neoplasia as a symptom of past exposure via residence in a polluted waterway. There is ample evidence to suggest that contaminant chemicals ingested via contaminated Great Lakes fish may already be affecting both human and ecosystem health, but these effects are subtle and may require new approaches to the study of the affected systems. PMID:2050071

  12. Global climate change and freshwater ecosystems

    SciTech Connect

    Firth, P.; Fisher, S.G.

    1992-01-01

    This book is based on a symposium held in May 1990, sponsored by NASA, US EPA, and the North American Benthological Society. It focuses on the potential interactions between climate change and freshwater ecosystems. The assumption of global warming 2-5 degrees occurring in the next century was presented to the authors by the editors, and each author was asked to comment on how this warming might affect their particular system or process of interest. The book deals primarily with streams in the USA. Other chapters deal with the following topics: mechanisms driving global climate change; remote sensing; wetlands; lakes; general issues related to water resources and regional studies as they apply to flowing water.

  13. Freshwater snail consumption and angiostrongyliasis in Malaya.

    PubMed

    Liat, L B; Fong, Y L; Krishnansamy, M; Ramachandran, P; Mansor, S

    1978-06-01

    A survey of the freshwater snails, Pila scutata and Bellamyia ingallsiana, as food consumed by the local population was carried out in Peninsular Malaysia. Of these two species the first is preferred; the sizes favoured are between 25--40 mm. Pila snails were found to be consumed by the three communities, viz. Malay, Chinese and Indian, in different ways. The various methods of preparing the snails for consumption are described. P. scutata is an intermediate host of the rat-lung worm, Angiostrongylus malaysiensis. As this worm presumably is the causative agent of human eosinophilic meningoencephalitis, the eating habits of the three races in consuming the snail in relation to the epidemiology of the disease was also discussed. PMID:726037

  14. The decline of North American freshwater fishes

    USGS Publications Warehouse

    Walsh, Stephen J.; Jelks, Howard L.; Burkhead, Noel M.

    2009-01-01

    North America has a broad array of freshwater ecosystems because of the continent's complex geography and geological history. Within a multitude of habitats—that include streams, large rivers, natural lakes, springs, and wetlands—rich assemblages of fishes reside, representing diverse taxonomic groups with unique ecological requirements. They face an unprecedented conservation crisis.1 In the last few decades, the proportion of inland fishes of North America, which are considered imperiled or extinct, increased from 20 to 40%.2 Although extinctions have occurred, many species and populations are declining in range size and abundance. The fish biota of the continent as a whole remains diverse; however, we can take action to stem any further declines.

  15. Carcinogens and cancers in freshwater fishes

    USGS Publications Warehouse

    Black, John J.; Baumann, Paul C.

    1991-01-01

    Epizootics of neoplasms in freshwater fish species are considered in relation to circumstantial and experimental evidence that suggest that some epizootics of neoplasia of hepatocellular, cholangiocellular, epidermal, and oral epithelial origin may be causally related to contaminant exposure. Although there is concern for the safety of consuming fish affected with neoplasms, this concern may be misdirected as direct transmission of cancer by ingesting cancerous tissue would seem unlikely. Of greater concern is the matter of toxic and cancer-causin chemicals present in edible fish that exhibit neoplasia as a symptom of past exposure via residence in a polluted waterway. There is ample evidence to suggest that contaminant chemicals ingested via contaminated Great Lakes fish may already be affecting both human and ecosystem health, but these effects are subtle and may require new approaches to the study of the affected systems.

  16. Carcinogens and cancers in freshwater fishes.

    PubMed

    Black, J J; Baumann, P C

    1991-01-01

    Epizootics of neoplasms in freshwater fish species are considered in relation to circumstantial and experimental evidence that suggest that some epizootics of neoplasia of hepatocellular, cholangiocellular, epidermal, and oral epithelial origin may be causally related to contaminant exposure. Although there is concern for the safety of consuming fish affected with neoplasms, this concern may be misdirected as direct transmission of cancer by ingesting cancerous tissue would seem unlikely. Of greater concern is the matter of toxic and cancer-causing chemicals present in edible fish that exhibit neoplasia as a symptom of past exposure via residence in a polluted waterway. There is ample evidence to suggest that contaminant chemicals ingested via contaminated Great Lakes fish may already be affecting both human and ecosystem health, but these effects are subtle and may require new approaches to the study of the affected systems.

  17. Eutrophication of freshwater and marine ecosystems

    USGS Publications Warehouse

    Smith, Val H.; Joye, Samantha B.; Howarth, Robert W.

    2006-01-01

    Initial understanding of the links between nutrients and aquatic productivity originated in Europe in the early 1900s, and our knowledge base has expanded greatly during the past 40 yr. This explosion of eutrophication-related research has made it unequivocally clear that a comprehensive strategy to prevent excessive amounts of nitrogen and phosphorus from entering our waterways is needed to protect our lakes, rivers, and coasts from water quality deterioration. However, despite these very significant advances, cultural eutrophication remains one of the foremost problems for protecting our valuable surface water resources. The papers in this special issue provide a valuable cross section and synthesis of our current understanding of both freshwater and marine eutrophication science. They also serve to identify gaps in our knowledge and will help to guide future research.

  18. Gastric cryptosporidiosis in freshwater angelfish (Pterophyllum scalare)

    USGS Publications Warehouse

    Murphy, B.G.; Bradway, D.; Walsh, T.; Sanders, G.E.; Snekvik, K.

    2009-01-01

    A freshwater angelfish (Pterophyllum scalare) hatchery experienced variable levels of emaciation, poor growth rates, swollen coelomic cavities, anorexia, listlessness, and increased mortality within their fish. Multiple chemotherapeutic trials had been attempted without success. In affected fish, large numbers of protozoa were identified both histologically and ultrastructurally associated with the gastric mucosa. The youngest cohort of parasitized fish was the most severely affected and demonstrated the greatest morbidity and mortality. The protozoa were morphologically most consistent with Cryptosporidium. All of the protozoan life stages were identified ultrastructurally and protozoal genomic DNA was isolated from parasitized tissue viscera and sequenced. Histological, ultrastructural, genetic, and phylogenetic analyses confirmed this protozoal organism to be a novel species of Cryptosporidium.

  19. Terrestrial and freshwater Tardigrada of the Americas.

    PubMed

    Meyer, Harry A

    2013-12-16

    This paper provides a comprehensive list of the freshwater and terrestrial tardigrade fauna reported from the Americas (North America, South America, Central America and the West Indies), their distribution in the Americas, and the substrates from which they have been reported. Data were obtained from 316 published references. Authors' identifications were accepted at face value unless subsequently amended. Taxa were assigned to sub-national units (states, provinces, etc.). Many areas, in particular large portions of Central America and the West Indies, have no reported tardigrade fauna.        The presence of 54 genera and 380 species has been reported for the Americas; 245 species have been collected in the Nearctic ecozone and 251 in the Neotropical ecozone. Among the tardigrade species found in the Americas, 52 are currently considered cosmopolitan, while 153 species have known distributions restricted to the Americas. Based on recent taxonomic revision of the genus Milnesium, the vast majority of records of M. tardigradum in the Americas should now be reassigned to Milnesium tardigradum sensu lato, either because the provided description differs from M. tardigradum sensu stricto or because insufficient description is provided to make a determination; the remainder should be considered Milnesium cf. tardigradum.        Most terrestrial tardigrade sampling in the Americas has focused on cryptogams (mosses, lichens and liverworts); 90% of the species have been collected in such substrates. The proportion of species collected in other habitats is lower: 14% in leaf litter, 20% in soil, and 24% in aquatic samples (in other terrestrial substrates the proportion never exceeds 5%). Most freshwater tardigrades have been collected from aquatic vegetation and sediment. For nine species in the Americas no substrates have been reported. 

  20. Terrestrial and freshwater Tardigrada of the Americas.

    PubMed

    Meyer, Harry A

    2013-01-01

    This paper provides a comprehensive list of the freshwater and terrestrial tardigrade fauna reported from the Americas (North America, South America, Central America and the West Indies), their distribution in the Americas, and the substrates from which they have been reported. Data were obtained from 316 published references. Authors' identifications were accepted at face value unless subsequently amended. Taxa were assigned to sub-national units (states, provinces, etc.). Many areas, in particular large portions of Central America and the West Indies, have no reported tardigrade fauna.        The presence of 54 genera and 380 species has been reported for the Americas; 245 species have been collected in the Nearctic ecozone and 251 in the Neotropical ecozone. Among the tardigrade species found in the Americas, 52 are currently considered cosmopolitan, while 153 species have known distributions restricted to the Americas. Based on recent taxonomic revision of the genus Milnesium, the vast majority of records of M. tardigradum in the Americas should now be reassigned to Milnesium tardigradum sensu lato, either because the provided description differs from M. tardigradum sensu stricto or because insufficient description is provided to make a determination; the remainder should be considered Milnesium cf. tardigradum.        Most terrestrial tardigrade sampling in the Americas has focused on cryptogams (mosses, lichens and liverworts); 90% of the species have been collected in such substrates. The proportion of species collected in other habitats is lower: 14% in leaf litter, 20% in soil, and 24% in aquatic samples (in other terrestrial substrates the proportion never exceeds 5%). Most freshwater tardigrades have been collected from aquatic vegetation and sediment. For nine species in the Americas no substrates have been reported.  PMID:25113595

  1. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  2. Current status of protein force fields for molecular dynamics simulations.

    PubMed

    Lopes, Pedro E M; Guvench, Olgun; MacKerell, Alexander D

    2015-01-01

    The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields.

  3. Vegetation studies on Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hickson, Diana E.; Hinkle, C. Ross

    1988-01-01

    Vandenburg Air Force Base, located in coastal central California with an area of 98,400 ac, contains resources of considerable biological significance. Available information on the vegetation and flora of Vandenburg is summarized and new data collected in this project are presented. A bibliography of 621 references dealing with vegetation and related topics related to Vanderburg was compiled from computer and manual literature searches and a review of past studies of the base. A preliminary floristic list of 642 taxa representing 311 genera and 80 families was compiled from past studies and plants identified in the vegetation sampling conducted in this project. Fifty-two special interest plant species are known to occur or were suggested to occur. Vegetation was sampled using permanent plots and transects in all major plant communities including chaparral, Bishop pine forest, tanbark oak forest, annual grassland, oak woodland, coastal sage scrub, purple sage scrub, coastal dune scrub, coastal dunes, box elder riparian woodland, will riparian woodland, freshwater marsh, salt marsh, and seasonal wetlands. Comparison of the new vegetation data to the compostie San Diego State University data does not indicate major changes in most communities since the original study. Recommendations are made for additional studies needed to maintain and extend the environmental data base and for management actions to improve resource protection.

  4. Arctic Ocean basin liquid freshwater storage trend 1992-2012

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Karcher, M.; Kauker, F.; Schauer, U.; Toole, J. M.; Krishfield, R. A.; Pisarev, S.; Kikuchi, T.; Su, J.

    2014-02-01

    Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km3 yr-1. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.

  5. Global patterns of freshwater species diversity, threat and endemism

    PubMed Central

    Collen, Ben; Whitton, Felix; Dyer, Ellie E; Baillie, Jonathan E M; Cumberlidge, Neil; Darwall, William R T; Pollock, Caroline; Richman, Nadia I; Soulsby, Anne-Marie; Böhm, Monika

    2014-01-01

    Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in

  6. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.

    PubMed

    Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L

    2015-07-01

    While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs.

  7. Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerrit

    2003-10-01

    Oceanic and atmospheric freshwater transports are analyzed in a numerical experiment where induced freshwater in the North Atlantic slowed the thermohaline circulation (THC). During times of weak Atlantic overturning circulation, it is found that the Intertropical Convergence Zone moves southward and trade winds at tropical latitudes increase, resulting in enhanced water vapor export out of the Atlantic catchment area. The experiment reveals furthermore that the oceanic freshwater transport amounts to a stabilizing effect of similar magnitude to the atmospheric effect. It is argued that the modeled response can be used as a fingerprint for the detection of THC changes documented in the paleoclimatic record or related recent climate change.

  8. Die-off and survival of Pseudomonas aeruginosa in freshwater.

    PubMed

    de Vicente, A; Aviles, M; Borrego, J J; Romero, P

    1988-03-01

    Studies of the survival of Pseudomonas aeruginosa in freshwater, in situ and in the laboratory, were carried out. A die-off of P. aeruginosa very similar to those of the microbial indicators of fecal pollution, especially to the coliforms, was observed from the results obtained by in situ experiments. The laboratory studies show that the factors tested which exert the greatest effect on the survival of P. aeruginosa in freshwater are the luminous radiations and non-filtrable biotic factors. Furthermore, a negative effect on the viability of this microorganism in freshwater is observed when sewage is added. PMID:3131996

  9. Arctic Outflow West Of Greenland: Nine Years Of Volume And Freshwater Transports From Observations In Davis Strait

    NASA Astrophysics Data System (ADS)

    Curry, B.; Lee, C.; Petrie, B.; Moritz, R. E.; Kwok, R.

    2014-12-01

    Recent Arctic changes suggest alterations in the export of freshwater from the Arctic to the North Atlantic, with conceivable impacts on the Atlantic Meridional Overturning circulation. Approximately 50% of the Arctic outflow exits west of Greenland, traveling through the Canadian Arctic Archipelago (CAA) and into Baffin Bay before crossing Davis Strait. The CAA outflow contributes over 50% of the net southward freshwater outflow through Davis Strait. The remainder is deeper outflow from Baffin Bay, flow from the West Greenland Current and runoff from West Greenland and CAA glaciers. Since September 2004, an observational program in Davis Strait has quantified volume and freshwater transport variability. The year-round program includes velocity, temperature and salinity measurements from 15 moorings spanning the full width (330 km) of the strait accompanied by autonomous Seagliders surveys (average profile separation = 4 km) and autumn ship-based hydrographic sections. Over the shallow Baffin Island and West Greenland shelves, moored instrumentation provides temperature and salinity measurements near the ice-ocean interface. From 2004-2013, the average net volume and liquid freshwater transports are -1.6 ± 0.2 Sv, -94 ± 7 mSv, respectively (salinity referenced to 34.8 and negative indicates southward transport); sea ice contributes an additional -10 ± 1 mSv. Over this period, volume and liquid freshwater transports show significant interannual variability and no clear trends, but a comparison with reanalyzed 1987-90 data indicate a roughly 40% decrease in net southward liquid volume transport and a corresponding an almost 30% decrease in freshwater transport. Connections between the Arctic are also captured, e.g., a unique yearlong Davis Strait freshening event starting September 2009 that was likely driven by an earlier freshening (January 2009 - April/May 2010) in the Canadian Arctic. The Davis Strait autumn 2009 salinity minimum was fresher (by about 0

  10. 75 FR 31769 - Procurement List Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... . SUPPLEMENTARY INFORMATION: Additions On 4/9/2010 (75 FR 18164-18165), the Committee for Purchase From People Who... Force, FA3020 82 CONS LGC, Sheppard AFB, TX. Barry S. Lineback, Director, Business Operations....

  11. 78 FR 4133 - Procurement List; Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... . SUPPLEMENTARY INFORMATION: Addition On 11/9/2012 (77 FR 67343-67344), the Committee for Purchase From People Who...: Lakeview Center, Inc., Pensacola, FL. Contracting Activity: Dept of the Air Force, FA5004 354 CONS...

  12. 75 FR 75461 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... . SUPPLEMENTARY INFORMATION: Additions On 10/8/2010 (75 FR 62370), the Committee for Purchase From People Who Are... Center, Inc., Pensacola, FL. Contracting Activity: Dept of the Air Force, FA2823 96 CONS MSC, Eglin...

  13. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    PubMed

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources. PMID:24660893

  14. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    PubMed

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.

  15. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.

    PubMed

    Paerl, Hans

    2008-01-01

    Nutrient and hydrologic conditions strongly influence harmful planktonic and benthic cyanobacterial bloom (CHAB) dynamics in aquatic ecosystems ranging from streams and lakes to coastal ecosystems. Urbanization, agricultural and industrial development have led to increased nitrogen (N) and phosphorus (P) discharge, which affect CHAB potentials of receiving waters. The amounts, proportions and chemical composition of N and P sources can influence the composition, magnitude and duration of blooms. This, in turn, has ramifications for food web dynamics (toxic or inedible CHABs), nutrient and oxygen cycling and nutrient budgets. Some CHABs are capable of N2 fixation, a process that can influence N availability and budgets. Certain invasive N2 fixing taxa (e.g., Cylindrospermopsis, Lyngbya) also effectively compete for fixed N during spring, N-enriched runoff periods, while they use N2 fixation to supplant their N needs during N-deplete summer months. Control of these taxa is strongly dependent on P supply. However, additional factors, such as molar N:P supply ratios, organic matter availability, light attenuation, freshwater discharge, flushing rates (residence time) and water column stability play interactive roles in determining CHAB composition (i.e. N2 fixing vs. non-N2 fixing taxa) and biomass. Bloom potentials of nutrient-impacted waters are sensitive to water residence (or flushing) time, temperatures (preference for > 15 degrees C), vertical mixing and turbidity. These physical forcing features can control absolute growth rates of bloom taxa. Human activities may affect "bottom up" physical-chemical modulators either directly, by controlling hydrologic, nutrient, sediment and toxic discharges, or indirectly, by influencing climate. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on N and/or P. While single nutrient input constraints may be effective in some water bodies

  16. Retardation of post-mortem changes of freshwater prawn (Macrobrachium rosenbergii) stored in ice by legume seed extracts.

    PubMed

    Sriket, Chodsana; Benjakul, Soottawat; Visessanguan, Wonnop; Hara, Kenji; Yoshida, Asami

    2012-11-15

    Meat quality of freshwater prawn (Macrobrachium rosenbergii) treated with soybean and bambara groundnut extracts at different concentrations was monitored during 10 days of iced storage. During storage, the control sample (without treatment) had a higher pH, TCA-soluble peptide content, heat soluble collagen content, proteolytic activities and psychrophilic bacterial count than did samples treated with soybean and bambara groundnut extracts. Conversely, shear force value and likeness scores of the control sample decreased (p<0.05), more likely associated with softening of muscle. The decrease in myosin heavy chain in the control sample was found after 6 days of storage. However, no changes in protein patterns of samples treated with soybean extracts at 2.5 mg/mL were found after 10 days of storage. Therefore, the injections of legume seed extracts, especially soybean extract, at a sufficient concentration, could be a means to retard muscle softening and maintain the qualities of freshwater prawn during iced storage.

  17. Multistage Force Amplification of Piezoelectric Stacks

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  18. An approach to estimate the freshwater contribution from glacial melt and precipitation in East Greenland shelf waters using colored dissolved organic matter (CDOM)

    NASA Astrophysics Data System (ADS)

    Stedmon, Colin A.; Granskog, Mats A.; Dodd, Paul A.

    2015-02-01

    Changes in the supply and storage of freshwater in the Arctic Ocean and its subsequent export to the North Atlantic can potentially influence ocean circulation and climate. In order to understand how the Arctic freshwater budget is changing and the potential impacts, it is important to develop and refine empirical approaches for tracing freshwater contributions. This in turn can help develop and validate model simulations. Arctic rivers are an important source of freshwater and stable oxygen isotope measurements are used to separate contributions from meteoric water (river, glacial, and precipitation) and sea ice melt. We develop this approach further and investigate the use of an additional tracer, colored dissolved organic matter (CDOM), which is largely specific to freshwater originating from Arctic rivers. A robust relationship between the freshwater contribution from meteoric water and CDOM is derived from 4 years of measurements in Fram Strait (2009-2012), combined with measurements from the East Greenland shelf and Dijmpha Sound (NE Greenland). Results confirm a high contribution of riverine CDOM in Arctic halocline waters with salinities >31.5 and indicate the importance of shelf processes (riverine input and sea ice formation), while previously, these waters where thought to be derived from open sea processes (cooling and sea ice formation) in the northern Barents and Kara Seas. In Greenlandic coastal waters the meteoric water contribution is influenced by Greenland ice sheet meltwater and deviations from the CDOM-meteoric water relationships found are applied to quantify meltwater contribution along the East Greenland shelf waters (0-13%).

  19. Concordant biogeographic patterns among multiple taxonomic groups in the Mexican freshwater biota.

    PubMed

    Quiroz-Martínez, Benjamín; Alvarez, Fernando; Espinosa, Héctor; Salgado-Maldonado, Guillermo

    2014-01-01

    In this paper we analyse the degree of concordance in species richness and taxonomic distinctness (diversity) patterns among different freshwater taxonomic groups in order to test three long held patterns described in Mexican freshwater biogeography: 1. The aquatic biota of Mexico includes two distinct faunas, a rich Neotropical component in the south and a south-eastern region and a less rich Nearctic component towards central and northern latitudes of the country. 2. A hotspot of species richness and diversity has been recorded in the Usumacinta, including the Yucatan Peninsula. 3. The presence of two distinct biotas in Mexico, an eastern one distributed along the Gulf of Mexico slope, and a western one associated to the Pacific versant. We use species richness and taxonomic distinctness to explore patterns of diversity and how these patterns change between zoogeographical regions. This paper points out a clear separation between Neotropical and Nearctic drainage basins but also between eastern (Gulf of Mexico) and western (Pacific) drainage basins. Present data gives additional empirical support from freshwater biota for three long held beliefs regarding distributional patterns of the Mexican biota. The neotropical basins of Mexico are generally host to a richest and more diversified fauna, that includes more families, genera and species, compared to the less rich and less diverse fauna in the nearctic basins. PMID:25136979

  20. Migration of Sakhalin taimen (Parahucho perryi): Evidence of freshwater resident life history types

    USGS Publications Warehouse

    Zimmerman, C.E.; Rand, P.S.; Fukushima, M.; Zolotukhin, S.F.

    2012-01-01

    Sakhalin taimen (Parahucho perryi) range from the Russian Far East mainland along the Sea of Japan coast, and Sakhalin, Kuril, and Hokkaido Islands and are considered to primarily be an anadromous species. We used otolith strontium-to-calcium ratios (Sr/Ca) to determine the chronology of migration between freshwater and saltwater and identify migratory contingents of taimen collected from the Koppi River, Russia. In addition, we examined taimen from the Sarufutsu River, Japan and Tumnin River, Russia that were captured in marine waters. Transects of otolith Sr/Ca for the Sarufutsu River fish were consistent with patterns observed in anadromous salmonids. Two fish from the Tumnin River appeared to be recent migrants to saltwater and one fish was characterized by an otolith Sr/Ca transect consistent with marine migration. Using these transects as benchmarks, all Koppi River taimen were classified as freshwater residents. These findings suggest more work is needed to assess life history variability among locations and the role of freshwater productivity in controlling migratory behavior in taimen. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  1. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  2. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods

    USGS Publications Warehouse

    Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo

    2012-01-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.

  3. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  4. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research. PMID:23877581

  5. Concordant biogeographic patterns among multiple taxonomic groups in the Mexican freshwater biota.

    PubMed

    Quiroz-Martínez, Benjamín; Alvarez, Fernando; Espinosa, Héctor; Salgado-Maldonado, Guillermo

    2014-01-01

    In this paper we analyse the degree of concordance in species richness and taxonomic distinctness (diversity) patterns among different freshwater taxonomic groups in order to test three long held patterns described in Mexican freshwater biogeography: 1. The aquatic biota of Mexico includes two distinct faunas, a rich Neotropical component in the south and a south-eastern region and a less rich Nearctic component towards central and northern latitudes of the country. 2. A hotspot of species richness and diversity has been recorded in the Usumacinta, including the Yucatan Peninsula. 3. The presence of two distinct biotas in Mexico, an eastern one distributed along the Gulf of Mexico slope, and a western one associated to the Pacific versant. We use species richness and taxonomic distinctness to explore patterns of diversity and how these patterns change between zoogeographical regions. This paper points out a clear separation between Neotropical and Nearctic drainage basins but also between eastern (Gulf of Mexico) and western (Pacific) drainage basins. Present data gives additional empirical support from freshwater biota for three long held beliefs regarding distributional patterns of the Mexican biota. The neotropical basins of Mexico are generally host to a richest and more diversified fauna, that includes more families, genera and species, compared to the less rich and less diverse fauna in the nearctic basins.

  6. Concordant Biogeographic Patterns among Multiple Taxonomic Groups in the Mexican Freshwater Biota

    PubMed Central

    Quiroz-Martínez, Benjamín; Álvarez, Fernando; Espinosa, Héctor; Salgado-Maldonado, Guillermo

    2014-01-01

    In this paper we analyse the degree of concordance in species richness and taxonomic distinctness (diversity) patterns among different freshwater taxonomic groups in order to test three long held patterns described in Mexican freshwater biogeography: 1. The aquatic biota of Mexico includes two distinct faunas, a rich Neotropical component in the south and a south-eastern region and a less rich Nearctic component towards central and northern latitudes of the country. 2. A hotspot of species richness and diversity has been recorded in the Usumacinta, including the Yucatan Peninsula. 3. The presence of two distinct biotas in Mexico, an eastern one distributed along the Gulf of Mexico slope, and a western one associated to the Pacific versant. We use species richness and taxonomic distinctness to explore patterns of diversity and how these patterns change between zoogeographical regions. This paper points out a clear separation between Neotropical and Nearctic drainage basins but also between eastern (Gulf of Mexico) and western (Pacific) drainage basins. Present data gives additional empirical support from freshwater biota for three long held beliefs regarding distributional patterns of the Mexican biota. The neotropical basins of Mexico are generally host to a richest and more diversified fauna, that includes more families, genera and species, compared to the less rich and less diverse fauna in the nearctic basins. PMID:25136979

  7. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  8. Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis.

    PubMed

    Lee, Carol Eunmi; Petersen, Christine H

    2002-01-01

    This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act. PMID:12324889

  9. Species-specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods.

    PubMed

    Suski, Jamie G; Salice, Christopher J; Patiño, Reynaldo

    2012-11-01

    Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures. PMID:22865709

  10. Information to help reduce environmental impacts from freshwater oil spills

    SciTech Connect

    Fritz, D.E.; Steen, A.E.

    1995-12-31

    The American Petroleum Institute (API) has been working since 1990 to provide information to help the response community minimize the impact of spills to pared jointly with the US inland freshwater. Projects have included a manual, pre National Oceanic and Atmospheric Administration (NOAA), to give guidance on the cleanup techniques that will minimize environmental impacts on spills in freshwater habitats. Nearing completion are a literature review and annotated bibliography of the environmental and human health effects of oil spilled in freshwater habitats. The use of chemical treating agents for freshwater spill applications is being studied with input from other industry and government groups. A project has begun, with funding from API, the Louisiana Applied Oil Spill Research and Development Program, NOAA, the Marine Spill Response Corporation (MSRC), and the US Department of Energy, to evaluate in situ burning of oil spilled in marshes.

  11. A new numerical benchmark of a freshwater lens

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Walther, M.; Graf, T.

    2016-04-01

    A numerical benchmark for 2-D variable-density flow and solute transport in a freshwater lens is presented. The benchmark is based on results of laboratory experiments conducted by Stoeckl and Houben (2012) using a sand tank on the meter scale. This benchmark describes the formation and degradation of a freshwater lens over time as it can be found under real-world islands. An error analysis gave the appropriate spatial and temporal discretization of 1 mm and 8.64 s, respectively. The calibrated parameter set was obtained using the parameter estimation tool PEST. Comparing density-coupled and density-uncoupled results showed that the freshwater-saltwater interface position is strongly dependent on density differences. A benchmark that adequately represents saltwater intrusion and that includes realistic features of coastal aquifers or freshwater lenses was lacking. This new benchmark was thus developed and is demonstrated to be suitable to test variable-density groundwater models applied to saltwater intrusion investigations.

  12. Extinction rates in North American freshwater fishes, 1900-2010

    USGS Publications Warehouse

    Burkhead, Noel M.

    2012-01-01

    Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). In the twentieth century, freshwater fishes had the highest extinction rate worldwide among vertebrates. The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.

  13. Freshwater foraminiferans revealed by analysis of environmental DNA samples.

    PubMed

    Holzmann, Maria; Habura, Andrea; Giles, Hannah; Bowser, Samuel S; Pawlowski, Jan

    2003-01-01

    Sediment-dwelling protists are among the most abundant meiobenthic organisms, ubiquitous in all types of aquatic ecosystems. Yet, because their isolation and identification are difficult, their diversity remains largely unknown. In the present work, we applied molecular methods to examine the diversity of freshwater Foraminifera, a group of granuloreticulosan protists largely neglected until now. By using specific PCR primers, we detected the presence of Foraminifera in all sediment samples examined. Phylogenetic analysis of amplified SSU rDNA sequences revealed two distinct groups of freshwater foraminiferans. All obtained sequences branched within monothalamous (single-chambered), marine Foraminifera, suggesting a repeated colonization of freshwater environments. The results of our study challenge the traditional view of Foraminifera as essentially marine organisms, and provide a conceptual framework for charting the molecular diversity of freshwater granuloreticulosan protists.

  14. AN INTEGRATED WATERSHED APPROACH LINKING SALMONID PRODUCTIVITY TO FRESHWATER HABITAT

    EPA Science Inventory

    EPA's Western Ecology Division is undertaking research addressing catchment-scale dynamics of freshwater habitat productivity for native fishes. Through partnerships with state and federal agencies and private landowners, current field efforts focus on linkages among stream chemi...

  15. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade

    PubMed Central

    Tan, Siong Kiat; Wong, Wing Hing; Meier, Rudolf; Chan, Sow-Yan; Tan, Heok Hui; Yeo, Darren C. J.

    2016-01-01

    The ornamental pet trade is often considered a key culprit for conservation problems such as the introduction of invasive species (including infectious diseases) and overharvesting of rare species. Here, we present the first assessment of the biodiversity of freshwater molluscs in the ornamental pet trade in Singapore, one of the most important global hubs of the ornamental aquarium trade, and discuss associated conservation concerns. We recorded freshwater molluscs from ornamental pet shops and major exporters including non-ornamental species (e.g., hitchhikers, molluscs sold as fish feed). We recorded an unexpectedly high diversity—59 species—of freshwater bivalves and gastropods, with the majority (38 species or 64%) being from the Oriental region. In addition to morphological examination, we sequenced the DNA barcode region of mitochondrial CO1 and 16S genes to provide molecular data for the confirmation of the identification and for future re-identification. DNA barcodes were obtained for 50 species, and all but four were separated by > 3% uncorrected pairwise distances. The trade has been considered a main introduction pathway for non-native species to Singapore, and we found that out of 15 species in the trade as well as in the wild in Singapore, 12 are either introduced or of unknown origin, representing almost half of the known non-native freshwater molluscs in Singapore. Particularly prevalent are non-ornamental species: six hitchhikers on aquarium plants and six species sold as fish feed. We found that a quarter of the trade species have a history of introduction, which includes 11 known or potentially invasive species. We conclude that potential overharvesting is difficult to assess because only half of the trade species have been treated by IUCN. Of these, 21 species are of Least Concern and three are Data Deficient. Our checklist, with accompanying DNA barcodes, images, and museum vouchers, provides an important reference library for future

  16. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade.

    PubMed

    Ng, Ting Hui; Tan, Siong Kiat; Wong, Wing Hing; Meier, Rudolf; Chan, Sow-Yan; Tan, Heok Hui; Yeo, Darren C J

    2016-01-01

    The ornamental pet trade is often considered a key culprit for conservation problems such as the introduction of invasive species (including infectious diseases) and overharvesting of rare species. Here, we present the first assessment of the biodiversity of freshwater molluscs in the ornamental pet trade in Singapore, one of the most important global hubs of the ornamental aquarium trade, and discuss associated conservation concerns. We recorded freshwater molluscs from ornamental pet shops and major exporters including non-ornamental species (e.g., hitchhikers, molluscs sold as fish feed). We recorded an unexpectedly high diversity-59 species-of freshwater bivalves and gastropods, with the majority (38 species or 64%) being from the Oriental region. In addition to morphological examination, we sequenced the DNA barcode region of mitochondrial CO1 and 16S genes to provide molecular data for the confirmation of the identification and for future re-identification. DNA barcodes were obtained for 50 species, and all but four were separated by > 3% uncorrected pairwise distances. The trade has been considered a main introduction pathway for non-native species to Singapore, and we found that out of 15 species in the trade as well as in the wild in Singapore, 12 are either introduced or of unknown origin, representing almost half of the known non-native freshwater molluscs in Singapore. Particularly prevalent are non-ornamental species: six hitchhikers on aquarium plants and six species sold as fish feed. We found that a quarter of the trade species have a history of introduction, which includes 11 known or potentially invasive species. We conclude that potential overharvesting is difficult to assess because only half of the trade species have been treated by IUCN. Of these, 21 species are of Least Concern and three are Data Deficient. Our checklist, with accompanying DNA barcodes, images, and museum vouchers, provides an important reference library for future monitoring

  17. Genetic studies of freshwater turtle and tortoises: a review of the past 70 years

    USGS Publications Warehouse

    FitzSimmons, Nancy N.; Hart, Kristen M.

    2007-01-01

    Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management.

  18. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade.

    PubMed

    Ng, Ting Hui; Tan, Siong Kiat; Wong, Wing Hing; Meier, Rudolf; Chan, Sow-Yan; Tan, Heok Hui; Yeo, Darren C J

    2016-01-01

    The ornamental pet trade is often considered a key culprit for conservation problems such as the introduction of invasive species (including infectious diseases) and overharvesting of rare species. Here, we present the first assessment of the biodiversity of freshwater molluscs in the ornamental pet trade in Singapore, one of the most important global hubs of the ornamental aquarium trade, and discuss associated conservation concerns. We recorded freshwater molluscs from ornamental pet shops and major exporters including non-ornamental species (e.g., hitchhikers, molluscs sold as fish feed). We recorded an unexpectedly high diversity-59 species-of freshwater bivalves and gastropods, with the majority (38 species or 64%) being from the Oriental region. In addition to morphological examination, we sequenced the DNA barcode region of mitochondrial CO1 and 16S genes to provide molecular data for the confirmation of the identification and for future re-identification. DNA barcodes were obtained for 50 species, and all but four were separated by > 3% uncorrected pairwise distances. The trade has been considered a main introduction pathway for non-native species to Singapore, and we found that out of 15 species in the trade as well as in the wild in Singapore, 12 are either introduced or of unknown origin, representing almost half of the known non-native freshwater molluscs in Singapore. Particularly prevalent are non-ornamental species: six hitchhikers on aquarium plants and six species sold as fish feed. We found that a quarter of the trade species have a history of introduction, which includes 11 known or potentially invasive species. We conclude that potential overharvesting is difficult to assess because only half of the trade species have been treated by IUCN. Of these, 21 species are of Least Concern and three are Data Deficient. Our checklist, with accompanying DNA barcodes, images, and museum vouchers, provides an important reference library for future monitoring

  19. Ecological speciation in marine v. freshwater fishes.

    PubMed

    Puebla, O

    2009-10-01

    Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for

  20. [Latin American malacology. Freshwater mollusks from Argentina].

    PubMed

    Rumi, Alejandra; Gregoric, Diego E Gutiérrez; Núñez, Verónica; Darrigran, Gustavo A

    2008-03-01

    A report and an updated list with comments on the species of freshwater molluscs of Argentina which covers an area of 2 777 815 km2 is presented. Distributions of Gastropoda and Bivalvia families, endemic, exotic, invasive as well as entities of sanitary importance are also studied and recommendations on their conservation are provided. Molluscs related to the Del Plata Basin have been thoroughly studied in comparison to others areas of the country. This fauna exhibits relatively the biggest specific richness and keeps its affinity with the fauna of other regions of the basin in areas of Paraguay and Brasil. The 4 500 records of molluscs considered in this paper arise from the study of the collections of Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires; Museo de La Plata, La Plata and Fundación "Miguel Lillo", Tucumán. These institutions keep very important collections of molluscs in southern South America. Field information has recently been obtained and localities cited by other authors are also included in the data base. Until today, 166 species have been described, 101 belonging to 10 families of Gastropoda and 65 to 7 of Bivalvia. Families with highest specific richness are Lithoglyphidae (22) and Sphaeriidae (25), respectively. The number of endemic species (those present only in Argentina) by family is: Gastropoda: Ampullariidae (1), Cochliopidae (10), Lithoglyphidae (11), Thiariidae (3), Chilinidae (11), Lymnaeidae (2) and Physidae (2?); Bivalvia: Hyriidae (1?); Etheriidae (1?) and Sphaeriidae (10). Families with a distribution that comprise almost the whole country are: the Sphaeriidae and the gastropods Cochliopidae, Chilinidae and Lymnaeidae. Families Erodonidae and Solecurtidae (Bivalvia) were registered in mixohaline environments from Buenos Aires province. Gastropod families Thiaridae and Glacidorbiidae show a very restricted distribution. The rest of the families are present mainly in the center and north of the country

  1. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2013-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  2. Microbiological reduction of Sb(V) in anoxic freshwater sediments.

    PubMed

    Kulp, Thomas R; Miller, Laurence G; Braiotta, Franco; Webb, Samuel M; Kocar, Benjamin D; Blum, Jodi S; Oremland, Ronald S

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  3. Antibiotic resistance genes in freshwater biofilms along a whole river.

    PubMed

    Winkworth, Cynthia L

    2013-06-01

    A key problem challenging public health officials' efforts to stem the spread of antibiotic resistance is the potential increase of resistance in the environment. Yet, despite recent and significant changes to agricultural land in New Zealand, as well as the sector's high antibiotic use, the influence on antibiotic resistance in the environment remained uncharacterised. Spatial and temporal dynamics of antibiotic resistance genes in freshwater biofilms from NZ's fourth longest river as it transitioned between low and high intensity farming were examined for 1 year. Polymerase chain reaction was employed to gauge the level of resistance present. Biofilms were screened for 10 genes conferring resistance to antibiotics used in humans only and both humans and agricultural animals. Three genes were detected, one which conferred resistance to the important human-only use antibiotic vancomycin. Detected at the two downstream sites only, and those subject to the highest combined land-use stressors, the three genes indicated an elevated presence of antibiotic resistance in relation to surrounding land use; 7.7% versus 2% across the whole river system. The detection of a gene conferring resistance to an important human-only use antibiotic was particularly concerning and highlighted human-based contamination sources along the river, in addition to those of agricultural origin.

  4. How restructuring river connectivity changes freshwater fish biodiversity and biogeography

    USGS Publications Warehouse

    Lynch, Heather L.; Grant, Evan H. Campbell; Muneepeerakul, Rachata; Arunachalam, Muthukumarasamy; Rodriguez-Iturbe, Ignacio; Fagan, William F.

    2011-01-01

    Interbasin water transfer projects, in which river connectivity is restructured via man-made canals, are an increasingly popular solution to address the spatial mismatch between supply and demand of fresh water. However, the ecological consequences of such restructuring remain largely unexplored, and there are no general theoretical guidelines from which to derive these expectations. River systems provide excellent opportunities to explore how network connectivity shapes habitat occupancy, community dynamics, and biogeographic patterns. We apply a neutral model (which assumes competitive equivalence among species within a stochastic framework) to an empirically derived river network to explore how proposed changes in network connectivity may impact patterns of freshwater fish biodiversity. Without predicting the responses of individual extant species, we find the addition of canals connecting hydrologically isolated river basins facilitates the spread of common species and increases average local species richness without changing the total species richness of the system. These impacts are sensitive to the parameters controlling the spatial scale of fish dispersal, with increased dispersal affording more opportunities for biotic restructuring at the community and landscape scales. Connections between isolated basins have a much larger effect on local species richness than those connecting reaches within a river basin, even when those within-basin reaches are far apart. As a result, interbasin canal projects have the potential for long-term impacts to continental-scale riverine communities.

  5. Conservation status of imperiled north American freshwater and diadromous fishes

    USGS Publications Warehouse

    Jelks, H.L.; Walsh, S.J.; Burkhead, N.M.; Contreras-Balderas, Salvador; Diaz-Pardo, E.; Hendrickson, D.A.; Lyons, J.; Mandrak, N.E.; McCormick, F.; Nelson, Joseph S.; Platania, S.P.; Porter, B.A.; Renaud, C.B.; Schmitter-Soto, J. J.; Taylor, E.B.; Warren, M.L.

    2008-01-01

    This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society's Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management.

  6. Genetic management guidelines for captive propagation of freshwater mussels (unionoidea)

    USGS Publications Warehouse

    Jones, J.W.; Hallerman, E.M.; Neves, R.J.

    2006-01-01

    Although the greatest global diversity of freshwater mussels (???300 species) resides in the United States, the superfamily Unionoidea is also the most imperiled taxon of animals in the nation. Thirty-five species are considered extinct, 70 species are listed as endangered or threatened, and approximately 100 more are species of conservation concern. To prevent additional species losses, biologists have developed methods for propagating juvenile mussels for release into the wild to restore or augment populations. Since 1997, mussel propagation facilities in the United States have released over 1 million juveniles of more than a dozen imperiled species, and survival of these juveniles in the wild has been documented. With the expectation of continued growth of these programs, agencies and facilities involved with mussel propagation must seriously consider the genetic implications of releasing captive-reared progeny. We propose 10 guidelines to help maintain the genetic resources of cultured and wild populations. Preservation of genetic diversity will require robust genetic analysis of source populations to define conservation units for valid species, subspecies, and unique populations. Hatchery protocols must be implemented that minimize risks of artificial selection and other genetic hazards affecting adaptive traits of progeny subsequently released to the wild. We advocate a pragmatic, adaptive approach to species recovery that incorporates the principles of conservation genetics into breeding programs, and prioritizes the immediate demographic needs of critically endangered mussel species.

  7. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    SciTech Connect

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.; Kukkadapu, Ravi K.; Roden, Eric E.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took place - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic

  8. Restricted-Range Fishes and the Conservation of Brazilian Freshwaters

    PubMed Central

    Nogueira, Cristiano; Buckup, Paulo A.; Menezes, Naercio A.; Oyakawa, Osvaldo T.; Kasecker, Thais P.; Ramos Neto, Mario B.; da Silva, José Maria C.

    2010-01-01

    Background Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Methodology/Principal Findings Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. Conclusions/Significance We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems

  9. Sensitivity of hypogean and epigean freshwater copepods to agricultural pollutants.

    PubMed

    Di Lorenzo, T; Di Marzio, W D; Sáenz, M E; Baratti, M; Dedonno, A A; Iannucci, A; Cannicci, S; Messana, G; Galassi, D M P

    2014-03-01

    Widespread pollution from agriculture is one of the major causes of the poor freshwater quality currently observed across Europe. Several studies have addressed the direct impact of agricultural pollutants on freshwater biota by means of laboratory bioassays; however, as far as copepod crustaceans are concerned, the ecotoxicological research is scarce for freshwater species and almost nonexistent for the hypogean ones. In this study, we conducted a comparative analysis of the available literature data on the sensitivity of freshwater copepods to agricultural pollutants. We also assessed the acute and chronic sensitivity of a hypogean and an epigean species, both belonging to the Crustacea Copepoda Cyclopoida Cyclopidae, to two N-fertilizers (urea and ammonium nitrate) and two herbicides (ARIANE(TM) II from Dow AgroSciences LLC, and Imazamox), widely used for cereal agriculture in Europe. According to the literature review, freshwater copepods are sensitive to a range of pesticides and N-fertilizers. Ecotoxicological studies on hypogean species of copepods account only one study. There are no standardized protocols available for acute and chronic toxicity tests for freshwater copepods, making comparisons about sensitivity difficult. From our experiments, ionized ammonia proved to be more toxic than the herbicide Imazamox, in both short and chronic bioassays. Urea was the less toxic chemical for both species. The hypogean species was more sensitive than the epigean one to all chemicals. For both species and for all tested chemicals, acute lethality and chronic lethality were induced at concentrations higher than the law limits of good water body quality in Europe, except for ionized ammonia, which provoked the chronic lethality of the hypogean species at a lower concentration. The hazardous concentration (HC) of un-ionized ammonia for 5 % of freshwater copepods, obtained by a species sensitivity distribution, was 92 μg l(-1), significantly lower than the HC computed

  10. Freshwater wetlands for wastewater management: environmental assessment handbook

    SciTech Connect

    Not Available

    1985-09-01

    The Freshwater Wetlands Handbook provides institutional, scientific and engineering guidance for the use of natural, freshwater wetlands for wastewater management. Wetlands have long been recognized for their pollutant removal capabilities and many have been used for wastewater management for some time. Little technical or institutional guidance currently exists for regulating these systems or for planning new systems. This Handbook provides guidance for state and federal regulatory agencies and potential dischargers evaluating wetlands for wastewater disposal or pollutant removal.

  11. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    DOE PAGES

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburstmore » spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.« less

  12. Toxicity testing of freshwater sediment collected near freshwater aquaculture facilities in the Maritimes, Canada.

    PubMed

    Lalonde, B A; Garron, C; Ernst, B; Jackman, P

    2013-01-01

    In the Atlantic region of Canada, there are close to 50 land-based freshwater aquaculture facilities, most of which discharge wastewater to freshwater receiving environments. This study was designed to assess the chemical and toxicological characteristics of sediments in those receiving environments. Thirty sediment samples were collected from 3 locations (upstream, outfall and downstream) at seven freshwater aquaculture facilities. Toxicity tests conducted included amphipod growth, amphipod survival and Microtox™. Sediments were also analysed for ammonia/porewater ammonia, redox and sulphide. Porewater ammonia concentration for the amphipod survival test ranged from 0.01 to 42 mg/L at the conclusion of the 14-day survival test. Ammonia concentration in sediment ranged from 0.3-202 μg/g, sulphide concentration ranged from 0.15 to 17.4 μg/g, yet redox ranged from 32 to 594 mV. Microtox™  IC50 values ranged from 108,00 to >164,000 mg/L, yet amphipod survival ranged from 0 to 100%, depending on sampling locations. Amphipod survival was significantly related (P < 0.05) to porewater ammonia (at time = 0 and 14 days) and Microtox™  IC50 was significantly related (P < 0.05) to ammonia, sulphide and redox levels. These results indicate that discharges from some the land-based aquaculture facilities are impacting sediment dwelling benthic invertebrates at the outfall but that impact largely disappears by 100 m downstream. Furthermore those impacts were rarely detected during the early winter season, when biomass production was at the lowest.

  13. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis.

    PubMed

    Jackson, Michelle C; Loewen, Charlie J G; Vinebrooke, Rolf D; Chimimba, Christian T

    2016-01-01

    The accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems. As integrators of local catchment and regional processes, freshwater ecosystems are also ranked highly sensitive to the net effects of multiple stressors, yet there has not been a large-scale quantitative synthesis. We analysed data from 88 papers including 286 responses of freshwater ecosystems to paired stressors and discovered that overall, their cumulative mean effect size was less than the sum of their single effects (i.e. an antagonistic interaction). Net effects of dual stressors on diversity and functional performance response metrics were additive and antagonistic, respectively. Across individual studies, a simple vote-counting method revealed that the net effects of stressor pairs were frequently more antagonistic (41%) than synergistic (28%), additive (16%) or reversed (15%). Here, we define a reversal as occurring when the net impact of two stressors is in the opposite direction (negative or positive) from that of the sum of their single effects. While warming paired with nutrification resulted in additive net effects, the overall mean net effect of warming combined with a second stressor was antagonistic. Most importantly, the mean net effects across all stressor pairs and response metrics were consistently antagonistic or additive, contrasting the greater prevalence of reported synergies in marine systems. Here, a possible explanation for more antagonistic responses by freshwater biota to stressors is that the inherent greater environmental variability of smaller aquatic ecosystems fosters greater potential for acclimation and co-adaptation to multiple stressors. PMID:26149723

  14. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis.

    PubMed

    Jackson, Michelle C; Loewen, Charlie J G; Vinebrooke, Rolf D; Chimimba, Christian T

    2016-01-01

    The accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems. As integrators of local catchment and regional processes, freshwater ecosystems are also ranked highly sensitive to the net effects of multiple stressors, yet there has not been a large-scale quantitative synthesis. We analysed data from 88 papers including 286 responses of freshwater ecosystems to paired stressors and discovered that overall, their cumulative mean effect size was less than the sum of their single effects (i.e. an antagonistic interaction). Net effects of dual stressors on diversity and functional performance response metrics were additive and antagonistic, respectively. Across individual studies, a simple vote-counting method revealed that the net effects of stressor pairs were frequently more antagonistic (41%) than synergistic (28%), additive (16%) or reversed (15%). Here, we define a reversal as occurring when the net impact of two stressors is in the opposite direction (negative or positive) from that of the sum of their single effects. While warming paired with nutrification resulted in additive net effects, the overall mean net effect of warming combined with a second stressor was antagonistic. Most importantly, the mean net effects across all stressor pairs and response metrics were consistently antagonistic or additive, contrasting the greater prevalence of reported synergies in marine systems. Here, a possible explanation for more antagonistic responses by freshwater biota to stressors is that the inherent greater environmental variability of smaller aquatic ecosystems fosters greater potential for acclimation and co-adaptation to multiple stressors.

  15. Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands

    NASA Astrophysics Data System (ADS)

    Anthony, Stephen S.

    1992-08-01

    The overall shape of freshwater lenses can be determined by applying electromagnetic methods and inverse layered-earth modeling to the mapping of atoll island freshwater lenses. Conductivity profiles were run across the width of the inhabited islands at Mwoakilloa, Pingelap, and Sapwuahfik atolls of the Pohnpei State, Federated States of Micronesia using a dual-loop, frequency-domain, electromagnetic profiling system. Six values of apparent conductivity were recorded at each sounding station and were used to interpret layer conductivities and/or thicknesses. A three-layer model that includes the unsaturated, freshwater, and saltwater zones was used to simulate apparent-conductivity data measured in the field. Interpreted results were compared with chloride-concentration data from monitoring wells and indicate that the interface between freshwater and saltwater layers, defined from electromagnetic data, is located in the upper part of the transition zone, where the chloride-concentration profile shows a rapid increase with depth. The electromagnetic method can be used to interpret the thickness of the freshwater between monitoring wells, but can not be used to interpret the thickness of freshwater from monitoring wells to the margin of an island.

  16. Stormwater runoff drives viral community composition changes in inland freshwaters

    PubMed Central

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  17. Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands

    USGS Publications Warehouse

    Anthony, S.S.

    1992-01-01

    The overall shape of freshwater lenses can be determined by applying electromagnetic methods and inverse layered-earth modeling to the mapping of atoll island freshwater lenses. Conductivity profiles were run across the width of the inhabited islands at Mwoakilloa, Pingelap, and Sapwuahfik atolls of the Pohnpei State, Federated States of Micronesia using a dual-loop, frequency-domain, electromagnetic profiling system. Six values of apparent conductivity were recorded at each sounding station and were used to interpret layer conductivities and/or thicknesses. A three-layer model that includes the unsaturated, freshwater, and saltwater zones was used to simulate apparent-conductivity data measured in the field. Interpreted results were compared with chloride-concentration data from monitoring wells and indicate that the interface between freshwater and saltwater layers, defined from electromagnetic data, is located in the upper part of the transition zone, where the chloride-concentration profile shows a rapid increase with depth. The electromagnetic method can be used to interpret the thickness of the freshwater between monitoring wells, but can not be used to interpret the thickness of freshwater from monitoring wells to the margin of an island. ?? 1992.

  18. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure. PMID:24996536

  19. Methane cycling in a tidal freshwater swamp

    SciTech Connect

    Megonigal, J.P.; Schlesinger, W.H. )

    1993-06-01

    Previous studies of methanogenesis in a tidal freshwater swamp on the North Carolina coast have found that potential rates of methane production overestimate observed rates of methane flux, especially during summer months. This research investigates three possibilities for the unexplained losses: methane oxidation, lateral export of dissolved methane to the adjacent river, and ebullition. It is possible that each of these sinks increase during the summer. The potential for methane oxidation was demonstrated in intact soil cores incubated for 21 hours under a 0.5% CH[sub 3]F atmosphere. Methane flux increased from 10+/-27 (mean+/-sd) to 60+/-3 mg m[sup [minus]2] d[sup [minus]1] in treated cores; control core fluxes were 15+/-3 and 19+/-3 mg m[sup [minus]2] d[sup [minus]1] over the same periods. Incubations of slightly unsaturated soils with [sup 14]CH[sub 4] confirmed rapid potential rates of methane oxidation.

  20. Dissolved methane in Indian freshwater reservoirs.

    PubMed

    Narvenkar, G; Naqvi, S W A; Kurian, S; Shenoy, D M; Pratihary, A K; Naik, H; Patil, S; Sarkar, A; Gauns, M

    2013-08-01

    Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian reservoirs have the potential to emit as much as 33.5 MT of CH4 per annum to the atmosphere. However, this estimate is based on assumptions rather than actual measurements. We present here the first data on dissolved CH4 concentrations from eight freshwater reservoirs in India, most of which experience seasonal anaerobic conditions and CH4 buildup in the hypolimnia. However, strong stratification prevents the CH4-rich subsurface layers to ventilate CH4 directly to the atmosphere, and surface water CH4 concentrations in these reservoirs are generally quite low (0.0028-0.305 μM). Moreover, only in two small reservoirs substantial CH4 accumulation occurred at depths shallower than the level where water is used for power generation and irrigation, and in the only case where measurements were made in the outflowing water, CH4 concentrations were quite low. In conjunction with short periods of CH4 accumulation and generally lower concentrations than previously assumed, our study implies that CH4 emission from Indian reservoirs has been greatly overestimated. PMID:23397538

  1. 2007 NWFSC Tidal Freshwater Genetics Results

    SciTech Connect

    David Teel

    2008-03-18

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, lower Columbia River, 2007. Final report submitted to the Bonneville Power Administration, Contract DE-AC05-76RLO1830.' Genotypic data were collected for 108 Chinook salmon and used in the genetic stock identification analysis. Results of the mixture analysis are presented in Table 1. Percentage estimates for four genetic stock groups (West Cascade Tributary Fall, Willamette River Spring, Deschutes River Fall, and Upper Columbia River Summer/Fall) ranged from 11% to 43%, all with non-zero lower 95% confidence intervals. Small contributions were also estimated for the West Cascade Tributary Spring (3%) and Snake River Fall (6%) stock groups. Results of individual fish probability assignments were summed by collection date (Figure 1) and site (Figure 2). Assignment probabilities for the most likely stock group for each individual ranged from 0.51 to 1.00 with approximately 60% of the assignments greater than 0.90 (data not shown). Nearly all of the low probability assignments were fish with assignments split between the Deschutes River Fall and Upper Columbia River Summer/Fall groups.

  2. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.

  3. Forests fuel fish growth in freshwater deltas

    PubMed Central

    Tanentzap, Andrew J.; Szkokan-Emilson, Erik J.; Kielstra, Brian W.; Arts, Michael T.; Yan, Norman D.; Gunn, John M.

    2014-01-01

    Aquatic ecosystems are fuelled by biogeochemical inputs from surrounding lands and within-lake primary production. Disturbances that change these inputs may affect how aquatic ecosystems function and deliver services vital to humans. Here we test, using a forest cover gradient across eight separate catchments, whether disturbances that remove terrestrial biomass lower organic matter inputs into freshwater lakes, thereby reducing food web productivity. We focus on deltas formed at the stream-lake interface where terrestrial-derived particulate material is deposited. We find that organic matter export increases from more forested catchments, enhancing bacterial biomass. This transfers energy upwards through communities of heavier zooplankton, leading to a fourfold increase in weights of planktivorous young-of-the-year fish. At least 34% of fish biomass is supported by terrestrial primary production, increasing to 66% with greater forest cover. Habitat tracers confirm fish were closely associated with individual catchments, demonstrating that watershed protection and restoration increase biomass in critical life-stages of fish. PMID:24915965

  4. Forests fuel fish growth in freshwater deltas.

    PubMed

    Tanentzap, Andrew J; Szkokan-Emilson, Erik J; Kielstra, Brian W; Arts, Michael T; Yan, Norman D; Gunn, John M

    2014-01-01

    Aquatic ecosystems are fuelled by biogeochemical inputs from surrounding lands and within-lake primary production. Disturbances that change these inputs may affect how aquatic ecosystems function and deliver services vital to humans. Here we test, using a forest cover gradient across eight separate catchments, whether disturbances that remove terrestrial biomass lower organic matter inputs into freshwater lakes, thereby reducing food web productivity. We focus on deltas formed at the stream-lake interface where terrestrial-derived particulate material is deposited. We find that organic matter export increases from more forested catchments, enhancing bacterial biomass. This transfers energy upwards through communities of heavier zooplankton, leading to a fourfold increase in weights of planktivorous young-of-the-year fish. At least 34% of fish biomass is supported by terrestrial primary production, increasing to 66% with greater forest cover. Habitat tracers confirm fish were closely associated with individual catchments, demonstrating that watershed protection and restoration increase biomass in critical life-stages of fish. PMID:24915965

  5. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  6. Biomass of freshwater turtles: a geographic comparison

    SciTech Connect

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entire six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.

  7. Water-resources potential of the freshwater lens at Key West, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1990-01-01

    , concentrations generally were not above the maximum contaminant level of 10 milligrams per liter for drinking water established by the Florida Department of Environmental Regulation. Water samples near an old land-fill in the eastern half of the island had concentrations of iron (600-1,900 micrograms per liter) and lead (40-800 micrograms per liter) that extended maximum contaminant levels of 300 and 50 micrograms per liter. These trace-element concentrations generally decreased with distance from the landfill. Although the freshwater lens is a potential source of water for additional nonpotable water needs in Key West, any large-scale pumping could quickly exhaust the freshwater lens, and saline water could be rapidly drawn though the porous limestone aquifer. Water-quality data indicate that the lens is an unlikely source of potable water.

  8. Influence of ENSO events on the freshwater discharge pattern at Patos Lagoon, Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Barros, G. P.; Marques, W. C.

    2013-05-01

    The aim of this study is to investigate the influence and importance of ENSO events on the control of the freshwater discharge pattern at Patos Lagoon, in timescales longer than one year. For this study it was used freshwater discharge, water levels and South Oscillation Index (SOI) data sets. The Southern Oscillation Index, or SOI, gives an indication of the development and intensity of El Niño or La Niña events in the Pacific Ocean. Sustained negative values of the SOI greater than -8 often indicate El Niño episodes. Sustained positive values of the SOI greater than +8 are typical of a La Niña episode. Cross wavelet technique is applied to examine the coherence and phase between interannual time-series (South Oscillation Index, freshwater discharge and water levels). Over synoptic time scales, wind action is the most effective forcing in Patos Lagoon's circulation. However, at longer time scales (over one year), freshwater discharge becomes the most important forcing, controling the water levels, circulation and other processes. At longer time scales, South America is affected by ENSO's influence. El Niño is the South Oscillation phase where the trade winds are weak, the pressure is low over the eastern Tropical Pacific and high on the west side. The south region of Brazil shows precipitation anomalies associated with the ENSO occurrence. The most significant ENSO events show a high temporal variability, which may occur in near biannual scales (1.5 - 3 years) or in lower frequencies (3 years - 7 years). The freshwater discharge of the main tributaries and water levels in Patos Lagoon are influenced by ENSO on interannual scales (cycles between 3.8 and 6 years). Therefore, El Niño events are associated with high mean values of freshwater discharge and water levels above the mean. On the other hand, La Niña events are associated with low mean values of freshwater discharge and water levels below the mean. These results are consistent with analysis related to

  9. Freshwater Sustainability under Climate Change in the Nueces River Basin, TX

    NASA Astrophysics Data System (ADS)

    Gonzalez, D. A.; Sinha, T.; Ji, J. H.

    2015-12-01

    Freshwater sustainability in arid and semi-arid regions is threatened due to climate change as well as competing water demands for agriculture, urban development, industrial use and ecosystem needs. Such changes have forced the local water supply systems to update their water supply plans once in five years. Developments of such water supply plans not only require reliable assessment of water availability and demands but also incorporate uncertainties due to regional climate change projections. In this study, we focus our analysis on one of the basins in the South Texas - Nueces River Basin (NRB) which provide inflows to the Choke Canyon - Lake Corpus Christi reservoir system. This reservoir system is the major freshwater source for the coastal communities in the basin and the Nueces Bay, which serve as a habitat for several key fish species such as blue crab, brown shrimp, and southern flounder. Freshwater inflows in the NRB have decreased in the past decades, resulting in increased salinity of the Nueces Bay, thus impacting the natural habitat for several fish species. Therefore, estimating the impacts of climate change in the NRB is critical to develop sustainable water resources management in the region. We will implement a physically based hydrologic model under historical climate change scenarios from multiple General Circulation Models (GCMs) over the past 30 years to understand how well we could have used large scale climate change projections in improving water resources management over the overlapping observations. A water management model will be developed for the Choke Canyon - Lake Corpus Christi Reservoir System, which will be ingested with inflow projections under multiple GCM scenarios over the past 30 years to incorporate uncertainty in water resources management. Finally, water management scenarios will be developed to minimize deficits between water availability and demands in the region.

  10. On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Guilyardi, E.; Sutton, R. T.; Gregory, J. M.; Madec, G.

    2006-11-01

    Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces

  11. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present

  12. Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): from freshwater to land and back.

    PubMed

    Alvarez-Presas, Marta; Baguñà, Jaume; Riutort, Marta

    2008-05-01

    The suborder Tricladida (phylum Platyhelminthes) comprises the well-known free-living flatworms, taxonomically grouped into three infraorders according to their ecology: Maricola (marine planarians), Paludicola (freshwater planarians), and Terricola (land planarians). Molecular analyses have demonstrated that the Paludicola are paraphyletic, the Terricola being the sister group of one of the three paludicolan families, the Dugesiidae. However, neither 18S rDNA nor COI based trees have been able to resolve the relationships among species of Terricola and Dugesiidae, particularly the monophyly of Terricola. Here, we present new molecular data including sequences of nuclear genes (18S rDNA, 28S rDNA) and a mitochondrial gene (COI) of a wider sample of dugesiid and terricolan species. The new sequences have been analyzed, together with those previously obtained, in independent and concatenated analyses using maximum likelihood and bayesian methods. The results show that, although some parts of the trees remain poorly resolved, they support a monophyletic origin for Terricola followed by a likely return of some species to freshwater habitats. Relationships within the monophyletic group of Dugesiidae are clearly resolved, and relationships among some terricolan subfamilies are also clearly established and point to the need for a thorough revision of Terricola taxonomy.

  13. Silver toxicity to Chironomus tentans in two freshwater sediments

    SciTech Connect

    Call, D.J.; Polkinghorne, C.N.; Markee, T.P.; Brooke, L.T.; Geiger, D.L.; Gorsuch, J.W.; Robillard, K.A.

    1999-01-01

    Sediment collected from two freshwater lakes, West Bearskin Lake (Cook, MN, USA) and Bond Lake (Douglas, WI, USA), was characterized for grain size, total organic carbon, (TOC), acid-volatile sulfides (AVS), simultaneously extracted metals (SEM), and iron (Fe). Both sediments had low levels of TOC. West Bearskin Lake sediment contained more small particles than Bond Lake, which was 95% sand. West Bearskin Lake also had higher SEM and had an Fe content that was approximately 30-fold greater than that of Bond Lake. These sediments were amended with AgNO{sub 3} in a series of concentrations, some of which were intended to exceed the total silver (Ag)-binding capacity of the sediments, allowing for the appearance of dissolved Ag in pore water (PW). Sediment toxicity tests were then designed such that the AgNO{sub 3} amendment levels would result in PW concentrations that bracketed the 10-d concentration causing 50% lethality for dissolved Ag of 0.057 mg/L, as determined in a toxicity test in water alone. The 10-d LC50 values for Chironomus tentans, based upon nominal additions of Ag to the sediments, were 2.75 and 1.17 g Ag per kilogram dry sediment for West Bearskin and Bond Lake sediments, respectively. An LC50 value based upon dissolved Ag in the PW was determined only for Bond Lake sediment and was approximately 275 times greater than the water-only LC50 value. This indicated that a high proportion of the dissolved fraction was not readily bioavailable to cause lethality. A reduction in PW pH and the displacement of other metals from sediment into PW with Ag additions to the sediment likely contributed to the observed mortalities and weight losses, particularly at the higher exposure levels. The concentrations of Ag in these sediments that resulted in biological effects are considerably higher than levels reported in the environment.

  14. The aquatic impact of ionic liquids on freshwater organisms.

    PubMed

    Costa, Susana P F; Pinto, Paula C A G; Saraiva, M Lúcia M F S; Rocha, Fábio R P; Santos, Joyce R P; Monteiro, Regina T R

    2015-11-01

    Ionic liquids (ILs), also known as liquid electrolytes, are powerful solvents with a wide variety of academic and industrial applications. Bioassays with aquatic organisms constitute an effective tool for the evaluation of ILs' toxicity, as well as for the prediction and identification of possible moieties that act as toxicophores. In this work, the acute toxicity of six ILs and two commonly used organic solvents was evaluated using freshwater organisms: Daphnia magna, Raphidocelis subcapitata and Hydra attenuata. The bioassays were performed by exposing the organisms to increasing concentrations of the ILs and observing D. magna immobilization, R. subcapitata growth inhibition, and the morphological or mortality effects in H. attenuata. The results demonstrate that the tested organisms are not equally susceptible to the ILs, e.g., bmpyr [BF4] was the least toxic compound for R. subcapitata, N1,1 [N1,1,1OOH] for D. magna and emim [Tf2N] for H. attenuata. This highlights the importance of applying a battery of assays in toxicological analysis. Additionally, Hydra proved to be the most tolerant species to the tested ILs. According to their hazard rankings, the tested ILs are considered practically harmless or moderately toxic, except (Hex)3(TDec)P [Cl], which was classified as highly toxic. The ILs were revealed to be more harmful to aquatic systems than the tested organic solvents, reaffirming the need to analyze carefully the (eco)toxicological impact of these compounds. The present study provides additional data in the evaluation of the potential hazard and the impact of ILs in the environment. PMID:26151376

  15. The aquatic impact of ionic liquids on freshwater organisms.

    PubMed

    Costa, Susana P F; Pinto, Paula C A G; Saraiva, M Lúcia M F S; Rocha, Fábio R P; Santos, Joyce R P; Monteiro, Regina T R

    2015-11-01

    Ionic liquids (ILs), also known as liquid electrolytes, are powerful solvents with a wide variety of academic and industrial applications. Bioassays with aquatic organisms constitute an effective tool for the evaluation of ILs' toxicity, as well as for the prediction and identification of possible moieties that act as toxicophores. In this work, the acute toxicity of six ILs and two commonly used organic solvents was evaluated using freshwater organisms: Daphnia magna, Raphidocelis subcapitata and Hydra attenuata. The bioassays were performed by exposing the organisms to increasing concentrations of the ILs and observing D. magna immobilization, R. subcapitata growth inhibition, and the morphological or mortality effects in H. attenuata. The results demonstrate that the tested organisms are not equally susceptible to the ILs, e.g., bmpyr [BF4] was the least toxic compound for R. subcapitata, N1,1 [N1,1,1OOH] for D. magna and emim [Tf2N] for H. attenuata. This highlights the importance of applying a battery of assays in toxicological analysis. Additionally, Hydra proved to be the most tolerant species to the tested ILs. According to their hazard rankings, the tested ILs are considered practically harmless or moderately toxic, except (Hex)3(TDec)P [Cl], which was classified as highly toxic. The ILs were revealed to be more harmful to aquatic systems than the tested organic solvents, reaffirming the need to analyze carefully the (eco)toxicological impact of these compounds. The present study provides additional data in the evaluation of the potential hazard and the impact of ILs in the environment.

  16. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    PubMed Central

    Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257

  17. Disturbance caused by freshwater releases of different magnitude on the aquatic macroinvertebrate communities of two coastal lagoons

    NASA Astrophysics Data System (ADS)

    Cañedo-Argüelles, Miguel; Rieradevall, Maria

    2010-06-01

    The response of the aquatic macroinvertebrate communities to freshwater releases of different magnitude and persistence was investigated in two Mediterranean coastal lagoons (Ca l'Arana and Ricarda). The study was carried out during 14 months (June 2004-July 2005) in which different environmental variables and the macroinvertebrate communities associated with two different habitats, the Phragmites australis belt and the deep area of the lagoons, were sampled monthly. Additionally, potential colonizing sources were identified through the analysis of Chironomidae pupal exuviae. The initial response of the communities to the freshwater releases was similar, being characterized by a peak of opportunistic taxa (mainly Naididae), but the late response was different for each lagoon. In the Ca l'Arana, the magnitude of the freshwater release was higher (salinity dropped below five, which is the limit commonly established for most freshwater species) and its persistence was also higher, allowing the colonization of the lagoon by new insect taxa, which replaced the brackish water species. In the Ricarda, the salinity never dropped beyond five and pre-disturbance conditions were rapidly re-established. This, together with the acclimatizing mechanisms showed by the species Chironomus riparius and Hediste diversicolor, permitted the recovery of the pre-disturbance macroinvertebrate community.

  18. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene.

    PubMed

    Watanabe, Tomohiro; Kojima, Hisaya; Takano, Yoshinori; Fukui, Manabu

    2013-09-01

    The diversity of sulfate-reducing prokaryotes (SRPs) and sulfur-oxidizing prokaryotes (SOPs) in freshwater lake ecosystems was investigated by cloning and sequencing of the aprA gene, which encodes for a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. To understand their diversity better, the spatial distribution of aprA genes was investigated in sediments collected from six geographically distant lakes in Antarctica and Japan, including a hypersaline lake for comparison. The microbial community compositions of freshwater sediments and a hypersaline sediment showed notable differences. The clones affiliated with Desulfobacteraceae and Desulfobulbaceae were frequently detected in all freshwater lake sediments. The SOP community was mainly composed of four major phylogenetic groups. One of them formed a monophyletic cluster with a sulfur-oxidizing betaproteobacterium, Sulfuricella denitrificans, but the others were not assigned to specific genera. In addition, the AprA sequences, which were not clearly affiliated to either SRP or SOP lineages, dominated the libraries from four freshwater lake sediments. The results showed the wide distribution of some sulfur-cycle prokaryotes across geographical distances and supported the idea that metabolic flexibility is an important feature for SRP survival in low-sulfate environments.

  19. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  20. Heterogeneity of Alkane Chain Length in Freshwater and Marine Cyanobacteria

    PubMed Central

    Shakeel, Tabinda; Fatma, Zia; Fatma, Tasneem; Yazdani, Syed Shams

    2015-01-01

    The potential utilization of cyanobacteria for the biological production of alkanes represents an exceptional system for the next generation of biofuels. Here, we analyzed a diverse group of freshwater and marine cyanobacterial isolates from Indian culture collections for their ability to produce both alkanes and alkenes. Among the 50 cyanobacterial isolates screened, 32 isolates; 14 freshwater and 18 marine isolates; produced predominantly alkanes. The GC-MS/MS profiles revealed a higher percentage of pentadecane and heptadecane production for marine and freshwater strains, respectively. Oscillatoria species were found to be the highest producers of alkanes. Among the freshwater isolates, Oscillatoria CCC305 produced the maximum alkane level with 0.43 μg/mg dry cell weight, while Oscillatoria formosa BDU30603 was the highest producer among the marine isolates with 0.13 μg/mg dry cell weight. Culturing these strains under different media compositions showed that the alkane chain length was not influenced by the growth medium but was rather an inherent property of the strains. Analysis of the cellular fatty acid content indicated the presence of predominantly C16 chain length fatty acids in marine strains, while the proportion of C18 chain length fatty acids increased in the majority of freshwater strains. These results correlated with alkane chain length specificity of marine and freshwater isolates indicating that alkane chain lengths may be primarily determined by the fatty acid synthesis pathway. Moreover, the phylogenetic analysis showed clustering of pentadecane-producing marine strains that was distinct from heptadecane-producing freshwater strains strongly suggesting a close association between alkane chain length and the cyanobacteria habitat. PMID:25853127

  1. New Zealand Freshwater Management: Changing Policy for a Changing World

    NASA Astrophysics Data System (ADS)

    Rouse, H. L.; Norton, N.

    2014-12-01

    Fresh water is essential to New Zealand's economic, environmental, cultural and social well-being. In line with global trends, New Zealand's freshwater resources are under pressure from increased abstraction and changes in land-use which contribute contaminants to our freshwater systems. Recent central government policy reform introduces greater national direction and guidance, to bring about a step-change in freshwater management. An existing national policy for freshwater management introduced in 2011 requires regional authorities to produce freshwater management plans containing clear freshwater objectives (measurable statements about the desired environmental state for water bodies) and associated limits to resource use (such as environmental flows and quantity allocation limits, and loads of contaminants to be discharged). These plans must integrate water quantity and quality management, consider climate change, and incorporate tangata whenua (New Zealand māori) roles and interests. In recent (2014) national policy amendments, the regional authorities are also required to implement national 'bottom-line' standards for certain attributes of the system to be managed; undertake accounting for all water takes and all sources of contaminants; and to develop and implement their plans in a collaborative way with communities. This rapid change in national policy has necessitated a new way of working for authorities tasked with implementation; many obstacles lie in their path. The scientific methods required to help set water quantity limits are well established, but water quality methods are less so. Collaborative processes have well documented benefits but also raise many challenges, particularly for the communication of complex and often uncertain scientific information. This paper provides background on the national policy changes and offers some early lessons learned by the regional authorities implementing collaborative freshwater management in New Zealand.

  2. Large-scale degradation of Amazonian freshwater ecosystems.

    PubMed

    Castello, Leandro; Macedo, Marcia N

    2016-03-01

    Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework

  3. Large-scale degradation of Amazonian freshwater ecosystems.

    PubMed

    Castello, Leandro; Macedo, Marcia N

    2016-03-01

    Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework

  4. Simulating Freshwater Availability under Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.

    2013-12-01

    Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.

  5. Behavior of technetium in freshwater environments

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; DeAngelis, D.L.

    1984-01-01

    In a previous study, /sup 95m/Tc, as a pertechnetate, was released to a small, experimental, freshwater pond, and the concentrations were determined in biotic and abiotic components of the pond ecosystem. A simple mathematical model was developed to predict the concentration of /sup 95m/Tc in fish and snails. Results from this study indicated that uptake through the food chain was an important source of technetium to the higher trophic levels (i.e., fish). In the current study, an experimental pond was spiked with /sup 95m/Tc in the pertechnetate form, and the concentrations of /sup 95m/Tc were measured in the lower trophic levels. Emphasis was placed on measuring the concentration of /sup 95m/Tc in zooplankton, benthic invertebrates, and the aquatic macrophyte Elodea canadensis. Fish were excluded from the pond to allow the development of a large zooplankton population. The concentration of /sup 95m/Tc in water decreased from 0.75 Bq/mL 1 h after the pond was spiked, to 0.21 Bq/mL at 20 d. Throughout the experiment, at least 98% of the /sup 95m/Tc in the water was in the dissolved fraction (0.4 ..mu..m). Zooplankton accumulated /sup 95m/Tc rapidly, having concentration factors (Bq/g sample wet wt. divided by Bq/g water) ranging from 3 at 4 h to 36 at 20 d. Concentration factors ranged from 3 to 8 for benthic insects and from 1 to 62 for the aquatic macrophyte.

  6. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments.

    PubMed

    Pradeep Ram, A S; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Telesphore

    2015-02-01

    In aquatic systems, limited data exists on the impact of mortality forces such as viral lysis and flagellate grazing when seeking to explain factors regulating prokaryotic metabolism. We explored the relative influence of top-down factors (viral lysis and heterotrophic nanoflagellate grazing) on prokaryotic mortality and their subsequent impact on their community metabolism in the euphotic zone of 21 temperate freshwater lakes located in the French Massif Central. Prokaryotic growth efficiency (PGE, index of prokaryotic community metabolism) determined from prokaryotic production and respiration measurements varied from 5 to 74% across the lakes. Viral and potential grazer-induced mortality of prokaryotes had contrasting impact on PGE. Potential flagellate grazing was found to enhance PGE whereas viral lysis had antagonistic impacts on PGE. The average PGE value in the grazing and viral lysis dominated lake water samples was 35.4% (±15.2%) and 17.2% (±8.1%), respectively. Selective viral lysis or flagellate grazing on prokaryotes together with the nature of contrasted substrates released through mortality processes can perhaps explain for the observed variation and differences in PGE among the studied lakes. The influences of such specific top-down processes on PGE can have strong implications on the carbon and nutrient fluxes in freshwater pelagic environments.

  7. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels ( M. margarifitera, Sweden)

    NASA Astrophysics Data System (ADS)

    Schöne, Bernd R.; Dunca, Elena; Mutvei, Harry; Norlund, Ulf

    2004-09-01

    Variations in annual shell growth of the freshwater pearl mussel Margritifera margritifera (L.) were utilized to reconstruct summer (June-August) air temperatures for each year over the period AD 1777-1993. Our study is based on 60 live-collected specimens with overlapping life-spans from six different Swedish rivers. Individual age-detrended and standardized chronologies ranging from 10 to 127 years in length were strung together to form one master chronology (AD 1777-1993) and three regional mean chronologies (Stensele, Uppsala, and Karlshamn). Standardized annual growth rates and air temperature (river water covaries with water temperature) exhibit a significant positive correlation and high running similarity confirming previous experimental findings. Up to 55% in the variability of annual shell growth is explained by temperature changes. From north to south this correlation slightly decreases. We establish a growth-temperature model capable of reconstructing summer air temperature from annual shell growth increments with a precision error of ±0.6-0.9°C (2SD). The validity of the model was tested against instrumentally determined air temperatures and proxy temperatures derived from tree rings. Our study demonstrates that freshwater pearl mussels provide an independent measure for past (i.e., prior to the 20th century greenhouse forcing) changes in air temperature. It can be used to test and verify other air temperature proxies and thus improve climate models.

  8. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved

  9. Pelagic larval duration predicts extinction risk in a freshwater fish clade.

    PubMed

    Douglas, Morgan; Keck, Benjamin P; Ruble, Crystal; Petty, Melissa; Shute, J R; Rakes, Patrick; Hulsey, C Darrin

    2013-01-01

    Pelagic larval duration (PLD) can influence evolutionary processes ranging from dispersal to extinction in aquatic organisms. Using estimates of PLD obtained from species of North American darters (Percidae: Etheostomatinae), we demonstrate that this freshwater fish clade exhibits surprising variation in PLD. Comparative analyses provide some evidence that higher stream gradients favour the evolution of shorter PLD. Additionally, similar to patterns in the marine fossil record in which lower PLD is associated with greater extinction probability, we found a reduced PLD in darter lineages was evolutionarily associated with extinction risk. Understanding the causes and consequences of PLD length could lead to better management and conservation of organisms in our increasingly imperiled aquatic environments.

  10. Seasonal cycle of the mixed-layer heat and freshwater budget in the eastern tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Rath, Willi; Dengler, Marcus; Lüdke, Jan; Schmidtko, Sunke; Schlundt, Michael; Brandt, Peter; Partners, Preface

    2016-04-01

    contributed to cooling of the mixed layer but a residual cooling term remains in both upwelling regions. A surprising result is that this residual is largest in the Angolan upwelling region, where upwelling-favourable winds are generally weaker than off Namibia and in the north-eastern upwelling region. The contributions of windstress-derived vertical advection and diapycnal heat and freshwater fluxes are discussed. In addition, the TropFlux climatology is evaluated against radiative and turbulent ocean-atmosphere heat and freshwater fluxes derived from ship-board observations.

  11. The 14C age of groundwater around saltwater-freshwater interface in deep coastal aquifer

    NASA Astrophysics Data System (ADS)

    Machida, I.; Ono, M.; Ikawa, R.; Koshigai, M.; Marui, A.

    2015-12-01

    This study is focused on determining the groundwater age in mixing zone around saltwater-freshwater interface in deep confined aquifer by 14C methods. A drilling up to 160m in depth was carried out with sampling geologic cores at a distance of 350m from coastal line. The elevation of the ground surface in the drilling site is about 4m, locates on the foot of Mt. Fuji, the highest mountain in Japan. The geology consists mainly of Quaternary, brittle volcanic rocks and fan deposits, and occasionally silt layers. The mixing zone of saltwater-freshwater was detected under 85m depth at the drilling site. A screen interval of the borehole was set from 151 to 157m depth and sampled the groundwater (hereafter called as FGB-water). The Cl- concentration of the FGB-water was 4,990 mg/L with NaCl type (approximately a quarter of salt water), indicating that FGB-water was taken from landward side of mixing zone around saltwater-freshwater interface. In addition to the drilling, the sampling of groundwater from more than 50 wells in the basin was carried out. The adjusted 14C age of FGB-water is estimated at approximately 10,000 years by fitting calculations. The ages of inland groundwater taken from almost same depth to FGB-water are 200-3,000 years. Although it is unclear why the FGB-water is much older than others, a likely explanation is due to the groundwater around saltwater-freshwater interface is moving upward roughly along the landward sloping interface (Cooper, 1964). Such movement would bring deeper and older groundwater to shallow zone. At the drilling site, the freshwater with low electric conductivity was obtained from surface to 84m depth. And they have much lighter stable isotopes (D and 18O) compared to those in inland. That is to say, the groundwater recharged at higher elevation distribute at shallow zone at the FGB. This result supports the upward moving of groundwater at the coastal area.

  12. Richness and diversity of helminth communities in tropical freshwater fishes: Empirical evidence

    USGS Publications Warehouse

    Choudhury, A.; Dick, T.A.

    2000-01-01

    Aim: Published information on the richness and diversity of helminth parasite communities in tropical freshwater fishes is reviewed in response to expectations of species-rich parasite communities in tropical regions. Location: Areas covered include the tropics and some subtropical areas. In addition, the north temperate area of the nearctic zone is included for comparison. Methods: Data from 159 communities in 118 species of tropical freshwater fish, summarized from 46 published studies, were used for this review. Parasite community descriptors used in the analyses included component community richness and calculated mean species richness. Data from 130 communities in 47 species of nearctic north temperate freshwater fish were summarized from 31 studies and used for comparison. Results: The component helminth communities of many tropical freshwater fish are species-poor, and considerable proportions of fish from certain parts of the tropics, e.g. West African drainages, are uninfected or lightly infected. Mean helminth species richness was low and equaled or exceeded 2.0 in only 22 of 114 communities. No single group of helminths was identified as a dominant component of the fauna and species composition was variable among and within broader geographical areas. The richest enteric helminth assemblages were found in mochokid and clariid catfish with a mixed carnivorous diet, whereas algal feeders, herbivores and detritivores generally had species-poor gut helminth communities. Comparisons indicated that certain areas in the north temperate region had higher helminth species richness in fishes than areas in the tropics. Main conclusions: Expectations of high species richness in helminth communities of tropical freshwater fishes are not fulfilled by the data. Direct comparisons of infracommunities and component communities in host species across widely separated phylogenetic and geographical lines are inappropriate. Examination of latitudinal differences in richness

  13. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  14. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  15. Arctic Ocean freshwater as a trigger for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  16. Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, Massachusetts Executive Office of Environmental Affairs, Cape Cod Commission, and the Towns of Eastham, Provincetown, Truro, and Wellfleet, began an investigation in 2000 to improve the understanding of the hydrogeology of the four freshwater lenses of the Lower Cape Cod aquifer system and to assess the effects of changing ground-water pumping, recharge conditions, and sea level on ground-water flow in Lower Cape Cod, Massachusetts. A numerical flow model was developed with the computer code SEAWAT to assist in the analysis of freshwater and saltwater flow. Model simulations were used to determine water budgets, flow directions, and the position and movement of the freshwater/saltwater interface. Model-calculated water budgets indicate that approximately 68 million gallons per day of freshwater recharge the Lower Cape Cod aquifer system with about 68 percent of this water moving through the aquifer and discharging directly to the coast, 31 percent flowing through the aquifer, discharging to streams, and then reaching the coast as surface-water discharge, and the remaining 1 percent discharging to public-supply wells. The distribution of streamflow varies greatly among flow lenses and streams; in addition, the subsurface geology greatly affects the position and movement of the underlying freshwater/saltwater interface. The depth to the freshwater/saltwater interface varies throughout the study area and is directly proportional to the height of the water table above sea level. Simulated increases in sea level appear to increase water levels and streamflows throughout the Lower Cape Cod aquifer system, and yet decrease the depth to the freshwater/saltwater interface. The resulting change in water levels and in the depth to the freshwater/saltwater interface from sea-level rise varies throughout the aquifer system and is controlled largely by non-tidal freshwater streams. Pumping from large

  17. Changes of Gel-forming Ability of Surimi from Freshwater fish during Frozen Storage

    NASA Astrophysics Data System (ADS)

    Chang, Jiangzhou; Mori, Satoko; Aoki, Mayumi; Ichikawa, Hisashi; Goto, Shingi; Osatomi, Kiyoshi; Nozaki, Yukinori

    With the view of utilizing a freshwater fish, carp, rainbow trout and silver crucian carp, especially, for fish-paste products, the changes of gel-forming ability of the surimi from these fishes during frozen storage were examined. The gel-forming ability of the surimi with the general cryoprotective additives decreased gradually during frozen storage, but the gel-forming abiIity of surimi with additives in six months after frozen storage was higher than that of additives-free surimi. Each surimi from the three fish species showed resistance to freezing in the order of carp>rainbow trout>silver crucian carp. The gel-forming ability of the surimi from these fishes is low, but the present freshwater fish surimi have the permissible abiIity used for the practical kamaboko making like sardine surimi. On the other hand, a high correlation between gel-forming ability of surimi and total myofibrilIar Ca-ATPase activity, solubiIity and amount of unfrozen water was found.

  18. Taking High Conservation Value from Forests to Freshwaters

    NASA Astrophysics Data System (ADS)

    Abell, Robin; Morgan, Siân K.; Morgan, Alexis J.

    2015-07-01

    The high conservation value (HCV) concept, originally developed by the Forest Stewardship Council, has been widely incorporated outside the forestry sector into companies' supply chain assessments and responsible purchasing policies, financial institutions' investment policies, and numerous voluntary commodity standards. Many, if not most, of these newer applications relate to production practices that are likely to affect freshwater systems directly or indirectly, yet there is little guidance as to whether or how HCV can be applied to water bodies. We focus this paper on commodity standards and begin by exploring how prominent standards currently address both HCVs and freshwaters. We then highlight freshwater features of high conservation importance and examine how well those features are captured by the existing HCV framework. We propose a new set of freshwater `elements' for each of the six values and suggest an approach for identifying HCV Areas that takes out-of-fence line impacts into account, thereby spatially extending the scope of existing methods to define HCVs. We argue that virtually any non-marine HCV assessment, regardless of the production sector, should be expanded to include freshwater values, and we suggest how to put those recommendations into practice.

  19. Bistability of mangrove forests and competition with freshwater plants

    USGS Publications Warehouse

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  20. Trajectory Shifts in the Arctic and Subarctic Freshwater Cycle

    NASA Astrophysics Data System (ADS)

    Peterson, Bruce J.; McClelland, James; Curry, Ruth; Holmes, Robert M.; Walsh, John E.; Aagaard, Knut

    2006-08-01

    Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in freshwater sources and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and excess net precipitation on the ocean contributed ~20,000 cubic kilometers of fresh water to the Arctic and high-latitude North Atlantic oceans from lows in the 1960s to highs in the 1990s. Sea ice attrition provided another ~15,000 cubic kilometers, and glacial melt added ~2000 cubic kilometers. The sum of anomalous inputs from these freshwater sources matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995. The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures. Fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North Atlantic Oscillation enters into a new high phase.

  1. Cl- uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus).

    PubMed

    Chang, I-Chi; Hwang, Pung-Pung

    2004-01-01

    In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia. PMID:15286914

  2. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  3. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed

    USGS Publications Warehouse

    Krauss, K.W.; Duberstein, J.A.

    2010-01-01

    Sea-level rise and anthropogenic activity promote salinity incursion into many tidal freshwater forested wetlands. Interestingly, individual trees can persist for decades after salt impact. To understand why, we documented sapflow (Js), reduction in Js with sapwood depth, and water use (F) of baldcypress (Taxodium distichum (L.) Rich.) trees undergoing exposure to salinity. The mean Js of individual trees was reduced by 2.8 g H2O??m-2??s-1 (or by 18%) in the outer sapwood on a saline site versus a freshwater site; however, the smallest trees, present only on the saline site, also registered the lowest Js. Hence, tree size significantly influenced the overall site effect on Js. Trees undergoing perennial exposure to salt used greater relative amounts of water in outer sapwood than in inner sapwood depths, which identifies a potentially different strategy for baldcypress trees coping with saline site conditions over decades. Overall, individual trees used 100 kg H2O??day-1 on a site that remained relatively fresh versus 23.9 kg H2O??day-1 on the saline site. We surmise that perennial salinization of coastal freshwater forests forces shifts in individual-tree osmotic balance and water-use strategy to extend survival time on suboptimal sites, which further influences growth and morphology.

  4. Calibration of frictional forces in atomic force microscopy

    SciTech Connect

    Ogletree, D.F.; Carpick, R.W.; Salmeron, M.

    1996-09-01

    The atomic force microscope can provide information on the atomic-level frictional properties of surfaces, but reproducible quantitative measurements are difficult to obtain. Parameters that are either unknown or difficult to precisely measure include the normal and lateral cantilever force constants (particularly with microfabricated cantilevers), the tip height, the deflection sensor response, and the tip structure and composition at the tip-surface contact. We present an {ital in} {ital situ} experimental procedure to determine the response of a cantilever to lateral forces in terms of its normal force response. This procedure is quite general. It will work with any type of deflection sensor and does not require the knowledge or direct measurement of the lever dimensions or the tip height. In addition, the shape of the tip apex can be determined. We also discuss a number of specific issues related to force and friction measurements using optical lever deflection sensing. We present experimental results on the lateral force response of commercially available V-shaped cantilevers. Our results are consistent with estimates of lever mechanical properties using continuum elasticity theory. {copyright} {ital 1996 American Institute of Physics.}

  5. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  6. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  7. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment.

    PubMed

    Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung

    2013-07-01

    This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA.

  8. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment.

    PubMed

    Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung

    2013-07-01

    This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA. PMID:23247527

  9. Low-latitude ice cores and freshwater availability

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie Marie

    2009-12-01

    Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of

  10. Tidal freshwater wetland herbivory in Anacostia Park

    USGS Publications Warehouse

    Krafft, Cairn; Hatfield, Jeff S.; Hammerschlag, Richard S.

    2010-01-01

    Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. In June 2009 an herbivory study was established to document the impacts of resident Canada goose (Branta canadensis maxima) herbivory to vegetation at Kingman Marsh. Sixteen modules consisting of paired exclosed plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Since the experiment was designed to determine the impacts of herbivory by resident Canada geese as opposed to other herbivores, exclosure fencing was elevated 0.2 m to permit access by herbivores such as fish and turtles while excluding mature Canada geese. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired exclosure and control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not significant for the baseline data collected in June. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the control plots, total vegetative cover had declined dramatically in the initially-vegetated control plots, and differences between paired exclosed and control plots were significant (P = 0.0026). No herbivory by Canada geese or other herbivores such as fish or turtles was observed in the exclosures. These results show that Canada goose herbivory has inflicted significant damage to the native wetland vegetation in the portions of Kingman Marsh that had been refenced and replanted. Significant differences in total vegetative

  11. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology

    PubMed Central

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S.

    2015-01-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment “at will” through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  12. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models.

  13. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  14. New data on freshwater psammic Gastrotricha from Brazil.

    PubMed

    Garraffoni, André R S; Araujo, Thiago Q; Lourenço, Anete P; Balsamo, Maria

    2010-01-01

    Current knowledge of freshwater gastrotrich fauna from Brazil is underestimated as only two studies are available. The present communication is a taxonomic account of the first-ever survey of freshwater Gastrotricha in Minas Gerais State. Samplings were carried out yielding six species of three Chaetonotidae genera: Aspidiophorus cf. pleustonicus, Ichthydium cf. chaetiferum, Chaetonotus acanthocephalus, Chaetonotus heideri, Chaetonotus cf. succinctus, Chaetonotus sp., and also an undescribed species belonging to the genus Redudasys (incertae sedis): this is the first finding of specimens of Redudasys outside of original type locality. These preliminary observations suggest that the knowledge of the biodiversity of Gastrotricha in the Minas Gerais State, as well as in the whole Brazil, will certainly increase as further investigations are undertaken, and that freshwater Macrodasyida may be more common than previously thought. PMID:21594197

  15. Extinction rates in North American freshwater fishes, 1900-2010

    USGS Publications Warehouse

    Burkhead, Noel M.

    2012-01-01

    Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.

  16. Assessing and managing freshwater ecosystems vulnerable to global change

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  17. New data on freshwater psammic Gastrotricha from Brazil

    PubMed Central

    Garraffoni, André R. S.; Araujo, Thiago Q.; Lourenço, Anete P.; Balsamo, Maria

    2010-01-01

    Abstract Current knowledge of freshwater gastrotrich fauna from Brazil is underestimated as only two studies are available. The present communication is a taxonomic account of the first-ever survey of freshwater Gastrotricha in Minas Gerais State. Samplings were carried out yielding six species of three Chaetonotidae genera: Aspidiophorus cf. pleustonicus, Ichthydium cf. chaetiferum, Chaetonotus acanthocephalus, Chaetonotus heideri, Chaetonotus cf. succinctus, Chaetonotus sp., and also an undescribed species belonging to the genus Redudasys (incertae sedis): this is the first finding of specimens of Redudasys outside of original type locality. These preliminary observations suggest that the knowledge of the biodiversity of Gastrotricha in the Minas Gerais State, as well as in the whole Brazil, will certainly increase as further investigations are undertaken, and that freshwater Macrodasyida may be more common than previously thought. PMID:21594197

  18. New data on freshwater psammic Gastrotricha from Brazil.

    PubMed

    Garraffoni, André R S; Araujo, Thiago Q; Lourenço, Anete P; Balsamo, Maria

    2010-10-07

    Current knowledge of freshwater gastrotrich fauna from Brazil is underestimated as only two studies are available. The present communication is a taxonomic account of the first-ever survey of freshwater Gastrotricha in Minas Gerais State. Samplings were carried out yielding six species of three Chaetonotidae genera: Aspidiophorus cf. pleustonicus, Ichthydium cf. chaetiferum, Chaetonotus acanthocephalus, Chaetonotus heideri, Chaetonotus cf. succinctus, Chaetonotus sp., and also an undescribed species belonging to the genus Redudasys (incertae sedis): this is the first finding of specimens of Redudasys outside of original type locality. These preliminary observations suggest that the knowledge of the biodiversity of Gastrotricha in the Minas Gerais State, as well as in the whole Brazil, will certainly increase as further investigations are undertaken, and that freshwater Macrodasyida may be more common than previously thought.

  19. Paleoceanography of the Atlantic-Mediterranean exchange: Overview and first quantitative assessment of climatic forcing

    NASA Astrophysics Data System (ADS)

    Rogerson, M.; Rohling, E. J.; Bigg, G. R.; Ramirez, J.

    2012-06-01

    The Mediterranean Sea provides a major route for heat and freshwater loss from the North Atlantic and thus is an important cause of the high density of Atlantic waters. In addition to the traditional view that loss of fresh water via the Mediterranean enhances the general salinity of the North Atlantic, and the interior of the eastern North Atlantic in particular, it should be noted that Mediterranean water outflowing at Gibraltar is in fact cooler than compensating inflowing water. The consequence is that the Mediterranean is also a region of heat loss from the Atlantic and contributes to its large-scale cooling. Uniquely, this system can be understood physically via the constraints placed on it by a single hydraulic structure: the Gibraltar exchange. Here we review the existing knowledge about the physical structure of the Gibraltar exchange today and the evidential basis for arguments that it has been different in the past. Using a series of quantitative experiments, we then test prevailing concepts regarding the potential causes of these past changes. We find that (1) changes in the vertical position of the plume of Mediterranean water in the Atlantic are controlled by the vertical density structure of the Atlantic; (2) a prominent Early Holocene "contourite gap" within the Gulf of Cadiz is a response to reduced buoyancy loss in the eastern Mediterranean during the time of "sapropel 1" deposition; (3) changes in buoyancy loss from the Mediterranean during MIS3 caused changes in the bottom velocity field in the Gulf of Cadiz, but we note that the likely cause is reduced freshwater loss and not enhanced heat loss; and (4) strong exchange at Gibraltar during Atlantic freshening phases implies that the Gibraltar exchange provides a strong negative feedback to reduced Atlantic meridional overturning. Given the very counterintuitive way in which the Strait of Gibraltar system behaves, we recommend that without quantitative supporting work, qualitative interpretations

  20. Satellite estimate of freshwater exchange between the Indonesian Seas and the Indian Ocean via the Sunda Strait

    NASA Astrophysics Data System (ADS)

    Potemra, James T.; Hacker, Peter W.; Melnichenko, Oleg; Maximenko, Nikolai

    2016-07-01

    The straits in Indonesia allow for low-latitude exchange of water between the Pacific and Indian Oceans. Collectively known as the Indonesian Throughflow (ITF), this exchange is thought to occur primarily via the Makassar Strait and downstream via Lombok Strait, Ombai Strait, and Timor Passage. The Sunda Strait, between the islands of Sumatra and Java, is a very narrow (≈10 km) and shallow (≈20 m) gap, but it connects the Java Sea directly to the Indian Ocean. Flow through this strait is presumed to be small, given the size of the passage; however, recent observations from the Aquarius satellite indicate periods of significant freshwater transport, suggesting the Sunda Strait may play a more important role in Pacific to Indian Ocean exchange. The nature of this exchange is short-duration (several days) bursts of freshwater injected into the eastern Indian Ocean superimposed on a mean seasonal cycle. The mean volume transport is small averaging about 0.1 Sv toward the Indian Ocean, but the freshwater transport is nonnegligible (estimated at 5.8 mSv). Transport through the strait is hydraulically controlled and directly correlates to the along-strait pressure difference. The episodic low-salinity plumes observed by Aquarius do not, however, appear to be forced by this same mechanism but are instead controlled by convergence of flow at the exit of the Strait in the Indian Ocean. Numerical model results show the fate of this freshwater plume varies with season and is either advected to the northwest along the coast of Sumatra or southerly into the ITF pathway.

  1. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  2. Evaluating Alternative Strategies for Investments in Freshwater Conservation

    NASA Astrophysics Data System (ADS)

    Cheruvelil, K. S.; Kramer, D. B.; Zhang, T.; Ligmann-Zielinska, A.; Soranno, P.; Bremigan, M. T.

    2012-12-01

    Efforts towards systematic conservation planning for freshwaters have progressed far less than similar efforts in the terrestrial and marine environments. Although there are differences in the coupled human and natural systems that distinguish freshwater, terrestrial, and marine environments, many of the tools that have been used in terrestrial and marine systems can also be used for conservation planning for freshwater resources. In this paper, we used one such tool, return on investment (ROI), to identify optimal conservation portfolios. Our overarching research question is: how do different strategies for evaluating ROI benefits influence the resulting portfolio and the outcome of interest - in our case, water quality? Specifically, we examined investments to convert farmed agricultural land to fallow land to improve water quality in 55 inland lakes in southwestern Michigan. We simulated investments and compared the ROIs for the following strategies: 1) economic; 2) ecological; 3) environmental policy and 4) agricultural policy. We also tested the well-established assumption that riparian lands, those abutting and within 30 m of freshwater shorelines, have the greatest potential to influence water quality. We found that 1) investments in freshwater resources through the conservation of riparian land are more effective than the conservation of randomly selected parcels of similar land area in the catchment; 2) the costs and benefits of riparian land conservation vary considerably among lakes; 3) the choice of investment strategies results in very different conservation portfolios; 4) the resulting conservation portfolios have very different distributional and policy implications. These analyses and results provide a foundation on which to improve systematic conservation planning for freshwaters.

  3. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California

    PubMed Central

    Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V. E.; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B.; Ode, Peter R.; Peek, Ryan; Quiñones, Rebecca M.; Rehn, Andrew C.; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D.; Slusark, Joe; Viers, Joshua H.; Wright, Amber; Morrison, Scott A.

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  4. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California.

    PubMed

    Howard, Jeanette K; Klausmeyer, Kirk R; Fesenmyer, Kurt A; Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V E; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B; Ode, Peter R; Peek, Ryan; Quiñones, Rebecca M; Rehn, Andrew C; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D; Slusark, Joe; Viers, Joshua H; Wright, Amber; Morrison, Scott A

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  5. Training program to prepare the U.S. DOE laboratories for the entry into force of the protocol additional to the agreement between the United States of America and the International Atomic Energy Agency for the application of safeguards in the United

    SciTech Connect

    Boyer, Brian David; Stevens, Rebecca C; Uribe, Eva C; Sandoval, M Analisa; Valente, John N; Valente, John U; Jo, Jae H; Sellen, Joana

    2009-01-01

    In 2008, a joint team from Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL) consisting of specialists in training IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S DOE laboratories for the entry into force of the U.S. Additional Protocol. Since the U.S. Additional Protocol would allow for IAEA access to the DOE laboratories under the aegis of complementary access activities, the DOE laboratories would need to prepare for such visits. The goal of the training was to ensure that the DOE laboratories would successfully host an IAEA complementary access. In doing so, the labs must be able to provide the IAEA with the information that the IAEA would need to resolve its questions about the U.S. Declaration and declared activities at the lab, and also protect certain equities, as provided under the U.S. Additional Protocol Article 1.b and c. which set forth a 'National Security Exclusion.' This 'NSE' states that the AP provisions apply within the United States 'excluding only instances where its application would result in access by the Agency to activities with direct national security significance to the United States or to location or information associated with such activities.' These activities are referred to collectively as DNSS-direct national security significance. Furthermore, the U.S. has a specific right to employ managed access, without prejudice to the right under Article 1.b, in connection with activities of DNSS. The provisions in Articles 1.b and 1.c are unique to the U.S. AP, and are additional to the more general right, under Article 7, to use managed access to protect from disclosure proprietary and/or proliferation-sensitive information, and to meet safety and security requirements, that is incorporated directly from the Model Additional Protocol. The BNL-LANL team performed training at Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak

  6. What makes a healthy environment for native freshwater mussels?

    USGS Publications Warehouse

    ,

    2000-01-01

    Freshwater mussels are sensitive to contamination of sediment that they inhabit and to the water that they filter, making the presence of live, adult mussels an excellent indicator of ecosystem health and stability. Freshwater mussels are relatively immobile, imbedded in the streambed with part of the shell sticking up into the water so that they can filter water to obtain oxygen and food. This lack of mobility makes them particularly vulnerable to water and sediment contamination, changes in sedimentation, or prolonged drought. Thus, ecosystem health and stability are critical for their reproduction and survival.

  7. RECOVERY OF FRESHWATER STORED IN SALINE AQUIFERS IN PENINSULAR FLORIDA.

    USGS Publications Warehouse

    Merritt, Michael L.

    1986-01-01

    Subsurface freshwater storage has been operationally tested at seven sites in central and south Florida. Injection was into a high chloride water aquifer at six sites, and into a high sulfate water aquifer at the seventh. Recovery efficiency has ranged from 0 to 75 percent in high chloride water aquifers, and has exceeded 100 percent in the high sulfate water aquifer. Computer modeling techniques were used to examine the geohydrologic, design, and management factors governing the recovery efficiency of subsurface freshwater storage. The modeling approach permitted many combinations of geohydrologic and operational conditions to be studied at relatively low cost.

  8. Biomarkers of Type II Synthetic Pyrethroid Pesticides in Freshwater Fish

    PubMed Central

    2014-01-01

    Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions. PMID:24868555

  9. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player

  10. Oil-particle interactions and submergence from crude oil spills in marine and freshwater environments: review of the science and future research needs

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Boufadel, Michael C.; Johnson, Rex; Lee, Kenneth W.; Graan, Thomas P.; Bejarano, Adriana C.; Zhu, Zhenduo; Waterman, David; Capone, Daniel M.; Hayter, Earl; Hamilton, Stephen K.; Dekker, Timothy; Garcia, Marcelo H.; Hassan, Jacob S.

    2015-01-01

    Although much is known about oil-particle interactions in coastal marine environments, there remains a need for additional science on methods to detect and quantify the presence of OPAs and to understand their effects on containment and recovery of oil spilled under various temperature regimes and in different aquatic habitats including freshwater environments.

  11. Assessing macroinvertebrate biodiversity in freshwater ecosystems: advances and challenges in DNA-based approaches

    EPA Science Inventory

    Assessing the biodiversity of macroinvertebrate faunas in freshwater ecosystems is an essential component of both basic ecological inquiry and applied ecological assessments. Aspects of taxonomic diversity and composition in freshwater communities are widely used to quantify wate...

  12. THE EFFECT OF FRESHWATER INFLOW ON NET ECOSYSTEM METABOLISM IN LAVACA BAY, TEXAS

    EPA Science Inventory

    Estuaries and other coastal ecosystems depend on freshwater inflow to maintain the gradients in environmental characteristics that define these transitional water bodies. Freshwater inflow (FWI) rates in many estuaries are changing due to changing land use patterns, water divers...

  13. Additive-free digital microfluidics.

    PubMed

    Freire, Sergio L S; Tanner, Brendan

    2013-07-16

    Digital microfluidics, a technique for manipulation of droplets, is becoming increasingly important for the development of miniaturized platforms for laboratory processes. Despite the enthusiasm, droplet motion is frequently hindered by the desorption of proteins or other analytes to surfaces. Current approaches to minimize this unwanted surface fouling involve the addition of extra species to the droplet or its surroundings, which might be problematic depending on the droplet content. Here, a new strategy is introduced to move droplets containing cells and other analytes on solid substrates, without extra moieties; in particular, droplets with bovine serum albumin could be moved at a concentration 2000 times higher than previously reported (without additives). This capability is achieved by using a soot-based superamphiphobic surface combined with a new device geometry, which favors droplet rolling. Contrasting with electrowetting, wetting forces are not required for droplet motion.

  14. Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    PubMed Central

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway. PMID:22312297

  15. Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices.

    PubMed

    Vilmi, Annika; Karjalainen, Satu Maaria; Landeiro, Victor L; Heino, Jani

    2015-05-01

    Anthropogenic eutrophication is a major form of perturbation in freshwaters, and several approaches aim to recognise its effects on lake ecosystems. We compared the responses of diatom species morphology, diversity indices and diatom indices to total phosphorus, total nitrogen and distance from a point stressor causing eutrophication in a large lake. We specifically examined the degree to which extent nutrients and distance to the stressor affect variation in the values of various biological indices and diatom valve size. In addition, special attention was given to the adequate repetition of diatom valve width measurements in the context of environmental assessment. Our results showed that diatom valve width was a better indicator of nutrient concentrations than any of the diatom and diversity indices examined. However, the results varied between the two study transects, suggesting that the diatom-based variables not only respond to nutrients but also to other environmental factors (e.g. shoreline morphology). We also found that when using the method based on diatom morphology, one should measure more valves than has been originally suggested to provide a more reliable picture of response to eutrophication. We argue that diatom morphology could be considered as an additional environmental assessment tool, because it may complement the information provided by the traditional diatom indices. Diatom valve width may also be more sensitive to early phases of the eutrophication process and its effects on freshwater ecosystems than various diatom indices that were developed in regional contexts with wide ranges in nutrient levels.

  16. Reproductive investment compromises maternal health in three species of freshwater turtle.

    PubMed

    Rafferty, Anthony R; Scheelings, T Franciscus; Foley, Laura J; Johnstone, Christopher P; Reina, Richard D

    2014-01-01

    Life-history theory predicts that a trade-off in the allocation of resources between different physiological systems exists because resources are finite. As a result, females investing heavily in reproduction may compromise their future health. We used hematology, serum biochemistry, mass, and morphometric measurements as indicators of physiological health state to investigate whether reproductive investment altered subsequent maternal health in three Australian freshwater turtles: the oblong turtle (Chelodina oblonga; n = 12), the Macquarie turtle (Emydura macquarii; n = 9), and the eastern long-necked turtle (Chelodina longicollis; n = 8). Maternal health was impaired in turtles that produced larger and heavier eggs and clutches. In C. oblonga and E. macquarii, increased reproductive investment generally resulted in negative changes to the hematology and serum biochemistry profile of maternal blood. Generally, increases in heterophil/lymphocyte ratio, aspartate transaminase, creatine kinase, calcium/phosphorus ratio, and albumin/globulin ratio were observed following reproduction, in addition to a decrease in glucose and total protein. These findings agree with the physiological constraint hypothesis and highlight the connection between life-history evolution and animal physiology by documenting, for the first time, how measures of physiological health state relate to reproductive investment in Australian freshwater turtles. Additionally, our findings suggest that body condition, a readily used morphological biomarker, is a poor predictor of health in turtles. Our results emphasize the need to investigate how maternal health is influenced by the reproductive process in different species. PMID:24769705

  17. Incidence of the leech Actinobdella pediculata on freshwater drum in Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.

    1994-01-01

    Actinobdella pediculata (Glossiphoniidae), a freshwater leech, was found attached to freshwater drum (Aplodinotus grunniens) from western Lake Erie during 1991 through 1993. The animal was first observed during routine examinations of freshwater drum collected in May 1991. The leeches were usually attached to the inside, lower portion of the opercula near the isthmus. Incidence of attachment increased with freshwater drum age and length. No noticeable adverse effects on the fish from attachment by the leech were noted.

  18. Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice

    NASA Astrophysics Data System (ADS)

    Zanchettin, Davide; Traverso, Pietro; Tomasino, Mario

    2006-04-01

    The North Atlantic Oscillation (NAO), which is a dominant circulation pattern in Northern Hemisphere winter, is known to affect sea-level variability in the Mediterranean Sea mainly through the hydrostatic response of water masses to pressure anomalies and changes in evaporation/precipitation budgets. In this study the influence of the NAO on sea levels along the Adriatic coasts is re-assessed in the attempt to uncover the potential causes of the observed high sensitivity of the northern basin to NAO fluctuations. The investigation is focused on the role of the NAO as forcing factor of the winds blowing in the area and of the freshwaters input from the Po River, both of which influence the hydrodynamics of the Northern Adriatic. In addition, some insights into the future of Venice are discussed on the basis of the hypothesis that NAO phases are modulated by the varying solar activity through the intensity of the Earth's geomagnetic activity.

  19. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  20. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  1. "Key to Freshwater Algae": A Web-Based Tool to Enhance Understanding of Microscopic Biodiversity

    ERIC Educational Resources Information Center

    Shayler, Hannah A.; Siver, Peter A.

    2006-01-01

    The Freshwater Ecology Laboratory at Connecticut College has developed an interactive, Web-based identification key to freshwater algal genera using the Lucid Professional and Lucid 3 software developed by the Centre for Biological Information Technology at the University of Queensland, Brisbane, Australia. The "Key to Freshwater Algae" was funded…

  2. Oblique view of east side mechanical additions and south side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of east side mechanical additions and south side of 1955 addition, facing northwest. - Albrook Air Force Station, Dispensary, East side of Canfield Avenue, Balboa, Former Panama Canal Zone, CZ

  3. Temperature-altered predator-prey dynamics in freshwater ponds in Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Ayres, M.

    2011-12-01

    Temperature sets the pace of many biological processes including species interactions. Describing the response of terrestrial and aquatic habitats to climate warming therefore requires studies of cross-trophic level dynamics. I use freshwater pond ecosystems in Arctic Greenland to study how the thermal environment shapes interactions between predators and their prey. This system is of interest because warming trends are notable, freshwaters are responding rapidly and dynamically to changes in temperature, and the biology of freshwaters is intimately linked to the terrestrial environment. My focal species are the Arctic mosquito (Diptera: Culicidae, Aedes nigripes) and its invertebrate predator, a predaceous diving beetle (Coleoptera: Dytiscidae, Colymbetes dolabratus). Both species develop as larvae in snow-melt ponds in May and June. I used experimental and observational studies to test effects of temperature on larval mosquito growth rates and predation rates by C. dolabratus. Results indicate strong effects of temperature on growth rate and development time but weak effects of temperature on consumption of mosquitoes by their predators. Incorporation of measured temperature response functions into a mosquito demographic model will elucidate how mosquito population dynamics in Arctic Greenland may change with temperature. For example, warming increases growth rate and decreases development time of mosquito larvae, which shortens the time larvae are exposed to predation. Additionally, decreased development time leads to an earlier mosquito emergence, with potential consequences for the health of wildlife. Evaluation of this model will reveal the importance of considering cross-trophic level dynamics when predicting mosquito population response to warming. Future studies will address interesting properties emerging from modeling, such as how shorter development time affects adult size and fitness, and connecting results to terrestrial systems in Arctic Greenland.

  4. Development of a strontium chronic effects benchmark for aquatic life in freshwater.

    PubMed

    McPherson, Cathy A; Lawrence, Gary S; Elphick, James R; Chapman, Peter M

    2014-11-01

    There are no national water-quality guidelines for strontium for the protection of freshwater aquatic life in North America or elsewhere. Available data on the acute and chronic toxicity of strontium to freshwater aquatic life were compiled and reviewed. Acute toxicity was reported to occur at concentrations ranging from 75 mg/L to 15 000 mg/L. The majority of chronic effects occurred at concentrations above 11 mg/L; however, calculation of a representative benchmark was confounded by results from 4 studies indicating that chronic effects occurred at lower concentrations than all other studies, in 2 cases below background concentrations reported for US and European streams. Two of these studies, including 1 reporting effects below background concentrations, were repeated and found not to be reproducible; chronic effects occurred at considerably higher strontium concentrations than in the original studies. Studies with narrow-mouthed toad and goldfish were not repeated; both studies reported chronic effects below background concentrations, and both studies had been conducted by the authors of 1 of the 2 studies that were repeated and shown to be nonreproducible. Studies by these authors (3 of the 4 confounding studies), conducted over 30 yr ago, lacked detail in reporting of methods and results. It is thus likely that repeating the toad and goldfish studies would also have resulted in a higher strontium effects concentration. A strontium chronic effects benchmark of 10.7 mg/L that incorporates the results of additional testing summarized in the present study is proposed for freshwater environments.

  5. Rhinebothrium jaimei sp. n. (Eucestoda: Rhinebothriidea: Rhinebothriidae): a new species from Neotropical freshwater stingrays (Potamotrygonidae).

    PubMed

    Marques, Fernando P L; Reyda, Florian B

    2015-01-01

    Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diversity of parasites, including some, like their hosts, that are marine-derived. Among the parasites of potamotrygonids, the cestode fauna is the most diverse, with multiple genera having been reported, including genera endemic to the freshwaters of the Neotropics and genera that have cosmopolitan distributions. Recent efforts have been made to document the diversity of cestodes of this host-parasite system and to refine the taxonomy of parasite lineages. The present study contributes to our knowledge of Rhinebothrium Linton, 1890, a diverse cosmopolitan genus of rhinebothriidean cestode, with 37 species reported from marine batoids, one species from a freshwater stingray in Borneo and six species from potamotrygonids. Rhinebothrium jaimei sp. n. is described from two species of potamotrygonids, Potamotrygon orbignyi (Castelnau) (type host) and Potamotrygon scobina Garman, from Bahía de Marajó of the lower Amazon region. It can be distinguished from most of its marine congeners via multiple attributes, including its possession of two, rather than one, posteriormost loculi on its bothridia and the lomeniform shape of its bothridium that is wider anteriorly. In addition, R. jaimei sp. n. can be distinguished from the six Rhinebothrium species described previously from potamotrygonids based on a unique combination of morphological features. Despite extensive stingray cestode sampling efforts throughout all major Neotropical river systems, we found that unlike most species of potamotrygonid Rhinebothrium species, which are widespread, R. jaimei sp. n. is restricted to the Bahía de Marajó. The discovery of this new species of Rhinebothrium in Bahía de Marajó, an area in which potamotrygonids occur sympatrically with some species of euryhaline batoids (e.g. Dasyatis spp.) and share some trophic resources, suggest that modern ecological processes may be contributing to the distribution patterns

  6. Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture

    PubMed Central

    Pernthaler, Jakob; Posch, Thomas; S̆imek, Karel; Vrba, Jaroslav; Pernthaler, Annelie; Glöckner, Frank Oliver; Nübel, Ulrich; Psenner, Roland; Amann, Rudolf

    2001-01-01

    We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the class Actinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacterium sp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community. PMID:11319094

  7. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture.

    PubMed

    Pernthaler, J; Posch, T; Simek, K; Vrba, J; Pernthaler, A; Glöckner, F O; Nübel, U; Psenner, R; Amann, R

    2001-05-01

    We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the class Actinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacterium sp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community.

  8. Are freshwater diversion projects in Louisiana wetlands doing more harm than good?

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.

    2009-12-01

    Several freshwater diversion projects are online and many more are proposed, drastically altering the hydrology and nutrient flux in Louisiana wetlands. The intention of these massive projects is to prevent saltwater intrusion and provide sediments and nutrients to combat coastal erosion and subsidence. A proposed mechanism that such diversions decrease land loss is through the increase in vegetative biomass accumulation, leading to net gains in organic sediments. Although freshwater and nutrients can enhance primary production, it is unclear what impact these waters will have on existing sediment organic reservoirs. There are a limited, but growing number of studies suggesting that nutrient additions to wetland systems can lead to enhanced soil decomposition; thus, freshwater diversion projects may actually enhance wetland deterioration. A wetland restoration project delivering five million gallons per day of treated domestic effluent to the Joyce Wildlife Management Area (JWMA) marsh began in 2006. The treated effluent is similar to Mississippi River water with respect to alkalinity and reactive nitrogen concentrations. Sediment carbon and nitrogen content was monitored pre and post restoration project commencement and decreased significantly over a two year period from 2006 to 2008. The change in water chemistry (alkalinity/pH and reactive nitrogen) was expected to have an impact on microbial activities in these sediments. The microbial community composition of methanogens and archaeal ammonia oxidizers (as monitored by mcrA and amoA gene clone libraries, respectively) also shifted during this time period. Microcosm experiments using relatively un-impacted JWMA sediments with cellulose amendments showed increased methane production (i.e. enhanced organic matter / plant matter decomposition) corresponding to increasing alkalinity. Possible mechanisms accounting for these observations can be explained by thermodynamic constraints in anaerobic degradation pathways.

  9. The Mouse Forced Swim Test