Science.gov

Sample records for additional functional groups

  1. Radical additions to chiral hydrazones: stereoselectivity and functional group compatibility.

    PubMed

    Friestad, Gregory K

    2012-01-01

    Free radical additions to imino compounds offer increased synthetic accessibility of chiral amines, but lack of general methods for stereocontrol has hindered their development. This review focuses on two asymmetric amine synthesis strategies designed to address this problem, with emphasis on addition of functionalized radicals which may facilitate applications to synthesis of complex targets. First, chiral N-acylhydrazones are acceptors for intermolecular radical additions of a wide range of primary, secondary, and tertiary alkyl halides to the C=N bond, with radicals generated under manganese-, tin-, or boron-mediated conditions. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and the highly stereoselective reactions tolerate electrophilic functionality in both coupling components. Second, radical precursors may be linked to chiral α-hydroxyhydrazones via a silicon tether to the hydroxyl group; conformational constraints impart stereocontrol during 5-exo radical cyclization under stannyl- or thiyl-mediated conditions. The silicon tether may later be removed to reveal the formal adducts of hydroxymethyl, vinyl, acetyl, and 2-oxoethyl radicals to the C=N bond. Methodology development and applications to biologically important targets are discussed. PMID:21842359

  2. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups.

    PubMed

    Rodríguez-Jiménez, Rubén; Alonso-Núñez, Gabriel; Paraguay-Delgado, Francisco; Espinoza-Gómez, Heriberto; Vélez-López, Ernesto; Rogel-Hernández, Eduardo

    2016-01-01

    Synthetic methodology and characterization of multi-walled carbon nanotubes (MWCNTs) function- alized with hydroxymethylene groups are reported. The MWCNTs were synthesized by the spray pyrolysis technique using toluene as carbon source and ferrocene as catalyst. Hydroxymethylation of MWCNTs was carried out by methanol using benzoyl peroxide (BPO) at different quantities (300 to 900 mg); the optimum BPO quantity was 300 mg. The resulting materials were characterized by FT-IR, Raman Spectroscopy, Thermal Gravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). The presence of the hydroxymethylene group on the MWCNTs surface was demonstrated by FT-IR, Raman Spectroscopy, TGA, EDS, TEM and Mass Spectrometry. The func- tionalized MWCNTs were not damaged by this methodology. PMID:27398563

  3. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. I. Hydrocarbon Compounds

    NASA Astrophysics Data System (ADS)

    Růžička, Vlastimil; Domalski, Eugene S.

    1993-05-01

    A second-order group additivity method has been developed for the estimation of the heat capacity of liquid hydrocarbons as a function of temperature in the range from the melting temperature to the normal boiling temperature. The temperature dependence of group contributions and structural corrections has been represented by a polynomial expression. The adjustable parameters in the polynomials have been calculated using a weighted least squares minimization procedure. Recommended heat capacities from a large compilation of critically evaluated data that contains over 1300 organic liquids served as a database both for the development and testing of the method.

  4. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity. An Amendment

    NASA Astrophysics Data System (ADS)

    Zábranský, Milan; Růžička, Vlastimil

    2004-12-01

    An amendment to a second-order group additivity method for the estimation of the heat capacity of pure organic liquids as a function of temperature in the range from the melting temperature to the normal boiling temperature is reported. The temperature dependence of various group contributions and structural corrections is represented by a series of second order polynomial expressions. The group contribution parameters have been developed from an extended database of more than 1800 recommended heat capacity values. The present method should be more versatile and more accurate than the previous one [Růžička and Domalski, J. Phys. Chem. Ref. Data 22, 597, 619 (1993)] due to the use of a larger database and an improved procedure for parameter calculation.

  5. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online. PMID:24729671

  6. Addition of surfactants in ozonated water cleaning for the suppression of functional group formation and particle adhesion on the SiO2 surface

    NASA Astrophysics Data System (ADS)

    Yang, Jahyun; Im, Kyungtaek; Lim, Sangwoo

    2011-04-01

    Various kinds of surfactants were added to a cleaning solution and deionized (DI) water, and their effect on the suppression of organic function group formation and particle adhesion to a SiO2 surface was analyzed using multi-internal reflection Fourier transform infrared spectroscopy. The results implied that attached organic functional groups are affected by the chemical structure of a surfactant in DI water. Furthermore, the addition of anionic glycolic acid ethoxylate 4-tert-butylphenyl ether (GAE4E) is the most effective in terms of preventing organic group attachment and particle adhesion to the SiO2 surface, whether it was added to the cleaning solution or post-cleaning rinse water, with or without polystyrene latex particles. Moreover, it was possible to completely prevent particle adhesion to the SiO2 surface with the proper addition of GAE4E in DIO3 solution.

  7. Quantifying Additive Interactions of the Osmolyte Proline with Individual Functional Groups of Proteins: Comparisons with Urea and Glycine Betaine, Interpretation of m-Values

    PubMed Central

    Diehl, Roger C.; Guinn, Emily J.; Capp, Michael W.; Tsodikov, Oleg V.; Record, M. Thomas

    2013-01-01

    To quantify interactions of the osmolyte L-proline with protein functional groups and predict its effects on protein processes, we use vapor pressure osmometry to determine chemical potential derivatives dµ2/dm3 = µ23 quantifying preferential interactions of proline (component 3) with 21 solutes (component 2) selected to display different combinations of aliphatic or aromatic C, amide, carboxylate, phosphate or hydroxyl O, and/or amide or cationic N surface. Solubility data yield µ23 values for 4 less-soluble solutes. Values of µ23 are dissected using an ASA-based analysis to test the hypothesis of additivity and obtain α-values (proline interaction potentials) for these eight surface types and three inorganic ions. Values of µ23 predicted from these α-values agree with experiment, demonstrating additivity. Molecular interpretation of α-values using the solute partitioning model yields partition coefficients (Kp) quantifying the local accumulation or exclusion of proline in the hydration water of each functional group. Interactions of proline with native protein surface and effects of proline on protein unfolding are predicted from α-values and ASA information and compared with experimental data, with results for glycine betaine and urea, and with predictions from transfer free energy analysis. We conclude that proline stabilizes proteins because of its unfavorable interactions with (exclusion from) amide oxygens and aliphatic hydrocarbon surface exposed in unfolding, and that proline is an effective in vivo osmolyte because of the osmolality increase resulting from its unfavorable interactions with anionic (carboxylate and phosphate) and amide oxygens and aliphatic hydrocarbon groups on the surface of cytoplasmic proteins and nucleic acids. PMID:23909383

  8. Renormalization group functional equations

    SciTech Connect

    Curtright, Thomas L.; Zachos, Cosmas K.

    2011-03-15

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling {sigma} functions and lead to exact functional relations for the local flow {beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {sigma} are sometimes not true fixed points under continuous changes in scale and zeroes of {beta} do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.

  9. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  10. Addition polyimide adhesives containing various end groups

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1982-01-01

    Addition polyimode oligomers have been synthesized from 3,3 prime, 4,4 prime-benzophenone tetracarboxylic acid dianhydride and 3,3 prime-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232 C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.

  11. Cluster functional renormalization group

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Thomale, Ronny

    2014-01-01

    Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

  12. Characterizing neuromorphologic alterations with additive shape functionals

    NASA Astrophysics Data System (ADS)

    Barbosa, M. S.; Costa, L. Da F.; Bernardes, E. S.; Ramakers, G.; van Pelt, J.

    2004-01-01

    The complexity of a neuronal cell shape is known to be related to its function. Specifically, among other indicators, a decreased complexity in the dendritic trees of cortical pyramidal neurons has been associated with mental retardation. In this paper we develop a procedure to address the characterization of morphological changes induced in cultured neurons by over-expressing a gene involved in mental retardation. Measures associated with the multiscale connectivity, an additive image functional, are found to give a reasonable separation criterion between two categories of cells. One category consists of a control group and two transfected groups of neurons, and the other, a class of cat ganglionary cells. The reported framework also identified a trend towards lower complexity in one of the transfected groups. Such results establish the suggested measures as an effective descriptors of cell shape.

  13. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  14. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  15. Addition Theorems, Formal Group Laws and Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buchstaber, V. M.; Bunkova, E. Yu.

    2010-11-01

    We consider elliptic curves, given in the Weierstrass parametrization by the equation y2+μ1xy+μ3y = x3+μ2x2+μ4x+μ6. In Tate coordinates t = -x/y and s = -1/y, the geometric addition laws on this curves correspond to the general elliptic formal group law over the ring Z[μ1,μ2,μ3,μ4,μ6]. This formal group law is well-known in the number theory and cryptography. One can find this law in recent works on the theory of elliptic functions and algebraic topology. In the focus of our interest are questions, important from the point of view of Hirzebruch genera and the theory of integrable systems (see references).

  16. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses.

    PubMed

    Koonin, E V; Gorbalenya, A E; Purdy, M A; Rozanov, M N; Reyes, G R; Bradley, D W

    1992-09-01

    Computer-assisted comparison of the nonstructural polyprotein of hepatitis E virus (HEV) with proteins of other positive-strand RNA viruses allowed the identification of the following putative functional domains: (i) RNA-dependent RNA polymerase, (ii) RNA helicase, (iii) methyltransferase, (iv) a domain of unknown function ("X" domain) flanking the papain-like protease domains in the polyproteins of animal positive-strand RNA viruses, and (v) papain-like cysteine protease domain distantly related to the putative papain-like protease of rubella virus (RubV). Comparative analysis of the polymerase and helicase sequences of positive-strand RNA viruses belonging to the so-called "alpha-like" supergroup revealed grouping between HEV, RubV, and beet necrotic yellow vein virus (BNYVV), a plant furovirus. Two additional domains have been identified: one showed significant conservation between HEV, RubV, and BNYVV, and the other showed conservation specifically between HEV and RubV. The large nonstructural proteins of HEV, RubV, and BNYVV retained similar domain organization, with the exceptions of relocation of the putative protease domain in HEV as compared to RubV and the absence of the protease and X domains in BNYVV. These observations show that HEV, RubV, and BNYVV encompass partially conserved arrays of distinctive putative functional domains, suggesting that these viruses constitute a distinct monophyletic group within the alpha-like supergroup of positive-strand RNA viruses. PMID:1518855

  17. Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts. Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals

    SciTech Connect

    Salciccioli, Michael; Chen, Ying; Vlachos, Dion G.

    2010-11-09

    Semiempirical methods for prediction of thermochemical properties of adsorbed oxygenates are developed. Periodic density functional theory calculations are used to study the relative stability of ethanol, ethylene glycol, isopropyl alcohol, and glycerol dehydrogenation intermediates on Pt(111). For ethylene glycol dehydrogenation intermediates, it is found that the thermodynamically favored intermediates at each level of dehydrogenation are as follows: HOCH2CHOH, HOCHCHOH, HOCHCOH, HOCCOH ≈ HOCHCO, HOCCO, OCCO. Structural and energetic patterns emerge from these C2HxO2 adsorption calculations that lead to the formation of group additive properties for thermochemical property prediction of oxygenates on Pt(111). Finally, linear scaling relationships of atomic binding energy are used to predict the binding energy of the C2HxO2 species on the Ni(111) surface and Ni-Pt-Pt(111) bimetallic surface. It is shown that the linear scaling relationships can accurately predict the binding energy of larger oxygenates as well as of oxygenates on bimetallic catalysts. Corrections for ring strain and weak oxygen-metal and hydrogen-bonding interactions are added to increase the accuracy of group additivity and linear scaling relationships.

  18. Additive Bilingualism, Schooling, and Special Education: A Minority Group Perspective.

    ERIC Educational Resources Information Center

    Landry, R.

    1987-01-01

    The effect of schooling on the acquisition of an additive type of bilingualism is examined, focusing on additive bilingualism's relation to the ethnolinguistic vitality of linguistic groups and contributions of individual networks of linguistic contacts. A special and regular education merger without domination by a single cultural perspective is…

  19. Learning the Functional Groups: Keys to Success.

    ERIC Educational Resources Information Center

    Byrd, Shannon; Hildreth, David P.

    2001-01-01

    Points out the difficulties students have when they are expected to learn functional groups, which are frameworks for chemical and physical properties of molecules. Presents a classification key for functional groups categorized by 10 common functional groups. (YDS)

  20. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN WITH DISABILITIES Evaluations,...

  1. A Functional Analytic Approach to Group Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, Luc

    2009-01-01

    This article provides a particular view on the use of Functional Analytical Psychotherapy (FAP) in a group therapy format. This view is based on the author's experiences as a supervisor of Functional Analytical Psychotherapy Groups, including groups for women with depression and groups for chronic pain patients. The contexts in which this approach…

  2. Polyetherurethane oligomers with aldehyde groups as additives for lubricating oils

    SciTech Connect

    Nikolaev, V.N.; Abramov, E.G.; Tenyushev, A.I.

    1995-01-01

    Polyetherurethane oligomers with aldehyde groups, which we synthesized from polyoxypropylene diols (molecular weight 500, 1000, 1500, 2000, or 3000) with toluene diisocyanate and salicylaldehyde, are of interest as additives for lubricating oils. The effects of these oligomers on the service properties and physicochemical characteristics of lubricating oils were investigated by methods prreviously described. As the lube base stocks we used castor oil, a polyoxypropylene diol and a polyethoxysiloxane. The oligomers are readily soluble in organic solvents and in the lube base stocks, and their solutions are stable during storage and use. We found that the optimal concentration of oligomers is 5%, providing the best lubricating properties, in particular the best antiwear properties.

  3. The functions of ritual in social groups.

    PubMed

    Watson-Jones, Rachel E; Legare, Cristine H

    2016-01-01

    Ritual cognition builds upon social learning biases that may have become specialized for affiliation within social groups. The adaptive problems of group living required a means of identifying group members, ensuring commitment to the group, facilitating cooperation, and maintaining group cohesion. We discuss how ritual serves these social functions. PMID:26948744

  4. Localization of functions defined on cantor group

    NASA Astrophysics Data System (ADS)

    Krivoshein, Aleksander V.; Lebedeva, Elena A.

    2013-10-01

    We introduce a notion of localization for dyadic functions, i. e. functions defined on Cantor group. Both non-periodic and periodic cases are discussed. Localization is characterized by functionals UCd and UCdp similar to the Heisenberg (the Breitenberger) uncertainty constants used for real-line (periodic) functions. We are looking for dyadic analogs of uncertainty principles. To justify definition we use some test functions including dyadic scaling and wavelet functions.

  5. Relating Functional Groups to the Periodic Table

    ERIC Educational Resources Information Center

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  6. Analysis of transition state stabilization by non-covalent interactions in the Houk-List model of organocatalyzed intermolecular Aldol additions using functional-group symmetry-adapted perturbation theory.

    PubMed

    Bakr, Brandon W; Sherrill, C David

    2016-04-21

    Rational design of catalysts would be aided by a better understanding of how non-covalent interactions stabilize transition states. Here, we apply the newly-developed Functional-Group Symmetry-Adapted Perturbation Theory (F-SAPT) to quantify non-covalent interactions in transition states of the proline-catalyzed intermolecular aldol reaction between benzaldehyde and cyclohexanone, according to the Houk-List mechanism [Bahmanyar et al., J. Am. Chem. Soc., 2003, 125, 2475]. A recent re-examination of this organocatalytic reaction by Rzepa and co-workers [Armstrong et al., Chem. Sci., 2014, 5, 2057] used electron density analysis to identify three key non-covalent interactions thought to influence stereoselectivity: (1) a favorable electrostatic interaction (originally identified by Houk and List) between the NCH(δ+) group of the enamine intermediate and the (δ-)O[double bond, length as m-dash]C of benzaldehyde; (2) a C-H/π interaction between the cyclohexene group of the enamine intermediate and the benzaldehyde phenyl ring; (3) a stabilizing contact between an ortho-hydrogen of the phenyl and an oxygen of the carboxylic acid group of the enamine. These three interactions have been directly computed using F-SAPT, which confirms the stabilizing interaction between an ortho-hydrogen and the carboxylic acid in the (S,S) and (R,S) transition state stereoisomers. F-SAPT analysis also finds stabilizing dispersion and electrostatic interactions due to a C-H/π interaction between the cyclohexene and phenyl groups in the (S,S) and (R,R) transition states. However, unfavorable exchange-repulsion cancels the attractive terms that favor these stereoisomers. Surprisingly, the interaction thought to be most important for stereoselectivity, the NCH(δ+)(δ-)O[double bond, length as m-dash]C interaction, is actually found to be repulsive due to the negative charge on the nitrogen. Hence, our results indicate that geometric analysis and/or density-based analysis does not

  7. A Comparison of Group-Oriented Contingencies for Addition Fluency

    ERIC Educational Resources Information Center

    Gross, Thomas J.; Duhon, Gary J.; Shutte, Greg; Rowland, Julie E.

    2016-01-01

    Math fact fluency is critical for understanding complex mathematics. Explicit timing interventions have shown promise for improving math fluency, and they may benefit from being paired with group-oriented contingencies. Further, investigations of independent and dependent group-oriented contingencies would help to identify their relative…

  8. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Educational Placements Additional Procedures for Identifying Children with Specific Learning Disabilities... learning disability is a child with a disability as defined in § 300.8, must be made by the child's...

  9. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... examinations of children, such as a school psychologist, speech-language pathologist, or remedial reading... CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education Programs, and Educational Placements Additional Procedures for Identifying Children with Specific Learning...

  10. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... examinations of children, such as a school psychologist, speech-language pathologist, or remedial reading... CHILDREN WITH DISABILITIES Evaluations, Eligibility Determinations, Individualized Education Programs, and Educational Placements Additional Procedures for Identifying Children with Specific Learning...

  11. Identifying copepod functional groups from species functional traits

    PubMed Central

    Benedetti, Fabio; Gasparini, Stéphane; Ayata, Sakina-Dorothée

    2016-01-01

    We gathered information on the functional traits of the most representative copepod species in the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Cluster analysis in the functional trait space revealed that Mediterranean copepods can be separated into groups with distinct ecological roles. PMID:26811565

  12. Nonlinear responses in salt marsh functioning to increased nitrogen addition.

    PubMed

    Vivanco, Lucía; Irvine, Irina C; Martiny, Jennifer B H

    2015-04-01

    Salt marshes provide storm protection to shorelines, sequester carbon (C), and mitigate coastal eutrophication. These valuable coastal ecosystems are confronted with increasing nitrogen (N) inputs from anthropogenic sources, such as agricultural runoff, wastewater, and atmospheric deposition. To inform predictions of salt marsh functioning and sustainability in the future, we characterized the response of a variety of plant, microbial, and sediment responses to a seven-level gradient of N addition in three Californian salt marshes after 7 and 14 months of N addition. The marshes showed variable responses to the experimental N gradient that can be grouped as neutral (root biomass, sediment respiration, potential carbon mineralization, and potential net nitrification), linear (increasing methane flux, decreasing potential net N mineralization, and increasing sediment inorganic N), and nonlinear (saturating aboveground plant biomass and leaf N content, and exponentially increasing sediment inorganic and organic N). The three salt marshes showed quantitative differences in most ecosystem properties and processes rates; however, the form of the response curves to N addition were generally consistent across the three marshes, indicating that the responses observed may be applicable to other marshes in the region. Only for sediment properties (inorganic and organic N pool) did the shape of the response differ significantly between marshes. Overall, the study suggests salt marshes are limited in their ability to sequester C and N with future increases in N, even without further losses in marsh area. PMID:26230015

  13. Additions to the flora of the Wilcox group

    USGS Publications Warehouse

    Berry, Edward Wilber

    1923-01-01

    A rather full account of the extensive flora contained in the lower Eocene strata of the Mississippi embayment which are referred to the Wilcox group was published in 1916. At that time it was not possible to obtain sections of the numerous specimens of petrified wood that had been collected from these beds. These woods have since been sectioned and studied, and it seems eminently desirable to place the results of this study on record, for although much of the material had suffered greatly from decay before silicification, some of it is fairly well preserved and shows, among other results, that conifers were individually much more plentiful during Wilcox time than would be inferred from the almost total absence of their foliage in the very large collections of remains of this class that have been studied.

  14. Density functional for ternary non-additive hard sphere mixtures.

    PubMed

    Schmidt, Matthias

    2011-10-19

    Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. PMID:21946780

  15. Functional Group and Substructure Searching as a Tool in Metabolomics

    PubMed Central

    Kotera, Masaaki; McDonald, Andrew G.; Boyce, Sinéad; Tipton, Keith F.

    2008-01-01

    Background A direct link between the names and structures of compounds and the functional groups contained within them is important, not only because biochemists frequently rely on literature that uses a free-text format to describe functional groups, but also because metabolic models depend upon the connections between enzymes and substrates being known and appropriately stored in databases. Methodology We have developed a database named “Biochemical Substructure Search Catalogue” (BiSSCat), which contains 489 functional groups, >200,000 compounds and >1,000,000 different computationally constructed substructures, to allow identification of chemical compounds of biological interest. Conclusions This database and its associated web-based search program (http://bisscat.org/) can be used to find compounds containing selected combinations of substructures and functional groups. It can be used to determine possible additional substrates for known enzymes and for putative enzymes found in genome projects. Its applications to enzyme inhibitor design are also discussed. PMID:18253485

  16. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  17. Single or functionalized fullerenes interacting with heme group

    NASA Astrophysics Data System (ADS)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes

    2014-09-01

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C60 fullerene or with C60 functionalized with small functional groups (-CH3, -COOH, -NH2, -OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  18. Some new addition formulae for Weierstrass elliptic functions

    PubMed Central

    Eilbeck, J. Chris; England, Matthew; Ônishi, Yoshihiro

    2014-01-01

    We present new addition formulae for the Weierstrass functions associated with a general elliptic curve. We prove the structure of the formulae in n-variables and give the explicit addition formulae for the 2- and 3-variable cases. These new results were inspired by new addition formulae found in the case of an equianharmonic curve, which we can now observe as a specialization of the results here. The new formulae, and the techniques used to find them, also follow the recent work for the generalization of Weierstrass functions to curves of higher genus. PMID:25383018

  19. Hyperbolic tangential function-based progressive addition lens design.

    PubMed

    Qiu, Gufeng; Cui, Xudong

    2015-12-10

    The diopter distribution is key to the successful design of a progressive addition lens. A hyperbolic tangential function is then introduced to describe well the desired diopter distribution on the lens. Simulation and fabrication show that the astigmia on the whole surface is very close to the addition, exhibiting superior performance than that of currently used high-order polynomials and cosine functions. Our investigations found that once the diopter distribution design is reasonable, both the direct and indirect methods of constructing a progressive addition lens can give consistent results. With this function we are able to effectively control the design of critical areas, the position, sizes of far-view and near-view zones, as well as the channel of the lens. This study would provide an efficient way to customize different progressive lenses not only for presbyopia, but also for anti-fatigue, office progressive usages, etc. PMID:26836863

  20. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Fuel and fuel additive grouping system. 79.56 Section 79.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Testing Requirements for Registration § 79.56 Fuel and fuel additive grouping system....

  1. Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.

  2. Functional renormalization group approach to noncollinear magnets

    NASA Astrophysics Data System (ADS)

    Delamotte, B.; Dudka, M.; Mouhanna, D.; Yabunaka, S.

    2016-02-01

    A functional renormalization group approach to d -dimensional, N -component, noncollinear magnets is performed using various truncations of the effective action relevant to study their long distance behavior. With help of these truncations we study the existence of a stable fixed point for dimensions between d =2.8 and d =4 for various values of N focusing on the critical value Nc(d ) that, for a given dimension d , separates a first-order region for N Nc(d ) . Our approach concludes to the absence of a stable fixed point in the physical—N =2 ,3 and d =3 —cases, in agreement with the ɛ =4 -d expansion and in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches based on the conformal bootstrap program.

  3. Single or functionalized fullerenes interacting with heme group

    SciTech Connect

    Costa, Wallison Chaves; Diniz, Eduardo Moraes

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  4. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking

    PubMed Central

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875

  5. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking.

    PubMed

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the "laws of perceptual organization" proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. "Additive effect" refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The "where" and "what" pathways might have played an important role in the additive grouping effect. PMID:27199875

  6. Application of rational functions for the standard addition method.

    PubMed

    Gorazda, Katarzyna; Michałowska-Kaczmarczyk, Anna M; Asuero, Agustin G; Michałowski, Tadeusz

    2013-11-15

    Some rational functions are considered as the basis for calculation of unknown concentration (x0) of an analyte X determined according to the standard addition method (SAM). The correction for dilution of the sample tested during addition of successive increments of standard(ised) solution of X is involved in the related algorithm applied for calculation of the x0 value. The formulae derived were put in context with experimental data, obtained according to the AAS method from Cu-measurements in samples obtained by digestion of an ash obtained from incinerated sludge. It was stated that the use of rational functions for modeling purposes strengthens the robustness of the results thus obtained. PMID:24148496

  7. Preconversion catalytic deoxygenation of phenolic functional groups

    SciTech Connect

    Kubiak, C.P.

    1991-01-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

  8. Development of additional tasks for the executive function performance test.

    PubMed

    Hahn, Bridget; Baum, Carolyn; Moore, Jennifer; Ehrlich-Jones, Linda; Spoeri, Susan; Doherty, Meghan; Wolf, Timothy J

    2014-01-01

    OBJECTIVE. The Executive Function Performance Test (EFPT) is a reliable and valid performance-based assessment of executive function for people with stroke. The objective of this study was to enhance the clinical utility of the EFPT by developing and testing additional tasks for the EFPT in the Alternate EFPT (aEFPT). METHOD. We performed a cross-sectional study with poststroke participants (n = 25) and healthy control participants (n = 25). All participants completed a neuropsychological assessment battery and both the EFPT and the aEFPT. RESULTS. No statistically significant differences were found between the EFPT and the aEFPT when examining total scores, construct scores, and two overall task scores. Correlations between the aEFPT and the neuropsychological measures were adequate to strong (r2s = .59-.83). CONCLUSION. The aEFPT tasks are comparable to the original EFPT tasks, providing occupational therapy practitioners with additional tasks that can be used clinically to identify performance-based executive function deficits in people with stroke. PMID:25397771

  9. Fuzzy Number Addition with the Application of Horizontal Membership Functions.

    PubMed

    Piegat, Andrzej; Pluciński, Marcin

    2015-01-01

    The paper presents addition of fuzzy numbers realised with the application of the multidimensional RDM arithmetic and horizontal membership functions (MFs). Fuzzy arithmetic (FA) is a very difficult task because operations should be performed here on multidimensional information granules. Instead, a lot of FA methods use α-cuts in connection with 1-dimensional classical interval arithmetic that operates not on multidimensional granules but on 1-dimensional intervals. Such approach causes difficulties in calculations and is a reason for arithmetical paradoxes. The multidimensional approach allows for removing drawbacks and weaknesses of FA. It is possible thanks to the application of horizontal membership functions which considerably facilitate calculations because now uncertain values can be inserted directly into equations without using the extension principle. The paper shows how the addition operation can be realised on independent fuzzy numbers and on partly or fully dependent fuzzy numbers with taking into account the order relation and how to solve equations, which can be a difficult task for 1-dimensional FAs. PMID:26199953

  10. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  11. Feminist Research Methodology Groups: Origins, Forms, Functions.

    ERIC Educational Resources Information Center

    Reinharz, Shulamit

    Feminist Research Methodology Groups (FRMGs) have developed as a specific type of women's group in which feminist academics can find supportive audiences for their work while contributing to a feminist redefinition of research methods. An analysis of two FRMGs reveals common characteristics, dynamics, and outcomes. Both were limited to small…

  12. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  13. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones

    PubMed Central

    2015-01-01

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. 1H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C–C double bonds, broadening the 60 year old paradigm. PMID:25328269

  14. From waste to functional additive: toughening epoxy resin with lignin.

    PubMed

    Liu, Wanshuang; Zhou, Rui; Goh, Hwee Li Sally; Huang, Shu; Lu, Xuehong

    2014-04-23

    A novel approach to toughen epoxy resin with lignin, a common waste material from the pulp and paper industry, is presented in this article. First, carboxylic acid-functionalized alkali lignin (AL-COOH) was prepared and subsequently incorporated into anhydride-cured epoxy networks via a one-pot method. The results of mechanical tests show that covalent incorporation of rigid AL-COOH into epoxy networks can significantly toughen the epoxy matrix without deteriorating its tensile strength and modulus. The addition of 1.0 wt % AL-COOH gives increases of 68 and 164% in the critical stress intensity factor (K(IC)) and critical strain energy release rate (G(IC)), respectively, relative to that of neat epoxy. This article opens up the possibility of utilizing low-cost and renewable lignin feedstocks as effective toughening agents for thermoset polymers. PMID:24660855

  15. Defense style changes with the addition of psychodynamic group therapy to clonazepam in social anxiety disorder.

    PubMed

    Knijnik, Daniela Z; Salum, Giovanni Abrahão; Blanco, Carlos; Moraes, Carolina; Hauck, Simone; Mombach, Clarissa K; Strapasson, Atahualpa C P; Manfro, Gisele G; Eizirik, Cláudio L

    2009-07-01

    Psychodynamic Group Therapy (PGT) and clonazepam are strategies to reduce symptoms of generalized social anxiety disorder (GSAD). The addition of PGT might lead to changes in defense styles. The objective of this study is to examine changes in defense styles when comparing clonazepam to psychodynamic group therapy plus clonazepam in GSAD during 12 weeks. Fifty-seven patients that met DSM-IV criteria for GSAD participated. social anxiety disorder symptoms were evaluated with the Liebowitz Social Anxiety Scale, and defense styles with the Defense Style Questionnaire. All defense styles changed overtime for both groups, especially mature defense style, which increased independently of the treatment allocation group. Regression analyses found that overtime there was a reduction in neurotic defenses in the combined group, whereas there was an increase in the clonazepam group. Neurotic defense style can change toward greater adaptiveness with the addition of PGT to clonazepam in GSAD, even in 12 weeks. PMID:19597364

  16. Testing for Additivity at Select Mixture Groups of Interest Based on Statistical Equivalence Testing Methods

    SciTech Connect

    Stork, LeAnna M.; Gennings, Chris; Carchman, Richard; Carter, Jr., Walter H.; Pounds, Joel G.; Mumtaz, Moiz

    2006-12-01

    Several assumptions, defined and undefined, are used in the toxicity assessment of chemical mixtures. In scientific practice mixture components in the low-dose region, particularly subthreshold doses, are often assumed to behave additively (i.e., zero interaction) based on heuristic arguments. This assumption has important implications in the practice of risk assessment, but has not been experimentally tested. We have developed methodology to test for additivity in the sense of Berenbaum (Advances in Cancer Research, 1981), based on the statistical equivalence testing literature where the null hypothesis of interaction is rejected for the alternative hypothesis of additivity when data support the claim. The implication of this approach is that conclusions of additivity are made with a false positive rate controlled by the experimenter. The claim of additivity is based on prespecified additivity margins, which are chosen using expert biological judgment such that small deviations from additivity, which are not considered to be biologically important, are not statistically significant. This approach is in contrast to the usual hypothesis-testing framework that assumes additivity in the null hypothesis and rejects when there is significant evidence of interaction. In this scenario, failure to reject may be due to lack of statistical power making the claim of additivity problematic. The proposed method is illustrated in a mixture of five organophosphorus pesticides that were experimentally evaluated alone and at relevant mixing ratios. Motor activity was assessed in adult male rats following acute exposure. Four low-dose mixture groups were evaluated. Evidence of additivity is found in three of the four low-dose mixture groups.The proposed method tests for additivity of the whole mixture and does not take into account subset interactions (e.g., synergistic, antagonistic) that may have occurred and cancelled each other out.

  17. Recognition of additional roles for immunoglobulin domains in immune function

    PubMed Central

    Cannon, John P.; Dishaw, Larry J.; Haire, Robert N.; Litman, Ronda T.; Ostrov, David A.; Litman, Gary W.

    2010-01-01

    Characterization of immune receptors found in phylogenetically disparate species at the genetic, structural and functional levels has provided unique insight into the evolutionary acquisition of immune function. The roles of variable- and intermediate-type immunoglobulin (Ig) domains in direct recognition of ligands and other functions are far wider than previously anticipated. Common mechanisms of multigene family diversification and expansion as well as unique adaptations that relate to function continue to provide unique insight into the numerous patterns, processes and complex interactions that regulate the host response to infectious challenge. PMID:20004115

  18. Functions of Propolis as a natural feed additive in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propolis is a resinous hive product collected by honeybees from various sources of plants. Numerous scientific investigations have been focused on the biological activities of propolis and its functions as a health supplement in humans. It could have similar function in other animals, such as poultr...

  19. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding

    PubMed Central

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  20. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.

    PubMed

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  1. Dwarf Galaxies in the Leo I Group: the Group Luminosity Function beyond the Local Group (Oral Contribution)

    NASA Astrophysics Data System (ADS)

    Flint, K.; Bolte, M.; Mendes de Oliveira, C.

    We present first results of a survey of the Leo I group at 10 Mpc for M_R < -10 dwarf galaxies. This is part of a larger program to measure the faint end of the galaxy luminosity function in nearby poor groups. Our method is optimized to find Local-Group-like dwarfs down to dwarf spheroidal surface brightnesses, but we also find very large LSB dwarfs in Leo I with no Local Group counterpart. A preliminary measurement of the luminosity function yields a slope consistent with that measured in the Local Group.

  2. Detection of Differential Item Functioning in Multiple Groups.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; And Others

    Detection of differential item functioning (DIF) is most often done between two groups of examinees under item response theory. It is sometimes important, however, to determine whether DIF is present in more than two groups. A method is presented for the detection of DIF in multiple groups. The method, the Q(sub j) statistic, is closely related to…

  3. Functional Analytic Psychotherapy for Interpersonal Process Groups: A Behavioral Application

    ERIC Educational Resources Information Center

    Hoekstra, Renee

    2008-01-01

    This paper is an adaptation of Kohlenberg and Tsai's work, Functional Analytical Psychotherapy (1991), or FAP, to group psychotherapy. This author applied a behavioral rationale for interpersonal process groups by illustrating key points with a hypothetical client. Suggestions are also provided for starting groups, identifying goals, educating…

  4. Local renormalization group functions from quantum renormalization group and holographic bulk locality

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2015-06-01

    The bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographic renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar super Yang-Mills theory.

  5. Differential Item Functioning Detection across Two Methods of Defining Group Comparisons: Pairwise and Composite Group Comparisons

    ERIC Educational Resources Information Center

    Sari, Halil Ibrahim; Huggins, Anne Corinne

    2015-01-01

    This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…

  6. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  7. Using Text Analysis to Identify Functionally Coherent Gene Groups

    PubMed Central

    Raychaudhuri, Soumya; Schütze, Hinrich; Altman, Russ B.

    2002-01-01

    The analysis of large-scale genomic information (such as sequence data or expression patterns) frequently involves grouping genes on the basis of common experimental features. Often, as with gene expression clustering, there are too many groups to easily identify the functionally relevant ones. One valuable source of information about gene function is the published literature. We present a method, neighbor divergence, for assessing whether the genes within a group share a common biological function based on their associated scientific literature. The method uses statistical natural language processing techniques to interpret biological text. It requires only a corpus of documents relevant to the genes being studied (e.g., all genes in an organism) and an index connecting the documents to appropriate genes. Given a group of genes, neighbor divergence assigns a numerical score indicating how “functionally coherent” the gene group is from the perspective of the published literature. We evaluate our method by testing its ability to distinguish 19 known functional gene groups from 1900 randomly assembled groups. Neighbor divergence achieves 79% sensitivity at 100% specificity, comparing favorably to other tested methods. We also apply neighbor divergence to previously published gene expression clusters to assess its ability to recognize gene groups that had been manually identified as representative of a common function. PMID:12368251

  8. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  9. Additional developments regarding manifest dream structure and function.

    PubMed

    Wolowitz, H

    1998-06-01

    Detailed observation of manifest dream sequences indicated self-advocating occurrences facilitating the dreamer's self interests, opposed by self-adversarial interferences. Further examination of manifest dream syntactical structure additionally suggested a recurrent, four-step, algorithm for personal problem-solving within an interpersonal matrix consisting of the following cycle: (1) an opening scene setting the stage, (2) for the emergence of a self-concern, (3) which evokes a strategy to deal with dreamer's self-concern, (4) that eventuates in a consequence of the strategy. These steps repeat until the dream ends. Observing these manifest dream structural features, attributable to broadening past theorizing with "bottom-up" approaches, clarifies the dream's problem-solving process by providing an empirical, observable framework for dream interpretation and by contributing to their consensual validation. PMID:9656284

  10. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  11. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    PubMed

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. PMID:25959749

  12. Using the Group Presentation to Foster Functional Skills.

    ERIC Educational Resources Information Center

    King, Kim M.

    1990-01-01

    Suggests using group presentations as a method for instructors with large introductory courses to help students gain functional skills and also make the courses more interesting. Provides examples of group presentation projects. States goals of projects as showing how sociology can be used in everyday life and providing a review of the examination…

  13. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-01

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects. PMID:15033369

  14. Implement the medical group revenue function. Create competitive advantage.

    PubMed

    Colucci, C

    1998-01-01

    This article shows medical groups how they can employ new financial management and information technology techniques to safeguard their revenue and income streams. These managerial techniques stem from the application of the medical group revenue function, which is defined herein. This article also describes how the medical group revenue function can be used to create value by employing a database and a decision support system. Finally, the article describes how the decision support system can be used to create competitive advantage. Through the wise use of internally generated information, medical groups can negotiate better contract terms, improve their operations, cut their costs, embark on capital investment programs and improve market share. As medical groups gain market power by improving in these areas, they will be more attractive to potential strategic allies, payers and investment bankers. PMID:10181647

  15. 21 CFR 14.142 - Functions of a color additive advisory committee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Functions of a color additive advisory committee... SERVICES GENERAL PUBLIC HEARING BEFORE A PUBLIC ADVISORY COMMITTEE Color Additive Advisory Committees § 14.142 Functions of a color additive advisory committee. (a) A color additive advisory committee...

  16. 21 CFR 14.142 - Functions of a color additive advisory committee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Functions of a color additive advisory committee... SERVICES GENERAL PUBLIC HEARING BEFORE A PUBLIC ADVISORY COMMITTEE Color Additive Advisory Committees § 14.142 Functions of a color additive advisory committee. (a) A color additive advisory committee...

  17. Selectivity in the Addition Reactions of Organometallic Reagents to Aziridine-2-carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns

    PubMed Central

    Kulshrestha, Aman; Schomaker, Jennifer M.; Holmes, Daniel; Staples, Richard J.; Jackson, James E.; Borhan, Babak

    2014-01-01

    Good to excellent stereo-selectivity has been found in the addition reactions of Grignard and organo-zinc reagents to N-protected aziridine-2-carboxaldehydes. Specifically, high syn selectivity was obtained with benzyl-protected cis, tert-butyloxycar-bonyl-protected trans, and tosyl-pro-tected 2,3-disubstituted aziridine-2-car-boxaldehydes. Furthermore, rate and selectivity effects of ring substituents, temperature, solvent, and Lewis acid and base modifiers were studied. The diastereomeric preference of addition is dominated by the substrate aziri-dines’ substitution pattern and especially the electronic character and conformational preferences of the nitrogen protecting groups. To help rationalize the observed stereochemical outcomes, conformational and electronic structural analyses of a series of model systems representing the various substitution patterns have been explored by density functional calculations at the B3LYP/6–31G* level of theory with the SM8 solvation model to account for solvent effects. PMID:21928447

  18. [Macrozoobenthos functional groups in intertidal flat of northwest Jiaozhou Bay].

    PubMed

    Xin, Jun-hong; Ren, Yi-ping; Xu, Bin-duo; Zhang, Chong-liang; Xue, Ying; Ji, Yu-peng

    2011-07-01

    Based on the survey of macrozoobenthos at 35 locations of 7 sections in the intertidal flat of northwest Jiaozhou Bay in February, May, August, and November 2009, three zones including high tidal zone (A), mid tidal zone (B, C, and D), and low tidal zone (E) were selected to study the functional groups of macrozoobenthos in the flat. A total of 71 macrozoobenthos species were recorded, most of which were of mollusk (31 species), polychaete (20 species), and crustacean (14 species). The species number in A, B, C, D, and E was 26, 33, 35, 38, and 31, respectively. According to their food preferences, the macrozoobenthos were classified into 4 functional groups, i. e., planktonphagous, carnivorous, omnivorous, and detritivorous. The percentage of the species number of each functional group in the total species number of macrozoobenthos was in the order of carnivorous > planktophagous > detritivorous > omnivorous. Carnivorous group had the highest species diversity index, while omnivorous group had the lowest one. Overall, the species richness index, evenness index, and species diversity index were higher in mid tidal zone and lower in high and low tidal zones. The present study showed that the distribution of macrozoobenthos functional groups varied with the environment of tidal zones, being an integrative reflection of their habitat conditions. PMID:22007469

  19. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous

  20. Accessing siloxane functionalized polynorbornenes via vinyl-addition polymerization for CO2 separation membranes

    DOE PAGESBeta

    Mahurin, Shannon Mark; Sokolov, Alexei P.; Saito, Tomonori; Long, Brian K.; Gmernicki, Kevin R.; Hong, Eunice; Maroon, Christopher R.

    2016-07-06

    Here, the vinyl addition polymerization of norbornylbased monomers bearing polar functional groups is often problematic, leading to low molecular weight polymers in poor yield. Herein, we provide proof-of-principle evidence that addition-type homopolymers of siloxane substituted norbornyl-based monomers may be readily synthesized using the catalyst trans-[Ni(C6F5)2(SbPh3)2]. Polymerizations using this catalyst reached moderate to high conversion in just 5 min of polymerization and produced siloxanesubstituted polymers with molecular weights exceeding 100 kg/mol. These polymers showed excellent thermal stability (Td ≥ 362 °C) and were cast into membranes that displayed high CO2 permeability and enhanced CO2/N2 selectivity as compared to related materials.

  1. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-01

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation. PMID:26451627

  2. The carbon functional group budget of a peatland

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth; Apperley, David

    2016-04-01

    Organic matter samples were taken from each organic matter reservoir and fluvial flux found in a peatland and analysed by elemental analysis for carbon, hydrogen, nitrogen and oxygen content, and by 13C solid state nuclear magnetic resonance (NMR) for functional group composition. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, four different depths from a peat core, and monthly samples of fluvial particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK. The proportion of carbon atoms from each of the eight carbon functional groups (C-alkyl, N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C, aromatic/unsaturated C, phenolic C, aldehyde/ketone C and amide/carboxyl C) from each type of organic matter were combined with an existing carbon budget from the same site, to give a functional group carbon budget. The budget results show that the ecosystem is accumulating N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C and phenolic C groups, but losing C-alkyl, aromatic/unsaturated C, amide/carboxyl C and aldehyde/ketone C. Comparing the functional group compositions between the sampled organic matter pools shows that DOM arises from two distinct sources; from the peat itself and from a vegetation source.

  3. Functionalization of carbon nanotube by carboxyl group under radial deformation

    NASA Astrophysics Data System (ADS)

    Lara, Ivi Valentini; Zanella, Ivana; Fagan, Solange Binotto

    2014-01-01

    The dependence of the structural and the electronic properties of functionalized (5, 5) single-walled carbon nanotubes (SWNT) were investigated through ab initio density functional simulations when the carboxyl group is bonded on the flatter or curved regions. Radial deformations result in diameter decrease of up to 20 per cent of the original size, which was the limit reduction that maintains the SWNT functionalized structure. Changes on the electronic structure were observed due to the symmetry break of the SWNT caused by both the carboxyl group and the C-C bond distortions resulted by the radial deformation. It is observed that the functionalization process is specially favored by the sp3 hybridization induced on the more curved region of the deformed SWNT.

  4. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although

  5. Chapter 8. Resident Group Influences on Team Functioning

    ERIC Educational Resources Information Center

    Burford, Gale E.; Fulcher, Leon C.

    2006-01-01

    Research has documented important interplays between the diagnostic characteristics of residents in group care centers and the functioning of staff teams responsible for the delivery of services. Factors that impact on the quality of working life satisfactions and frustrations are variable over time and may originate from within the team, the…

  6. Radical Energies and the Regiochemistry of Addition to Heme Groups. Methylperoxy and Nitrite Radical Additions to the Heme of Horseradish Peroxidase

    PubMed Central

    Wojciechowski, Grzegorz; Ortiz de Montellano, Paul R.

    2008-01-01

    The heme of hemoproteins, as exemplified by horseradish peroxidase (HRP), can undergo additions at the meso carbons and/or vinyl groups of the electrophilic or radical species generated in the catalytic oxidation of halides, pseudohalides, carboxylic acids, aryl and alkyl hydrazines, and other substrates. The determinants of the regiospecificity of these reactions, however, are unclear. We report here modification of the heme of HRP by autocatalytically generated, low energy NO2• and CH3OO• radicals. The NO2• radical adds regioselectively to the 4- over the 2-vinyl group but does not add to the meso positions. Reaction of HRP with tert-BuOOH does not lead to heme modification, but reaction with the F152M mutant, in which the heme vinyls are more sterically accessible, results in conversion of the heme 2-vinyl into a 1-hydroxy-2-(methylperoxy)-ethyl group [-CH(OH)CH2OOCH3]. [18O]-labeling studies indicate that the hydroxyl group in this adduct derives from water and the methylperoxide oxygens from O2. Under anaerobic conditions, methyl radicals formed by fragmentation of the autocatalytically generated tert-BuO• radical add to both the δ-meso-carbon and the 2-vinyl group. The regiochemistry of these and the other known additions to the heme indicate that only high-energy radicals (e.g., CH3•) add to the meso-carbon. Less energetic radicals, including NO2• and CH3OO•, add to heme vinyl groups if they are small enough but do not add to the meso-carbons. Electrophilic species such as HOBr, HOCl, and HOSCN add to vinyl groups but do not react with the meso-carbons. This meso- versus vinyl-reactivity paradigm, which appears to be general for autocatalytic additions to heme prosthetic groups, suggests that meso-hydroxylation of the heme by heme oxygenase occurs by a controlled radical reaction rather than by electrophilic addition. PMID:17249668

  7. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  8. Investigation of oxygen functional groups in low rank coal

    SciTech Connect

    Hagaman, E.W.; Lee, S.K.

    1993-07-01

    The distribution of the organic oxygen content of coals among the principal oxygen containing functional groups typically is determined by a combination of chemical and spectroscopic methods (1,2) and results in a classification scheme such as % carboxyl, % hydroxyl, % carbonyl, and % ether. A notable subdivision in this classification scheme is the differentiation of phenols in a coal on the basis of their ortho-substitution pattern (3). Apart from this distinction, the further classification of oxygen into functional group subsets is virtually nonexistent. This paper presents initial experiments that indicate a fuller characterization of oxygen distribution in low rank coal is possible. The experimental approach couples selective chemical perturbation and solid state NMR analysis of the material, specifically, the fluorination of Argonne Premium Coal {number_sign}8, North Dakota lignite, and spectroscopic examination by high resolution solid state {sup 19}F NMR (4). The fluorination reagent is diethylaminosulfur trifluoride (DAST), (Et){sub 2}NSF{sub 3}, which promotes a rich slate of oxygen functional group interconversions that introduce fluorine into the coal matrix (5). The virtual absence of this element in coals make {sup 19}F an attractive NMR nuclei for this application (6). The present experiments use direct detection of the {sup 19}F nucleus under conditions of proton ({sup 1}H) heteronuclear dipolar decoupling and magic angle spinning (MAS). The ca 300 ppm range of {sup 19}F chemical shifts in common carbon-fluorine bonding configurations and high {sup 19}F nuclear sensitivity permit the identification of unique and chemically dilute functional groups in the coal milieu. The unique detection of aromatic and aliphatic carboxylic acids and primary and secondary alcohols provide examples of the exquisite functional group detail that is revealed by this combination of techniques.

  9. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  10. Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane.

    PubMed

    Moitra, Nirmalya; Kamei, Toshiyuki; Kanamori, Kazuyoshi; Nakanishi, Kazuki; Takeda, Kazuyuki; Shimada, Toyoshi

    2013-10-01

    Synthesis of class II hybrid silica materials requires the formation of covalent linkage between organic moieties and inorganic frameworks. The requirement that organosilylating agents be present to provide the organic part limits the synthesis of functional inorganic oxides, however, due to the water sensitivity and challenges concerning purification of the silylating agents. Synthesis of hybrid materials with stable molecules such as simple alcohols, rather than with these difficult silylating agents, may therefore provide a path to unprecedented functionality. Herein, we report the novel functionalization of silica with organic alcohols for the first time. Instead of using hydrolyzable organosilylating agents, we used stable organic alcohols with a Zn(II) catalyst to modify the surface of a recently discovered highly reactive macro-mesoporous hydrogen silsesquioxane (HSQ, HSiO1.5) monolith, which was then treated with water with the catalyst to form surface-functionalized silica. These materials were comprehensively characterized with FT-IR, Raman, solid-state NMR, fluorescence spectroscopy, thermal analysis, elemental analysis, scanning electron microscopy, and nitrogen adsorption-desorption measurements. The results obtained from these measurements reveal facile immobilization of organic moieties by dehydrogenative addition onto surface silane (Si-H) at room temperature with high loading and good tolerance of functional groups. The organic moieties can also be retrieved from the monoliths for recycling and reuse, which enables cost-effective and ecological use of the introduced catalytic/reactive surface functionality. Preservation of the reactivity of as-immobilized organic alcohols has been confirmed, moreover, by successfully performing copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions on the immobilized silica surfaces. PMID:23977900

  11. Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives

    PubMed Central

    Scipioni, Roberto; Gazzoli, Delia; Teocoli, Francesca; Palumbo, Oriele; Paolone, Annalisa; Ibris, Neluta; Brutti, Sergio; Navarra, Maria Assunta

    2014-01-01

    In the research of new nanocomposite proton-conducting membranes, SnO2 ceramic powders with surface functionalization have been synthesized and adopted as additives in Nafion-based polymer systems. Different synthetic routes have been explored to obtain suitable, nanometer-sized sulphated tin oxide particles. Structural and morphological characteristics, as well as surface and bulk properties of the obtained oxide powders, have been determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopies, N2 adsorption, and thermal gravimetric analysis (TGA). In addition, dynamic mechanical analysis (DMA), atomic force microscopy (AFM), thermal investigations, water uptake (WU) measurements, and ionic exchange capacity (IEC) tests have been used as characterization tools for the nanocomposite membranes. The nature of the tin oxide precursor, as well as the synthesis procedure, were found to play an important role in determining the morphology and the particle size distribution of the ceramic powder, this affecting the effective functionalization of the oxides. The incorporation of such particles, having sulphate groups on their surface, altered some peculiar properties of the resulting composite membrane, such as water content, thermo-mechanical, and morphological characteristics. PMID:24957125

  12. Computing the effective action with the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Percacci, Roberto; Rachwał, Lesław; Tonero, Alberto

    2016-04-01

    The "exact" or "functional" renormalization group equation describes the renormalization group flow of the effective average action Γ _k. The ordinary effective action Γ _0 can be obtained by integrating the flow equation from an ultraviolet scale k=Λ down to k=0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity.

  13. Properties of graphene inks stabilized by different functional groups

    NASA Astrophysics Data System (ADS)

    Wei, Di; Li, Hongwei; Han, Dongxue; Zhang, Qixian; Niu, Li; Yang, Huafeng; Bower, Chris; Andrew, Piers; Ryhänen, Tapani

    2011-06-01

    Different graphene inks have been synthesized by chemical methods. These uniform dispersions were stabilized by various functional groups such as room temperature ionic liquid, polyaniline, polyelectrolyte (poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] sodium salt) and poly(styrenesulfonate) (PSS). The dispersions can be easily cast into high-quality, free-standing films but with very different physiochemical properties such as surface tension and adhesion. SEM and AFM methods have been applied to have a detailed study of the properties of the inks. It is found that graphenes modified by p-type polyaniline show the highest surface tension. Diverse surface adhesive properties to the substrate are also found with various functional groups. The different viscoelasticities of graphene inks were related to the microscopic structure of their coating layer and subsequently related to the configuration, chemistry and molecular dimensions of the modifying molecules to establish the property-structure relationship. Modifications of graphene inks made from chemical reduction cannot only enable cost-effective processing for printable electronics but also extend the applications into, for example, self-assembly of graphene via bottom-up nano-architecture and surface energy engineering of the graphenes. To fabricate useful devices, understanding the surface properties of graphene inks is very important. It is the first paper of this kind to study the surface tension and adhesion of graphene influenced by different functional groups.

  14. Properties of graphene inks stabilized by different functional groups.

    PubMed

    Wei, Di; Li, Hongwei; Han, Dongxue; Zhang, Qixian; Niu, Li; Yang, Huafeng; Bower, Chris; Andrew, Piers; Ryhänen, Tapani

    2011-06-17

    Different graphene inks have been synthesized by chemical methods. These uniform dispersions were stabilized by various functional groups such as room temperature ionic liquid, polyaniline, polyelectrolyte (poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] sodium salt) and poly(styrenesulfonate) (PSS). The dispersions can be easily cast into high-quality, free-standing films but with very different physiochemical properties such as surface tension and adhesion. SEM and AFM methods have been applied to have a detailed study of the properties of the inks. It is found that graphenes modified by p-type polyaniline show the highest surface tension. Diverse surface adhesive properties to the substrate are also found with various functional groups. The different viscoelasticities of graphene inks were related to the microscopic structure of their coating layer and subsequently related to the configuration, chemistry and molecular dimensions of the modifying molecules to establish the property-structure relationship. Modifications of graphene inks made from chemical reduction cannot only enable cost-effective processing for printable electronics but also extend the applications into, for example, self-assembly of graphene via bottom-up nano-architecture and surface energy engineering of the graphenes. To fabricate useful devices, understanding the surface properties of graphene inks is very important. It is the first paper of this kind to study the surface tension and adhesion of graphene influenced by different functional groups. PMID:21508455

  15. Functional renormalization group analysis of tensorial group field theories on Rd

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele

    2016-07-01

    Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.

  16. Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Lahoche, Vincent

    2016-05-01

    We develop the functional renormalization group formalism for a tensorial group field theory with closure constraint, in the case of a just renormalizable model over U{(1)}\\otimes 6, with quartic interactions. The method allows us to obtain a closed but non-autonomous system of differential equations which describe the renormalization group flow of the couplings beyond perturbation theory. The explicit dependence of the beta functions on the running scale is due to the existence of an external scale in the model, the radius of {S}1≃ U(1). We study the occurrence of fixed points and their critical properties in two different approximate regimes, corresponding to the deep UV and deep IR. Besides confirming the asymptotic freedom of the model, we find also a non-trivial fixed point, with one relevant direction. Our results are qualitatively similar to those found previously for a rank-3 model without closure constraint, and it is thus tempting to speculate that the presence of a Wilson-Fisher-like fixed point is a general feature of asymptotically free tensorial group field theories.

  17. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  18. Pelagic functional group modeling: Progress, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Hood, Raleigh R.; Laws, Edward A.; Armstrong, Robert A.; Bates, Nicholas R.; Brown, Christopher W.; Carlson, Craig A.; Chai, Fei; Doney, Scott C.; Falkowski, Paul G.; Feely, Richard A.; Friedrichs, Marjorie A. M.; Landry, Michael R.; Keith Moore, J.; Nelson, David M.; Richardson, Tammi L.; Salihoglu, Baris; Schartau, Markus; Toole, Dierdre A.; Wiggert, Jerry D.

    2006-03-01

    In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term "biogeochemical functional group" to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, "functional groups" have no phylogenetic meaning—these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our

  19. Molecular dynamics simulations of functionalized carbon nanotubes in water: Effects of type and position of functional groups

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Moshari, Mahshad

    2010-11-01

    In this work the behavior of the (8,2) single walled carbon nanotubes (CNTs) and functionalized carbon nanotubes (FCNTs) with four functional groups in water were studied using molecular dynamic (MD) simulation method. Glutamine as a long chain functional group and carboxyl as a short chain functional group have been used as functional groups in FCNTs. Four functional groups in each FCNT were localized at two positions: (i) all four functional groups were in the sidewalls of nanotube, (ii) two functional groups were at the ends and two functional groups were in the sidewalls of nanotube. The intermolecular interaction energies between CNTs or FCNTs and water molecules, the plots of radial distribution function and the diffusion coefficients of CNTs and FCNTs in water were computed for investigating the effects of type and position of functional groups on the behavior of FCNTs in water. The obtained results from three methods are consistent with each others. Results showed that the position of the functional groups in FCNTs has an important role in the interaction of hydrophilic groups of FCNTs with water molecules. Furthermore we also investigated the behavior of FCNTs with sixteen carboxyl functional groups in water. The presence of these large numbers of carboxyl functional groups on the carbon nanotubes prevents water molecules from moving towards hydrophilic carboxyl functional groups. This demonstrates the advantage of using lower number of functional groups each containing many hydrophilic groups like glutamine functional group.

  20. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-04-01

    The functional group composition of various organic aerosols (OA) is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups) and precursor ion (nitro groups) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular) to 13.5% (o-xylene photo-oxidation) of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass spectra of all

  1. Organized thiol functional groups in mesoporous core shell colloids

    SciTech Connect

    Marchena, Martin H.; Granada, Mara; Bordoni, Andrea V.; Joselevich, Maria; Troiani, Horacio; Williams, Federico J.; Wolosiuk, Alejandro

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  2. Additional Validity Evidence and Across-Group Equivalency of the "HOPE Teacher Rating Scale"

    ERIC Educational Resources Information Center

    Peters, Scott J.; Gentry, Marcia

    2013-01-01

    The "HOPE Scale" was developed to identify academic and social components of giftedness and talent in elementary-aged students with particular attention to students from low-income and/or culturally diverse families. Based on previous findings, additional research was conducted on revisions made to the "HOPE Scale". Items were added, and 71…

  3. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  4. Catalytic Addition of Simple Alkenes to Carbonyl Compounds Using Group 10 Metals

    PubMed Central

    Schleicher, Kristin D.

    2011-01-01

    Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon–carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, and conjugated aldehydes and ketones, are discussed. In these reactions, the olefins function as vinyl- and allylmetal equivalents, providing a new strategy for organic synthesis. Current limitations and the outlook for this new strategy are also discussed. PMID:21904421

  5. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  6. Difference in nutritional risk between mild cognitive impairment group and normal cognitive function elderly group.

    PubMed

    Lee, Kang Soo; Hong, Chang Hyung; Cheong, Hae-Kwan; Oh, Byoung Hoon

    2009-01-01

    The purpose of this study was to delineate the difference in nutritional risk between mild cognitive impairment (MCI) groups and normal cognitive function (NCF) elderly groups in the community. Data obtained from 490 subjects (237 NCF elderly and 253 MCI subjects) between 60 and 90 years of age were analyzed. The study protocol comprised demographic characteristics, history of current and past illnesses, drug history, Korean version of short-form Geriatric Depression Scale (K-SGDS), and nutritional screening initiative (NSI) checklist. Cognitive function was assessed by digit span, Korean short version of Boston naming test (K-BNT), simple Rey figure test, auditory verbal learning test (AVLT), controlled oral word association test (COWAT), stroop, go-no go, and contrasting program. Also, we examined the blood pressure, fasting serum glucose level, lipid profile, body mass index (BMI), and ApoE genotype. Multiple logistic regression analysis found that MCI was associated with moderate or high nutritional risk after adjustment for age, sex, educational level, and K-SGDS score (odds ratio (OR)=1.13, 95%; confidence interval (CI)=1.01-1.26). These results suggest that MCI may be associated with nutritional risk. Screening for nutritional risk should be included in multidimensional geriatric evaluation. PMID:18524396

  7. Influence of group composition of sulfonic acids on properties of sulfonate additives

    SciTech Connect

    Katrenko, T.I.; Bessonova, R.N.; Kuznetsova, M.G.; Potolovskii, L.A.

    1983-05-01

    Three types of sulfonic acids are formed in sulfonation of petroleum oils-- oil-soluble, oil-insoluble, and water-soluble. This study investigates the influence of the different acids on neutral calcium sulfonates. Samples are recovered from As-14 oil. Oil-insoluble synthesis failed. Water-soluble acid did synthesize with a mix of oil- and water-soluble sulfonates. Neutral calcium sulfonates synthesized from oil-soluble had good properties, from oil-insoluble, bad properties. Oil-insoluble sulfonate also has an inverse effect on cleanup, and it interferes with carbonation. These findings will help with improvements in the sulfonate additive manufacturing process.

  8. Bath additives for the treatment of childhood eczema (BATHE): protocol for multicentre parallel group randomised trial

    PubMed Central

    Santer, Miriam; Rumsby, Kate; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Chorozoglou, Maria; Wood, Wendy; Roberts, Amanda; Thomas, Kim S; Williams, Hywel C; Little, Paul

    2015-01-01

    Introduction Bath emollients are widely prescribed for childhood eczema, yet evidence of their benefits over direct application of emollients is lacking. Objectives To determine the clinical and cost-effectiveness of adding bath emollient to the standard management of eczema in children Methods and analysis Design: Pragmatic open 2-armed parallel group randomised controlled trial. Setting: General practitioner (GP) practices in England and Wales. Participants: Children aged over 12 months and less than 12 years with eczema, excluding inactive or very mild eczema (5 or less on Nottingham Eczema Severity Scale). Interventions: Children will be randomised to either bath emollients plus standard eczema care or standard eczema care only. Outcome measures: Primary outcome is long-term eczema severity, measured by the Patient-Oriented Eczema Measure (POEM) repeated weekly for 16 weeks. Secondary outcomes include: number of eczema exacerbations resulting in healthcare consultations over 1 year; eczema severity over 1 year; disease-specific and generic quality of life; medication use and healthcare resource use; cost-effectiveness. Aiming to detect a mean difference between groups of 2.0 (SD 7.0) in weekly POEM scores over 16 weeks (significance 0.05, power 0.9), allowing for 20% loss to follow-up, gives a total sample size of 423 children. We will use repeated measures analysis of covariance, or a mixed model, to analyse weekly POEM scores. We will control for possible confounders, including baseline eczema severity and child's age. Cost-effectiveness analysis will be carried out from a National Health Service (NHS) perspective. Ethics and dissemination This protocol was approved by Newcastle and North Tyneside 1 NRES committee 14/NE/0098. Follow-up will be completed in 2017. Findings will be disseminated to participants and carers, the public, dermatology and primary care journals, guideline developers and decision-makers. Trial registration number ISRCTN

  9. Highlighting functional groups in self-assembled overlayers with specific functionalized scanning tunnelling microscopy tips

    NASA Astrophysics Data System (ADS)

    Volcke, Cedric; Simonis, Priscilla; Thiry, Paul A.; Lambin, Philippe; Culot, Christine; Humbert, Christophe

    2005-11-01

    Overlayers of a fatty acid (palmitic and lauric acid) formed at the interface between a solution of this molecule in phenyloctane and the basal plane of graphite are studied by in situ scanning tunnelling microscopy. The layers organize into lamellae, which are formed by a close packing arrangement of molecules parallel to the graphite surface. Chemical modification of the STM tips used allowed identification of the functional group. Indeed, the gold tips used are functionalized with 4-mercaptobenzoic acid (4-MBA) and 4-mercaptotoluene (4-MT). The same functional group on a sample is then 'seen' as a dark and a bright spot when imaged with 4-MBA and 4-MT modified tips, respectively. This contrast distinction is related to interactions (or a lack of them) between the carboxyl group on the sample and molecules on the tip, which can facilitate (or hinder) the electron tunnelling.

  10. Correlation functions from a unified variational principle: Trial Lie groups

    NASA Astrophysics Data System (ADS)

    Balian, R.; Vénéroni, M.

    2015-11-01

    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency

  11. Erythorbyl laurate as a potential food additive with multi-functionalities: Interfacial characteristics and antioxidant activity.

    PubMed

    Park, Kyung-Min; Lee, Min Joo; Jo, Su-Kyung; Choi, Seung Jun; Lee, JaeHwan; Chang, Pahn-Shick

    2017-01-15

    The interfacial characteristics and antioxidant activities of erythorbyl laurate were investigated to provide information on practical applications as a multi-functional food additive. The critical micelle concentration (CMC) of erythorbyl laurate was 0.101mM and its foam stability was three times (half-life 24.33±0.94h) higher than that of Tween 20 (8.00±1.63h). In free radical scavenging assay, the negligible decrease in EC50 of erythorbyl laurate compared to erythorbic acid manifested that C-5 selective esterification of erythorbic acid with an acyl group (lauric acid) did not reduce the inherent antioxidant activity of the donor (erythorbic acid). Erythorbyl laurate formed lipid peroxides slower (i.e. retarded oxidation) in an emulsion system than did erythorbic acid. The localization of erythorbyl laurate as an emulsifier allowed the antioxidant molecules to be concentrated at the oil-water interface where oxidation is prevalent, which led to more effective retardation of lipid oxidation. PMID:27542455

  12. Additive opportunistic capture explains group hunting benefits in African wild dogs

    PubMed Central

    Hubel, Tatjana Y.; Myatt, Julia P.; Jordan, Neil R.; Dewhirst, Oliver P.; McNutt, J. Weldon; Wilson, Alan M.

    2016-01-01

    African wild dogs (Lycaon pictus) are described as highly collaborative endurance pursuit hunters based on observations derived primarily from the grass plains of East Africa. However, the remaining population of this endangered species mainly occupies mixed woodland savannah where hunting strategies appear to differ from those previously described. We used high-resolution GPS and inertial technology to record fine-scale movement of all members of a single pack of six adult African wild dogs in northern Botswana. The dogs used multiple short-distance hunting attempts with a low individual kill rate (15.5%), but high group feeding rate due to the sharing of prey. Use of high-level cooperative chase strategies (coordination and collaboration) was not recorded. In the mixed woodland habitats typical of their current range, simultaneous, opportunistic, short-distance chasing by dogs pursuing multiple prey (rather than long collaborative pursuits of single prey by multiple individuals) could be the key to their relative success in these habitats. PMID:27023355

  13. Additive opportunistic capture explains group hunting benefits in African wild dogs.

    PubMed

    Hubel, Tatjana Y; Myatt, Julia P; Jordan, Neil R; Dewhirst, Oliver P; McNutt, J Weldon; Wilson, Alan M

    2016-01-01

    African wild dogs (Lycaon pictus) are described as highly collaborative endurance pursuit hunters based on observations derived primarily from the grass plains of East Africa. However, the remaining population of this endangered species mainly occupies mixed woodland savannah where hunting strategies appear to differ from those previously described. We used high-resolution GPS and inertial technology to record fine-scale movement of all members of a single pack of six adult African wild dogs in northern Botswana. The dogs used multiple short-distance hunting attempts with a low individual kill rate (15.5%), but high group feeding rate due to the sharing of prey. Use of high-level cooperative chase strategies (coordination and collaboration) was not recorded. In the mixed woodland habitats typical of their current range, simultaneous, opportunistic, short-distance chasing by dogs pursuing multiple prey (rather than long collaborative pursuits of single prey by multiple individuals) could be the key to their relative success in these habitats. PMID:27023355

  14. Anaerobic Activation of p-Cymene in Denitrifying Betaproteobacteria: Methyl Group Hydroxylation versus Addition to Fumarate

    PubMed Central

    Strijkstra, Annemieke; Trautwein, Kathleen; Jarling, René; Wöhlbrand, Lars; Dörries, Marvin; Reinhardt, Richard; Drozdowska, Marta; Golding, Bernard T.; Wilkes, Heinz

    2014-01-01

    The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA. PMID:25261521

  15. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  16. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups

    PubMed Central

    2014-01-01

    Graphene quantum dots (GQDs) have been developed as promising optical probes for bioimaging due to their excellent photoluminescent properties. Additionally, the fluorescence spectrum and quantum yield of GQDs are highly dependent on the surface functional groups on the carbon sheets. However, the distribution and cytotoxicity of GQDs functionalized with different chemical groups have not been specifically investigated. Herein, the cytotoxicity of three kinds of GQDs with different modified groups (NH2, COOH, and CO-N (CH3)2, respectively) in human A549 lung carcinoma cells and human neural glioma C6 cells was investigated using thiazoyl blue colorimetric (MTT) assay and trypan blue assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. It was demonstrated that the three modified GQDs showed good biocompatibility even when the concentration reached 200 μg/mL. The Raman spectra of cells treated with GQDs with different functional groups also showed no distinct changes, affording molecular level evidence for the biocompatibility of the three kinds of GQDs. The cellular distribution of the three modified GQDs was observed using a fluorescence microscope. The data revealed that GQDs randomly dispersed in the cytoplasm but not diffused into nucleus. Therefore, GQDs with different functional groups have low cytotoxicity and excellent biocompatibility regardless of chemical modification, offering good prospects for bioimaging and other biomedical applications. PMID:24597852

  17. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  18. Highly adaptive tests for group differences in brain functional connectivity

    PubMed Central

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of related methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not

  19. Modification of Polymer Network Properties through the Addition of Functional Nanogel Particles

    NASA Astrophysics Data System (ADS)

    Liu, JianCheng

    Multifunctional acrylic and methacrylic monomers have been widely applied in many photopolymerization applications to produce crosslinked polymers with advantages such as rapid curing, broad choices of commercially available monomers and desirable physical and mechanical properties. However, there still remain critical challenges for these materials during polymerization including limited conversion and early onset of gelation as well as the generation of significant polymerization shrinkage and stress. This thesis explores the effects of network property modification through the addition of polymeric nanoparticles or nanogels. In order to understand the relationship between nanogel structure and composite material properties, nanogels with different architectures and functionalities were studied during polymerization in terms of kinetics, shrinkage and stress reduction, mechanical performance and reaction mechanisms. Nanogel composite formulations were evaluated to understand the interaction between nanogel structure with the resin matrix during polymerization through adjustment of nanogel branching densities and reactivity of polymer chain ends. It was found that both the chemical crosslinking from reactive chain ends and physical entanglements of high branching density nanogels with the resin matrix dramatically could improve final material mechanical strength. The reductions in overall volumetric shrinkage and shrinkage stress were found to follow at least proportional behavior with respect to nanogel loading concentration while maintaining similar final conversion and modulus results compared with the control resin. Nanogels containing unique functionalities were designed in order to modify reaction mechanism during secondary polymerization. A nanogel containing an integrated photoinitiator and active chain-end RAFT groups was able to initiate secondary polymerization from the nanogel phase so that localized polymerization was achieved from the beginning of

  20. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity.

    PubMed

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. PMID:26655858

  1. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity

    PubMed Central

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858

  2. Functional renormalization group - a new approach to frustrated quantum magnetism

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes

    The experimental and theoretical investigation of quantum spin systems has become one of the central disciplines of contemporary condensed matter physics. From an experimental viewpoint, the field has been significantly fueled by the recent synthesis of novel strongly correlated materials with exotic magnetic or quantum paramagnetic ground states. From a theoretical perspective, however, the numerical treatment of realistic models for quantum magnetism in two and three spatial dimensions still constitutes a serious challenge. This particularly applies to frustrated systems, which complicate the employment of established methods. This talk intends to propagate the pseudofermion functional renormalization group (PFFRG) as a novel approach to determine large size ground state correlations of a wide class of spin Hamiltonians. Using a diagrammatic pseudofermion representation for quantum spin models, the PFFRG performs systematic summations in all two-particle fermionic interaction channels, capturing the correct balance between classical magnetic ordering and quantum fluctuations. Numerical results for various frustrated spin models on different 2D and 3D lattices are reviewed, and benchmarked against other methods if available.

  3. The Mechanism and Function of Group II Chaperonins.

    PubMed

    Lopez, Tom; Dalton, Kevin; Frydman, Judith

    2015-09-11

    Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis. PMID:25936650

  4. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  5. Tosvinyl and besvinyl as protecting groups of imides, azinones, nucleosides, sultams, and lactams. Catalytic conjugate additions to tosylacetylene.

    PubMed

    Petit, Elena; Bosch, Lluís; Font, Joan; Mola, Laura; Costa, Anna M; Vilarrasa, Jaume

    2014-09-19

    The use of the 2-(4-methylphenylsulfonyl)ethenyl (tosvinyl, Tsv) group for the protection of the NH group of a series of imides, azinones (including AZT), inosines, and cyclic sulfonamides has been examined. The Tsv-protected derivatives are obtained in excellent yields by conjugate addition to tosylacetylene (ethynyl p-tolyl sulfone). The stereochemistry of the double bond can be controlled at will: with only 1 mol % of Et3N or with catalytic amounts of NaH, the Z stereoisomers are generated almost exclusively, while the E isomers are obtained using a stoichiometric amount of DMAP. Analogous phenylsulfonylvinyl-protected groups (with the besvinyl or Bsv group instead of Tsv) are obtained stereospecifically by reaction with (Z)- or (E)-bis(phenylsulfonyl)ethene. For lactams and oxazolidinones, this last method is much better. The Tsv and Bsv groups are stable in the presence of non-nucleophilic bases and to acids. They can be removed highly effectively via a conjugate addition-elimination mechanism using pyrrolidine or sodium dodecanethiolate as nucleophiles. PMID:25162376

  6. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  7. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2010-08-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-Ŕ respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  8. Brief Report: Additive and Subtractive Counterfactual Reasoning of Children with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Begeer, Sander; Terwogt, Mark Meerum; Lunenburg, Patty; Stegge, Hedy

    2009-01-01

    The development of additive ("If only I had done...") and subtractive ("If only I had not done....") counterfactual reasoning was examined in children with High Functioning Autism Spectrum Disorders (HFASD) (n = 72) and typically developing controls (n = 71), aged 6-12 years. Children were presented four stories where they could generate…

  9. Impact of Functional Group Modifications on Designer Phenethylamine Induced Hyperthermia.

    PubMed

    Grecco, Gregory G; Sprague, Jon E

    2016-05-16

    The popularity of designer phenethylamines such as synthetic cathinones ("bath salts") has led to increased reports of life-threatening hyperthermia. The diversity of chemical modifications has resulted in the toxicological profile of most synthetic cathinones being mostly uncharacterized. Here, we investigated the thermogenic effects of six recently identified designer phenethylamines (4-methylmethamphetamine, methylone, mephedrone, butylone, pentylone, and MDPV) and compared these effects to the established thermogenic agent 3,4-methylenedioxymethamphetamine (MDMA). Specifically, we determined the impact of a β-ketone, α-alkyl, or pyrrolidine functional group on core-body temperature changes. Sprague-Dawley rats (n = 5-6) were administered a dose (30 mg/kg, sc) of a designer phenethylamine or MDMA, and core body temperature measurements were recorded at 30 min intervals for 150 min post treatment. MDMA elicited the greatest maximum temperature change (ΔTmax), and this effect was significantly greater than that of its β-ketone analogue, methylone. Temperature-area under the curves (TAUCs) and ΔTmax were also significantly different between 4-methylmethamphetamine (4-MMA) and its β-ketone analogue mephedrone. Lengthening the α-alkyl chain of methylone to produce butylone and pentylone significantly attenuated the thermogenic response on both TAUCs and ΔTmax compared to those of methylone; however, butylone and pentylone were not different from each other. Pyrrolidine substitution on the N-terminus of pentylone produces 3,4-methylenedioxypyrovalerone (MDPV), which did not significantly alter core body temperature. Thermogenic comparisons of MDMA vs methylone and 4-MMA vs mephedrone indicate that oxidation at the benzylic position significantly attenuates the hyperthermic response. Furthermore, either extending the α-alkyl chain to ethyl and propyl (butylone and pentylone, respectively) or extending the α-alkyl chain and adding a pyrrolidine on the N

  10. Students' Perceptions of Classroom Group Work as a Function of Group Member Selection

    ERIC Educational Resources Information Center

    Myers, Scott A.

    2012-01-01

    The purpose of this assessment was to examine whether differences exist between students who self-select their classroom work group members and students who are randomly assigned to their classroom work groups in terms of their use of organizational citizenship behaviors with their work group members; their commitment to, trust in, and relational…

  11. Dominant Functional Group Effects on the Invasion Resistance at Different Resource Levels

    PubMed Central

    Wang, Jiang; Ge, Yuan; Zhang, Chong B.; Bai, Yi; Du, Zhao K.

    2013-01-01

    Background Functional group composition may affect invasion in two ways the effect of abundance, i.e. dominance of functional group; and the effect of traits, i.e. identity of functional groups. However, few studies have focused on the role of abundance of functional group on invasion resistance. Moreover, how resource availability influences the role of the dominant functional group in invasion resistance is even less understood. Methodology/Principal Findings In this experiment, we established experimental pots using four different functional groups (annual grass, perennial grass, deciduous shrub or arbor and evergreen shrub or arbor), and the dominant functional group was manipulated. These experimental pots were respectively constructed at different soil nitrogen levels (control and fertilized). After one year of growth, we added seeds of 20 different species (five species per functional group) to the experimental pots. Fertilization significantly increased the overall invasion success, while dominant functional group had little effect on overall invasion success. When invaders were grouped into functional groups, invaders generally had lower success in pots dominated by the same functional group in the control pots. However, individual invaders of the same functional group exhibited different invasion patterns. Fertilization generally increased success of invaders in pots dominated by the same than by another functional group. However, fertilization led to great differences for individual invaders. Conclusions/Significance The results showed that the dominant functional group, independent of functional group identity, had a significant effect on the composition of invaders. We suggest that the limiting similarity hypothesis may be applicable at the functional group level, and limiting similarity may have a limited role for individual invaders as shown by the inconsistent effects of dominant functional group and fertilization. PMID:24167565

  12. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  13. Searching for additional endocrine functions of the skeleton: genetic approaches and implications for therapeutics

    PubMed Central

    Wei, Jianwen; Flaherty, Stephen; Karsenty, Gerard

    2016-01-01

    Our knowledge of whole organism physiology has greatly advanced in the past decades through mouse genetics. In particular, genetic studies have revealed that most organs interact with one another through hormones in order to maintain normal physiological functions and the homeostasis of the entire organism. Remarkably, through these studies many unexpected novel endocrine means to regulate physiological functions have been uncovered. The skeletal system is one example. In this article, we review a series of studies that over the years have identified bone as an endocrine organ. The mechanism of action, pathological relevance, and therapeutic implications of the functions of the bone-derived hormone osteocalcin are discussed. In the last part of this review we discuss the possibility that additional endocrine functions of the skeleton may exist.

  14. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    SciTech Connect

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

  15. Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging

    ERIC Educational Resources Information Center

    Razpurker-Apfeld, Irene; Pratt, Hillel

    2008-01-01

    Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

  16. Moral Judgment as a Function of Peer Group Interaction

    ERIC Educational Resources Information Center

    Maitland, Karen A.; Goldman, Jacquelin R.

    1974-01-01

    This article presents an investigation into the effects of peer group interaction on moral judgment among 36 male and female eleventh and twelfth graders. The results indicate greater social conflict and pressure in a group discussion induces greater change in the level of moral judgment. (DE)

  17. Group additive values for the gas-phase standard enthalpy of formation, entropy and heat capacity of oxygenates.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2013-11-25

    A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS-QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α- and β-branched, mono- and bifunctional oxygenates. Internal rotations were accounted for by using one-dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS-QB3 standard enthalpies of formation. Furthermore, 14 corrections for non-nearest-neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol(-1) and 4 J mol(-1) K(-1) for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.- 1995, 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (Δ(f)H°, S°, C(p)°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide-ranging application. PMID:24123572

  18. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  19. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  20. Control of oxo-group functionalization and reduction of the uranyl ion.

    PubMed

    Arnold, Polly L; Pécharman, Anne-Frédérique; Lord, Rianne M; Jones, Guy M; Hollis, Emmalina; Nichol, Gary S; Maron, Laurent; Fang, Jian; Davin, Thomas; Love, Jason B

    2015-04-01

    Uranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, "Pacman" geometry that stabilizes the U(V) oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg-N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U-O-Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxo-group. PMID:25799215

  1. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    SciTech Connect

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  2. Structure-property relationships in addition polyimides. 1: Resins from four-ring aromatic diamines containing carbonyl and methylene groups

    NASA Technical Reports Server (NTRS)

    Delvigs, Peter; Klopotek, David L.; Cavano, Paul J.

    1994-01-01

    In an effort to improve the processing characteristics of addition-type polyimide resins the use of flexibilized four-ring aromatic diamine moieties was investigated. A series of 12 diamines containing carbonyl and methylene, as well as oxo and thio bridging groups, was synthesized. The diamines were polymerized with the dimethyl ester of 3.3', 4.4' - benzophenonetetracarboxylic acid (BTDE), using the monomethyl ester of nadic acid (NE) as an end-cap. The effect of diamine structure on the solubility and rheological properties during cure was determined. This paper also describes the effect of diamine structure and formulated molecular weight on the glass transition temperature and thermo-oxidative stability at elevated temperatures after various post-cure regimes. The results indicate that polyimides from some of the diamines containing methylene connecting groups have potential as matrix resins for long-term applications at temperatures up to 300 C.

  3. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades

    PubMed Central

    2015-01-01

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C–H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C–H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C–H bonds. PMID:25494296

  4. First principles based group additive values for the gas phase standard entropy and heat capacity of hydrocarbons and hydrocarbon radicals.

    PubMed

    Sabbe, Maarten K; De Vleeschouwer, Freija; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2008-11-27

    In this work a complete and consistent set of 95 Benson group additive values (GAVs) for standard entropies S(o) and heat capacities C(p)(o) of hydrocarbons and hydrocarbon radicals is presented. These GAVs include 46 groups, among which 25 radical groups, which, to the best of our knowledge, have not been reported before. The GAVs have been determined from a set of B3LYP/6-311G(d,p) ideal gas statistical thermodynamics values for 265 species, consistently with previously reported GAVs for standard enthalpies of formation. One-dimensional hindered rotor corrections for all internal rotations are included. The computational methodology has been compared to experimental entropies (298 K) for 39 species, with a mean absolute deviation (MAD) between experiment and calculation of 1.2 J mol(-1) K(-1), and to 46 experimental heat capacities (298 K) with a resulting MAD = 1.8 J mol(-1) K(-1). The constructed database allowed evaluation of corrections on S(o) and C(p)(o) for non-nearest-neighbor effects, which have not been determined previously. The group additive model predicts the S(o) and C(p)(o) within approximately 5 J mol(-1) K(-1) of the ab initio values for 11 of the 14 molecules of the test set, corresponding to an acceptable maximal deviation of a factor of 1.6 on the equilibrium coefficient. The obtained GAVs can be applied for the prediction of S(o) and C(p)(o) for a wide range of hydrocarbons and hydrocarbon radicals. The constructed database also allowed determination of a large set of hydrogen bond increments, which can be useful for the prediction of radical thermochemistry. PMID:18980365

  5. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity.

    PubMed

    Browne, Mark Anthony; Niven, Stewart J; Galloway, Tamara S; Rowland, Steve J; Thompson, Richard C

    2013-12-01

    Inadequate products, waste management, and policy are struggling to prevent plastic waste from infiltrating ecosystems [1, 2]. Disintegration into smaller pieces means that the abundance of micrometer-sized plastic (microplastic) in habitats has increased [3] and outnumbers larger debris [2, 4]. When ingested by animals, plastic provides a feasible pathway to transfer attached pollutants and additive chemicals into their tissues [5-15]. Despite positive correlations between concentrations of ingested plastic and pollutants in tissues of animals, few, if any, controlled experiments have examined whether ingested plastic transfers pollutants and additives to animals. We exposed lugworms (Arenicola marina) to sand with 5% microplastic that was presorbed with pollutants (nonylphenol and phenanthrene) and additive chemicals (Triclosan and PBDE-47). Microplastic transferred pollutants and additive chemicals into gut tissues of lugworms, causing some biological effects, although clean sand transferred larger concentrations of pollutants into their tissues. Uptake of nonylphenol from PVC or sand reduced the ability of coelomocytes to remove pathogenic bacteria by >60%. Uptake of Triclosan from PVC diminished the ability of worms to engineer sediments and caused mortality, each by >55%, while PVC alone made worms >30% more susceptible to oxidative stress. As global microplastic contamination accelerates, our findings indicate that large concentrations of microplastic and additives can harm ecophysiological functions performed by organisms. PMID:24309271

  6. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean

    PubMed Central

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T.; Wilson, Samuel T.; Karl, David M.; Dyhrman, Sonya T.

    2015-01-01

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate. PMID:26460011

  7. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean.

    PubMed

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2015-11-01

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate. PMID:26460011

  8. Influence of functional groups on organic aerosol cloud condensation nucleus activity.

    PubMed

    Suda, Sarah R; Petters, Markus D; Yeh, Geoffrey K; Strollo, Christen; Matsunaga, Aiko; Faulhaber, Annelise; Ziemann, Paul J; Prenni, Anthony J; Carrico, Christian M; Sullivan, Ryan C; Kreidenweis, Sonia M

    2014-09-01

    Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity. PMID:25118824

  9. Immunotoxic effects of the color additive caramel color III: immune function studies in rats.

    PubMed

    Houben, G F; Penninks, A H; Seinen, W; Vos, J G; Van Loveren, H

    1993-01-01

    Administration of the color additive caramel color III (AC) may cause a reduction in total white blood cell counts in rats due to reduced lymphocyte counts. Beside lymphopenia, several other effects in rat have been described. The effects are caused by the imidazole derivative 2-acetyl-4(5)-(1,2,3,4-tetrahydroxybutyl)imidazole (THI) and occur in rats fed a diet low in vitamin B6. In the present paper, immune function studies on AC and THI with rats fed a diet low, but not deficient in vitamin B6 are presented and discussed. Rats were exposed to 0.4 or 4% AC or to 5.72 ppm THI in drinking water during and for 28 days prior to the start of immune function assays. Resistance to Trichinella spiralis was examined in an oral infection model and clearance of Listeria monocytogenes upon an intravenous infection was studied. In addition, natural cell-mediated cytotoxicity of splenic and nonadherent peritoneal cells and the antibody response to sheep red blood cells were studied. From the results it is concluded that exposure of rats to AC or THI influenced various immune function parameters. Thymus-dependent immunity was suppressed, while parameters of the nonspecific resistance were also affected, as shown by a decreased natural cell-mediated cytotoxicity in the spleen and an enhanced clearance of L. monocytogenes. PMID:8432426

  10. Nitric oxide and S-nitrosoglutathione function additively during plant immunity.

    PubMed

    Yun, Byung-Wook; Skelly, Michael J; Yin, Minghui; Yu, Manda; Mun, Bong-Gyu; Lee, Sang-Uk; Hussain, Adil; Spoel, Steven H; Loake, Gary J

    2016-07-01

    Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes. A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation. Here we show that endogenous NO accumulation in Arabidopsis, resulting from loss-of-function mutations in NO Overexpression 1 (NOX1), led to disabled Resistance (R) gene-mediated protection, basal resistance and defence against nonadapted pathogens. In nox1 plants both salicylic acid (SA) synthesis and signalling were suppressed, reducing SA-dependent defence gene expression. Significantly, expression of a GSNOR1 transgene complemented the SNO-dependent phenotypes of paraquat resistant 2-1 (par2-1) plants but not the NO-related characters of the nox1-1 line. Furthermore, atgsnor1-3 nox1-1 double mutants supported greater bacterial titres than either of the corresponding single mutants. Our findings imply that GSNO and NO, two pivotal redox signalling molecules, exhibit additive functions and, by extension, may have distinct or overlapping molecular targets during both immunity and development. PMID:26916092

  11. Impact of Additional Transthoracic Electrical Cardioversion on Cardiac Function and Atrial Fibrillation Recurrence in Patients with Persistent Atrial Fibrillation Who Underwent Radiofrequency Catheter Ablation

    PubMed Central

    Wang, Deguo; Zhang, Fengxiang; Wang, Ancai

    2016-01-01

    Backgrounds and Objective. During the procession of radiofrequency catheter ablation (RFCA) in persistent atrial fibrillation (AF), transthoracic electrical cardioversion (ECV) is required to terminate AF. The purpose of this study was to determine the impact of additional ECV on cardiac function and recurrence of AF. Methods and Results. Persistent AF patients received extensive encircling pulmonary vein isolation (PVI) and additional line ablation. Patients were divided into two groups based on whether they need transthoracic electrical cardioversion to terminate AF: electrical cardioversion (ECV group) and nonelectrical cardioversion (NECV group). Among 111 subjects, 35 patients were returned to sinus rhythm after ablation by ECV (ECV group) and 76 patients had AF termination after the ablation processions (NECV group). During the 12-month follow-ups, the recurrence ratio of patients was comparable in ECV group (15/35) and NECV group (34/76) (44.14% versus 44.74%, P = 0.853). Although left atrial diameters (LAD) decreased significantly in both groups, there were no significant differences in LAD and left ventricular cardiac function between ECV group and NECV group. Conclusions. This study revealed that ECV has no significant impact on the maintenance of SR and the recovery of cardiac function. Therefore, ECV could be applied safely to recover SR during the procedure of catheter ablation of persistent atrial fibrillation. PMID:27022500

  12. Oxidative addition of group 13 and 14 metal halides and Alkyls to Ga(DDP) (DDP = bulky bisimidinate).

    PubMed

    Kempter, Andreas; Gemel, Christian; Fischer, Roland A

    2008-08-18

    The oxidative addition of a variety of group 13 and group 14 halides and alkyls R aMX to the mono valent group 13 bis-imidinate Ga(DDP) (DDP = 2-{(2,6-diisopropyl-phenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene) is reported. Accordingly, the insertion of Ga(DDP) into the Ga-Me bond of GaMe 3 yield in the complexes [{(DDP)GaMe}GaMe 2] ( 1) and [{(DDP)GaMe} 2GaMe] ( 2), respectively, which show a temperature-dependent equilibrium between 1 at higher temperatures and 2 at lower temperatures. In the case of GaCl 3, the only isolable product is [{(DDP)GaCl} 2GaCl] ( 3). The related reaction of SnMe 2Cl 2 with Ga(DDP) yields the compound [Me 2Sn{ClGa(DDP)} 2] ( 4), whereas SnMe 4 behaves inert. In the case of SiCl 4, only the monoinsertion product [Cl 3Si{ClGa(DDP)}] ( 5) was observed. Finally, [(CH 3) 3C{ClGa(DDP)}] ( 6) is synthesized by insertion of Ga(DDP) into the C-Cl bond of ClC(CH 3) 3. All new compounds were fully characterized by elemental analysis, NMR-spectroscopy, and single-crystal X-ray diffraction analysis. PMID:18630902

  13. Two-Year Comparison of a Stream Macroinvertebrate Functional Group Bioassessment Protocol for the Republic of Palau Archipelago

    NASA Astrophysics Data System (ADS)

    Olesen, A. A.; Benbow, M. E.; Holm, T.; Burky, A. J.

    2005-05-01

    Macroinvertebrate functional feeding group data was collected in 2003 and 2004 to develop a rapid bioassessment protocol for Palauan streams. One reference stream, Ngardmau, was selected to test functional group ratios and associated ecosystem attributes against streams of variable impact. In both years qualitative samples were collected using 30s dip net samples in pool habitats and benthic scouring methods in cascades with additional quantitative cascade collections for sampling technique comparisons in 2004. In the reference stream riffle habitat, filtering-gatherers dominated the community (89.92% in 2003 and 47.37% in 2004) compared to all other functional groups. Among the impacted streams, riffle functional group composition was variable compared to the reference stream. In reference pool habitats, gathering-collectors and scrapers dominated in 2003 and 2004, respectively. Scrapers dominated pool habitats of impacted streams in 2004, with some functional groups missing. Changes in ecosystem attributes followed functional group variability depending on degree of impact. Functional group ratios indicated channel stability ratio ([filtering-collectors + scrapers]/[shredders + gathering-collectors]) was lowered with increasing impact, suggesting food and/or habitat quality for filtering-collectors was degraded in riffle habitats in 2003 with no trends in 2004. By this protocol streams were determined to be degraded in 2004 relative to 2003.

  14. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance

    SciTech Connect

    Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

    2014-07-03

    Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

  15. Post-Functionalized Polymer Brushes for Bio-Separation: Tuning GFP Adsorption via Functional Group Display

    NASA Astrophysics Data System (ADS)

    Diamanti, Steve; Arifuzzaman, Shafi; Genzer, Jan; Naik, Rajesh; Vaia, Richard

    2007-03-01

    An inexpensive and robust biosensor platform that can be tuned to separate and/or detect complex mixtures of biomolecules while minimizing reagents would be of great use for military, homeland security, and medical diagnostic applications. Gradient surfaces of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes have been previously shown to spatially localize biomolecule binding, while minimizing non-specific adsorption of the same biomolecule on other regions of the gradient specimen. In order to further improve the specificity and to provide latent functionality for detection of the binding events, post-polymerization modification of PHEMA with various functional groups has been investigated. Using standard succinimide-based coupling, hydroxyl pendants of PHEMA brushes were conjugated to oligo-peptides, alkanes and oligo(ethylene glycol) (OEG) through an alpha-terminus primary amine. Ellipsometry, contact angle, XPS and ER-FTIR spectroscopy indicated that coupling occurred with efficiencies ranging from 10-40%. Post-functionalization of PHEMA with OEG and hexadecane allows manipulation of the hydrophilicity of the surface and thus tuning of Green Fluorescent Protein (GFP) binding.

  16. Rectifying and negative differential resistance behaviors of a functionalized Tour wire: The position effects of functional groups

    NASA Astrophysics Data System (ADS)

    Kwong, Gordon; Zhang, Zhenhua; Pan, Jinbo

    2011-09-01

    Based on Tour wire, we construct four D-π-A molecular devices with different positional functional groups, in an attempt to explore the position effects of functional groups on their electronic transport properties and to show that some interesting physical phenomena can emerge by only varying the position of functional groups. The first-principles calculations demonstrate that the position of functional groups can affect the rectifying behaviors (rectification direction and ratio) significantly and determines whether or not the negative differential resistance (NDR) can be observed as well as the physical origin of the NDR phenomenon.

  17. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-01-01

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models. PMID:26703557

  18. Additional Saturday rehabilitation improves functional independence and quality of life and reduces length of stay: a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Many inpatients receive little or no rehabilitation on weekends. Our aim was to determine what effect providing additional Saturday rehabilitation during inpatient rehabilitation had on functional independence, quality of life and length of stay compared to 5 days per week of rehabilitation. Methods This was a multicenter, single-blind (assessors) randomized controlled trial with concealed allocation and 12-month follow-up conducted in two publically funded metropolitan inpatient rehabilitation facilities in Melbourne, Australia. Patients were eligible if they were adults (aged ≥18 years) admitted for rehabilitation for any orthopedic, neurological or other disabling conditions excluding those admitted for slow stream rehabilitation/geriatric evaluation and management. Participants were randomly allocated to usual care Monday to Friday rehabilitation (control) or to Monday to Saturday rehabilitation (intervention). The additional Saturday rehabilitation comprised physiotherapy and occupational therapy. The primary outcomes were functional independence (functional independence measure (FIM); measured on an 18 to 126 point scale), health-related quality of life (EQ-5D utility index; measured on a 0 to 1 scale, and EQ-5D visual analog scale; measured on a 0 to 100 scale), and patient length of stay. Outcome measures were assessed on admission, discharge (primary endpoint), and at 6 and 12 months post discharge. Results We randomly assigned 996 adults (mean (SD) age 74 (13) years) to Monday to Saturday rehabilitation (n = 496) or usual care Monday to Friday rehabilitation (n = 500). Relative to admission scores, intervention group participants had higher functional independence (mean difference (MD) 2.3, 95% confidence interval (CI) 0.5 to 4.1, P = 0.01) and health-related quality of life (MD 0.04, 95% CI 0.01 to 0.07, P = 0.009) on discharge and may have had a shorter length of stay by 2 days (95% CI 0 to 4, P = 0.1) when compared to

  19. Addition reaction of alkyl radical to C60 fullerene: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-02-01

    Functionalized fullerenes are known as a high-performance molecules. In this study, the alkyl-functionalized fullerenes (denoted by R-C60) have been investigated by means of the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of fullerene. Also, the reaction mechanism of alkyl radicals with C60 was investigated. The methyl, ethyl, propyl, and butyl radicals (denoted by n = 1-4, where n means the number of carbon atoms in the alkyl radical) were examined as alkyl radicals. The DFT calculation showed that the alkyl radical binds to the carbon atom of C60 at the on-top site, and a strong C-C single bond is formed. The binding energies of alkyl radicals to C60 were distributed in the range of 31.8-35.1 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists before alkyl addition, the barrier heights were calculated to be 2.1-2.8 kcal mol-1. The electronic states of R-C60 complexes were discussed on the basis of the theoretical results.

  20. Evaluation of the Performance of Smoothing Functions in Generalized Additive Models for Spatial Variation in Disease

    PubMed Central

    Siangphoe, Umaporn; Wheeler, David C.

    2015-01-01

    Generalized additive models (GAMs) with bivariate smoothing functions have been applied to estimate spatial variation in risk for many types of cancers. Only a handful of studies have evaluated the performance of smoothing functions applied in GAMs with regard to different geographical areas of elevated risk and different risk levels. This study evaluates the ability of different smoothing functions to detect overall spatial variation of risk and elevated risk in diverse geographical areas at various risk levels using a simulation study. We created five scenarios with different true risk area shapes (circle, triangle, linear) in a square study region. We applied four different smoothing functions in the GAMs, including two types of thin plate regression splines (TPRS) and two versions of locally weighted scatterplot smoothing (loess). We tested the null hypothesis of constant risk and detected areas of elevated risk using analysis of deviance with permutation methods and assessed the performance of the smoothing methods based on the spatial detection rate, sensitivity, accuracy, precision, power, and false-positive rate. The results showed that all methods had a higher sensitivity and a consistently moderate-to-high accuracy rate when the true disease risk was higher. The models generally performed better in detecting elevated risk areas than detecting overall spatial variation. One of the loess methods had the highest precision in detecting overall spatial variation across scenarios and outperformed the other methods in detecting a linear elevated risk area. The TPRS methods outperformed loess in detecting elevated risk in two circular areas. PMID:25983545

  1. Proposal for manipulating functional interface properties of composite organic semiconductors with addition of designed macromolecules.

    PubMed

    Maniadis, P; Lookman, T; Saxena, A; Smith, D L

    2012-06-22

    The arrangement of the electronic levels in an interface between organic semiconductors is crucial for the operation of devices such as solar cells and light emitting diodes. With the addition of designed macromolecules, we show that it is possible to control the relative position of the highest occupied molecular orbital and lowest unoccupied molecular orbital levels, and consequently improve the performance. The designed macromolecules consist of two end segments, each compatible with one of the interface components, and a central segment which adds functionality to the interface. The tails control the position and the orientation of the functional units. When the central functional unit is an electric dipole, an electrostatic field is created due to the orientation of the dipoles, which shifts the electronic levels in a controlled way. We develop a theoretical framework, based on self-consistent field theory, to study the concentration and the orientation of the central functional units. We find that the levels can shift by as much as several tenths of an eV. PMID:23004659

  2. Realizing load reduction functions by aperiodic switching of load groups

    SciTech Connect

    Navid-Azarbaijani, N.; Banakar, M.H.

    1996-05-01

    This paper investigates the problem of scheduling ON/OFF switching of residential appliances under the control of a Load Management System (LMS). The scheduling process is intended to reduce the controlled appliances` power demand in accordance with a predefined load reduction profile. To solve this problem, a solution approach, based on the methodology of Pulse Width Modulation (PWM), is introduced. This approach provides a flexible mathematical basis for studying different aspects of the scheduling problem. The conventional practices in this area are shown to be special cases of the PWM technique. By applying the PWM-based technique to the scheduling problem, important classes of scheduling errors are identified and analytical expressions describing them are derived. These expressions are shown to provide sufficient information to compensate for the errors. Detailed simulations of load groups` response to switching actions are use to support conclusions of this study.

  3. Visualization of group inference data in functional neuroimaging.

    PubMed

    Gläscher, Jan

    2009-01-01

    While thresholded statistical parametric maps can convey an accurate account for the location and spatial extent of an effect in functional neuroimaging studies, their use is somewhat limited for characterizing more complex experimental effects, such as interactions in a factorial design. The resulting necessity for plotting the underlying data has long been recognized. Statistical Parametric Mapping (SPM) is a widely used software package for analyzing functional neuroimaging data that offers a variety of options for visualizing data from first level analyses. However, nowadays, the thrust of the statistical inference lies at the second level thus allowing for population inference. Unfortunately, the options for visualizing data from second level analyses are quite sparse. rfxplot is a new toolbox designed to alleviate this problem by providing a comprehensive array of options for plotting data from within second level analyses in SPM. These include graphs of average effect sizes (across subjects), averaged fitted responses and event-related blood oxygen level-dependent (BOLD) time courses. All data are retrieved from the underlying first level analyses and voxel selection can be tailored to the maximum effect in each subject within a defined search volume. All plot configurations can be easily configured via a graphical user-interface as well as non-interactively via a script. The large variety of plot options renders rfxplot suitable both for data exploration as well as producing high-quality figures for publications. PMID:19140033

  4. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  5. The Use of Nominal Group Technique to Determine Additional Support Needs for a Group of Victorian TAFE Managers and Senior Educators

    ERIC Educational Resources Information Center

    Bailey, Anthony

    2013-01-01

    The nominal group technique (NGT) is a structured process to gather information from a group. The technique was first described in 1975 and has since become a widely-used standard to facilitate working groups. The NGT is effective for generating large numbers of creative new ideas and for group priority setting. This paper describes the process of…

  6. Water electrolyte promoted oxidation of functional thiol groups.

    PubMed

    Lauwers, K; Breynaert, E; Rombouts, I; Delcour, J A; Kirschhock, C E A

    2016-04-15

    The formation of disulfide bonds is of the utmost importance for a wide range of food products with gluten or globular proteins as functional agents. Here, the impact of mineral electrolyte composition of aqueous solutions on thiol oxidation kinetics was studied, using glutathione (GSH) and cysteine (CYS) as model systems. Interestingly, the oxidation rate of both compounds into their corresponding disulfides was significantly higher in common tap water than in ultrapure water. The systematic study of different electrolyte components showed that especially CaCl2 improved the oxidation rate of GSH. However, this effect was not observed for CYS, which indicated a strong impact of the local chemical environment on thiol oxidation kinetics. PMID:26675862

  7. A combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery

    PubMed Central

    Mahon, Kerry P.; Love, Kevin T.; Whitehead, Kathryn A.; Qin, June; Akinc, Akin; Leshchiner, Elizaveta; Leshchiner, Ignaty; Langer, Robert

    2010-01-01

    The application of RNA interference (RNAi), either in the clinic or laboratory, requires safe and effective delivery methods. Here we develop a combinatorial approach to synthesize a library of delivery vectors based on two lipid-like substrates with known siRNA delivery capabilities. Members of this library have a mixture of lipid-like tails and feature appendages containing hydroxyl, carbamate, ether or amine functional groups as well as variations in alkyl chain length and branching. Using a luciferase reporter system in HeLa cells, we study the relationship between lipid chemical modification and delivery performance in vitro. The impact of the functional group was shown to vary depending on the overall amine content and tail number of the delivery vector. Additionally, in vivo performance was evaluated using a Factor VII knockdown assay. Two library members, each containing ether groups, were found to knock down the target protein at levels comparable to the parent delivery vector. These results demonstrate that small chemical changes to the delivery vector impact knockdown efficiency and cell viability both in vitro and in vivo. The work described here identifies new materials for siRNA delivery, as well as provides new insight into the parameters for optimized chemical makeup of lipid-like siRNA delivery materials. PMID:20715849

  8. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Hongyuan; Wei, Hanxing; Chen, Minghai; Meng, Fancheng; Li, Hongbo; Li, Qingwen

    2013-10-01

    Functionalized carbon nanotubes (CNTs) were introduced into silicone grease to accompany the subsistent metallic oxide particles (micron-sized Al2O3, submicron-sized ZnO) with the aim of enhancing the thermal contact conductance of the composite grease as thermal interface materials (TIMs). The well-dispersed CNTs located among the metallic oxide particles to construct a three dimensional network structure and cooperated with them to form a highly efficient thermal transferring path. The functionalization of CNTs played a key role in achieving a good dispersion of CNTs in silicone grease matrix. The carboxylated CNTs were observed to show better dispersion in silicone grease and weaker reaction with oxide particles than pristine CNTs and amino-functionalized CNTs. Thus the thermal impedance of the silicone grease could be further decreased by 35% (as low as 0.18 cm2 K/W) with the addition of 2 wt.% carboxylated CNTs. Finally, such CNT-modified silicone grease was used to enhance the performance of high-power light emitting diode and showed the prospective applications in TIMs.

  9. The Addition of A Pregnenolone Pendant Group Enhances the Anticancer Properties of Titanocene Dichloride in a MCF-7 Xenograft Model

    PubMed Central

    Ramos, Gladiany; Loperena, Yaliz; Ortiz, Giovanni; Reyes, Fiorella; Szeto, Ada; Vera, Jose; Velez, Javier; Morales, Jessica; Morrero, Deborah; Castillo, Linnette; Dharmawardhane, Surangani; Melendez, Enrique; Washington, A. Valance

    2014-01-01

    Background/Aim Titanocene dichloride held great promise as a chemotherapeutic compound in preclinical studies. However, subsequent clinical trials revealed hepatoxicity and nephrotoxicity, which limited its use in clinical applications. Therefore, we used steroid pendant groups to improve the targeting of titanocene in the MCF-7 breast cancer cell line, and demonstrated a 10-fold lower effective dose compared to titanocene in in vitro assays. The aim of the present study was to test the efficacy of a titanocene functionalized with pregnenolone (Ti-Preg) in an in vivo breast cancer model. Materials and Methods Xenografts from the MCF7 breast cancer cell line were implanted into athymic nu/nu mice to evaluate the potential of Ti-Preg as an anti-breast cancer agent. Results Ti-Preg demonstrated a significant inhibition of MCF-7 tumor growth when compared to vehicle and to titanocene controls. Conclusion Our findings demonstrate the potential of steroid pendent groups for targeting chemotherapeutics to steroid hormone-dependent cancer. PMID:24692689

  10. Integrating products of Bessel functions with an additional exponential or rational factor

    NASA Astrophysics Data System (ADS)

    Van Deun, Joris; Cools, Ronald

    2008-04-01

    We provide two MATLAB programs to compute integrals of the form ex∏i=1kJν_i(ax)dxand 0∞xr+x∏i=1kJν_i(ax)dx with Jν_i(x) the Bessel function of the first kind and (real) order ν. The parameter m is a real number such that ∑ν+m>-1 (to assure integrability near zero), r is real and the numbers c and a are all strictly positive. The program can deliver accurate error estimates. Program summaryProgram title: BESSELINTR, BESSELINTC Catalogue identifier: AEAH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1601 No. of bytes in distributed program, including test data, etc.: 13 161 Distribution format: tar.gz Programming language: Matlab (version ⩾6.5), Octave (version ⩾2.1.69) Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: For k Bessel functions our program needs approximately ( 500+140k) double precision variables Classification: 4.11 Nature of problem: The problem consists in integrating an arbitrary product of Bessel functions with an additional rational or exponential factor over a semi-infinite interval. Difficulties arise from the irregular oscillatory behaviour and the possible slow decay of the integrand, which prevents truncation at a finite point. Solution method: The interval of integration is split into a finite and infinite part. The integral over the finite part is computed using Gauss-Legendre quadrature. The integrand on the infinite part is approximated using asymptotic expansions and this approximation is integrated exactly with the aid of the upper incomplete gamma function. In the case where a rational factor is present, this factor is first expanded in a Taylor series around infinity. Restrictions: Some (and eventually all

  11. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    PubMed

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed. PMID:23093174

  12. Positive-type functions on groups and new inequalities in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.

    2010-09-01

    Out of any unitary representation of a group, positive-type functions on the group can be obtained. These functions allow one to construct positive semi-definite matrices that may be used to define new inequalities for higher moments of observables associated with classical probability distribution functions and density states of quantum systems. The inequalities stemming from the Heisenberg-Weyl group representations are considered in connection with Gaussian distributions. We obtain new inequalities for multi-variable Hermite polynomials.

  13. Phospha-Michael Addition as a New Click Reaction for Protein Functionalization.

    PubMed

    Lee, Yan-Jiun; Kurra, Yadagiri; Liu, Wenshe R

    2016-03-15

    A new type of click reaction between an alkyl phosphine and acrylamide was developed and applied for site-specific protein labeling in vitro and in live cells. Acrylamide is a small electrophilic olefin that readily undergoes phospha-Michael addition with an alkyl phosphine. Our kinetic study indicated a second-order rate constant of 0.07 m(-1)  s(-1) for the reaction between tris(2-carboxyethyl)phosphine and acrylamide at pH 7.4. To demonstrate its application in protein functionalization, we used a dansyl-phosphine conjugate to successfully label proteins that were site-specifically installed with N(ɛ) -acryloyl-l-lysine and employed a biotin-phosphine conjugate to selectively probe human proteins that were metabolically labeled with N-acryloyl-galactosamine. PMID:26756316

  14. Synthesis of Highly Functionalized Triarylbismuthines by Functional Group Manipulation and Use in Palladium- and Copper-Catalyzed Arylation Reactions.

    PubMed

    Hébert, Martin; Petiot, Pauline; Benoit, Emeline; Dansereau, Julien; Ahmad, Tabinda; Le Roch, Adrien; Ottenwaelder, Xavier; Gagnon, Alexandre

    2016-07-01

    Organobismuthines are an attractive class of organometallic reagents that can be accessed from inexpensive and nontoxic bismuth salts. Triarylbismuthines are particularly interesting due to their air and moisture stability and high functional group tolerance. We report herein a detailed study on the preparation of highly functionalized triarylbismuth reagents by triple functional group manipulation and their use in palladium- and copper-catalyzed C-, N-, and O-arylation reactions. PMID:27231755

  15. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.

    PubMed

    Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J

    2010-04-28

    In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes. PMID:20308113

  16. A table of integrals of the error function. II - Additions and corrections.

    NASA Technical Reports Server (NTRS)

    Geller, M.; Ng, E. W.

    1971-01-01

    Integrals of products of error functions with other functions are presented, taking into account a combination of the error function with powers, a combination of the error function with exponentials and powers, a combination of the error function with exponentials of more complicated arguments, definite integrals from Laplace transforms, and a combination of the error function with trigonometric functions. Other integrals considered include a combination of the error function with logarithms and powers, a combination of two error functions, and a combination of the error function with other special functions.

  17. Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale.

    PubMed

    Goode, A E; Hine, N D M; Chen, S; Bergin, S D; Shaffer, M S P; Ryan, M P; Haynes, P D; Porter, A E; McComb, D W

    2014-06-28

    Despite voluminous research on the acid oxidation of carbon nanotubes (CNTs), there is a distinct lack of experimental results showing distributions of functional groups at the nanometre length scale. Here, functional peaks have been mapped across individual multi-walled CNTs with low-dose, monochromated electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Density functional theory simulations show that the EELS features are consistent with oxygenated functional groups, most likely carboxyl moieties. PMID:24827593

  18. Ecological Significance of a Geomorphic Stream Classification: Species and Functional Group Composition of Riparian Plant Communities

    NASA Astrophysics Data System (ADS)

    Shaw, J. R.; Cooper, D. J.

    2014-12-01

    We tested the ecological significance of a geomorphic classification of Sonoran Desert ephemeral stream channels based on channel plan-form, degree of lateral confinement, and boundary material composition. This typology has been shown to discriminate among channel geometry and hydraulic characteristics for bedrock, bedrock with alluvium, incised alluvium, braided, and piedmont headwater channels. We examined stream reach-scale relationships of geomorphic stream types to the relative cover and density of perennial plant species and functional groups, and identified the dominant fluvial drivers, within riparian communities at 101 ephemeral stream reaches on the U.S. Army Yuma Proving Ground and Barry M. Goldwater Air Force Range in southwestern Arizona, USA. Nonparametric multivariate analysis of variance showed that species and functional group composition differed significantly among geomorphic stream types, both in terms of relative cover and density. Partitioning of among-site multivariate dissimilarity revealed that species compositional differences between stream types were caused largely by variation in the cover and density of the most common members of the regional flora. Distinctive functional group composition among reach types resulted from differences in the cover and density of drought-deciduous shrubs and subshrubs, evergreen trees and shrubs, and photosynthetic-stemmed trees. Comparison of environmental and biotic dissimilarity matrices highlighted the role of channel gradient as the dominant abiotic driver of riparian plant community composition, with stream channel elevation and width:depth providing additional explanatory power. Distinctive riparian plant community composition among the geomorphic stream types demonstrates the ecological significance of this a priori channel classification, and indicates its potential utility in understanding spatial patterns of ecological dynamics, sample stratification for process-based studies, and reference

  19. Separating the effects of shelter from additional cage enhancements for group-housed BALB/cJ mice.

    PubMed

    Swetter, Brentt J; Karpiak, Christie P; Cannon, J Timothy

    2011-05-20

    Enrichment studies with rodents have demonstrated that cage enhancements can improve animal welfare and performance on common behavioral measures, but few studies have compared more than one type of enrichment or controlled for confounds, and some have revealed undesirable effects including increased aggression. We compared effects on male (n=51) and female (n=52) BALB/cJ mice of three common additions to a standard home cage: shelter, shelter+running wheel, and shelter+novel objects. Mice in all conditions lived in standard sized cages with 3-4 mice per cage. Males evidenced significant condition effects. Shelter increased longevity and maintained low levels of aggression. Adding a running wheel increased aggression over shelter alone, changed behavior in the elevated plus (EP) and open field (OF), and maintained the improved longevity seen in all shelter conditions. Novel objects impacted behavioral measures compared to the standard condition. An Igloo shelter without running wheel creates a very different home cage environment than the same shelter with the running wheel attached. Shelter, with positive impact on animal welfare, minimal effects on some common behavioral measures, and some positive effects on test variance, warrants consideration for routine inclusion with group-housed BALB/cJ males. PMID:21457758

  20. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  1. Use of morphological characteristics to define functional groups of predatory fishes in the Celtic Sea.

    PubMed

    Reecht, Y; Rochet, M-J; Trenkel, V M; Jennings, S; Pinnegar, J K

    2013-08-01

    An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size. PMID:23902311

  2. Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles.

    PubMed

    Bonu, Venkataramana; Das, Arindam; Amirthapandian, S; Dhara, Sandip; Tyagi, Ashok Kumar

    2015-04-21

    We report, for the first time, the luminescence property of the hydroxyl group surface functionalized quantum dots (QDs) and nanoparticles (NPs) of SnO2 using low energy excitations of 2.54 eV (488 nm) and 2.42 eV (514.5 nm). This luminescence is in addition to generally observed luminescence from 'O' defects. The as-prepared SnO2 QDs are annealed at different temperatures under ambient conditions to create NPs with varying sizes. Subsequently, the average size of the NPs is calculated from the acoustic vibrations observed at low frequencies in the Raman spectra and by the transmission electron microscopy measurements. Detailed photoluminescence studies with 3.815 eV (325 nm) excitation reveal the nature of in-plane and bridging 'O' vacancies as well as adsorption and desorption occurring at different annealing temperatures. X-ray photoelectron spectroscopy studies also support this observation. The defect level related to the surface -OH functional groups shows a broad luminescence peak at around 1.96 eV in SnO2 NPs which is elaborated using temperature dependent studies. PMID:25774472

  3. Adsorption of amino acids and glucose by sediments of Resurrection Bay, Alaska, USA: Functional group effects

    NASA Astrophysics Data System (ADS)

    Henrichs, Susan M.; Sugai, Susan F.

    1993-02-01

    The adsorption of amino acids and glucose was investigated in sediments from Resurrection Bay, Alaska. Adsorption of the basic amino acid lysine was greater than adsorption of glutamic acid, alanine, leucine, or glucose. Formaldehyde and heat treatments were used to separate adsorption from biological uptake, but can alter adsorption significantly; formaldehyde treatment, followed by a seawater rinse, was the most satisfactory. Much of the rapid amino acid adsorption by these sediments was due to the formation of ionic bonds, since adsorbed amino acids could be extracted using concentrated solutions of amino acid, cesium chloride, sodium citrate, ammonium chloride, or sodium acetate. However, most amino acid adsorption was not reversible by ion exchange solutions, indicating that additional processes or chemical reactions occur which result in irreversible binding to sediment. Consistent with literature reports of the negative surface charge of marine particulate matter, lysine (with a net positive charge) was adsorbed to the greatest extent and had the largest cation-exchangeable adsorption. However, negatively charged amino acid functional groups also influenced adsorption. Chemical modification of sediments with reagents reactive with aldehydes decreased lysine adsorption. This suggests that reactive functional groups of sediment organic matter contribute to adsorption, consistent with a melanoidintype reaction. An estimate of the rate of amino acid adsorption indicates that adsorption could produce a significant amount of the total refractory sediment organic nitrogen.

  4. The Additive Impact of Group and Individual Publicly Displayed Feedback: Examining Individual Response Patterns and Response Generalization in a Safe-Driving Occupational Intervention

    ERIC Educational Resources Information Center

    Ludwig, Timothy D.; Geller, E. Scott; Clarke, Steven W.

    2010-01-01

    Additive effects of publicly posting individual feedback following group goal-setting and feedback were evaluated. The turn-signal use of pizza deliverers was studied in a multiple baseline design across two pizza stores. After baseline observations, pizza deliverers voted on a group turn-signal goal and then received 4 weeks of group feedback on…

  5. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    PubMed

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. PMID:27127071

  6. Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces

    SciTech Connect

    Xu Tianzhou; Rassias, John Michael; Xu Wanxin

    2010-09-15

    We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.

  7. THE DARK MATTER HALO CONCENTRATION AND STELLAR INITIAL MASS FUNCTION OF A CASSOWARY GROUP

    SciTech Connect

    Deason, A. J.; Auger, M. W.; Belokurov, V.; Evans, N. W.

    2013-08-10

    We exploit the group environment of the CAmbridge Sloan Survey Of Wide ARcs in the skY z = 0.3 lens J2158+0257 to measure the group dynamical mass as a complement to the central dynamical and lensing mass constraints. Follow-up spectroscopy of candidate group members is performed using VLT/FORS2. From the resulting N = 21 confirmed members, we measure the group dynamical mass by calibrating an analytic tracer mass estimator with cosmological simulations. The luminosity-weighted line-of-sight velocity dispersion and the Einstein radius of the lens are used as mass probes in the inner regions of the galaxy. Combining these three observational probes allows us to independently constrain the mass and concentration of the dark matter halo, in addition to the total stellar mass of the central galaxy. We find a dark matter halo in remarkably good agreement with simulations (log{sub 10} M{sub 200}/M{sub Sun} = 14.2 {+-} 0.2, c{sub 200}= 4.4{sup +1.6}{sub -1.4}) and a stellar mass-to-light ratio which favors a Salpeter initial mass function ((M/L)* = 5.7 {+-} 1.2). Our measurement of a normal halo concentration suggests that there is no discrepancy between simulations and observations at the group mass scale. This is in contrast to the cluster mass scale for which a number of studies have claimed over-concentrated halos. While the halo mass is robustly determined, and the halo concentration is not significantly affected by systematics, the resulting stellar mass-to-light ratio is sensitive to the choice of stellar parameters, such as density profile and velocity anisotropy.

  8. DNA--a molecule in search of additional functions: recipient of pool wave emissions? A hypothesis.

    PubMed

    Doerfler, Walter

    2010-09-01

    Almost the entire nucleotide sequence of human DNA is functionally unaccounted for, although large parts of the human genome are transcribed. The genes, as defined by current molecular biology, comprise about 1.5-2% of the DNA molecule. It is proposed that DNA encodes additional, hitherto unrecognized functions. In this discussion, the total information inside and outside the universe we live in is termed the pool or the sum total, known or unknown, of all laws, matter, energy, concepts and events. In a hypothetical model, a Gedankenexperiment, it is suggested that the total of all information emits pool waves of an unknown physical nature. They could be related to black energy or have completely different qualities. The designation pool waves should not imply any similarity to electromagnetism. Further, DNA is suggested to have the capability of interacting with the pool waves and thus permit humans - to some partly genetically determined and yet very limited extent - to perceive information from the pool. Pool emissions might be one of the forces that have been instrumental in and are still driving evolution from simple oligonucleotides to DNA with ever more complex recipient capacities. It will be a major challenge for researchers in the field to unravel these and less hypothetical undetected coding principles in DNA. It is uncertain whether the current trend to search the available DNA sequences with ever more refined computer technology on the basis of our present understanding of biology will detect unknown coding systems. For molecular medicine, research into the genetics of the most common human diseases could profit from the elucidation of presently still ephemeral codes in human DNA. Young scientists with a proven record of original research deserve support for the pursuit of unconventional ideas. This concept of granting priorities will be of the utmost importance in advancing the field beyond current concepts in molecular biology. PMID:20356684

  9. Development of acid functional groups during the thermal degradation of wood and wood components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study provides data on acid functional groups in charcoals and how the acid functional group content varies with the formation conditions. Chars were created from purified cellulose, purified lignin, pine wood, and pine bark. The charring temperatures and charring duration were controlled in a ...

  10. Functional group and species responses to spring precipitation in three semi-arid rangeland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining if precipitation-induced changes to forage production and basal and foliar cover in semi-arid rangelands are species-specific, functional group-specific or ubiquitous across species and functional groups will enhance decision making among producers and increase precision of forage produc...

  11. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1-C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity.

    PubMed

    Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W

    2015-07-23

    Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods. PMID:26066097

  12. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition.

    PubMed

    Takayama, Yuriko; Kato, Norihiro

    2016-09-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. PMID:27387237

  13. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Liu, Fan; Chen, Yan; Ye, Yusheng; Huang, Yongxin; Wu, Feng; Li, Li

    2016-02-01

    Succinonitrile (SN) has been used as functional additive to improve the thermal stability and broaden the oxidation electrochemical window of commercial electrolyte 1 M LiPF6/EC/DEC (1:1, by volume) for high-voltage LIBs (cathode: Li1.2Ni0.2Mn0.6O2, anode: Li). 1 wt % SN-based electrolyte showed a wide electrochemical oxidation window of 5.4 V vs Li+/Li and excellent thermal stability demonstrated by thermogravimetry (TG) and X-ray photoelectron spectroscopy (XPS), as well as theoretical analysis according to molecular orbital theory. The LNMO (Li1.2Ni0.2Mn0.6O2) battery with 1 wt % SN-based electrolyte showed better cyclability and capacity retention when charged to higher cut-off voltage. The improved battery performance is mainly attributed to the formation of uniform cathode electrolyte interface (CEI) formed by interfacial reactions between the LNMO cathode and electrolyte. The outcome of this work and the continuous research on this subject can generate critical knowledge for designing thermal stability electrolytes for large format lithium-ion batteries.

  14. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-05-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites.

  15. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives.

    PubMed

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites. PMID:24872802

  16. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant Additive.

    PubMed

    Ye, Xiangyuan; Ma, Limin; Yang, Zhigang; Wang, Jinqing; Wang, Honggang; Yang, Shengrong

    2016-03-23

    Although the fluorinated graphene (FG) possesses numerous excellent properties, it can not be really applied in aqueous environments due to its high hydrophobicity. Therefore, how to achieve hydrophilic FG is a challenge. Here, a method of solvent-free urea melt synthesis is developed to prepare the hydrophilic urea-modified FG (UFG). Some characterizations via transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transfer infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermo gravimetric analysis (TGA) demonstrate that the urea molecules can covalently functionalize the FG and the hydrophilic UFG can be prepared. According to the tribological tests run on an optimal-SRV-I reciprocation friction tester, it can be found that the antiwear ability of water can be largely improved by adding the appropriate UFG. When the concentration of UFG aqueous dispersion is 1 mg/mL, the sample of UFG-1 has the best antiwear ability with a 64.4% decrease of wear rate compared with that of the pure water (UFG-0), demonstrating the prepared UFG can be used as a novel and effective water-based lubricant additive. PMID:26923174

  17. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  18. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    PubMed

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent. PMID:25389166

  19. Biogeographical boundaries, functional group structure and diversity of Rocky Shore communities along the Argentinean coast.

    PubMed

    Wieters, Evie A; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A

    2012-01-01

    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10's km) and local (10's m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3-4 main 'groups' of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or "insurance", against spatial variability

  20. The effect of face-to-face or group education during pregnancy on sexual function of couples in Isfahan

    PubMed Central

    Bahadoran, Parvin; MohammadiMahdiabadzade, Maryam; Nasiri, Hamid; GholamiDehaghi, Ali

    2015-01-01

    Background: Pregnancy can be in conflict with sexual function which can be affected by physical and psychological changes during pregnancy. Therefore, comparison of the effect of face-to-face education with group education on sexual function during pregnancy in couples was the purpose of this research. Materials and Methods: In this quasi-experimental pre-test post-test study, 64 pregnant couples were selected and randomized in two groups in Isfahan. The data were collected using the triangulation of Female Sexual Function Index (FSFI), Brief form of Sexual Function Inventory (BSFI), and demographic characteristics questionnaires. The data were analyzed by independent t-test, paired t-test, Chi-square, analysis of covariance (ANCOVA), and analysis of variance (ANOVA) in SPSS. Results: No significant difference was found in the demographic characteristics between the two groups. Education was effective on sexual function in the two groups of women (P < 0.001), but no significant difference was found between the two groups (P = 0.61). Also, education was effective on sexual function of men in both the groups (P < 0.001) and there was a significant difference between the two groups (P = 0.003). Meanwhile, there was no significant difference between couples regarding the education (P = 0.104). Conclusions: The results of the study showed that type of education plays a role in improvement of sexual function in pregnancy. In addition, sex education is effective in prevention of sexual disorders in pregnancy. Therefore, having a special approach toward sex education classes during pregnancy is important for the health providers, particularly midwifery professionals. PMID:26457096

  1. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon.

    PubMed

    Chung, Tsui-Yun; Tsao, Cheng-Si; Tseng, Hui-Ping; Chen, Chien-Hung; Yu, Ming-Sheng

    2015-03-01

    The hydrogen storage performance of Pd-doped oxidized activated carbon (Pd/AC-ox) with various oxygen contents or functional groups was investigated. The surface chemistry of the Pd/AC-ox sample was modified by treatment with hydrogen gas. Temperature-programmed desorption was performed to characterize the oxygen functional groups in each sample. In this study, low- and high-pressure hydrogen adsorption isotherm experiments were conducted using a static volumetric measurement at room temperature (RT) and pressures of up to 8 MPa. The results showed that increasing the oxygen content and functional groups on the surface of the Pd/AC-ox significantly improved the reversible RT hydrogen storage capacity due to the spillover effect. The hydrogen spillover enhancement factors at 0.12 MPa were greater than 100% for all samples. The hydrogen uptake of Pd/AC-ox1 at RT and 8 MPa with an oxygen content of 8.94 wt.% was 0.37 wt.%, which was 48% greater than that of Pd-free AC-ox (0.25 wt.%). In addition, the hydrogen uptake of Pd/AC-ox3 with lower oxygen contents demonstrates that the hydrogen spillover enhancement gradually disappears when the pressure is increased to more than 2 MPa (i.e., a transition from spillover to physisorption). The surface diffusion, or reversible adsorption, of the spiltover H atoms, which is enhanced by oxygen functional groups, was affected by a threshold amount of oxygen groups (such as hydroxyl groups). PMID:25490569

  2. Biogeographical Boundaries, Functional Group Structure and Diversity of Rocky Shore Communities along the Argentinean Coast

    PubMed Central

    Wieters, Evie A.; McQuaid, Christopher; Palomo, Gabriela; Pappalardo, Paula; Navarrete, Sergio A.

    2012-01-01

    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial

  3. Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Leon, Michael

    2008-01-01

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules. PMID:15678471

  4. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional Classification—Operating Expenses of Group I Air Carriers 5100Flying Operations. (a) This function shall...

  5. Use of the Sequence Rule for Indexing Functional Groups in Organic Compounds

    ERIC Educational Resources Information Center

    Hudrlik, Paul F.

    1973-01-01

    A new method of indexing functional groups in organic compounds is described, utilizing the Cahn-Ingold-Prelog sequence rule. Functional carbon atoms are first classified by functionality, a measure of the oxidation state, then ordered by means of a modified sequence rule. Substructure searching and other applications are discussed. (30…

  6. Assessing physiological responses of dune forest functional groups to changing water availability: from Tropics to Mediterranean.

    NASA Astrophysics Data System (ADS)

    Antunes, Cristina; Lo Cascio, Mauro; Correia, Otília; Vieira, Simone; Cruz Diaz Barradas, Maria; Zunzunegui, Maria; Ramos, Margarida; João Pereira, Maria; Máguas, Cristina

    2014-05-01

    Alterations in water availability are important to vegetation as can produce dramatic changes in plant communities, on physiological performance or survival of plant species. Particularly, groundwater lowering and surface water diversions will affect vulnerable coastal dune forests, ecosystems particularly sensitive to groundwater limitation. Reduction of water tables can prevent the plants from having access to one of their key water sources and inevitably affect groundwater-dependent species. The additional impact of drought due to climatic change on groundwater-dependent ecosystems has become of increasing concern since it aggravates groundwater reduction impacts with consequent uncertainties about how vegetation will respond over the short and long term. Sand dune plant communities encompass a diverse number of species that differ widely in root depth, tolerance to drought and capacity to shift between seasonal varying water sources. Plant functional groups may be affected by water distribution and availability differently. The high ecological diversity of sand dune forests, characterized by sandy soils, well or poorly drained, poor in nutrients and with different levels of salinity, can occur in different climatic regions of the globe. Such is the case of Tropical, Meso-mediterranean and Mediterranean areas, where future climate change is predicted to change water availability. Analyses of the relative natural abundances of stable isotopes of carbon (13C/12C) and oxygen (18O/16O) have been used across a wide range of scales, contributing to our understanding of plant ecology and interactions. This approach can show important temporal and spatial changes in utilization of different water sources by vegetation. Accordingly, the core idea of this work is to evaluate, along a climatic gradient, the responses and capacity of different coastal plant communities to adapt to changing water availability. This large-climatic-scale study, covering Brazil, Portugal and

  7. Polar Addition to C=C Group: Why Is Anti-Markovnikov Hydroboration-Oxidation of Alkenes Not "Anti-"?

    ERIC Educational Resources Information Center

    Ilich, Predrag-Peter; Rickertsen, Lucas S.; Becker, Erienne

    2006-01-01

    For 137 years Markovnikov's rule has been extensively used in organic chemical education and research to describe the regioselectivity in electrophilic addition reactions to alkenes and alkynes. When the structures of the final reaction products are used as reference, the rule requests that certain polar addition reactions be termed…

  8. Acting-out: its functions within analytic group psychotherapy and its transformation into dreams.

    PubMed

    Richarz, Bernhard; Römisch, Sylvelin

    2002-07-01

    In group processes, acting-out has diverse functions, all of them equally important. It has an intrapsychic, interpersonal, and group dynamic function. Not only may it be understood as a form of resistance, but also in its communicative and reparative potential. The authors investigate the thesis that acting-out also contains the seed for change, thus helping patients divest themselves of pathological behavior. Using a group process as an example, this article shows how boundaries can be drawn between past and present experiences while using the communicative and reparative functions of acting-out. Unconscious psychodynamics can then be transformed from acting-out into dreams. PMID:12082675

  9. Data-driven visualization and group analysis of multichannel EEG coherence with functional units.

    PubMed

    ten Caat, Michael; Maurits, Natasha M; Roerdink, Jos B T M

    2008-01-01

    A typical data-driven visualization of electroencephalography (EEG) coherence is a graph layout, with vertices representing electrodes and edges representing significant coherences between electrode signals. A drawback of this layout is its visual clutter for multichannel EEG. To reduce clutter, we define a functional unit (FU) as a data-driven region of interest (ROI). An FU is a spatially connected set of electrodes recording pairwise significantly coherent signals, represented in the coherence graph by a spatially connected clique. Earlier we presented two methods to detect FUs: a maximal clique based (MCB) method (time complexity O(3n/3), with n being the number of vertices) and a more efficient watershed based (WB) method (time complexity O (n2 log n)). To reduce the potential over-segmentation of the WB method, we introduce here an improved WB (IWB) method (time complexity O(n2 log n)). The IWB method merges basins representing FUs during the segmentation if they are spatially connected and if their union is a clique. The WB and IWB methods are both up to a factor of 100,000 faster than the MCB method for a typical multichannel setting with 128 EEG channels, thus making interactive visualization of multichannel EEG coherence possible. Results show that considering the MCB method as the gold standard, the difference between IWB and MCB FU maps is smaller than between WB and MCB FU maps. We also introduce two novel group maps for data-driven group analysis as extensions of the IWB method. First, the group mean coherence map preserves dominant features from a collection of individual FU maps. Second, the group FU size map visualizes the average FU size per electrode across a collection of individual FU maps. Finally, we employ an extensive case study to evaluate the IWB FU map and the two new group maps for data-driven group analysis. Results, in accordance with the conventional findings, indicate differences in EEG coherence between younger and older adults

  10. Effects of Functional Group Position on Spatial Representations of Aliphatic Odorants in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Saber, Sepideh; Leon, Michael

    2008-01-01

    Principles of olfactory coding can be clarified by studying the olfactory bulb activity patterns that are evoked by odorants differing systematically in chemical structure. In the present study, we used series of aliphatic esters, ketones, and alcohols (27 odorants total) to determine the effects of functional group position on glomerular-layer activity patterns. These patterns were measured as uptake of [14C]2-deoxyglucose and were mapped into standardized data matrices for statistical comparison across different rats. The magnitude of the effect of position differed greatly for the different functional groups. For ketones, there was little or no effect of position on evoked patterns. For esters, uptake in individual glomerular modules increased, while uptake in others decreased with changing group position, and yet the overall patterns remained similar. For alcohols, group position had a profound effect on evoked activity patterns. For example, moving the hydroxyl group in either heptanol or nonanol from the first to the fourth carbon changed the activity patterns so greatly that the major areas of response did not overlap. Within every functional group series, however, responses were globally chemotopic, such that pairs of odorants with the smallest difference in functional group position evoked the most similar patterns. These results help to define further the specificities of glomeruli within previously described glomerular modules, and they show that functional group position can be an important feature in encoding an odorant molecule. PMID:15678475

  11. a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.

    NASA Astrophysics Data System (ADS)

    Cowan, Mark Timothy

    The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.

  12. Identification of functional groups on the surface of modified organic materials using the FT-IR/PAS method

    NASA Astrophysics Data System (ADS)

    Hofman, M.; Pasieczna-Patkowska, S.; Ryczkowski, J.; Wachowski, L.

    2008-02-01

    Interactions between NO and the surface of waste plum stones have been studied by FTIR-PAS in order to identify the nitrogen species formed. It is possible that there are some additional active centres generated on their surface. Identification of surface functional groups was needed to characterize their influence on the properties of obtained materials which were used as catalyst support in our further research.

  13. Synthesis and Characterization of Amine Functionalized Vegetable Oil as Lubricant Additive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of the lubricants and additives currently used are petroleum based that are toxic to the environment, making it increasingly difficult for safe and easy disposal. There has been an increasing demand for green lubricants and lubricant additives in recent years due to concerns about thei...

  14. The Utilization of Amide Groups To Expand and Functionalize Metal-Organic Frameworks Simultaneously.

    PubMed

    Lu, Zhiyong; Bai, Junfeng; Hang, Cheng; Meng, Fei; Liu, Wenlong; Pan, Yi; You, Xiaozeng

    2016-04-25

    A new stepwise ligand-elongation strategy by amide spacers is utilized to prepare isoreticularly high-porous metal-organic frameworks (MOFs), namely, quasi-mesoporous [Cu2 (PDBAD)(H2 O)]n (H4 PDBAD=5,5'-((4,4'-((pyridine-3,5-dicarbonyl)bis(azanediyl))bis(benzoyl))bis(azanediyl))diisophthalic acid; NJU-Bai22: NJU-Bai for Nanjing University Bai's group), and mesoporous [Cu2 (PABAD)(H2 O)]n (H4 PABAD=5,5'-((4,4'-((4,4'-((pyridine-3,5-dicarbonyl)bis(azanediyl))bis(benzoyl))bis (azanediyl))bis(benzoyl))bis(azanediyl))diisophthalic acid; NJU-Bai23). Compared with the prototypical MOF of [Cu2 (PDAD)(H2 O)]n (H4 PDAD=5,5'-(pyridine-3,5-dicarbonyl)bis(azanediyl)diisophthalic acid; NJU-Bai21, also termed as PCN-124), both MOFs exhibit almost the same CO2 adsorption enthalpy and CO2 selectivity values, and better capacity for CO2 storage under high pressure; these results make them promising candidate materials for CO2 capture and sequestration. Interestingly, this new method, in comparison with traditional strategies of using phenyl or triple-bond spacers, is easier and cheaper, resulting in a better ability to retain high CO2 affinity and selectivity in MOFs with large pores and high CO2 storage capacity. Additionally, it may lead to the high thermal stability of the MOFs and also their tolerance to water, which is related to the balance between the density of functional groups and pore sizes. Therefore, this strategy could provide new opportunities to explore more functionalized mesoporous MOFs with high performance. PMID:27031809

  15. Slug responses to grassland cutting and fertilizer application under plant functional group removal

    NASA Astrophysics Data System (ADS)

    Everwand, Georg; Scherber, Christoph; Tscharntke, Teja

    2013-04-01

    Current studies on trophic interactions in biodiversity experiments have largely relied on artificially sown gradients in plant diversity, but removal experiments with their more natural plant community composition are more realistic. Slugs are a major part of the invertebrate herbivore community, with some species being common pests in agriculture. We therefore investigated how strongly slugs are influenced by grassland management, plant biodiversity and composition. Here we analysed the effects of cutting frequency, fertilizer application and plant functional group composition on slug densities and their contribution to herbivory on Rumex acetosa in a removal experiment within a >100-year old grassland in Northern Germany. The experiment was laid out as a Latin rectangle with full factorial combinations of (i) plant functional group removal (3 levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting frequency (2 levels). The resulting 12 treatment combinations were replicated 6 times, resulting in 72 plots. We collected a total of 1020 individuals belonging to three species Arion distinctus (60.4% of individuals), Deroceras reticulatum (34.7%) and Arion lusitanicus (4.9%) using a cover board technique and additionally measured herbivore damage to R. acetosa. We found the highest slug abundance on plots with a low cutting frequency and high food resource availability (increased cover of forbs and taller vegetation). Fertilizer application had no significant effect on slug abundance, but caused higher herbivore damage to on R. acetosa, possibly as a result of increased tissue quality. The negative effect of higher cutting frequency on slug abundance was lowest in control plots with their naturally developed graminoid-forb communities (cutting reduced slug density by 6% in the control vs. 29% in herbicide plots). Our experiments therefore support the idea that more natural plant species compositions reduce the impact of disturbances (e

  16. Diastereoselective Additive Trifluoromethylation/Halogenation of Isoxazole Triflones: Synthesis of All-Carbon-Functionalized Trifluoromethyl Isoxazoline Triflones

    PubMed Central

    Kawai, Hiroyuki; Sugita, Yutaka; Tokunaga, Etsuko; Sato, Hiroyasu; Shiro, Motoo; Shibata, Norio

    2014-01-01

    Highly functionalized 5-trifluoromethyl-2-isoxazoline derivatives featuring a triflyl (SO2CF3) group at the 4-position were successfully synthesized via diastereoselective trifluoromethylation and halogenation of isoxazole triflones using the Ruppert– Prakash reagent. The trifluoromethylation is quite general in terms of the substrates including 3,5-diaryl isoxazole triflones and 3-aryl-5-styrylisoxazole triflones to provide products in high yields with excellent diastereoselectivities. The highly functionalized 5-trifluoromethyl-2-isoxazoline derivatives are expected to be a new class of antiparasiticides. Thus the triflyl group both activates isoxazoles and the 4-postion of CF3 adducts, and has a potential biological function. PMID:24688889

  17. Production of Printed Indexes of Chemical Reactions. I. Analysis of Functional Group Interconversions

    ERIC Educational Resources Information Center

    Clinging, R.; Lynch, M. F.

    1973-01-01

    A program is described which identifies functional group interconversion reactions, hydrogenations, and dehydrogenations in a data base containing structures encoded as Wiswesser Line Notations. Production of the data base is briefly described. (17 references) (Authors)

  18. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer.

    SciTech Connect

    Lud, S. Q.; Neppl, S.; Richter, G.; Bruno, P.; Gruen, D. M.; Jordan, R.; Feulner, P.; Stutzmann, M.; Garrido, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-01-01

    A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.

  19. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. PMID:25824851

  20. Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test.

    PubMed

    Fernandez, M; Tartar, J L; Padron, D; Acosta, J

    2013-12-01

    Successful interaction with the environment depends on flexible behaviors which require shifting attention, inhibiting primed responses, ignoring distracting information, and withholding motor responses. These abilities, termed executive function (EF), are believed to be mediated by inhibitory processes in the frontal lobes. Superior performance on EF tests (i.e., faster reaction times (RT), and fewer errors) has been shown in bilinguals compared to monolingual speakers. However, findings are inconsistent, and no study has directly linked this bilingual advantage to frontal lobe inhibitory processes. To clarify this uncertainty, we concomitantly tested neural inhibitory processes and behavioral responses on an EF test in bilinguals and monolinguals. Specifically, we compared English monolinguals (N=15) to Spanish/English bilinguals (N=13) on event-related brain potentials (ERP) during a non-linguistic, auditory Go/NoGo task, a task linked to non-motor, cognitive inhibition in monolinguals. Participants responded with a button press on trials in which target tone-pairs (Go trials) were presented and withheld their responses on non-target trials (NoGo trials). Results revealed significantly greater inhibition (i.e., greater mean N2 amplitude) in bilinguals compared to monolinguals during NoGo trials even though both groups performed the task equally well (i.e., withheld a motor response). On Go trials where participants pressed a response button, neither ERPs nor RT distinguished the groups. Additionally, scores on a second language proficiency test (i.e., English in our bilingual group) were positively correlated with N2 amplitude. These findings are the first to directly link this bilingual advantage to a neural correlate of inhibition and to reveal that inhibition in bilinguals is moderated by second language proficiency. Results are discussed in the context of plasticity, and we propose that evaluating bilinguals at varying levels of second-language proficiency

  1. The Use of Functional Communication Training without Additional Treatment Procedures in an Inclusive School Setting

    ERIC Educational Resources Information Center

    Casey, Sean D.; Merical, Cheryl L.

    2006-01-01

    Functional communication training (FCT) is an intervention frequently used for students with developmental disabilities to reduce problematic behaviors and to increase prosocial behaviors. This intervention appears to be very effective when the communication responses trained are matched to the function of the student's problematic behaviors. In…

  2. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups.

    PubMed

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold; Reissig, Hans-Ulrich

    2016-01-01

    Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  3. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  4. Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility

    PubMed Central

    Gao, Hong-Wei; Zhuo, Hai-Long; Zhang, Xue; Ji, Shou-Ping; Tan, Ying-Xia; Li, Su-Bo; Jia, Yan-Jun; Xu, Hua; Wu, Qing-Fa; Yun, Zhi-Min; Luo, Qun; Gong, Feng

    2016-01-01

    Background Enzymatic conversion of blood group A1B red blood cells (RBC) to group O RBC (ECO) was achieved by combined treatment with α-galactosidase and α-N-acetylgalactosaminidase. The aim of this study was to evaluate the function and safety of these A1B-ECO RBC in vitro. Materials and methods A 20% packed volume of A1B RBC was treated with enzymes in 250 mM glycine buffer, pH 6.8. The efficiency of the conversion of A and B antigen was evaluated by traditional typing in test tubes, gel column agglutination technology and fluorescence-activated cell sorting (FACS) analysis. The physiological and metabolic parameters of native and ECO RBC were compared, including osmotic fragility, erythrocyte deformation index, levels of 2,3-diphosphoglycerate, ATP, methaemoglobin, free Na+, and free K+. The morphology of native and ECO RBC was observed by scanning electron microscopy. Residual α-galactosidase or α-N-acetylgalactosaminidase in A1B-ECO RBC was detected by double-antibody sandwich ELISA method. Manual cross-matching was applied to ensure blood compatibility. Results The RBC agglutination tests and FACS results showed that A1B RBC were efficiently converted to O RBC. Functional analysis suggested that the conversion process had little impact on the physiological and metabolic parameters of the RBC. The residual amounts of either α-galactosidase or α-N-acetylgalactosaminidase in the A1B-ECO RBC were less than 10 ng/mL of packed RBC. About 18% of group B and 55% of group O sera reacted with the A1B-ECO RBC in a sensitive gel column cross-matching test. Discussion The conversion process does not appear to affect the morphological, physiological or metabolic parameters of A1B-ECO RBC. However, the A1B-ECO RBC still reacted with some antigens. More research on group O and B sera, which may partly reflect the complexity of group A1 the safety of A1B-ECO RBC is necessary before the application of these RBC in clinical transfusion. PMID:26509826

  5. Using multidimensional gas chromatography to group secondary organic aerosol species by functionality

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2014-10-01

    A carbon number-functionality grid (CNFG) for a complex mixture of secondary organic aerosol (SOA) precursors and oxidation products was developed from the theoretical retention index diagram of a multidimensional gas chromatographic (GC × 2GC) analysis of a mixture of SOA precursors and derivatized oxidation products. In the GC × 2GC analysis, comprehensive separation of the complex mixture was achieved by diverting the modulated effluent from a polar primary column into 2 polar secondary columns. Column stationary phases spanned the widest range of selectivity of commercially available GC analytic columns. In general, separation of the species by the polar primary column was by the number of carbon atoms in the molecule (when the homologous series of reference compounds was selected to have molecular volumes and functionalities similar to the target analytes) and the polar secondary columns provided additional separation according to functionality. An algebraic transformation of the Abraham solvation parameter model was used to estimate linear retention indices of solutes relative to elution of a homologous series of methyl diesters on the primary and secondary columns to develop the theoretical GC × 2GC retention diagram. Retention indices of many of the oxidation products of SOA precursors were estimated for derivatized forms of the solutes. The GC stationary phases selected for the primary column [(50%-Trifluoropropyl)-methylpolysiloxane] and secondary columns (90% Cyanopropyl Polysilphenylene-siloxane and Polyethylene Glycol in a Sol-Gel matrix) provided a theoretical separation of 33 SOA precursors and 98 derivatized oxidation products into 35 groups by molecular volume and functionality. Comprehensive analysis of extracts of vapor and aerosol samples containing semivolatile SOA precursors and oxidation products, respectively, is best accomplished by (1) separating the complex mixture of the vapor and underivatized aerosol extracts with a (50

  6. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  7. The Use of Language Functions in Mathematical Group Games. Teacher Insights.

    ERIC Educational Resources Information Center

    Black, Carolyn; Huerta, Maria G.

    1994-01-01

    Six group games were introduced into a second-grade bilingual classroom. Children's talk during each game was classified using a modification of Dyson's five language functions (representational, directive, heuristic, personal, and interactional). Group games provided many communication opportunities. Some children tried new communication styles.…

  8. Characteristics of Interactional Management Functions in Group Oral by Japanese Learners of English

    ERIC Educational Resources Information Center

    Negishi, Junko

    2010-01-01

    This study attempted to investigate the characteristics of interaction dynamics in a group oral interaction carried out by Japanese learners of English. The relationship between the participants' language development and interactional management functions (IMFs) was also explored. Oral performance tests in a paired or a small group have recently…

  9. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee

    2004-01-01

    The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of

  10. The Effect of Small Molecule Additives on the Self-Assembly and Functionality of Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, Carla; Xu, Liza; Olsen, Bradley

    2013-03-01

    Self-assembly of globular protein-polymer block copolymers into well-defined nanostructures provides a route towards the manufacture of protein-based materials which maintains protein fold and function. The model material mCherry-b-poly(N-isopropyl acrylamide) forms self-assembled nanostructures from aqueous solutions via solvent evaporation. To improve retention of protein functionality when dehydrated, small molecules such as trehalose and glycerol are added in solution prior to solvent removal. With as little as 10 wt% additive, improvements in retained functionality of 20-60% are observed in the solid-state as compared to samples in which no additive is present. Higher additive levels (up to 50%) continue to show improvement until approximately 100% of the protein function is retained. These large gains are hypothesized to originate from the ability of the additives to replace hydrogen bonds normally fulfilled by water. The addition of trehalose in the bulk material also improves the thermal stability of the protein by 15-20 °C, while glycerol decreases the thermal stability. Materials containing up to 50% additives remain microphase separated, and, upon incorporation of additives, nanostructure domain spacing tends to increase, accompanied by order-order transitions.

  11. Multiple-Group Noncompensatory Differential Item Functioning in Raju's Differential Functioning of Items and Tests

    ERIC Educational Resources Information Center

    Oshima, T. C.; Wright, Keith; White, Nick

    2015-01-01

    Raju, van der Linden, and Fleer (1995) introduced a framework for differential functioning of items and tests (DFIT) for unidimensional dichotomous models. Since then, DFIT has been shown to be a quite versatile framework as it can handle polytomous as well as multidimensional models both at the item and test levels. However, DFIT is still limited…

  12. Cytological and Molecular Characterization of Homoeologous Group-1 Chromosomes in Hybrid Derivatives of a Durum Disomic Alien Addition Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a devastating disease of durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB). To incorporate FHB resistance from diploid wheatgrass (Lophopyrum elongatum (Host) Á. Löve, 2n = 2x = 14; EE) we produced earlier a stable alien disomic addition line, DGE-1, incorporating...

  13. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    PubMed Central

    Joannin, Nicolas; Abhiman, Saraswathi; Sonnhammer, Erik L; Wahlgren, Mats

    2008-01-01

    Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL) motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins. PMID:18197962

  14. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  15. Heterologous expression and functional analysis of the wheat group 1 pathogenesis-related (PR-1) proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The group 1 pathogenesis-related (PR-1) proteins have been widely used as hallmarks of plant defense pathways, but their biological functions are still unknown. We report here the functional analysis of two basic PR-1 proteins following the identification of the wheat PR-1 gene family (Lu et al., 20...

  16. The dual roles of functional groups in the photoluminescence of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Cole, Ivan S.; Zhao, Dongyuan; Li, Qin

    2016-03-01

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* --> n and σ* --> n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp3 carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* --> mid-gap states --> π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp3 carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found

  17. Functionalization of a Triazine Dendrimer Presenting Four Maleimides on the Periphery and a DOTA Group at the Core.

    PubMed

    Lee, Changsuk; Ji, Kun; Simanek, Eric E

    2016-01-01

    A readily and rapidly accessible triazine dendrimer was manipulated in four steps with 23% overall yield to give a construct displaying four maleimide groups and DOTA. The maleimide groups of the dendrimer are sensitive to hydrolysis under basic conditions. The addition of up to four molecules of water can be observed via mass spectrometry and HPLC. The evolution in the alkene region of the ¹H-NMR--the transformation of the maleimide singlet to the appearance of two doublets--is consistent with imide hydrolysis and not the Michael addition. The hydrolysis events that proceeded over hours are sufficiently slower than the desired thiol addition reactions that occur in minutes. The addition of thiols to maleimides can be accomplished in a variety of solvents. The thiols examined derived from cysteine and include the protected amino acid, a protected dipeptide, and native oligopeptides containing either 9 or 18 amino acids. The addition reactions were monitored with HPLC and mass spectrometry in most cases. Complete substitution was observed for small molecule reactants. The model peptides containing nine or eighteen amino acids provided a mixture of products averaging between 3 and 4 substitutions/dendrimer. The functionalization of the chelate group with gadolinium was also accomplished easily. PMID:26978338

  18. The impact of functional group on the electronic structure of coordination center

    NASA Astrophysics Data System (ADS)

    Hooshmand Gharehbagh, Zahra; L, Duy; Rahman, Talat S.

    While 9, 10 dicyano-anthracene (DCA) forms a coordination network on Cu(111) surface with Cu adatom coordinated by three DCA molecules, its isomers, 9,10-diisocyano-anthracene forms, surprisingly, molecular rows on the same surface. To understand the impact of functional groups on the electronic structure of the coordination center, we have carried out density functional theory based calculations of the electronic structure of a set of naphthalene molecules with different functional groups (N, CN, NC, NH2, COH, COOH) adsorbed on Cu(111), with and without a Cu adatom. Our results show that while the interaction between the naphthalene backbone and the Cu(111) surface is dominated by van der Waals (vdW) forces, in all cases considered the functional group forms a covalent bond with the Cu (ad)atom (on) of the surface. The calculated differential charge redistribution shows that the strongest covalent bond is formed by the NC group, which differs remarkably from that formed by the CN group, while the vdW interaction is very similar in both cases. These results provide insights into the different surface coordination behavior of molecules with above-mentioned functional groups. Work support in part by NSF Grant CHE-1310327.

  19. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups. PMID:21809957

  20. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  1. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    NASA Astrophysics Data System (ADS)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  2. On the psychological function of flags and logos: Group identity symbols increase perceived entitativity.

    PubMed

    Callahan, Shannon P; Ledgerwood, Alison

    2016-04-01

    Group identity symbols such as flags and logos have been widely used across time and cultures, yet researchers know very little about the psychological functions that such symbols can serve. The present research tested the hypotheses that (a) simply having a symbol leads collections of individuals to seem more like real, unified groups, (b) this increased psychological realness leads groups to seem more threatening and effective to others, and (c) group members therefore strategically emphasize symbols when they want their group to appear unified and intimidating. In Studies 1a-1c, participants perceived various task groups as more entitative when they happened to have a symbol. In Study 2, symbols not only helped groups make up for lacking a physical characteristic associated with entitativity (physical similarity), but also led groups to seem more threatening. Study 3 examined the processes underlying this effect and found that group symbols increase entitativity by increasing perceived cohesiveness. Study 4 extended our results to show that symbols not only shape the impressions people form of novel groups, but also change people's existing impressions of more familiar and real-world social groups, making them seem more entitative and competent but also less warm. Finally, Studies 5a and 5b further expand our understanding of the psychological function of symbols by showing that group members strategically display symbols when they are motivated to convey an impression of their group as unified and threatening (vs. inclusive and cooperative). We discuss implications for understanding how group members navigate their social identities. (PsycINFO Database Record PMID:27078507

  3. Meaning and Function of Dummy Auxiliaries in Adult Acquisition of Dutch as an Additional Language

    ERIC Educational Resources Information Center

    Julien, Manuela; van Hout, Roeland; van de Craats, Ineke

    2016-01-01

    This article presents the results of experimental data on language production and comprehension. These show that adult learners of Dutch as an additional language, with different language backgrounds, and a L2 proficiency below level A2 (Waystage) of the Common European Framework of Reference for Languages (CEFR; Council of Europe, 2001), use…

  4. Molecular aspects of aromatic C additions to soils: Implications of biochar quality for ecosystem functionality

    EPA Science Inventory

    Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since bioc...

  5. Regioselectivity of radical additions to substituted alkenes: insight from conceptual density functional theory.

    PubMed

    De Vleeschouwer, Freija; Jaque, Pablo; Geerlings, Paul; Toro-Labbé, Alejandro; De Proft, Frank

    2010-08-01

    Radical additions to substituted alkenes are among the most important reactions in radical chemistry. Nonetheless, there is still some controversy in the literature about the factors that affect the rate and regioselectivity in these addition reactions. In this paper, the orientation of (nucleophilic) radical additions to electron-rich, -neutral, and -poor monosubstituted substrates (11 reactions in total) is investigated through the use of chemical concepts and reactivity descriptors. The regioselectivity of the addition of nucleophilic radicals on electron-rich and -neutral alkenes is thermodynamically controlled. An excellent correlation of 94% is found between the differences in activation barriers and in product stabilities (unsubstituted versus substituted site attack). Polar effects at the initial stage of the reaction play a significant role when electron-poor substrates are considered, lowering the extent of regioselectivity toward the unsubstituted sites, as predicted from the stability differences. This is nicely confirmed through an analysis for each of the 11 reactions using the spin-polarized dual descriptor, matching electrophilic and nucleophilic regions. PMID:20614876

  6. Addition of Functional Content during Core Content Instruction with Students with Moderate Disabilities

    ERIC Educational Resources Information Center

    Collins, Belva C.; Hager, Karen L.; Galloway, Carey Creech

    2011-01-01

    The purpose of this investigation was to add functional content during core content instruction of language arts, science, and math. The investigation involved three middle school students with moderate disabilities who participated in the state's alternate assessment. During instruction using a constant time delay procedure to teach required…

  7. Using Additional Analyses to Clarify the Functions of Problem Behavior: An Analysis of Two Cases

    ERIC Educational Resources Information Center

    Payne, Steven W.; Dozier, Claudia L.; Neidert, Pamela L.; Jowett, Erica S.; Newquist, Matthew H.

    2014-01-01

    Functional analyses (FA) have proven useful for identifying contingencies that influence problem behavior. Research has shown that some problem behavior may only occur in specific contexts or be influenced by multiple or idiosyncratic variables. When these contexts or sources of influence are not assessed in an FA, further assessment may be…

  8. Academic and Social Achievement Goals: Their Additive, Interactive, and Specialized Effects on School Functioning

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.

    2016-01-01

    Background: Students' pursuit of academic and social goals has implications for school functioning. However, studies on academic and social achievement goals have been relatively independent and mainly conducted with students in culturally Western settings. Aims: Guided by multiple-goal perspectives, this study examined the role of academic and…

  9. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments. PMID:26471460

  10. The dual roles of functional groups in the photoluminescence of graphene quantum dots.

    PubMed

    Wang, Shujun; Cole, Ivan S; Zhao, Dongyuan; Li, Qin

    2016-04-14

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp(3) carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* → n and σ* → n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp(3) carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* → mid-gap states → π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials. PMID:26731007

  11. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    PubMed

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. PMID:26406877

  12. Local and Regional Determinants of an Uncommon Functional Group in Freshwater Lakes and Ponds

    PubMed Central

    McCann, Michael James

    2015-01-01

    A combination of local and regional factors and stochastic forces is expected to determine the occurrence of species and the structure of communities. However, in most cases, our understanding is incomplete, with large amounts of unexplained variation. Using functional groups rather than individual species may help explain the relationship between community composition and conditions. In this study, I used survey data from freshwater lakes and ponds to understand factors that determine the presence of the floating plant functional group in the northeast United States. Of the 176 water bodies surveyed, 104 (59.1%) did not contain any floating plant species. The occurrence of this functional group was largely determined by local abiotic conditions, which were spatially autocorrelated across the region. A model predicting the presence of the floating plant functional group performed similarly to the best species-specific models. Using a permutation test, I also found that the observed prevalence of floating plants is no different than expected by random assembly from a species pool of its size. These results suggest that the size of the species pool interacts with local conditions in determining the presence of a functional group. Nevertheless, a large amount of unexplained variation remains, attributable to either stochastic species occurrence or incomplete predictive models. The simple permutation approach in this study can be extended to test alternative models of community assembly. PMID:26121636

  13. [Functional groups of high trophic level communities in adjacent waters of Changjiang estuary].

    PubMed

    Zhang, Bo; Jin, Xian-Shi; Tang, Qi-Sheng

    2009-02-01

    Based on the three bottom trawl surveys in adjacent waters of Changjiang estuary in June, August and October 2006, the composition and variation of the functional groups of high trophic level communities in the waters were studied. According to diet analysis, the high trophic level communities in the waters included six functional groups, i.e., piscivore, shrimp predator, crab predator, benthivore, planktivore, and generalist predator. Due to the variation of marine environment and fish migration behavior, the composition and trophic level of the high trophic level communities had greater monthly change. In June, fishes, acetes, and crabs dominated the communities, and planktivore was the major functional group, with its trophic level being the lowest (3.06); in August, fishes were dominant, and shrimp predator was the major functional group, with its trophic level being the highest (3.78); and in October, fishes also dominated the communities, the proportion of shrimp and crab increased, and planktivore and benthivore were the major functional groups, with a trophic level of 3.58. PMID:19459374

  14. Function-Biased Choice of Additives for Optimization of Protein Crystallization: The Case of the Putative Thioesterase PA5185 from Pseudomonas aeruginosa PAO1

    SciTech Connect

    Chruszcz, Maksymilian; Zimmerman, Matthew D.; Wang, Shuren; Koclega, Katarzyna D.; Zheng, Heping; Evdokimova, Elena; Kudritska, Marina; Cymborowski, Marcin; Savchenko, Alexei; Edwards, Aled; Minor, Wladek

    2009-09-15

    The crystal structure of PA5185, a putative thioesterase from Pseudomonas aeruginosa strain PAO1, was solved using multi-wavelength anomalous diffraction to 2.4 {angstrom}. Analysis of the structure and information about the putative function of the protein were used to optimize crystallization conditions. The crystal growth was optimized by applying additives with chemical similarity to a fragment of a putative PA5185 substrate (CoA or its derivative). Using new crystallization conditions containing this function-biased set of additives, several new crystal forms were produced, and structures of three of them (in three different space groups) were determined. One of the new crystal forms had an improved resolution limit of 1.9 {angstrom}, and another displayed an alternative conformation of the highly conserved loop containing Asn26, which could play a physiological role. Surprisingly, none of the additives were ordered in the crystal structures. Application of function-biased additives could be used as a standard optimization protocol for producing improved diffraction, or new crystal forms, which may lead to better understanding of the biological functions of proteins.

  15. Regulation and Function of Pilus Island 1 in Group B Streptococcus

    PubMed Central

    Jiang, Shengmei; Park, Su Eun; Yadav, Puja; Paoletti, Lawrence C.

    2012-01-01

    Group B streptococcus (GBS) pili may enhance colonization and infection by mediating bacterial adhesion to host cells, invasion across endothelial and epithelial barriers, and resistance to bacterial ingestion and killing by host phagocytes. However, it remains unclear how pilus expression is regulated and how modulation of pilus production affects GBS interactions with the human host. We investigated the regulation and function of pilus island 1 (PI-1) pili in GBS strain 2603. We found that PI-1 gene expression was controlled by the CsrRS two-component system, by Ape1, an AraC-type regulator encoded by a divergently transcribed gene immediately upstream of PI-1, and by environmental pH. The response regulator CsrR repressed expression of Ape1, which is an activator of PI-1 gene expression. In addition, CsrR repressed PI-1 gene expression directly, independent of its regulation of Ape1. In vitro assays demonstrated specific binding of both CsrR and Ape1 to chromosomal DNA sequences upstream of PI-1. Pilus gene expression was activated by acidic pH, and this effect was independent of CsrRS and Ape1. Unexpectedly, characterization of PI-1 deletion mutants revealed that PI-1 pili do not mediate adhesion of strain 2603 to A549 respiratory epithelial cells, ME180 cervical cells, or VK2 vaginal cells in vitro. PI-1 pili reduced internalization and intracellular killing of GBS by human monocyte-derived macrophages, by approximately 50%, but did not influence complement-mediated opsonophagocytic killing by human neutrophils. These findings shed new light on the complex nature of pilus regulation and function in modulating GBS interactions with the human host. PMID:22408160

  16. Regulation and function of pilus island 1 in group B streptococcus.

    PubMed

    Jiang, Shengmei; Park, Su Eun; Yadav, Puja; Paoletti, Lawrence C; Wessels, Michael R

    2012-05-01

    Group B streptococcus (GBS) pili may enhance colonization and infection by mediating bacterial adhesion to host cells, invasion across endothelial and epithelial barriers, and resistance to bacterial ingestion and killing by host phagocytes. However, it remains unclear how pilus expression is regulated and how modulation of pilus production affects GBS interactions with the human host. We investigated the regulation and function of pilus island 1 (PI-1) pili in GBS strain 2603. We found that PI-1 gene expression was controlled by the CsrRS two-component system, by Ape1, an AraC-type regulator encoded by a divergently transcribed gene immediately upstream of PI-1, and by environmental pH. The response regulator CsrR repressed expression of Ape1, which is an activator of PI-1 gene expression. In addition, CsrR repressed PI-1 gene expression directly, independent of its regulation of Ape1. In vitro assays demonstrated specific binding of both CsrR and Ape1 to chromosomal DNA sequences upstream of PI-1. Pilus gene expression was activated by acidic pH, and this effect was independent of CsrRS and Ape1. Unexpectedly, characterization of PI-1 deletion mutants revealed that PI-1 pili do not mediate adhesion of strain 2603 to A549 respiratory epithelial cells, ME180 cervical cells, or VK2 vaginal cells in vitro. PI-1 pili reduced internalization and intracellular killing of GBS by human monocyte-derived macrophages, by approximately 50%, but did not influence complement-mediated opsonophagocytic killing by human neutrophils. These findings shed new light on the complex nature of pilus regulation and function in modulating GBS interactions with the human host. PMID:22408160

  17. Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Harismah, Kun; Mirzaei, Mahmoud

    2015-12-01

    Density functional theory (DFT) calculations have been performed to detect the stabilities and properties of chitosan-functionalized graphene and graphene-oxide structures (G-Chit and GO-Chit). The model systems with two different sizes of sheets have been optimized and the molecular and atomic properties have been evaluated for them. The results indicated that investigated G-Chit and GO-Chit structures could be considered as stable structures but with different properties. The properties for GO and GO-Chit structures are almost similar; however, they are different from the original G and G-Chit structures. The results also indicated that the properties could be also size-dependent, in which different molecular and atomic properties have been observed for the investigate G sheets.

  18. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media

    NASA Astrophysics Data System (ADS)

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-01

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG. Electronic supplementary information (ESI) available: Experimental details, synthesis and characterization of compounds 1, 2, 1-Sil and 2-Sil, and materials. See DOI: 10.1039/c5nr00346f

  19. Inverse transfer method using polymers with various functional groups for controllable graphene doping.

    PubMed

    Lee, Seong Kyu; Yang, Jae Won; Kim, Hyun Ho; Jo, Sae Byeok; Kang, Boseok; Bong, Hyojin; Lee, Hyo Chan; Lee, Geunsik; Kim, Kwang S; Cho, Kilwon

    2014-08-26

    The polymer-supported transfer of chemical vapor deposition (CVD)-grown graphene provides large-area and high-quality graphene on a target substrate; however, the polymer and organic solvent residues left by the transfer process hinder the application of CVD-grown graphene in electronic and photonic devices. Here, we describe an inverse transfer method (ITM) that permits the simultaneous transfer and doping of graphene without generating undesirable residues by using polymers with different functional groups. Unlike conventional wet transfer methods, the polymer supporting layer used in the ITM serves as a graphene doping layer placed at the interface between the graphene and the substrate. Polymers bearing functional groups can induce n-doping or p-doping into the graphene depending on the electron-donating or -withdrawing characteristics of functional groups. Theoretical models of dipole layer-induced graphene doping offered insights into the experimentally measured change in the work function and the Dirac point of the graphene. Finally, the electrical properties of pentacene field effect transistors prepared using graphene electrodes could be enhanced by employing the ITM to introduce a polymer layer that tuned the work function of graphene. The versatility of polymer functional groups suggests that the method developed here will provide valuable routes to the development of applications of CVD-grown graphene in organic electronic devices. PMID:25050634

  20. Linking of sensor molecules with amino groups to amino-functionalized AFM tips.

    PubMed

    Wildling, Linda; Unterauer, Barbara; Zhu, Rong; Rupprecht, Anne; Haselgrübler, Thomas; Rankl, Christian; Ebner, Andreas; Vater, Doris; Pollheimer, Philipp; Pohl, Elena E; Hinterdorfer, Peter; Gruber, Hermann J

    2011-06-15

    The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH(2) groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH(2) groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker ("acetal-PEG-NHS") which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1-10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker ("aldehyde-PEG-NHS") to adjacent NH(2) groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be

  1. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  2. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-11-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm-2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance.

  3. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries.

    PubMed

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm(-2)). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  4. Assessment of female sexual function in a group of uncircumcised obese Egyptian women.

    PubMed

    Elnashar, A R M; Ibrahim, N H; Ahmed, H-Eh; Hassanin, A M; Elgawady, M A

    2015-01-01

    The aim of the present study was to assess female sexual function in an obese group (250 women) and to compare it with a control group (100 women), among 25-35-year-old uncircumcised Egyptian women, using female sexual function index (FSFI) score. FSFI total score of ⩽ 26.55 was considered diagnostic of Female Sexual Dysfunction (FSD). The percentage of FSD in the obese group was 73.6% while it was 71% in the control group, which was statistically insignificant (P > 0.05). The difference between both groups regarding the total (FSFI) score was insignificant (P > 0.05), but arousal and satisfaction domains scores were significantly lower in the obese group. In the obese group, a strong negative correlation between body mass index and arousal, orgasm and the total FSFI score was found. Women with excessive obesity had the lowest total FSFI score. In the obese group, college graduates had the highest total scores and all domain scores of FSFI followed by high school graduates while the least educated women had the lowest scores and when these subgroups were compared, significant differences were found among them. We conclude that in uncircumcised 25-35-year-old Egyptian women, obesity is not a major detrimental factor for FSD, but it may affect some sexual domains such as arousal and satisfaction, although excessive obesity is associated with FSD. Also, educational and cultural factors may have an impact on perception of sex and pleasure. PMID:26155831

  5. On the function and homeostasis of PCSK9: reciprocal interaction with LDLR and additional lipid effects.

    PubMed

    Tavori, Hagai; Rashid, Shirya; Fazio, Sergio

    2015-02-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) is a circulatory ligand that terminates the lifecycle of the low-density lipoprotein (LDL) receptor (LDLR) thus affecting plasma LDL-cholesterol (LDL-C) levels. Recent evidence shows that in addition to the straightforward mechanism of action, there are more complex interactions between PCSK9, LDLR and plasma lipoprotein levels, including: (a) the presence of both parallel and reciprocal regulation of surface LDLR and plasma PCSK9; (b) a correlation between PCSK9 and LDL-C levels dependent not only on the fact that PCSK9 removes hepatic LDLR, but also due to the fact that up to 40% of plasma PCSK9 is physically associated with LDL; and (c) an association between plasma PCSK9 production and the assembly and secretion of triglyceride-rich lipoproteins. The effect of PCSK9 on LDLR is being successfully utilized toward the development of anti-PCSK9 therapies to reduce plasma LDL-C levels. Current biochemical research has uncovered additional mechanisms of action and interacting partners for PCSK9, and this opens the way for a more thorough understanding of the regulation, metabolism, and effects of this interesting protein. PMID:25544176

  6. Synthesis of neamine-derived pseudodisaccharides by stereo- and regio-selective functional group transformations.

    PubMed

    Pang, Li-Juan; Wang, Dan; Zhou, Jian; Zhang, Li-He; Ye, Xin-Shan

    2009-10-21

    Neamine is normally found as a core structure of aminoglycoside antibiotics. In order to understand the relationship between the antibiotic activity and the configurations of the functional groups of neamine, a series of novel neamine analogues with functional group manipulations on the 2-deoxystreptamine (2-DOS) ring or the sugar ring were designed and synthesized. The synthetic approach involved the construction of 2-DOS derivatives by catalytic Ferrier II rearrangement, stereo- and regio-selective functional group transformations, glycosyl coupling reaction, and global deprotection. Of the synthetic neamine analogues, four compounds showed comparable 16S rRNA binding affinities with neamine, whereas they displayed lower binding affinities towards 18S rRNA than neamine, implying a lower toxicity to mammals. This strategy might have applications in the chemical synthesis of other neamine derivatives and new aminoglycoside antibiotics with improved biological activities. PMID:19795065

  7. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    SciTech Connect

    Chowdhury, S. Hasibul Hassan; Ali, S. Twareque

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  8. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida.

    PubMed

    Kim, D Y; Kim, Y B; Rhee, Y H

    2000-10-10

    The ability of Pseudomonas putida to synthesize polyhydroxyalkanoate (PHA) from 36 different carboxylic acids containing various functional groups was examined. This bacterium did not utilize short carboxylic acids (C(4)-C(6)) containing bromine, methoxy, ethoxy, cyclohexyl, phenoxy, and olefin groups as the sole carbon substrate. No polymer was isolated from the cells grown with carboxylic acids bearing hydroxyl, amino, para-methoxyphenoxy, and para-ethoxyphenoxy groups regardless of the carbon substrate chain lengths used even when they were cofed with nonanoic acid. Of all the carbon substrates evaluated, only 6-para-methylphenoxyhexanoic acid, 8-para-methylphenoxyoctanoic acid, 8-meta-methylphenoxyoctanoic acid, 10-undecenoic acid, and 10-undecynoic acid supported both growth and the production of PHA containing the corresponding functional groups by P. putida. The present results indicate that the carbon availability of P. putida for growth and PHA production is significantly different from that of P. oleovorans. PMID:11033174

  9. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules.

    PubMed

    Gao, Jing-Feng; Zhang, Qian; Wang, Jin-Hui; Wu, Xue-Lei; Wang, Shu-Ying; Peng, Yong-Zhen

    2011-01-01

    The contributions of loosely bound extracellular polymeric substances (LB-EPS), tightly bound EPS (TB-EPS), residual sludge (the sludge left after EPS extraction) and functional groups such as amine, carboxyl, phosphate and lipid on aerobic granules on biosorption of four different dyes (Reactive Brilliant Blue KN-R (KN-R), Congo Red (CR), Reactive Brilliant Red K-2G (RBR) and Malachite Green (MG)) were investigated. EPS may be responsible for biosorption of cationic dyes. However, residual sludge always made greater contribution than that of EPS. The biosorption mechanisms were dependent on the functional groups on aerobic granules and dyes' chemical structures. The lipid and phosphate groups might be the main binding sites for KN-R biosorption. Amine, carboxyl, phosphate and lipid were all responsible for the binding of CR. The lipid fractions played an important role for RBR biosorption. For MG, the phosphate groups gave the largest contribution. PMID:20869236

  10. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.

    PubMed

    Maya, Fernando; Svec, Frantisek

    2013-11-22

    A new approach to the preparation of porous polymer monoliths possessing both large surface area and functional groups has been developed. The chloromethyl groups of poly(styrene-co-4-acetoxystyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolith enable post-polymerization hypercrosslinking catalyzed by ferric chloride in dichloroethane leading to a multitude of small pores thus enhancing the surface area. The acetoxy functionalities are easily deprotected using hydrazine to produce polar phenolic hydroxyl groups, which would be difficult to obtain by direct copolymerization of hydroxyl-containing monomers. The hypercrosslinking and deprotection reactions as well as their sequence were studied in detail with bulk polymer monoliths containing up to 50% 4-acetoxystyrene and its progress monitored by infrared spectrometry and nitrogen adsorption/desorption measurements. No significant difference was found for both possible successions. All monoliths were also prepared in a capillary column format, then deprotected and hypercrosslinked. Capillary columns were tested for the separation of small molecules using reversed phase and normal phase chromatographic modes. For polymer monoliths containing 50% deprotected 4-acetoxystyrene, column efficiencies of 40,000 plates/m for benzene in reversed phase mode and 31,800 plates/m for nitrobenzene in normal phase mode, were obtained. The percentage of hydroxyl groups in the monoliths enables modulation of polarity of the stationary phase. They also represent functionalities that are potentially suitable for further modifications and formation of new types of stationary phases for liquid chromatography. PMID:23910448

  11. A Simple and Versatile Amide Directing Group for C-H Functionalizations.

    PubMed

    Zhu, Ru-Yi; Farmer, Marcus E; Chen, Yan-Qiao; Yu, Jin-Quan

    2016-08-26

    Achieving selective C-H activation at a single and strategic site in the presence of multiple C-H bonds can provide a powerful and generally useful retrosynthetic disconnection. In this context, a directing group serves as a compass to guide the transition metal to C-H bonds by using distance and geometry as powerful recognition parameters to distinguish between proximal and distal C-H bonds. However, the installation and removal of directing groups is a practical drawback. To improve the utility of this approach, one can seek solutions in three directions: 1) Simplifying the directing group, 2) using common functional groups or protecting groups as directing groups, and 3) attaching the directing group to substrates via a transient covalent bond to render the directing group catalytic. This Review describes the rational development of an extremely simple and yet broadly applicable directing group for Pd(II) , Rh(III) , and Ru(II) catalysts, namely the N-methoxy amide (CONHOMe) moiety. Through collective efforts in the community, a wide range of C-H activation transformations using this type of simple directing group have been developed. PMID:27479708

  12. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhong, Ren-Sheng; Qin, Yuan-Hang; Niu, Dong-Fang; Tian, Jing-Wei; Zhang, Xin-Sheng; Zhou, Xin-Gui; Sun, Shi-Gang; Yuan, Wei-Kang

    2013-03-01

    Carbon nanofibers (CNFs) with different content of surface functional groups which are carboxyl groups (CNF-OX), carbonyl groups (CNF-CO) and hydroxyl groups (CNF-OH) and nitrogen-containing groups (CNF-ON) are synthesized, and their electrocatalytic activities toward oxygen reduction reaction (ORR) in alkaline solution are investigated. The result of X-ray photoelectron spectroscopy (XPS) characterization indicates that a higher concentration of carboxyl groups, carbonyl groups and hydroxyl groups are imported onto the CNF-OX, CNF-CO and CNF-OH, respectively. Cyclic voltammetry shows that both the oxygen- and nitrogen-containing groups can improve the electrocatalytic activity of CNFs for ORR. The CNF-ON/GC electrode, which has nitrogen-containing groups, exhibits the highest current density of ORR. Rotating disk electrode (RDE) characterization shows that the oxygen reduction on CNF-ON/GC electrode proceeds almost entirely through the four-electron reduction pathway, the CNF-OX/GC, CNF-CO/GC and CNF-OH/GC electrodes proceed a two-electron reduction pathway at low potentials (-0.2 V to -0.6 V) followed by a gradual four-electron reduction pathway at more negative potentials, while the untreated carbon nanofiber (CNF-P/GC) electrode proceeds predominantly by a two-electron reduction pathway within the whole range of potential studied.

  13. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies

    PubMed Central

    Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.

    2009-01-01

    We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the

  14. Prediction Of Organic Aerosol Volatility And Unidentified Functional Group Concentrations From Fourier Transform Infrared (FTIR) Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Shipley, S.; Henderson, B. H.; Takahama, S.

    2014-12-01

    Fourier Transform Infrared (FTIR) spectroscopy is used to measure the functional group composition of organic aerosols (Russell et al., 2011). However, certain functional groups are not directly detected by FTIR spectroscopy, either due to fundamental limitations of the technique (e.g. tertiary carbons), or specific limitations of commonly employed methods of sample collection and analysis (e.g. ester and ether groups, Takahama et al., 2013). In addition, FTIR does not probe the size of molecules comprising an organic aerosol mixture, which prevents the direct calculation of organic aerosol volatility from FTIR measurements. In this study, primary organic aerosol concentrations in mixtures corresponding to different ambient scenarios have been extracted from previous GC-MS studies (Rogge et al., 1993). Secondary organic aerosol concentrations for different scenarios are simulated with an explicit chemistry model (Master Chemical Mechanism, http://mcm.leeds.ac.uk/MCM ; Jerkin et al. 1997; Saunders et al., 2003; Jerkin et al., 2003) and partitioning model (SIMPOL.1, Pankow et al., 2008). For each of the different scenarios the concentrations of functional groups that are typically accessible by FTIR are calculated and analyzed in relation to the extra information not easily accessible by FTIR (e.g. volatility, tertiary carbons, ester and ether). The ability to predict the unknown quantities from FTIR measurements and thereby reduce the uncertainty in OM concentrations and OM/OC ratios measured by FTIR is examined and discussed.

  15. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  16. Differential Expression of Functional Fc-Receptors and Additional Immune Complex Receptors on Mouse Kidney Cells

    PubMed Central

    Suwanichkul, Adisak; Wenderfer, Scott E.

    2013-01-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Igbinding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury. PMID:23911392

  17. Estimation of the thermodynamic properties of functional groups and biomolecules using quantum chemical/statistical thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Chai, Weisin

    The scarcity and sustainability of energy sources have always been a concern while seeking for alternative fuels. Biofuels have drawn the attention of various researchers due to their abundancy and renewability. Understanding the physical and chemical properties of these molecules is essential to determining their potential as alternative fuels or fuel additives. In this work, the properties of these molecules are predicted through methods developed from quantum mechanics and statistical mechanics theories. The heats of formations are calculated with the Gaussian program and combined with the Benson group contribution method to predict the Benson parameters of unknown functional groups in a molecule. The methods developed are used to expand the Benson database and improve the practicability of the group contribution method. The heats of formations are also used to predict and correlate heat capacities across a range of temperatures and energy densities in this study.

  18. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system. PMID:26509282

  19. A novel joint sparse partial correlation method for estimating group functional networks.

    PubMed

    Liang, Xiaoyun; Connelly, Alan; Calamante, Fernando

    2016-03-01

    Advances in graph theory have provided a powerful tool to characterize brain networks. In particular, functional networks at group-level have great appeal to gain further insight into complex brain function, and to assess changes across disease conditions. These group networks, however, often have two main limitations. First, they are popularly estimated by directly averaging individual networks that are compromised by confounding variations. Secondly, functional networks have been estimated mainly through Pearson cross-correlation, without taking into account the influence of other regions. In this study, we propose a sparse group partial correlation method for robust estimation of functional networks based on a joint graphical models approach. To circumvent the issue of choosing the optimal regularization parameters, a stability selection method is employed to extract networks. The proposed method is, therefore, denoted as JGMSS. By applying JGMSS across simulated datasets, the resulting networks show consistently higher accuracy and sensitivity than those estimated using an alternative approach (the elastic-net regularization with stability selection, ENSS). The robustness of the JGMSS is evidenced by the independence of the estimated networks to choices of the initial set of regularization parameters. The performance of JGMSS in estimating group networks is further demonstrated with in vivo fMRI data (ASL and BOLD), which show that JGMSS can more robustly estimate brain hub regions at group-level and can better control intersubject variability than it is achieved using ENSS. PMID:26859311

  20. Testing Group Differences in Brain Functional Connectivity: Using Correlations or Partial Correlations?

    PubMed Central

    Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.

    2015-01-01

    Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more

  1. Effects of surface functional groups on the formation of nanoparticle-protein corona

    PubMed Central

    Podila, R.; Chen, R.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-01-01

    Herein, we examined the dependence of protein adsorption on the nanoparticle surface in the presence of functional groups. Our UV-visible spectrophotometry, transmission electron microscopy, infrared spectroscopy, and dynamic light scattering measurements evidently suggested that the functional groups play an important role in the formation of nanoparticle-protein corona. We found that uncoated and surfactant-free silver nanoparticles derived from a laser ablation process promoted a maximum protein (bovine serum albumin) coating due to increased changes in entropy. On the other hand, bovine serum albumin displayed a relatively lower affinity for electrostatically stabilized nanoparticles due to the constrained entropy changes. PMID:23341687

  2. The Effect of Functional Groups in Bio-Derived Fuel Candidates.

    PubMed

    Jenkins, Rhodri W; Moore, Cameron M; Semelsberger, Troy A; Chuck, Christopher J; Gordon, John C; Sutton, Andrew D

    2016-05-10

    Interest in developing renewable fuels is continuing to grow and biomass represents a viable source of renewable carbon with which to replace fossil-based components in transportation fuels. During our own work, we noticed that chemists think in terms of functional groups whereas fuel engineers think in terms of physical fuel properties. In this Concept article, we discuss the effect of carbon and oxygen functional groups on potential fuel properties. This serves as a way of informing our own thinking and provides us with a basis with which to design and synthesize molecules from biomass that could provide useful transportation fuels. PMID:27099975

  3. Short-term group cognitive behavior therapy contributes to recovery from mild depression: Evidence from functional and structural MRI.

    PubMed

    Du, Xue; Mao, Yu; Ran, Qian; Zhang, Qinglin; Luo, QingHua; Qiu, Jiang

    2016-05-30

    We used the functional and structural magnetic resonance imaging to explore the neural correlates of response to group cognitive behavioral therapy (CBT) in mild depression. College students with mild depressive symptoms participated in our 4-week group CBT training. The behavioral results showed that depression symptoms decreased after participation in group CBT. After the training, the gray matter volume (GMV) in the right middle frontal gyrus (MFG) increased and amplitude of low-frequency fluctuations (ALFF) decreased. In addition, GMV in the left postcentral gyrus decreased after the group CBT. Moreover, the increase of percentage change in the right MFG was positively correlated with the decrease of the Beck Depression Inventory (BDI) score, while less decrease in percentage change in the left postcentral gyrus was significantly correlated with greater decrease of BDI score. Finally, after the training, functional connectivity between the right MFG and the insula decreased, while the connectivity between the left postcentral gyrus and the parahippocampal gyrus increased. These findings suggested that short-term participation in group CBT had an effective impact on mild depression. It contributed to decreasing negative bias (salience detection for negative stimuli). PMID:27124424

  4. Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties

    NASA Astrophysics Data System (ADS)

    Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.

    2016-05-01

    Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.

  5. Synthesis of nine-atom deltahedral Zintl ions of germanium and their functionalization with organic groups.

    PubMed

    Gillett-Kunnath, Miriam M; Sevov, Slavi C

    2012-01-01

    Although the first studies of Zintl ions date between the late 1890's and early 1930's they were not structurally characterized until many years later. Their redox chemistry is even younger, just about ten years old, but despite this short history these deltahedral clusters ions E9(n-) (E = Si, Ge, Sn, Pb; n = 2, 3, 4) have already shown interesting and diverse reactivity and have been at the forefront of rapidly developing and exciting new chemistry. Notable milestones are the oxidative coupling of Ge9(4-) clusters to oligomers and infinite chains, their metallation, capping by transition-metal organometallic fragments, insertion of a transition-metal atom at the center of the cluster which is sometimes combined with capping and oligomerization, addition of main-group organometallic fragments as exo-bonded substituents, and functionalization with various organic residues by reactions with organic halides and alkynes. This latter development of attaching organic fragments directly to the clusters has opened up a new field, namely organo-Zintl chemistry, that is potentially fertile for further synthetic explorations, and it is the step-by-step procedure for the synthesis of germanium-divinyl clusters described herein. The initial steps outline the synthesis of an intermetallic precursor of K4Ge9 from which the Ge9(4-) clusters are extracted later in solution. This involves fused-silica glass blowing, arc-welding of niobium containers, and handling of highly air-sensitive materials in a glove box. The air-sensitive K4Ge9 is then dissolved in ethylenediamine in the box and then alkenylated by a reaction with Me3SiC≡CSiMe3. The reaction is followed by electrospray mass spectrometry while the resulting solution is used for obtaining single crystals containing the functionalized clusters [H2C=CH-Ge9-CH=CH2](2-). For this purpose the solution is centrifuged, filtered, and carefully layered with a toluene solution of 18-crown-6. Left undisturbed for a few days, the so

  6. Synthesis of Nine-atom Deltahedral Zintl Ions of Germanium and their Functionalization with Organic Groups

    PubMed Central

    Gillett-Kunnath, Miriam M.; Sevov, Slavi C.

    2012-01-01

    Although the first studies of Zintl ions date between the late 1890's and early 1930's they were not structurally characterized until many years later.1,2 Their redox chemistry is even younger, just about ten years old, but despite this short history these deltahedral clusters ions E9n- (E = Si, Ge, Sn, Pb; n = 2, 3, 4) have already shown interesting and diverse reactivity and have been at the forefront of rapidly developing and exciting new chemistry.3-6 Notable milestones are the oxidative coupling of Ge94- clusters to oligomers and infinite chains,7-19 their metallation,14-16,20-25 capping by transition-metal organometallic fragments,26-34 insertion of a transition-metal atom at the center of the cluster which is sometimes combined with capping and oligomerization,35-47 addition of main-group organometallic fragments as exo-bonded substituents,48-50 and functionalization with various organic residues by reactions with organic halides and alkynes.51-58 This latter development of attaching organic fragments directly to the clusters has opened up a new field, namely organo-Zintl chemistry, that is potentially fertile for further synthetic explorations, and it is the step-by-step procedure for the synthesis of germanium-divinyl clusters described herein. The initial steps outline the synthesis of an intermetallic precursor of K4Ge9 from which the Ge94- clusters are extracted later in solution. This involves fused-silica glass blowing, arc-welding of niobium containers, and handling of highly air-sensitive materials in a glove box. The air-sensitive K4Ge9 is then dissolved in ethylenediamine in the box and then alkenylated by a reaction with Me3SiC≡CSiMe3. The reaction is followed by electrospray mass spectrometry while the resulting solution is used for obtaining single crystals containing the functionalized clusters [H2C=CH-Ge9-CH=CH2]2-. For this purpose the solution is centrifuged, filtered, and carefully layered with a toluene solution of 18-crown-6. Left

  7. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy. PMID:26574206

  8. 46 CFR Appendix F to Subpart C of... - Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds [Optional Rider to...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Optional Rider for Additional NVOCC Financial Responsibility for Group Bonds F Appendix F to Subpart C of Part 515 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN...

  9. Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots

    PubMed Central

    Zhang, Xuanjun; Yu, Jiangbo; Wu, Changfeng; Jin, Yuhui; Rong, Yu; Ye, Fangmao

    2012-01-01

    Semiconducting polymers with low-density side-chain carboxylic acid groups were synthesized to form stable, functionalized, and highly fluorescent polymer dots (Pdots). The influence of the molar fraction of hydrophilic side-chains on Pdot properties and performance was systematically investigated. Our results show that the density of side-chain carboxylic acid groups significantly affects Pdot stability, internal structure, fluorescence brightness, and nonspecific binding in cellular labeling. Fluorescence spectroscopy, single-particle imaging, and a dye-doping method were employed to investigate the fluorescence brightness and the internal structure of the Pdots. The results of these experiments indicate that semiconducting polymers with low density of side-chain functional groups can form stable, compact, and highly bright Pdots as compared to those with high density of hydrophilic side-chains. The functionalized polymer dots were conjugated to streptavidin (SA) by carbodiimide-catalyzed coupling and the Pdot-SA probes effectively and specifically labeled the cancer cell-surface marker Her2 in human breast cancer cells. The carboxylate-functionalized polymer could also be covalently modified with small functional molecules to generate Pdot probes for click chemistry-based bioorthogonal labeling. This study presents a promising approach for further developing functional Pdot probes for biological applications. PMID:22607220

  10. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hui; Liu, Yong-Le; Ning, Jing-Heng; Yu, Jian; Li, Xiang-Hong; Wang, Fa-Xiang

    2013-05-01

    Multifunctional peptides have attracted increasing attention in the food science community because of their therapeutic potential, low toxicity and rapid intestinal absorption. However, previous study demonstrated that the limited structural variations make it difficult to optimize dipeptide molecules in a good balance between desirable and undesirable properties (F. Tian, P. Zhou, F. Lv, R. Song, Z. Li, J. Pept. Sci. 13 (2007) 549-566). In the present work, we attempt to answer whether the structural diversity is sufficient for a tripeptide to have satisfactory multiple bioactivities. Statistical test, structural examination and energetic analysis confirm that peptides of three amino acids long can bind tightly to human angiotensin converting enzyme (ACE) and thus exert significant antihypertensive efficacy. Further quantitative structure-activity relationship (QSAR) modeling and prediction of all 8000 possible tripeptides reveal that their ACE-inhibitory potency exhibits a good (positive) relationship to antioxidative activity, but has only a quite modest correlation with bitterness. This means that it is possible to find certain tripeptide entities possessing the optimal combination of strong ACE-inhibitory potency, high antioxidative activity and weak bitter taste, which are the promising candidates for developing multifunctional food additives with satisfactory multiple bioactivities. The marked difference between dipeptide and tripeptide can be attributed to the fact that the structural diversity of peptides increases dramatically with a slight change in sequence length.

  11. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing.

    PubMed

    Bezuidenhout, Martin B; Dimitrov, Dimitar M; van Staden, Anton D; Oosthuizen, Gert A; Dicks, Leon M T

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research. PMID:26504776

  12. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing

    PubMed Central

    Bezuidenhout, Martin B.; Dimitrov, Dimitar M.; van Staden, Anton D.; Oosthuizen, Gert A.; Dicks, Leon M. T.

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research. PMID:26504776

  13. Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition.

    PubMed

    Ruiz, Ana I; Fernández, Raúl; Sánchez Jiménez, Nicanor; Rodríguez Rastrero, Manuel; Regadío, Mercedes; de Soto, Isabel S; Cuevas, Jaime

    2012-03-01

    Enhanced sand-clay mixtures have been prepared by using a sandstone arkosic material and have been evaluated for consideration as landfill liners. A lab-scale test was carried out under controlled conditions with different amended natural sandstones whereby leachate was passed through the compacted mixtures. The compacted samples consisted of siliceous sand (quartz-feldspar sand separated from the arkose sandstone) and clay (purified clay from arkose sandstone and two commercial bentonites) materials that were mixed in different proportions. The separation of mineral materials from a common and abundant natural source, for soil protection purposes, is proposed as an economic and environmentally efficient practice. The liner qualities were compared for their mineralogical, physicochemical and major ions transport and adsorption properties. Although all samples fulfilled hydraulic conductivity requirements, the addition of bentonite to arkose sandstone was determined to be an effective strategy to decrease the permeability of the soil and to improve the pollutants retention. The clay materials from arkose sandstone also contributed to pollutant retention by a significant improvement of the cation exchange capacity of the bulk material. However, the mixtures prepared with clay materials from the arkose, exhibited a slight increase of hydraulic conductivity. This effect has to be further evaluated. PMID:22285080

  14. Effect of Duration of Disease on Ventilatory Function in an Ethnic Saudi Group of Diabetic Patients

    PubMed Central

    Meo, Sultan A.; Al Drees, Abdul Majeed; Ahmed, Jehangeer; Ahmed Shah, Sayed Fayaz; Al-Regaiey, Khalid; Husain, Ashraf; Al-Rubean, Khalid

    2007-01-01

    Background Diabetes mellitus is a leading cause of illness and death across the world and is responsible for a growing proportion of global health care expenditures. The present study was designed to observe the effect of diabetes mellitus on lung function in patients with diabetes belonging to a specific ethnic group, namely Saudis. Method In this study, a group of 47 apparently healthy volunteer male Saudi patients with diabetes was randomly selected. Their ages ranged from 20 to 70 years. The patients were matched with another group of 50 healthy male control subjects in terms of age, height, weight, ethnicity, and socioeconomic status. Both groups met exclusion criteria as per standard. Spirometry was performed with an electronic spirometer (Schiller AT-2 Plus, Switzerland), and results were compared by a Student's t test. Results Subjects with diabetes showed a significant reduction in forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1) relative to their matched controls. However, there were no significant differences in the forced expiratory ratio (FEV1/FVC%) and the middle half of the FVC (FEF25–75%) between the groups. We observed a significantly negative correlation between duration of disease and pulmonary function, as measured by FEV1 (r = 0.258, p = 0.04), FVC (r = 0.282, p = 0.28), and the middle half of the FVC (FEF25–75%) (r = 0.321, p = 0.014). Conclusions Pulmonary function in a specific ethnic group of patients with diabetes was impaired as evidenced by a decrease in FVC and FEV1 compared to pulmonary function in matched controls. Stratification of results by years of disease revealed a significant correlation between duration of disease and a decline in pulmonary function. PMID:19885139

  15. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  16. Effects of Germinated Brown Rice Addition on the Flavor and Functionality of Yogurt

    PubMed Central

    2016-01-01

    This study aimed to investigate the functional and physicochemical properties of yogurt, supplemented with germinated brown rice (GBR) containing γ-aminobutyric acid (GABA), during storage. GBR was produced by soaking brown rice at 30℃, and saccharified germinated brown rice (SGBR) was produced by treating brown rice with α- and β-amylase for 1 h, at 80℃ and 60℃, respectively. Yogurt was manufactured using a commercial starter (YC-X11, CHR. Hansen, Denmark) at 37℃ for 12 h. The fatty acids and GABA contents were analyzed using GC and HPLC, respectively. The fatty acids in the cereal samples consisted of oleic, linoleic, and palmitic acid. The portion of oleic acid was the highest, at 35.65% in GBR, and 32.16% in SGBR. During germination, the oleic acid content increased, whereas linolenic and palmitic acid contents from GBR tended to decrease. Although the portion of saturated fatty acids, such as stearic and myristic acid, decreased significantly (p<0.05), that of unsaturated fatty acids, such as oleic and linoleic acid, increased with an increase in supplementation of BR, GBR, or SGBR in the yogurt. The yogurt, supplemented with cereal samples, showed a tendency of an increase in the concentration of GABA with an increase in the supplementation of the cereal samples. However, yogurt supplemented with GBR showed the highest concentration of GABA, regardless of the supplementation of the cereal samples. These results indicated that yogurt supplemented with BR, GBR, or SGBR could be a promising dairy product. PMID:27621692

  17. Momentum subtraction scheme renormalization group functions in the maximal Abelian gauge

    NASA Astrophysics Data System (ADS)

    Bell, J. M.; Gracey, J. A.

    2013-10-01

    The one-loop 3-point vertex functions of QCD in the maximal Abelian gauge are evaluated at the fully symmetric point at one loop. As a consequence the theory is renormalized in the various momentum subtraction schemes, which are defined by the trivalent vertices, as well as in the MS¯ scheme. From these the two-loop renormalization group functions in the momentum schemes are derived using the one-loop conversion functions. In parallel we repeat the analysis for the Curci-Ferrari gauge, which corresponds to the maximal Abelian gauge in a specific limit. The relation between the Λ parameters in different schemes is also provided.

  18. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  19. Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms

    NASA Astrophysics Data System (ADS)

    Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.

    2013-03-01

    Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.

  20. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia.

    PubMed

    Timmons, J A; Poucher, S M; Constantin-Teodosiu, D; Worrall, V; Macdonald, I A; Greenhaff, P L

    1996-02-01

    Skeletal muscle contractile function is impaired during acute ischemia such as that experienced by peripheral vascular disease patients. We therefore, examined the effects of dichloroacetate, which can alter resting metabolism, on canine gracilis muscle contractile function during constant flow ischemia. Pretreatment with dichloroacetate increased resting pyruvate dehydrogenase complex activity and resting acetylcarnitine concentration by approximately 4- and approximately 10-fold, respectively. After 20-min contraction the control group had demonstrated an approximately 40% reduction in isomeric tension whereas the dichloroacetate group had fatigued by approximately 25% (P < 0.05). Dichloroacetate resulted in less lactate accumulation (10.3 +/- 3.0 vs 58.9 +/- 10.5 mmol.kg-1 dry muscle [dm], P < 0.05) and phosphocreatine hydrolysis (15.6 +/- 6.3 vs 33.8 +/- 9.0 mmol.kg-1 dm, P < 0.05) during contraction. Acetylcarnitine concentration fell during contraction by 5.4 +/- 1.8 mmol.kg-1 dm in the dichloroacetate group but increased by 10.0 +/- 1.9 mmol.kg-1 dm in the control group. In conclusion, dichloroacetate enhanced contractile function during ischemia, independently of blood flow, such that it appears oxidative ATP regeneration is limited by pyruvate dehydrogenase complex activity and acetyl group availability. PMID:8609248

  1. Evaluation of functional groups on amino acids in cyclic tetrapeptides in histone deacetylase inhibition.

    PubMed

    Islam, Md Shahidul; Bhuiyan, Mohammed P I; Islam, Md Nurul; Nsiama, Tienabe Kipassa; Oishi, Naoto; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2012-06-01

    The naturally occurring cyclic tetrapeptide, chlamydocin, originally isolated from fungus Diheterospora chlamydosphoria, consists of α-aminoisobutyric acid, L-phenylalanine, D-proline and an unusual amino acid (S)-2-amino-8-((S)-oxiran-2-yl)-8-oxooctanoic acid (Aoe) and inhibits the histone deacetylases (HDACs), a class of regulatory enzymes. The epoxyketone moiety of Aoe is the key functional group for inhibition. The cyclic tetrapeptide scaffold is supposed to play important role for effective binding to the surface of enzymes. In place of the epoxyketone group, hydroxamic acid and sulfhydryl group have been applied to design inhibitor ligands to zinc atom in catalytic site of HDACs. In the research for more potent HDAC inhibitors, we replaced the epoxyketone moiety of Aoe with different functional groups and synthesized a series of chlamydocin analogs as HDAC inhibitors. Among the functional groups, methoxymethylketone moiety showed as potent inhibition as the hydroxamic acid. On the contrary, we confirmed that borate, trifruoromethylketone, and 2-aminoanilide are almost inactive in HDAC inhibition. PMID:21638021

  2. 14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR...

  3. Group Social Skills Instruction for Adolescents with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    White, Susan W.; Koenig, Kathleen; Scahill, Lawrence

    2010-01-01

    Given the increased recognition of autism spectrum disorders (ASD) and the chronic and pervasive nature of associated deficits, there is a pressing need for effective treatments. The feasibility and preliminary efficacy of a structured, group social skills training program for high-functioning youth with ASD was examined in this study. Fifteen…

  4. A FUNCTIONAL GROUP CHARACTERIZATION OF ORGANIC PM 2.5 EXPOSURE: RESULTS FROM THE RIOPA STUDY

    EPA Science Inventory

    The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Rel...

  5. Detecting Native Language Group Differences at the Subskills Level of Reading: A Differential Skill Functioning Approach

    ERIC Educational Resources Information Center

    Li, Hongli; Suen, Hoi K.

    2013-01-01

    Differential skill functioning (DSF) exists when examinees from different groups have different probabilities of successful performance in a certain subskill underlying the measured construct, given that they have the same ability on the overall construct. Using a DSF approach, this study examined the differences between two native language…

  6. Youth in group home care: youth characteristics and predictors of later functioning.

    PubMed

    Chow, Wai-Ying; Mettrick, Jennifer E; Stephan, Sharon H; Von Waldner, Christina A

    2014-10-01

    This paper presents the findings of an exploratory research study of foster care youth residing in group homes in a mid-Atlantic state in the USA. The aims of the present study were to (1) describe youth characteristics, (2) explore whether baseline functioning differed by gender or ethnicity, (3) explore predictors of cross-time differences in psychosocial functioning, and (4) explore predictors of later functioning, specifically age, gender, and length of stay. Psychosocial functioning at two time points (i.e., T1 = admission into group home; T2 = current or discharge) in 180 charts from 29 randomly selected group homes were reviewed. Youth were on average 14.86 years of age, predominantly male (71%; n = 128), and predominantly African American (79%). Findings suggest that group home placement may benefit some youth but not others, particularly girls and younger children with lower initial level of need. Findings underscore the potential complexity of intervention impact in the context of unique youth, family, and environment factors. PMID:22529035

  7. Screening biochars for heavy metal retention in soil: role of oxygen functional groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was f...

  8. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS...

  9. Simple plant traits explain functional group diversity decline in novel grassland communities of Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work on novel ecosystems suggests that exotic species contribute to functional group diversity decline as exotic systems replace native ones. We experimentally compared 18 exotic and 18 native prairie species paired for phylogeny, growth form, and mode of photosynthesis grown both in monocul...

  10. Urinary Cortisol Circadian Rhythm in a Group of High-Functioning Children with Autism.

    ERIC Educational Resources Information Center

    Richdale, Amanda L.; Prior, Margot R.

    1992-01-01

    This study found no evidence for abnormal temporal placement of the basal urinary cortisol circadian rhythm in a group of 18 high-functioning children (ages 4-14) with autism. There was a tendency toward cortisol hypersecretion during the day, predominantly in autistic children who were integrated into the normal school system. (Author/JDD)

  11. Group-Specific Effects of Matching Subtest Contamination on the Identification of Differential Item Functioning

    ERIC Educational Resources Information Center

    Keiffer, Elizabeth Ann

    2011-01-01

    A differential item functioning (DIF) simulation study was conducted to explore the type and level of impact that contamination had on type I error and power rates in DIF analyses when the suspect item favored the same or opposite group as the DIF items in the matching subtest. Type I error and power rates were displayed separately for the…

  12. Neuropsychological Functioning in Specific Learning Disorders--Reading, Writing and Mixed Groups

    ERIC Educational Resources Information Center

    Kohli, Adarsh; Kaur, Manreet; Mohanty, Manju; Malhotra, Savita

    2006-01-01

    Aim: The study compared the pattern of deficits, intelligence and neuropsychological functioning in subcategories of learning disorders. Methods: Forty-six children (16 with reading disorders, 11 with writing disorders and 19 with both reading and writing disorders--mixed group) in the age range of 7-14 years were assessed using the NIMHANS Index…

  13. Class-Wide Function-Related Intervention Teams: Effects of Group Contingency Programs in Urban Classrooms

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard P.; Heitzman-Powell, Linda; Laylin, Jeff; Szoke, Carolyn; Petrillo, Tai; Culey, Amy

    2011-01-01

    The purpose of the study was to determine the effectiveness of the Class-Wide Function-related Intervention Teams (CW-FIT) program, a group contingency intervention for whole classes, and for students with disruptive behaviors who are at risk for emotional/behavioral disorders (EBD). The CW-FIT program includes four elements designed from…

  14. Differential Tendencies To Guess as a Function of Gender and Lingual-Cultural Reference Group.

    ERIC Educational Resources Information Center

    Gafni, Naomi; Estela, Melamed

    The objective of this study was to investigate differential tendencies to avoid guessing as a function of three variables: (1) lingual-cultural-group; (2) gender; and (3) examination year. The Psychometric Entrance Test (PET) for universities in Israel was used, which is administered in Hebrew, Arabic, English, French, Spanish, and Russian. The…

  15. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  16. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  17. Social Resources and Change in Functional Health: Comparing Three Age Groups

    ERIC Educational Resources Information Center

    Randall, G. Kevin; Martin, Peter; Bishop, Alex J.; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    This study examined the mediating and moderating role of social resources on the association between age and change in functional health for three age groups of older adults. Data were provided by those in their 60s, 80s, and 100s who participated in the first two phases of the Georgia Centenarian study. Analyses confirmed the study's hypothesis…

  18. In situ and ex situ spectroscopic monitoring of biochar's surface functional groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of studies described the higher heating temperature (HHT) as the primary pyrolysis parameter dictating the biochar property: surface functional group and fixed carbon contents, O/C, H/C ratios, and Brunauer-Emmett-Teller (BET) surface area. In order to produce desirable biochar properties ...

  19. Detection of Differential Item Functioning for More than Two Groups: A Monte Carlo Comparison of Methods

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Differential item functioning (DIF) assessment is a crucial component in test construction, serving as the primary way in which instrument developers ensure that measures perform in the same way for multiple groups within the population. When such is not the case, scores may not accurately reflect the trait of interest for all individuals in the…

  20. Chemkarta: A Card Game for Teaching Functional Groups in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Knudtson, Christopher A.

    2015-01-01

    Students in undergraduate organic chemistry courses are frequently overwhelmed by the volume and complexity of information they are expected to learn. To aid in students' learning of organic functional groups, a novel card game "ChemKarta" is reported that can serve as a useful alternative to flashcards. This pedagogy is a simple…

  1. Human promoter genomic composition demonstrates non-random groupings that reflect general cellular function

    PubMed Central

    McNutt, Markey C; Tongbai, Ron; Cui, Wenwu; Collins, Irene; Freebern, Wendy J; Montano, Idalia; Haggerty, Cynthia M; Chandramouli, GVR; Gardner, Kevin

    2005-01-01

    Background The purpose of this study is to determine whether or not there exists nonrandom grouping of cis-regulatory elements within gene promoters that can be perceived independent of gene expression data and whether or not there is any correlation between this grouping and the biological function of the gene. Results Using ProSpector, a web-based promoter search and annotation tool, we have applied an unbiased approach to analyze the transcription factor binding site frequencies of 1400 base pair genomic segments positioned at 1200 base pairs upstream and 200 base pairs downstream of the transcriptional start site of 7298 commonly studied human genes. Partitional clustering of the transcription factor binding site composition within these promoter segments reveals a small number of gene groups that are selectively enriched for gene ontology terms consistent with distinct aspects of cellular function. Significance ranking of the class-determining transcription factor binding sites within these clusters show substantial overlap between the gene ontology terms of the transcriptions factors associated with the binding sites and the gene ontology terms of the regulated genes within each group. Conclusion Thus, gene sorting by promoter composition alone produces partitions in which the "regulated" and the "regulators" cosegregate into similar functional classes. These findings demonstrate that the transcription factor binding site composition is non-randomly distributed between gene promoters in a manner that reflects and partially defines general gene class function. PMID:16232321

  2. 43 CFR 1784.6 - Membership and functions of resource advisory councils and sub-groups.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Membership and functions of resource advisory councils and sub-groups. 1784.6 Section 1784.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT...

  3. 43 CFR 1784.6 - Membership and functions of resource advisory councils and sub-groups.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Membership and functions of resource advisory councils and sub-groups. 1784.6 Section 1784.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees...

  4. Functional group analysis in coal by sup 31 P NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1989-05-01

    The purpose of this research is to determine the labile-hydrogen functional group composition of coal and coal-derived materials by the nmr spectroscopy of their derivatives made with reagents containing the nmr-active nuclei {sup 31}P, {sup 119}Sn, or {sup 205}Tl. 7 refs.

  5. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  6. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  7. Review of Social Skills Training Groups for Youth with Asperger Syndrome and High Functioning Autism

    ERIC Educational Resources Information Center

    Cappadocia, M. Catherine; Weiss, Jonathan A.

    2011-01-01

    Although social skills deficits represent core symptoms of Asperger Syndrome and High Functioning Autism, there is limited research investigating the empirical validity of social skills interventions currently being used with these populations. This literature review compares three types of social skills training groups: traditional, cognitive…

  8. Attraction to a Group as a Function of Attitude Similarity and Geographic Distance.

    ERIC Educational Resources Information Center

    Davis, John M.

    1984-01-01

    Investigated attraction toward a group as a function of attitude similarity and perceived geographic distance in students (N=60). Results showed that effects of attitude similarity were strongly significant and that distance had no signficant effect on attraction and limited effect on evaluations. (LLL)

  9. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  10. Health and role functioning: the use of focus groups in the development of an item bank

    PubMed Central

    Bjorner, Jakob B.

    2013-01-01

    Background Role functioning is an important part of health-related quality of life. However, assessment of role functioning is complicated by the wide definition of roles and by fluctuations in role participation across the life-span. The aim of this study is to explore variations in role functioning across the lifespan using qualitative approaches, to inform the development of a role functioning item bank and to pilot test sample items from the bank. Methods Eight focus groups were conducted with a convenience sample of 38 English-speaking adults recruited in Rhode Island. Participants were stratified by gender and four age groups. Focus groups were taped, transcribed, and analyzed for thematic content. Results Participants of all ages identified family roles as the most important. There was age variation in the importance of social life roles, with younger and older adults rating them as more important. Occupational roles were identified as important by younger and middle-aged participants. The potential of health problems to affect role participation was recognized. Participants found the sample items easy to understand, response options identical in meaning and preferred five response choices. Conclusions Participants identified key aspects of role functioning and provided insights on their perception of the impact of health on their role participation. These results will inform item bank generation. PMID:20047086

  11. A meta-analysis of functional group responses to forest recovery outside of the tropics.

    PubMed

    Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick

    2015-12-01

    Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. PMID:26040756

  12. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  13. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks.

    PubMed

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  14. Development of Acid Functional Groups and Lactones During the Thermal Degradation of Wood and Wood Components

    USGS Publications Warehouse

    Rutherford, David W.; Wershaw, Robert L.; Reeves, James B., III

    2008-01-01

    Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.

  15. Easy route to functionalize iron oxide nanoparticles via long-term stable thiol groups.

    PubMed

    Maurizi, L; Bisht, H; Bouyer, F; Millot, N

    2009-08-18

    The functionalization of superparamagnetic iron oxide nanoparticles (SPIOs) by meso-2,3-dimercaptosuccinic acid (DMSA) was investigated. Under ambient conditions, the thiol groups from DMSA are not stable and do not allow a direct functionalization without storage in stringent conditions or a chemical regeneration of free thiols. In this study, we have developed a protocol based on poly(ethylene glycol) (PEG) grafting of SPIO prior to DMSA anchoring. We have observed that PEG helps to increase the stability of thiol groups under ambient conditions. The thiol functionalized SPIOs were stable under physiological pH and ionic strength as determined by Ellman's essay and allowed us to graft a thiol reactive fluorescent dye: tetramethylrhodamine-5-maleimide (TMRM). PMID:19572525

  16. Quantification of protein group coherence and pathway assignment using functional association

    PubMed Central

    2011-01-01

    Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of

  17. Asymmetric Catalytic Enantio- and Diastereoselective Boron Conjugate Addition Reactions of α-Functionalized α,β-Unsaturated Carbonyl Substrates.

    PubMed

    Xie, Jian-Bo; Lin, Siqi; Qiao, Shuo; Li, Guigen

    2016-08-01

    An efficient catalytic system has been established for the asymmetric boron conjugate addition of B2pin2 onto α-functionalized (involving C, N, O, and Cl) α,β-unsaturated carbonyls under mild, neutral conditions involving Cu[(S)-(R)-ppfa]Cl, AgNTf2, and alcohols. The dual additives of AgNTf2 and alcohols were found to play crucial roles for achieving high catalytic activity and enantio- and diastereoselectivity (up to 98% ee and 70:1 dr). PMID:27434500

  18. Additional F-Functions Useful for Preliminary Design of Shaped-Signature, Low-Boom, Supersonic-Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    Two additional low-boom F-functions have been described for use in designing low-boom, shaped-pressure-signature, supersonic-cruise aircraft. Based on the minimization studies of Seebass and George, the drag-nose shock strength trade-off modification of Darden, and the practical modification of Haglund, their use can aid in the design of conceptual low-boom aircraft, provide additional flexibility in the shaping of the low-boom aircraft nose section, and extend the applicability of shaped-pressure-signature methodology.

  19. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd. Zamri; Ismail, Siti Salwa

    2015-07-01

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  20. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    SciTech Connect

    Abdullah, Mohd Zamri Ismail, Siti Salwa

    2015-07-22

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  1. Kelvin-probe force microscopy of the pH-dependent charge of functional groups

    NASA Astrophysics Data System (ADS)

    Stone, Alexander D. D.; Mesquida, Patrick

    2016-06-01

    Kelvin-probe Force Microscopy (KFM) is an established method to map surface potentials or surface charges at high, spatial resolution. However, KFM does not work in water, which restricts its applicability considerably, especially when considering common, functional chemical groups in biophysics such as amine or carboxy groups, whose charge depends on pH. Here, we demonstrate that the KFM signal of such groups taken in air after exposure to water correlates qualitatively with their expected charge in water for a wide range of pH values. The correlation was tested with microcontact-printed thiols exposing amine and carboxy groups. Furthermore, it was shown that collagen fibrils, as an example of a biological material, exhibit a particular, pH-sensitive surface charge pattern, which could be caused by the particular arrangement of ionizable residues on the collagen fibril surface.

  2. Tumor-suppressor effects of chemical functional groups in an in vitro co-culture system

    NASA Astrophysics Data System (ADS)

    Xu, Su-Ju; Cui, Fu-Zhai; Kong, Xiang-Dong

    2014-06-01

    Liver normal cells and cancer cells co-cultured on surfaces modified by different chemical functional groups, including mercapto (-SH), hydroxyl (-OH) and methyl (-CH3) groups. The results showed that different cells exhibited changes in response to different surfaces. Normal cells on -SH surface exhibited the smallest contact area with mostly rounded morphology, which led to the death of cancer cells, while cancer cells could not grow on -CH3 groups, which also died. In the co-culture system, the -CH3 group exhibited its unique effect that could trigger the death of cancer cells and had no effects on normal cells. Our findings provide useful information on strategies for the design of efficient and safe regenerative medicine materials.

  3. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  4. Thermochemical Properties and Bond Dissociation Energies for Fluorinated Methanol, CH3-xFxOH, and Fluorinated Methyl Hydroperoxides, CH3-xFxOOH: Group Additivity.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-09-01

    Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that

  5. Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Roberts, Jon; Li, Huijun

    2016-02-01

    A functionally gradient iron-aluminum wall structure with aluminum composition gradient from 0 at. pct to over 50 at. pct is fabricated using a wire-arc additive manufacturing (WAAM) system. The as-fabricated alloy is investigated using optical microstructure analysis, hardness testing, tensile testing, X-ray diffraction phase characterization, and electron-dispersive spectrometry. The comprehensive analysis of the experimental samples has shown that the WAAM system can be used for manufacturing iron aluminide functionally graded material with full density, desired composition, and reasonable mechanical properties.

  6. An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension

    PubMed Central

    Pesin, Yakov B.; Niu, Xun; Latash, Mark L.

    2010-01-01

    We consider the problem of what is being optimized in human actions with respect to various aspects of human movements and different motor tasks. From the mathematical point of view this problem consists of finding an unknown objective function given the values at which it reaches its minimum. This problem is called the inverse optimization problem. Until now the main approach to this problems has been the cut-and-try method, which consists of introducing an objective function and checking how it reflects the experimental data. Using this approach, different objective functions have been proposed for the same motor action. In the current paper we focus on inverse optimization problems with additive objective functions and linear constraints. Such problems are typical in human movement science. The problem of muscle (or finger) force sharing is an example. For such problems we obtain sufficient conditions for uniqueness and propose a method for determining the objective functions. To illustrate our method we analyze the problem of force sharing among the fingers in a grasping task. We estimate the objective function from the experimental data and show that it can predict the force-sharing pattern for a vast range of external forces and torques applied to the grasped object. The resulting objective function is quadratic with essentially non-zero linear terms. PMID:19902213

  7. Effects of trehalose polycation end-group functionalization on plasmid DNA uptake and transfection.

    PubMed

    Anderson, Kevin; Sizovs, Antons; Cortez, Mallory; Waldron, Chris; Haddleton, D M; Reineke, Theresa M

    2012-08-13

    In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery. PMID:22616977

  8. Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments

    PubMed Central

    Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634

  9. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively

  10. Adsorption of volatile sulphur compounds onto modified activated carbons: effect of oxygen functional groups.

    PubMed

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J

    2013-08-15

    The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions. PMID:23708449

  11. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    PubMed

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. PMID:27184225

  12. Quantity of Hydrophobic Functional CH-Groups - Decisive for Soil Water Repellency Caused by Digestate Amendment

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Ellerbrock, Ruth H.; Horn, Rainer

    2015-04-01

    Anaerobic digestates are used as organic fertilizers; however, they are suspected to interfere negatively with soils. To investigate the relevance of the anaerobic digestates composition on potential wettability and contact angle of the soil, we mixed in a laboratory experiment 30 m³ ha-1 of anaerobic digestates derived from mechanically pre-treated substrates from maize and sugar beet with a homogenized Cambic Luvisol. Fourier transform infrared-spectra and diffuse reflectance infrared Fourier transform-spectra of particle intact and finely ground soilanaerobic digestates-mixtures were analyzed to determine the quantities of hydrophobic functional groups in the soil-anaerobic digestates-mixtures that are used here as an indicator for the potential hydrophobicity. The anaerobic digestates application increased the amount of hydrophobic functional groups of the mixtures and reduced the wettability of the soil. However, for intact particle samples an up to threefold higher amount of hydrophobic groups was found as compared to the finely ground ones, indicating a dilution effect of mechanical grinding on the effectivity of the organic matter that is presumably located as a coating on mineral soil particles. For the particle intact samples, the intensity of hydrophobic functional groups bands denoting hydrophobic brickstones in organic matter is indicative for the actual wettability of the soil-anaerobic digestates-mixtures.

  13. First-principles study of the effect of functional groups on polyaniline backbone

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-11-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity.

  14. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    PubMed Central

    2012-01-01

    The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG) concept to explore the relationships between wild bird communities and avian influenza virus (AIV) in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks) and charadriiforms (waders) drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology. PMID:23101696

  15. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups. PMID:25504913

  16. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  17. First-principles study of the effect of functional groups on polyaniline backbone.

    PubMed

    Chen, X P; Jiang, J K; Liang, Q H; Yang, N; Ye, H Y; Cai, M; Shen, L; Yang, D G; Ren, T L

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  18. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups

    PubMed Central

    2012-01-01

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups. PMID:23113991

  19. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups

    SciTech Connect

    Tian, Xiaoqing Gu, Juan; Xu, Jian-bin

    2014-01-28

    Graphene monolayers functionalized with aryl groups exhibit configuration-dependent electronic and magnetic properties. The aryl groups were adsorbed in pairs of neighboring atoms in the same sublattice A (different sublattices) of graphene monolayers, denoted as the M{sub 2}{sup AA} (M{sub 2}{sup AB}) configuration. The M{sub 2}{sup AA} configuration behaved as a ferromagnetic semiconductor. The band gaps for the majority and minority bands were 1.1 eV and 1.2 eV, respectively. The M{sub 2}{sup AB} configuration behaved as a nonmagnetic semiconductor with a band gap of 0.8 eV. Each aryl group could induce 1 Bohr magneton (μ{sub B}) into the molecule-graphene system. Armchair graphene nanoribbons (GNRs) exhibited the same configuration-dependent magnetic properties as the graphene monolayers. The net spin of the functionalized zigzag GNRs was mainly localized on the edges demonstrating an adsorption site-dependent magnetism. For the zigzag GNRs, both the M{sub 2}{sup AA} and M{sub 2}{sup AB} configurations possibly had a magnetic moment. Each aryl group could induce 1.5–3.5 μ{sub B} into the molecule-graphene system. There was a metal-to-insulator transition after adsorption of the aryl groups for the zigzag GNRs.

  20. Effects of surface functional groups on proliferation and biofunction of Schwann cells.

    PubMed

    Wang, Yaling; Ji, Yawei; Zhao, Yahong; Kong, Yan; Gao, Ming; Feng, Qilin; Wu, Yue; Yang, Yumin

    2016-05-01

    Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells play an important role in nerve regeneration and repair. Previous studies have suggested that surface chemical groups have effect on many types of cells. However, there have hitherto been few reports on Schwann cells. In this study, we investigated cell adhesion, survival, proliferation, and neurotrophic actions of Schwann cells cultured on glass coverslips modified with different chemical groups, including methyl, carboxyl, amino, hydroxyl, mercapto, and sulfonic groups. Schwann cells on amino and carboxyl surfaces had higher attachment rate, presenting good morphology, high proliferation, and strong neurotrophic functions, while on methyl surfaces, few cells can survive, cells shrunk into round shape, exhibiting poor proliferation and weak neurotrophic functions. Growth of cells on other groups was between methyl and amino, carboxyl, and had little difference among them. Our data indicated that chemical groups can regulate behavior of Schwann cells, indicating a way to design new scaffolds for peripheral nerve regeneration. PMID:26911577

  1. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    PubMed

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different. PMID:20844320

  2. Unification of [FeFe]-hydrogenases into three structural and functional groups

    DOE PAGESBeta

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; et al

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatorymore » proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.« less

  3. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    USGS Publications Warehouse

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  4. Synthesis and phase transitions of mesogenic compounds with functional groups in the tail

    NASA Astrophysics Data System (ADS)

    Mossety-Leszczak, B.; Galina, H.; Włodarska, M.

    2011-01-01

    The properties of two pairs of recently synthesised compounds with mesogenic unit were compared. The four compounds consist of a central segment (based on biphenyl or phenylbenzoate) with symmetric carbon chains ended with vinyl or epoxy groups. Typical measurement techniques (including microscopic observations, differential scanning calorimetry and wide-angle X-ray scattering and dielectric studies) were used to examine phase transitions in the studied materials. The phase transition sequences were determined for all materials. A liquid crystalline phase appeared in some cases. It was observed that replacing the functional group in the tails visibly changes the temperatures and sequences of phase transitions.

  5. The Properties of Poor Groups of Galaxies. III. The Galaxy Luminosity Function

    NASA Astrophysics Data System (ADS)

    Zabludoff, Ann I.; Mulchaey, John S.

    2000-08-01

    The form of the galaxy luminosity function (GLF) in poor groups-regions of intermediate galaxy density that are common environments for galaxies-is not well understood. Multiobject spectroscopy and wide-field CCD imaging now allow us to measure the GLF of bound group members directly (i.e., without statistical background subtraction) and to compare the group GLF with the GLFs of the field and of rich clusters. We use R-band images in 1.5×1.5 degree2 mosaics to obtain photometry for galaxies in the fields of six nearby (2800groups for which we have extensive spectroscopic data, including 328 new galaxy velocities. For the five groups with luminous X-ray halos, the composite group GLF for group members with -23+5loghgroup center is fit adequately by a Schechter function with M*R=-21.6+/-0.4+5log h and α=-1.3+/-0.1. We also find that (1) the ratio of dwarfs (-17+5logh>=MR>-19+5logh) to giants (MR<=-19+5logh) is significantly larger for the five groups with luminous X-ray halos than for the one marginally X-ray-detected group; (2) the composite GLF for the luminous X-ray groups is consistent in shape with two measures of the composite R-band GLF for rich clusters (Trentham; Driver et al.) and flatter at the faint end than another (α~-1.5 Smith et al.); (3) the composite group GLF rises more steeply at the faint end than the R-band GLF of the Las Campanas Redshift Survey (LCRS; α=-0.7 from Lin et al.), a large volume survey dominated by galaxies in environments more rarefied than luminous X-ray groups; (4) the shape difference between the LCRS field and composite group GLFs results mostly from the population of non-emission line galaxies (EW [O II]<5 Å), whose dwarf-to-giant ratio is larger in the denser group environment than in the field (cf. Ferguson & Sandage; Bromley et al.); and (5) the non-emission line dwarfs are more concentrated about the group center than the non

  6. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages

    PubMed Central

    Murphy, James; Bottacini, Francesca; Mahony, Jennifer; Kelleher, Philip; Neve, Horst; Zomer, Aldert; Nauta, Arjen; van Sinderen, Douwe

    2016-01-01

    Genome sequencing and comparative analysis of bacteriophage collections has greatly enhanced our understanding regarding their prevalence, phage-host interactions as well as the overall biodiversity of their genomes. This knowledge is very relevant to phages infecting Lactococcus lactis, since they constitute a significant risk factor for dairy fermentations. Of the eighty four lactococcal phage genomes currently available, fifty five belong to the so-called 936 group, the most prevalent of the ten currently recognized lactococcal phage groups. Here, we report the genetic characteristics of a new collection of 936 group phages. By combining these genomes to those sequenced previously we determined the core and variable elements of the 936 genome. Genomic variation occurs across the 936 phage genome, such as genetic elements that (i) lead to a +1 translational frameshift resulting in the formation of additional structures on the phage tail, (ii) specify a double neck passage structure, and (iii) encode packaging module-associated methylases. Hierarchical clustering of the gene complement of the 936 group phages and nucleotide alignments allowed grouping of the ninety 936 group phages into distinct clusters, which in general appear to correspond with their geographical origin. PMID:26892066

  7. Taxonomy of the hyper-diverse ant genus Tetramorium Mayr in the Malagasy region (Hymenoptera, Formicidae, Myrmicinae) – first record of the T. setigerum species group and additions to the Malagasy species groups with an updated illustrated identification key

    PubMed Central

    Hita Garcia, Francisco; Fisher, Brian L.

    2015-01-01

    Abstract In this study we provide an update to the taxonomy of the ant genus Tetramorium Mayr in Madagascar. We report the first record of the Tetramorium setigerum species group in Madagascar and describe the only Malagasy representative as Tetramorium cavernicola sp. n., which is known only from a cave in Ankarana. In addition, we provide an overview of the 19 proposed Malagasy species groups, and discuss their zoogeography and relationships to other groups and larger lineages within the hyper-diverse genus Tetramorium. At present, we recognise a highly unique Malagasy Tetramorium fauna with 113 species endemic to the island of Madagascar out of a total of 125 translating into an endemism rate of 93%. We hypothesise that this fauna is based on one or a few colonisation events from the Afrotropical region, with subsequent adaptive radiation in Madagascar. Furthermore, we present an updated and illustrated identification key to the Tetramorium species groups in the Malagasy region. PMID:26257564

  8. Impact of Nanotopography and/or Functional Groups on Periodontal Ligament Cell Growth

    NASA Astrophysics Data System (ADS)

    Şaşmazel, Hilal Türkoğlu; Manolache, S.; Gümüşderelİoğlu, M.

    The main purpose of this contribution was to obtain COOH functionalities and/or nanotopographic changes on the surface of 3D, non-woven polyester fabric (NWPF) discs (12.5 mm in diameter) by using low pressure water/O2 plasma assisted treatments. The prepared discs were characterized by various methods after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. The cell culture results showed that plasma treated 3D NWPF discs are favorable for PDL cell spreading, growth and viability due to the presence of functional groups and/or the nanotopography of their surfaces.

  9. Development and in silico evaluation of large-scale metabolite identification methods using functional group detection for metabolomics

    PubMed Central

    Mitchell, Joshua M.; Fan, Teresa W.-M.; Lane, Andrew N.; Moseley, Hunter N. B.

    2014-01-01

    Large-scale identification of metabolites is key to elucidating and modeling metabolism at the systems level. Advances in metabolomics technologies, particularly ultra-high resolution mass spectrometry (MS) enable comprehensive and rapid analysis of metabolites. However, a significant barrier to meaningful data interpretation is the identification of a wide range of metabolites including unknowns and the determination of their role(s) in various metabolic networks. Chemoselective (CS) probes to tag metabolite functional groups combined with high mass accuracy provide additional structural constraints for metabolite identification and quantification. We have developed a novel algorithm, Chemically Aware Substructure Search (CASS) that efficiently detects functional groups within existing metabolite databases, allowing for combined molecular formula and functional group (from CS tagging) queries to aid in metabolite identification without a priori knowledge. Analysis of the isomeric compounds in both Human Metabolome Database (HMDB) and KEGG Ligand demonstrated a high percentage of isomeric molecular formulae (43 and 28%, respectively), indicating the necessity for techniques such as CS-tagging. Furthermore, these two databases have only moderate overlap in molecular formulae. Thus, it is prudent to use multiple databases in metabolite assignment, since each major metabolite database represents different portions of metabolism within the biosphere. In silico analysis of various CS-tagging strategies under different conditions for adduct formation demonstrate that combined FT-MS derived molecular formulae and CS-tagging can uniquely identify up to 71% of KEGG and 37% of the combined KEGG/HMDB database vs. 41 and 17%, respectively without adduct formation. This difference between database isomer disambiguation highlights the strength of CS-tagging for non-lipid metabolite identification. However, unique identification of complex lipids still needs additional

  10. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly report, January 1--March 30, 1996

    SciTech Connect

    Kubiak, C.P.

    1996-12-31

    Over the course of the studies on catalytic deoxygenation of phenolic residues in coal by carbon monoxide, the author performed preliminary investigations into the removal of other heteroatom groups. This report describes the attempted carbonylation of phenyl amido complexes. These studies resulted in the surprisingly facile formation of amidines. The amidine group is the nitrogen analog of carboxylic acids and esters. This functional group combines the properties of an azomethane-like C=N double bond with an amide-like C-N single bond. This group, like the related allyl (C-C-C), aza-allyl (C-N-C), and carboxylato (O-C-O) groups, form a number of transition metal derivatives, with both early and late transition metals. Various bonding modes of the amidino group have been reported. However, most isolated complexes have the amidino ligand as a chelating ligand or bridging two metals. This is due to the preference of amidines to bond via the nitrogen lone pairs, in contrast to the {eta}3 bonding observed in metal-allyl complexes. The experimental section of the paper describes the synthesis of platinum complexes, X-ray diffraction data for one Pt complex, and its reaction with carbon monoxide. Results are presented on the crystal and molecular structure of a platinum complex.

  11. Geographic differences between functional groups in patterns of bird species richness in North America

    NASA Astrophysics Data System (ADS)

    Carnicer, Jofre; Díaz-Delgado, Ricardo

    2008-03-01

    Geographic divergences in patterns of species richness were studied for the terrestrial birds of North America using Breeding Bird Survey (BBS) census data subdivided for guild and migratory groups. Our aim was to study if species richness patterns for North American birds were best viewed as the convergent response of different groups to a common mechanism or as the result of several different processes. We observed opposite geographical patterns of species richness and differences in the variables associated with species richness depending on the guild or migratory status considered. Several ecological variables seem to regulate large-scale patterns of terrestrial bird species richness in North America, mainly temperature-, productivity- and landscape habitat structure-related variables. These variables are diverse and group-specific. For instance, the results supported the productivity hypothesis in migratory and frugivore groups and the winter tolerance hypothesis in residents. Habitat structure was also identified as an important factor driving species richness, total abundance and community body mass variation. Overall, our results indicate that the large-scale patterns of bird species richness are the result of several divergent, group-specific processes, and that understanding diversity gradients requires the identification of the functional ecological groups included.

  12. Effect of bioceramic functional groups on drug binding and release kinetics

    NASA Astrophysics Data System (ADS)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  13. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  14. Synthesis and structure of high-valent organouranium complexes containing terminal monooxo functional groups

    SciTech Connect

    Arney, D.S.J.; Burns, C.J. )

    1993-10-20

    We describe the synthesis by oxidative atom-transfer chemistry and structure of organouranium(V) and -(VI)complexes containing terminal oxo functional groups of the general formula (C[sub 5]Me[sub 5])[sub 2]U-(EAr)(O) (E = O (3) and N (4); Ar=2,6-diisopropylphenyl). In effect, we have extended the synthetic utility of oxidative atom-transfer chemistry to the preparation of the first complexes of uranium(V) and-(VI)containing terminal nonooxo functional groups. The structural characterization of these compounds reveals uranium oxo bond lengths longer than those typical for the uranyl ion (UO[sub 2])[sup 2+], which may reflect a reduced relative bond order. 18 refs., 1 fig.

  15. Synthesis and physicochemical properties of polysiloxane functionalized with aminoacetic acid groups

    NASA Astrophysics Data System (ADS)

    Lakiza, N. V.; Neudachina, L. K.

    2016-07-01

    Polysiloxane functionalized with aminoacetic acid groups was synthesized using sol-gel technology. Elemental analysis and FTIR spectroscopy were used to determine the composition of the polysiloxane show that it is a mesoporous material with a developed surface (109.4 m2/g). It was found that the selective properties of carboxymethylated polysiloxane towards transition metal ions simultaneously present in an ammonium acetate solution change in the order Zn < Cu > Ni > Co > Pb > Cd. It was shown that the sorption of copper(II) ions by carboxymethylated aminopropylpolysiloxane with particle sizes of 50-71 μm reaches its maximum level within 2 h; the rate-limiting step of the process is the chemical reaction between the ions and the polysiloxane functional groups; and the pseudo-second-order model is the best way of describing sorption.

  16. Approaching many-body localization from disordered Luttinger liquids via the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Moore, J. E.

    2015-09-01

    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.

  17. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    USGS Publications Warehouse

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  18. Correlation of Chemical Bond Directions and Functional Group Orientations in Solids by Two-Dimensional NMR

    NASA Astrophysics Data System (ADS)

    Weliky, D. P.; Dabbagh, G.; Tycko, R.

    We describe a new two-dimensional NMR technique for structural studies of polycrystalline and noncrystalline solids. The technique is a variant of 2D exchange spectroscopy applicable to organic molecules, macromolecules, or molecular complexes that are doubly 13C-labeled at a specific carboncarbon bond and singly 13C labeled at a specific functional group. A Carr-Purcell sequence is used to obtain dipolar spectra in the t1 dimension. Spectra in the t2 dimension are determined primarily by the chemical-shift anisotropy. With spin diffusion among the labeled sites between the t1 and t2 periods, the resulting 2D spectra reveal correlations between the direction of the labeled bond and the orientation of the labeled functional group. Experimental spectra of two polycrystalline model compounds, dimethyl succinate and diammonium succinate, are presented and compared with simulations to illustrate the structural information contained in the 2D spectra.

  19. Quantitative Evaluation of the Dispersion of Graphene Sheets With and Without Functional Groups Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cha, JinHyeok; Kyoung, Woomin; Song, Kyonghwa; Park, Sangbaek; Lim, Taewon; Lee, Jongkook; Kang, Hyunmin

    2016-03-01

    Nanofluids with enhanced thermal properties are candidates for thermal management in automotive systems, with scope for improving energy efficiency. In particular, many studies have reported on dispersions of nanoparticles with long-term stability in the base fluid, with qualitative evaluations of the dispersion stability via either the naked eye or optical instruments. Additives such as surfactants can be used to enhance the dispersion of nanoparticles; however, this may diminish their intrinsic thermal properties. Here, we describe molecular dynamics simulations of nanofluids containing graphene sheets dispersed in ethylene glycol and water. We go on to suggest a quantitative evaluation method for the degree of dispersion, based on the ratio of the total number of nanoparticles to the number of clustered nanoparticles. Moreover, we investigate the effects of functional groups on the surface of graphene, which are expected to improve the dispersion without requiring additives such as surfactants due to steric hindrance and chemical affinity for the surrounding fluid. We find that, for pure graphene, the degree of dispersion decreased as the quantity of graphene sheets increased, which is attributed to an increased probability of aggregation at higher loadings; however, the presence of functional groups inhibited the graphene sheets from forming aggregates.

  20. Quantitative Evaluation of the Dispersion of Graphene Sheets With and Without Functional Groups Using Molecular Dynamics Simulations.

    PubMed

    Cha, JinHyeok; Kyoung, Woomin; Song, Kyonghwa; Park, Sangbaek; Lim, Taewon; Lee, Jongkook; Kang, Hyunmin

    2016-12-01

    Nanofluids with enhanced thermal properties are candidates for thermal management in automotive systems, with scope for improving energy efficiency. In particular, many studies have reported on dispersions of nanoparticles with long-term stability in the base fluid, with qualitative evaluations of the dispersion stability via either the naked eye or optical instruments. Additives such as surfactants can be used to enhance the dispersion of nanoparticles; however, this may diminish their intrinsic thermal properties. Here, we describe molecular dynamics simulations of nanofluids containing graphene sheets dispersed in ethylene glycol and water. We go on to suggest a quantitative evaluation method for the degree of dispersion, based on the ratio of the total number of nanoparticles to the number of clustered nanoparticles. Moreover, we investigate the effects of functional groups on the surface of graphene, which are expected to improve the dispersion without requiring additives such as surfactants due to steric hindrance and chemical affinity for the surrounding fluid. We find that, for pure graphene, the degree of dispersion decreased as the quantity of graphene sheets increased, which is attributed to an increased probability of aggregation at higher loadings; however, the presence of functional groups inhibited the graphene sheets from forming aggregates. PMID:26964558

  1. On the Group of Translations and Inversions of Phase Space and the Wigner Functions

    NASA Astrophysics Data System (ADS)

    Dahl, Jens Peder

    1982-04-01

    Grossmann and Royer have recently shown that the Wigner functions are closely related to the set of all translations and inversions of phase space. This allows the phase space representation of quantum mechanics to be constructed directly on the group of phase space translations and inversions. Starting from this observation, we have derived analytical expressions for the matrix elements of the translation and inversion operators, in the harmonic oscillator representation, without introducing coordinate or momentum wavefunctions.

  2. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  3. Flow equation of functional renormalization group for three-body scattering problems

    NASA Astrophysics Data System (ADS)

    Tanizaki, Yuya

    2013-11-01

    Functional renormalization group (FRG) is applied to the three-body scattering problem in the two-component fermionic system with an attractive contact interaction. We establish an exact flow equation on the basis of FRG and show that our flow equation is consistent with integral equations obtained from the Dyson-Schwinger equation. In particular, the relation of our flow equation and the Skornyakov and Ter-Martirosyan equation for the atom-dimer scattering is made clear.

  4. Lie group symmetries and Riemann function of Klein-Gordon-Fock equation with central symmetry

    NASA Astrophysics Data System (ADS)

    Kochetov, Bogdan A.

    2014-06-01

    In the present paper Lie symmetry group method is applied to find new exact invariant solutions for Klein-Gordon-Fock equation with central symmetry. The found invariant solutions are important for testing finite-difference computational schemes of various boundary value problems of Klein-Gordon-Fock equation with central symmetry. The classical admitted symmetries of the equation are found. The infinitesimal symmetries of the equation are used to find the Riemann function constructively.

  5. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H

    2012-02-22

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (<250 μm) having low total organic carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils. PMID:22280497

  6. Isgur-Wise functions and unitary representations of the Lorentz group: The baryon case j=0

    SciTech Connect

    Le Yaouanc, A.; Oliver, L.; Raynal, J.-C.

    2009-09-01

    We propose a group theoretical method to study Isgur-Wise (IW) functions. A current matrix element splits into a heavy quark matrix element and an overlap of the initial and final clouds, related to the IW functions, that contain the long distance physics. The light cloud belongs to the Hilbert space of a unitary representation of the Lorentz group. Decomposing into irreducible representations one obtains the IW function as an integral formula, superposition of irreducible IW functions with positive measures, providing positivity bounds on its derivatives. Our method is equivalent to the sum rule approach, but sheds another light on the physics and summarizes and gives all its possible constraints. We expose the general formalism, thoroughly applying it to the case j=0 for the light cloud, relevant to the semileptonic decay {lambda}{sub b}{yields}{lambda}{sub c}l{nu}{sub l}. In this case, the principal series of the representations contribute, and also the supplementary series. We recover the bound for the curvature of the j=0 IW function {xi}{sub {lambda}}(w) that we did obtain from the sum rule method, and we get new bounds for higher derivatives. We demonstrate also that if the lower bound for the curvature is saturated, then {xi}{sub {lambda}}(w) is completely determined, given by an explicit elementary function. We give criteria to decide if any Ansatz for the Isgur-Wise function is compatible or not with the sum rules. We apply the method to some simple model forms proposed in the literature. Dealing with a Hilbert space, the sum rules are convergent, but this feature does not survive hard gluon radiative corrections.

  7. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups.

    PubMed

    Melnyk, Inna V; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L

    2016-12-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g. PMID:26842794

  8. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  9. Life span and structure of ephemeral root modules of different functional groups from a desert system.

    PubMed

    Liu, Bo; He, Junxia; Zeng, Fanjiang; Lei, Jiaqiang; Arndt, Stefan K

    2016-07-01

    The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design. PMID:26856386

  10. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  11. Group 2 Innate Lymphoid Cells Express Functional NKp30 Receptor Inducing Type 2 Cytokine Production.

    PubMed

    Salimi, Maryam; Xue, Luzheng; Jolin, Helen; Hardman, Clare; Cousins, David J; McKenzie, Andrew N J; Ogg, Graham S

    2016-01-01

    Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defense, epithelial repair, and lipid homeostasis. ILC2 lack rearranged Ag-specific receptors, and although many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with the microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of group 1 ILC and group 3 ILC and thought to be important for their effector function, but they have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human ILC2. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking Ab and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis, and incubation of keratinocytes with proinflammatory and type 2 cytokines upregulated B7-H6, leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases. PMID:26582946

  12. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  13. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  14. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation.

    PubMed

    Sun, Jing; Cheng, Jun; Yang, Zongbo; Li, Ke; Zhou, Junhu; Cen, Kefa

    2015-10-01

    The pore structures and surface morphological characteristics of Nannochloropsis sp. cells with arsenic adsorption were initially investigated by N2-adsorption analysis and scanning electronic microscopy. Functional groups of cells were analysed by Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy. Total surface area of microalgal cells increased from 0.54 m(2)/g to 1.80 m(2)/g upon arsenic adsorption. The external cell surface area increased. More wrinkles and measles-like granules formed on the surfaces as a result of arsenic toxicity. Arsenic ions blocked cell pores and decreased the average pore diameter and total pore volume. Ether cross-linked structures in the algaenan layer of cell walls were disrupted as the percentage of C-O functional groups decreased. These functional groups underwent complexation reactions with arsenic ions. Accumulation of polyunsaturated fatty acids decreased because of oxidative stresses induced by arsenic. The increase in generation of short-chain saturated fatty acids was favourable for the production of quality biodiesel. PMID:26210144

  15. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  16. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    NASA Astrophysics Data System (ADS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  17. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  18. Two group I ribozymes with different functions in a nuclear rDNA intron.

    PubMed Central

    Decatur, W A; Einvik, C; Johansen, S; Vogt, V M

    1995-01-01

    DiSSU1, a mobile intron in the nuclear rRNA gene of Didymium iridis, was previously reported to contain two independent catalytic RNA elements. We have found that both catalytic elements, renamed GIR1 and GIR2, are group I ribozymes, but with differing functionality. GIR2 carries out the several reactions associated with self-splicing. GIR1 carries out a hydrolysis reaction at an internal processing site (IPS-1). These conclusions are based on the catalytic properties of RNAs transcribed in vitro. Mutation of the P7 pairing segment of GIR2 abrogated self-splicing, while mutation of P7 in GIR1 abrogated hydrolysis at the IPS-1. Much of the P2 stem and all of the associated loop could be deleted without effect on self-splicing. These results are accounted for by a secondary structure model, in which a long P2 pairing segment brings the 5' splice site to the GIR2 catalytic core. GIR1 is the smallest natural group I ribozyme yet reported and is the first example of a group I ribozyme whose presumptive biological function is hydrolysis. We hypothesize that GIR1-mediated cleavage of the excised intron RNA functions in the generation and expression of the mRNA for the intron-encoded endonuclease I-DirI. Images PMID:7556099

  19. Interpersonal distance regulates functional grouping tendencies of agents in team sports.

    PubMed

    Passos, Pedro; Milho, João; Fonseca, Sofia; Borges, João; Araújo, Duarte; Davids, Keith

    2011-01-01

    The authors examined whether, similar to collective agent behaviors in complex, biological systems (e.g., schools of fish and colonies of ants), performers in team sports displayed functional coordination tendencies, based on local interaction rules during performance. To investigate this issue, they used videogrammetry and digitizing procedures to observe interpersonal interactions in common 4 versus 2 + 2 subphases of the team sport of rugby union, involving 16 participants aged between 16 and 17 years of age. They observed pattern-forming dynamics in attacking subunits (n = 4 players) attempting to penetrate 2 defensive lines (n = 2 players in each). Data showed that within each attacking subunit, the 4 players displayed emergent functional grouping tendencies that differed between the 2 defensive lines. Results confirmed that grouping tendencies in attacking subunits of team games are sensitive to different task constraints, such as relative positioning to nearest defenders. It was concluded that running correlations were particularly useful for measuring the level of interpersonal coordination in functional grouping tendencies within attacking subunits. PMID:21400329

  20. Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker.

    PubMed

    Mueller, Rebecca C; Balasch, Monica M; Kuske, Cheryl R

    2014-09-01

    Human activities have resulted in increased nitrogen inputs into terrestrial ecosystems, but the impact of nitrogen on ecosystem function, such as nutrient cycling, will depend at least in part on the response of soil fungal communities. We examined the response of soil fungi to experimental nitrogen addition in a loblolly pine forest (North Carolina, USA) using a taxonomic marker (large subunit rDNA, LSU) and a functional marker involved in a critical step of cellulose degradation (cellobiohydrolase, cbhI) at five time points that spanned fourteen months. Sampling date had no impact on fungal community richness or composition for either gene. Based on the LSU, nitrogen addition led to increased fungal community richness, reduced relative abundance of fungi in the phylum Basidiomycota and altered community composition; however, similar shifts were not observed with cbhI. Fungal community dissimilarity of the LSU and cbhI genes was significantly correlated in the ambient plots, but not in nitrogen-amended plots, suggesting either functional redundancy of fungi with the cbhI gene or shifts in other functional groups in response to nitrogen addition. To determine whether sequence similarity of cbhI could be predicted based on taxonomic relatedness of fungi, we conducted a phylogenetic analysis of publically available cbhI sequences from known isolates and found that for a subset of isolates, similar cbhI genes were found within distantly related fungal taxa. Together, these findings suggest that taxonomic shifts in the total fungal community do not necessarily result in changes in the functional diversity of fungi. PMID:25039479

  1. Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization

    NASA Astrophysics Data System (ADS)

    Ruggeri, Giulia; Takahama, Satoshi

    2016-04-01

    Functional groups (FGs) can be used as a reduced representation of organic aerosol composition in both ambient and controlled chamber studies, as they retain a certain chemical specificity. Furthermore, FG composition has been informative for source apportionment, and various models based on a group contribution framework have been developed to calculate physicochemical properties of organic compounds. In this work, we provide a set of validated chemoinformatic patterns that correspond to (1) a complete set of functional groups that can entirely describe the molecules comprised in the α-pinene and 1,3,5-trimethylbenzene MCMv3.2 oxidation schemes, (2) FGs that are measurable by Fourier transform infrared spectroscopy (FTIR), (3) groups incorporated in the SIMPOL.1 vapor pressure estimation model, and (4) bonds necessary for the calculation of carbon oxidation state. We also provide example applications for this set of patterns. We compare available aerosol composition reported by chemical speciation measurements and FTIR for different emission sources, and calculate the FG contribution to the O : C ratio of simulated gas-phase composition generated from α-pinene photooxidation (using the MCMv3.2 oxidation scheme).

  2. Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Takahama, S.

    2015-11-01

    Functional groups (FGs) can be used as a reduced representation of organic aerosol composition in both ambient and environmental controlled chamber studies, as they retain a certain chemical specificity. Furthermore, FG composition has been informative for source apportionment, and various models based on a group contribution framework have been developed to calculate physicochemical properties of organic compounds. In this work, we provide a set of validated chemoinformatic patterns that correspond to: (1) groups incorporated in the SIMPOL.1 vapor pressure estimation model, (2) FGs that are measurable by Fourier transform infrared spectroscopy (FTIR), (3) a complete set of functional groups that can entirely describe the molecules comprised in the α-pinene and 1,3,5-trimethylbenzene MCMv3.2 oxidation schemes, and (4) bonds necessary for the calculation of carbon oxidation state. We also provide example applications for this set of patterns. We compare available aerosol composition reported by chemical speciation measurements and FTIR for different emission sources, and calculate the FG contribution to the O : C ratio of simulated gas phase composition generated from α-pinene photooxidation (using MCMv3.2 oxidation scheme).

  3. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  4. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH

  5. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  6. Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight?

    PubMed Central

    Fetrow, Jacquelyn S.; Siew, Naomi; Di Gennaro, Jeannine A.; Martinez-Yamout, Maria; Dyson, H. Jane; Skolnick, Jeffrey

    2001-01-01

    A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone. PMID:11316881

  7. The Unique and Additive Associations of Family Functioning and Parenting Practices with Disordered Eating Behaviors in Diverse Adolescents

    PubMed Central

    Berge, Jerica M.; Wall, Melanie; Larson, Nicole; Eisenberg, Marla E.; Loth, Katie A.; Neumark-Sztainer, Dianne

    2012-01-01

    Objective To examine the unique and additive associations of family functioning and parenting practices with adolescent disordered eating behaviors (i.e., dieting, unhealthy weight control behaviors, binge eating). Methods Data from EAT (Eating and Activity in Teens) 2010, a population-based study assessing eating and activity among racially/ethnically and socio-economically diverse adolescents (n = 2,793; mean age = 14.4, SD = 2.0; age range = 11–19) was used. Logistic regression models were used to examine associations between adolescent dieting and disordered eating behaviors and family functioning and parenting variables, including interactions. All analyses controlled for demographics and body mass index. Results Higher family functioning, parent connection, and parental knowledge about child’s whereabouts (e.g. who child is with, what they are doing, where they are at) were significantly associated with lower odds of engaging in dieting and disordered eating behaviors in adolescents, while parent psychological control was associated with greater odds of engaging in dieting and disordered eating behaviors. Although the majority of interactions were non-significant, parental psychological control moderated the protective relationship between family functioning and disordered eating behaviors in adolescent girls. Conclusions Clinicians and health care providers may want to discuss the importance of balancing specific parenting behaviors, such as increasing parent knowledge about child whereabouts while decreasing psychological control in order to enhance the protective relationship between family functioning and disordered eating behaviors in adolescents. PMID:23196919

  8. A meta‐analysis of functional group responses to forest recovery outside of the tropics

    PubMed Central

    Ezard, Thomas H. G.; Martin, Philip A.; Newton, Adrian C.; Doncaster, C. Patrick

    2015-01-01

    Abstract Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old‐growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta‐analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old‐growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional‐group–specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old‐growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old‐growth values (between 140 years and never for recovery to old‐growth values at 95% prediction limits). Non‐saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old‐growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. PMID:26040756

  9. Interplay between group function of kinesin based transport and lipid bilayer mobility

    NASA Astrophysics Data System (ADS)

    Lopes, Joseph; Hirst, Linda; Xu, Jing

    2015-03-01

    Motor proteins, discovered in recent decades, are important building blocks to life. These molecular machines transport cargo and although indispensable to cell function, are not well understood at present. Single kinesin transport properties have been documented, but their group function remains unknown. In this project, the properties of kinesin-based transport by multiple motors are investigated in-vitro to establish a link between travel distance and lipid diffusion in the vesicle membrane. In the experiments, silica beads coated in a supported lipid membrane and giant lipid vesicles are transported along a microtubule by embedded kinesin motors. In an alternate geometry, this system can be inverted, whereby motors are bound to a surface of a lipid bilayer and microtubules are deposited. We have characterized motor function with respect to the fluidity of the membrane. To measure the diffusion properties of different membranes, planar lipid bilayers are prepared on silica slides and supported by bovine serum albumin protein. To establish a diffusion constant at room temperature for the lipid membrane we use the FRAP technique (fluorescence recovery after photobleaching). Using this method we can investigate if there is any interplay between group travel function and membrane fluidity.

  10. Evidence supporting the importance of microbial functional groups in decomposition models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Lu, L.; Allison, S. D.

    2010-12-01

    Microbial communities mediate organic carbon decomposition in both soil and marine environments. Decomposition depends on microbes that produce extracellular enzymes to degrade complex organic matter, as well as microbes that mineralize simple organic matter to CO2. Therefore microbes could be represented in Earth system models as functional groups based on the extracellular enzymes they produce. However, the importance of including the functional diversity of microbes in decomposition models has been unclear. In this study we simulated microbial functional diversity with two strains of Pseudomonas fluorescens bacteria, one of which secretes extracellular protease and one that does not. These two strains were competed on several carbon resources including casein-glucose, casamino acids-glucose and glucose over several days. We then fit a series of models to the resulting data: 1) an explicit model representing both biomass and substrate pools, 2) a simplified substrate pool model with two biomass pools and one substrate pool, 3) a simplified biomass pool model with one biomass and two substrate pools, 4) a simplified biomass/substrate pool model with one biomass and one substrate pool, and 5) a single carbon pool model. We found that the explicit model (#1) fit the laboratory data significantly better than the other models, suggesting that functional groups and substrate pools should be represented in global decomposition models with time steps on the order of hours.

  11. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks

    SciTech Connect

    Yuan, S; Lu, WG; Chen, YP; Zhang, Q; Liu, TF; Feng, DW; Wang, X; Qin, JS; Zhou, HC

    2015-03-11

    A unique strategy, sequential linker installation (SLI), has been developed to construct multivariate MOFs with functional groups precisely positioned. PCN-700, a Zr-MOF with eight-connected Zr6O4(OH)(8)(H2O)(4) clusters, has been judiciously designed; the Zr-6 clusters in this MOF are arranged in such a fashion that, by replacement of terminal OH-/H2O ligands, subsequent insertion of linear dicarboxylate linkers is achieved. We demonstrate that linkers with distinct lengths and functionalities can be sequentially installed into PCN-700. Single-crystal to single-crystal transformation is realized so that the positions of the subsequently installed linkers are pinpointed via single-crystal X-ray diffraction analyses. This methodology provides a powerful tool to construct multivariate MOFs with precisely positioned functionalities in the desired proximity, which would otherwise be difficult to achieve.

  12. Renormalization group improved computation of correlation functions in theories with nontrivial phase diagram

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Tonero, Alberto

    2016-07-01

    We present a simple and consistent way to compute correlation functions in interacting theories with nontrivial phase diagram. As an example we show how to consistently compute the four-point function in three dimensional Z2 -scalar theories. The idea is to perform the path integral by weighting the momentum modes that contribute to it according to their renormalization group (RG) relevance, i.e. we weight each mode according to the value of the running couplings at that scale. In this way, we are able to encode in a loop computation the information regarding the RG trajectory along which we are integrating. We show that depending on the initial condition, or initial point in the phase diagram, we obtain different behaviors of the four-point function at the endpoint of the flow.

  13. C-H Coupling Reactions Directed by Sulfoxides: Teaching an Old Functional Group New Tricks.

    PubMed

    Pulis, Alexander P; Procter, David J

    2016-08-16

    Sulfoxides are classical functional groups for directing the stoichiometric metalation and functionalization of C-H bonds. In recent times, sulfoxides have been given a new lease on life owing to the development of modern synthetic methods that have arisen because of their unique reactivity. They have recently been used in catalytic C-H activation proceeding via coordination of an internal sulfoxide to a metal or through the action of an external sulfoxide ligand. Furthermore, sulfoxides are able to capture nucleophiles and electrophiles to give sulfonium salts, which subsequently enable the formation of C-C bonds at the expense of C-H bonds. This Review summarizes a renaissance period in the application of sulfoxides arising from their versatility in directing C-H functionalization. PMID:27409984

  14. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases – (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  15. Nonperturbative renormalization group calculation of quasiparticle velocity and dielectric function of graphene

    NASA Astrophysics Data System (ADS)

    Bauer, Carsten; Rückriegel, Andreas; Sharma, Anand; Kopietz, Peter

    2015-09-01

    Using a nonperturbative functional renormalization group approach, we calculate the renormalized quasiparticle velocity v (k ) and the static dielectric function ɛ (k ) of suspended graphene as functions of an external momentum k . Our numerical result for v (k ) can be fitted by v (k ) /vF=A +B ln(Λ0/k ) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A =1.37 , B =0.51 for the physically relevant value (e2/vF=2.2 ) of the coupling constant. In contrast to calculations based on the static random-phase approximation, we find that ɛ (k ) approaches unity for k →0 . Our result for v (k ) agrees very well with a recent measurement by Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].

  16. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways

    NASA Astrophysics Data System (ADS)

    Zhang, Yijuan; Pan, Hong; Zhang, Pengfei; Gao, Ningning; Lin, Yi; Luo, Zichao; Li, Ping; Wang, Ce; Liu, Lanlan; Pang, Daiwen; Cai, Lintao; Ma, Yifan

    2013-06-01

    PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial cells and macrophages by evaluating the cytokine/chemokine production. The results showed that the proinflammatory effects of PEG-pQDs were strongly associated with the functional groups (-COOH, -NH2, -OH, and -OCH3) at the end of PEG chain. COOH-PEG-pQDs demonstrated the most proinflammatory effects followed by NH2-PEG-pQDs and HO-PEG-pQDs with CH3O-PEG-pQDs exhibiting the least proinflammatory effects. The proinflammatory effects of PEG-pQDs relied on lipid raft- and class A scavenger receptor (SRA)-dependent endocytic pathways as well as the downstream NF-κB and MAPK signaling cascades. COOH-PEG-pQDs were selectively internalized by lipid raft- and SRA-mediated endocytosis, which consequently activated NF-κB signaling pathway. On the other hand, NH2-PEG-pQDs and HO-PEG-pQDs were mostly internalized via lipid raft-mediated endocytosis, thereby activating p38 MAPK/AP-1 signaling cascades. These data revealed a critical role of terminal functional group-associated endocytic pathways in the proinflammatory responses induced by PEGylated QDs in human pulmonary epithelial cells and macrophages.PEGylation has been applied as an effective strategy of surface functionalization to improve the stability and reduce non-specific binding of quantum dots (QDs). However, its effects on the proinflammatory properties of QDs and the underlying mechanism have not been well elucidated yet. Herein, the proinflammatory effects of PEGylated CdSe/ZnS QDs with an amphiphilic polymer coating (PEG-pQDs) were investigated in human pulmonary epithelial

  17. Alcohol abuse and HIV infection have additive effects on frontal cortex function as measured by auditory evoked potential P3A latency.

    PubMed

    Fein, G; Biggins, C A; MacKay, S

    1995-02-01

    Both alcohol and human immunodeficiency virus (HIV) infection have been shown to produce central nervous system (CNS) morbidity in frontal brain regions. The degree to which the CNS morbidity in HIV infection, as it affects frontal cortex function, may be preferentially increased by alcohol abuse was examined using the auditory P3A evoked potential. The P3A indexes an orienting response, maximal over frontal cortex that occurs when novel nontarget stimuli are presented in the midst of a target detection paradigm. Four groups of subjects were compared: HIV+ alcohol abusers, HIV+ light/nondrinkers, HIV- alcohol abusers, and HIV- light/nondrinkers. The alcohol abuser and light/nondrinker HIV+ groups were matched on percent CD4 lymphocytes, insuring that the results reflected specific CNS effects and were not a result of differences between the groups in the degree of systemic immune suppression. Alcohol abuse and HIV infection had at least additive effects on P3A latency, consistent with alcohol abuse worsening the effect of HIV disease on frontal cortex function. Post-hoc analyses suggested that concomitant alcohol abuse results in the effects of HIV infection on P3A latency becoming manifest earlier in the HIV disease process. PMID:7727627

  18. Immediate postoperative radiotherapy in residual nonfunctioning pituitary adenoma: Beneficial effect on local control without additional negative impact on pituitary function and life expectancy

    SciTech Connect

    Bergh, Alfons C.M. van den . E-mail: a.c.m.van.den.bergh@rt.umcg.nl; Berg, Gerrit van den; Schoorl, Michiel A.; Sluiter, Wim J.; Vliet, Anton M. van der; Hoving, Eelco W.; Szabo, Ben G.; Langendijk, Johannes A.; Wolffenbuttel, Bruce H.R.; Dullaart, Robin P.F.

    2007-03-01

    Purpose: To demonstrate the benefit of immediate postoperative radiotherapy in residual nonfunctioning pituitary adenoma (NFA) in perspective to the need for hormonal substitution and life expectancy. Methods and Materials: Retrospective cohort analysis of 122 patients, operated for NFA between 1979 and 1998. Recurrence was defined as regrowth on computed tomography or magnetic resonance imaging. The occurrence of hormonal deficiencies was defined as the starting date of hormonal substitution therapy. Results: Seventy-six patients had residual NFA after surgery and received immediate postoperative radiotherapy (Group 1); three patients developed a recurrence, resulting in a 95% local control rate at 10 years. Twenty-eight patients had residual NFA after surgery, but were followed by a wait-and-see policy (Group 2). Sixteen developed a recurrence, resulting in a local control rate of 49% at 5 years and 22% at 10 years (p < 0.001 compared with Group 1). There were no differences between Group 1 and 2 regarding the need for substitution with thyroid hormone, glucocorticoids, and sex hormones before first surgery, directly after surgery and at end of follow-up. There were no differences in hormone substitution free survival between Group 1 and Group 2 during the study period after first surgery. Life expectancy was similar in Group 1 and 2, and their median life expectancy did not differ from median life expectancy in the general population. Conclusions: Immediate postoperative radiotherapy provides a marked improvement of local control among patients with residual NFA compared with surgery alone, without an additional deleterious effect on pituitary function and life expectancy.

  19. Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups.

    PubMed

    Gupta, Krishna M; Zhang, Kang; Jiang, Jianwen

    2015-12-01

    A molecular simulation study is reported for water desalination through five zeolitic imidazolate framework (ZIF) membranes, namely ZIF-25, -71, -93, -96, and -97. The five ZIFs possess identical rho-topology but differ in functional groups. The rejection of salt (NaCl) is found to be around 97% in ZIF-25, and 100% in the other four ZIFs. The permeance ranges from 27 to 710 kg/(m(2)·h·bar), about one∼two orders of magnitude higher compared with commercial reverse osmosis membranes. Due to a larger aperture size da, ZIF-25, -71, and -96 exhibit a much higher water flux than ZIF-93 and -97; however, the flux in ZIF-25, -71, and -96 is governed by the polarity of functional group rather than da. With the hydrophobic CH3 group, ZIF-25 has the highest flux despite the smallest da among ZIF-25, -71, and -96. The lifetime of hydrogen bonding in ZIF-25 is shorter than that in ZIF-71 and -96. Furthermore, water molecules undergo a fast flushing motion in ZIF-25, but frequent jumping in ZIF-96 and particularly in ZIF-97. An Arrhenius-type relationship is found between water flux in ZIF-25 and temperature, and the activation energy is predicted to be 6.5 kJ/mol. This simulation study provides a microscopic insight into water desalination in a series of ZIFs, reveals the key factors (aperture size and polarity of functional group) governing water flux, and suggests that ZIF-25 might be an interesting reverse osmosis membrane for high-performance water desalination. PMID:26588699

  20. Nucleophile-catalyzed additions to activated triple bonds. Protection of lactams, imides, and nucleosides with MocVinyl and related groups.

    PubMed

    Mola, Laura; Font, Joan; Bosch, Lluís; Caner, Joaquim; Costa, Anna M; Etxebarría-Jardí, Gorka; Pineda, Oriol; de Vicente, David; Vilarrasa, Jaume

    2013-06-21

    Additions of lactams, imides, (S)-4-benzyl-1,3-oxazolidin-2-one, 2-pyridone, pyrimidine-2,4-diones (AZT derivatives), or inosines to the electron-deficient triple bonds of methyl propynoate, tert-butyl propynoate, 3-butyn-2-one, N-propynoylmorpholine, or N-methoxy-N-methylpropynamide in the presence of many potential catalysts were examined. DABCO and, second, DMAP appeared to be the best (highest reaction rates and E/Z ratios), while RuCl3, RuClCp*(PPh3)2, AuCl, AuCl(PPh3), CuI, and Cu2(OTf)2 were incapable of catalyzing such additions. The groups incorporated (for example, the 2-(methoxycarbonyl)ethenyl group that we name MocVinyl) serve as protecting groups for the above-mentioned heterocyclic CONH or CONHCO moieties. Deprotections were accomplished via exchange with good nucleophiles: the 1-dodecanethiolate anion turned out to be the most general and efficient reagent, but in some particular cases other nucleophiles also worked (e.g., MocVinyl-inosines can be cleaved with succinimide anion). Some structural and mechanistic details have been accounted for with the help of DFT and MP2 calculations. PMID:23713491

  1. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  2. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    PubMed

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  3. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology.

    PubMed

    Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller

    2012-11-01

    The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847

  4. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and

  5. Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering.

    PubMed

    Yang, Nan; Tian, Yanling; Zhang, Dawei

    2015-11-01

    Heterogeneous porous scaffolds have important applications in biomedical engineering, as they can mimic the structures of natural tissues to achieve the corresponding properties. Here, we introduce a new and easy to implement real function based method for constructing complex, heterogeneous porous structures, including hybrid structures, stochastic structures, functionally gradient structures, and multi-scale structures, or their combinations (e.g., hybrid multi-scale structures). Based on micro-CT data, a femur-mimetic structure with gradient morphology was constructed using our method and fabricated using stereolithography. Results showed that our method could generate gradient porosity or gradient specific surfaces and be sufficiently flexible for use with micro-CT data and additive manufacturing (AM) techniques. PMID:26320819

  6. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Mun, Junyoung; Lim, Sang Hoo; Woo, Sang-Gil; Kim, Ki Jae; Park, Min-Sik; Cho, Woosuk; Song, Jun Ho; Han, Young-Kyu; Yu, Ji-Sang; Kim, Young-Jun

    2016-01-01

    Nickel-rich lithium nickel cobalt manganese oxides have received considerable attention as a promising cathode material, however, they have suffered from poor interfacial stability, especially at high temperature. Here, we suggest a bi-functionalized divinyl sulfone that enhances the applicability of a nickel-rich cathode via stabilization of the electrolyte-electrode interface. The divinyl sulfone forms a protective layer on the cathode surface by electrochemical oxidation reactions and this greatly decreases the internal pressure of the cell via stabilization of the Ni-rich cathode-electrolyte interface. The cell controlled with divinyl sulfone shows remarkable cycling performance with 91.9% capacity retention at elevated temperature even after 100 cycles. Additional electrode analyses and first-principles calculations provide critical spectroscopic evidences to demonstrate the combined effects of the sulfone and vinyl functional groups. Once the divinyl sulfone is electrochemically oxidized, the vinyl functional groups readily participate in further stabilizing sulfone-based solid electrolyte interphase intermediates and afford a durable protective layer on the nickel-rich electrode surface.

  7. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These

  8. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  9. Tuning the electron transport of molecular junctions by chemically functionalizing anchoring groups: First-principles study

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shigeru; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan

    2012-06-01

    In this first-principles study, we present density-functional calculations of the electronic structures and electron transport properties of organic molecular junctions with several anchoring groups containing atoms with different electronegativities, i.e., benzenediboronate (BDB), benzenedicarboxylate (BDC), and dinitrobenzene (DNB) molecular junctions sandwiched between two Cu(110) electrodes. The electronic-structure calculations exhibit a significant difference in the density of states not only at the anchoring groups but also at the aromatic rings of the molecular junctions, suggesting that the electron transport is specific for each system. Our transport calculations show that the BDB and DNB molecular junctions have finite electron transmissions at the zero-bias limit while the BDC molecular junction has a negligible electron transmission. Moreover, for the BDB and DNB systems, the electron transmission channels around the Fermi energy reveal fingerprint features, which provide specific functionalities for the molecular junctions. Therefore, our theoretical results demonstrate the possibility to precisely tune the electron transport properties of molecular junctions by engineering the anchoring groups at the single-atom level.

  10. Effect of chemical functionalization groups on Zr6-AzoBDC to enhance H2, CH4 storage and CO2 capture: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Trang, Khung M.; Pham, Hung Q.; Pham-Tran, Nguyen-Nguyen

    2015-09-01

    Grand canonical Monte Carlo (GCMC) simulation combined with the ideal adsorbed solution theory (IAST) and a statistical method were utilized to investigate the effect of functional groups on zirconium oxide based metal-organic frameworks (MOFs) Zr6-AzoBDC (Zr6A) for the gases (H2, CH4) adsorption property and CO2/CH4 selectivity under low pressure. The results showed that phenyl groups containing nitrogen (pyridine, pyrimidine) and thiophene group enhance the gas affinity with MOFs, therefore increasing both gravimetric and volumetric uptake. In addition, this behavior can also cause significantly improved selective capture of CO2 from CO2/CH4 gas mixtures. Among functional groups studied, the sulfonic acid group can potentially improve CH4, CO2 uptake and H2 isosteric heat of adsorption. These findings would play a vital role in designing new materials toward gas adsorption properties.

  11. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  12. Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance.

    PubMed

    Li, Huiyang; Fang, Manman; Hou, Yingqin; Tang, Runli; Yang, Yizhou; Zhong, Cheng; Li, Qianqian; Li, Zhen

    2016-05-18

    Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance. PMID:27101840

  13. Glutathione-S-transferase (GST) polymorphism among ethnic groups in Singapore with report of additional alleles at loci 1 and 2.

    PubMed

    Bhattacharyya, S P; Saha, N; Wee, K P

    1989-04-01

    Glutathione S-transferases (GST; E.C.2.5.1.18) were phenotyped by starch gel electrophoresis in post-mortem liver samples from 683 unrelated subjects of both sexes. 305 were Chinese, 185 Indians, 147 Malays and 46 from other racial groups of South-East Asia. GST1 and GST2 were found to be polymorphic in these populations. Additional alleles (GST1*3 and GST2*O) were observed at low frequency in all the ethnic groups. The frequency of GST1*1 was lower and that of GST1*2 was higher in Indians and Malays as compared to Chinese. GST1*0 and GST1*3 frequencies were similar in all these ethnic groups. The gene frequencies of the alleles of the GST2 locus varied significantly in the population studied. GST2*0 frequency was significantly higher in Indians than in Chinese and Malays, while the lowest frequency of GST2*1 was found in the Indians. GST2*2 frequency was higher in the Malays than in Chinese and Indians. GST1 and GST2 phenotype distributions were in agreement with Hardy-Weinberg equilibrium in all the ethnic groups studied. Sex made no significant difference in the phenotype distribution. PMID:2487053

  14. The synthesis of desired functional groups on PEI microgel particles for biomedical and environmental applications

    NASA Astrophysics Data System (ADS)

    Sahiner, Nurettin; Demirci, Sahin; Sahiner, Mehtap; Al-Lohedan, Hamad

    2015-11-01

    Polyethyleneimine (PEI) microgels were synthesized by micro emulsion polymerization technique and converted to positively charged forms by chemical treatments with various modifying agents with different functional groups, such as 2-bromoethanol (-OH), 4-bromobutyronitrile (-CN), 2-bromoethylamine hydrobromide (-NH2), and glycidol (-OH). The functionalization of PEI microgels was confirmed by FT-IR, TGA and zeta potential measurements. Furthermore, a second modification of the modified PEI microgels was induced on 4-bromo butyronitrile-modified PEI microgels (PEI-CN) by amidoximation, to generate new functional groups on the modified PEI microgels. The PEI and modified PEI microgels were also tested for their antimicrobial effects against various bacteria such as Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25323. Moreover, the PEI-based particles were used for removal of organic dyes such as methyl orange (MO) and congo red (CR). The absorption capacity of PEI-based microgels increased with modification from 101.8 mg/g to 218.8 mg/g with 2-bromoethylamine, 216.2 m/g with 1-bromoethanol, and 224.5 mg/g with 4-bromobutyronitrile for MO. The increase in absorption for CR dyes was from 347.3 mg/g to 390.4 mg/g with 1-bromoethanol, 399.6 mg/g with glycidol, and 349.9 mg/g with 4-bromobutyronitrile.

  15. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production1

    PubMed Central

    Salimi, Maryam; Xue, Luzheng; Jolin, Helen; Hardman, Clare; Cousins, David J.; McKenzie, Andrew N.J.; Ogg, Graham S.

    2016-01-01

    Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defence, epithelial repair and lipid homeostasis. ILC2 lack rearranged antigen-specific receptors, and while many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of ILC1 and ILC3 and thought to be important for their effector function, but have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human group 2 innate lymphoid cells. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking antibody and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis; and incubation of keratinocytes with pro-inflammatory and type 2 cytokines upregulated B7-H6 leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases. PMID:26582946

  16. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (<20 kg N ha-1 yr-1), but significantly decreased at higher nitrogen fertilizer inputs (>=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community

  17. The role of an aromatic group in remote chiral induction during conjugate addition of α-sulfonylallylic carbanions to ethyl crotonate

    PubMed Central

    Levinger, Shlomo; Nair, Ranjeet

    2008-01-01

    Summary The impact of a remote aromatic nucleus on the stereochemical outcome of the conjugate addition of α-sulfonylallylic carbanions to an α,β-unsaturated ester was investigated. α-Regioselectivity coupled with anti-diastereoselectivity is accompanied by a prominent preference for relative configuration 3 over 4. The 9-anthryl moiety has shown itself greatly superior over all other groups in this bias. A lithium ion–aromatic π interaction has been postulated as decisive for the remote transmission of chirality. PMID:18941617

  18. A systematic study of functionalized oxiranes as initiating groups for cationic polycyclization reactions.

    PubMed

    Rajendar, Goreti; Corey, E J

    2015-05-01

    Three different methods have been developed that effectively utilize chiral oxiranes derived from Katsuki-Sharpless epoxidation of allylic alcohols as initiating groups for cationic cyclization of unsaturated substrates to form chiral polycycles. This type of transformation has previously been problematic. These employ either epoxy-methoximes, vinyl-substituted oxiranes, or hydroxymethyl oxiranes. All three approaches are described in detail. In addition, this research has led to possible explanations for previously encountered difficulties in this area and provided two new insights into the Lewis acid activation of oxiranes. The methodology described herein constitutes a valuable link between two powerful synthetic constructions, enantioselective Katsuki-Sharpless epoxidation and cationic polycyclization reactions. PMID:25871500

  19. Role of functional groups in fiber in the binding of zinc

    SciTech Connect

    Jiang, K.

    1986-03-01

    The binding of zinc by purified cellulose, xylan, methylated xylan, pectin and methylated pectin was measured in vitro. Methylated xylan and methylated pectin were prepared chemically from xylan and pectin, respectively, to block hydroxyl and carboxyl groups. Comparison of zinc binding capacities was made between xylan and methylated xylan, and between pectin and methylated pectin to assess the role of the two functional groups in binding minerals. The binding of zinc was conducted at pH 2.6, 4.0, 5.4 and 6.8 in various concentrations of ZnSO/sub 4/ solution containing /sup 65/Zn using a dialysis system for water-soluble pectin and an incubation-centrifugation model for the other four water-insoluble fibers. The results showed that zinc binding by each fiber was pH dependent and it increased from pH 2.6 to 6.8 (p < 0.001). At pH 6.8, % Zn bound to fiber decreased as concentration of ZnSO/sub 4/ increased from 1 ..mu..M to 96 ..mu..M (p less than or equal to 0.01). mean zinc binding ratio of pectin to methylated xylan was 5.1, whereas the ratio of pectin t methylated pectin was only 1.7. This suggests that the hydroxyl group in xylan plays a more important role than the carboxyl group in pectin in the binding of zinc.

  20. Submerged vegetation removal promotes shift of dominant phytoplankton functional groups in a eutrophic lake.

    PubMed

    Dong, Jing; Yang, Kai; Li, Shuangshuang; Li, Genbao; Song, Lirong

    2014-08-01

    Historical data indicate that the dominance of submerged plants in Dianchi Lake in the 1960s was characterized by low algal density with dominance of non-toxic group J (Scenedesmus, Pediastrum, etc.). The removal of submerged plants, which began in the 1970s, resulted in the expansion of bloom-forming Microcystis (group M). Laboratory experiments suggested that Microcystis aeruginosa was inclined to grow and develop at elevated temperatures. The growth of Scenedesmus obliquus was slower than that of co-cultivated M. aeruginosa in the absence of Ceratophyllum demersum, especially at higher temperatures. The existence of submerged plant C. demersum could inhibit the growth of the harmful algae M. aeruginosa and this inhibitory effect by C. demersum was enhanced with an increase in temperature. Instead, with C. demersum, the growth of S. obliquus was not inhibited, but the co-cultivated M. aeruginosa was eliminated in a short time. Combined with the historical data and laboratory experiments, it was indicated that the submerged plants might play important roles in the dominance of the non-toxic group J in the historical succession. Consequently, the introduction of the submerged plant such as C. demersum might alter the dominant phytoplankton functional groups from M to J and benefit the restoration of the eutrophic lake. PMID:25108726

  1. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  2. Detecting Functional Groups of Arabidopsis Mutants by Metabolic Profiling and Evaluation of Pleiotropic Responses

    PubMed Central

    Hofmann, Jörg; Börnke, Frederik; Schmiedl, Alfred; Kleine, Tatjana; Sonnewald, Uwe

    2011-01-01

    Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydrates, phosphorylated intermediates, carboxylates, free amino acids, major antioxidants, and plastidic pigments were evaluated. Our key observations are that by multivariate statistical analysis each mutant can be separated by a unique metabolic signature. Closely related mutants come close. Thus metabolic profiles of sugar mutants are different but more similar than those of photosynthesis mutants. All mutants show pleiotropic responses mirrored in their metabolic status. These pleiotropic responses are typical and can be used for separating and grouping of the mutants. Our findings show that metabolite fingerprints can be taken to classify mutants and hence may be used to sort genes into functional groups. PMID:22639613

  3. Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.; Braun, Jens

    2012-06-01

    We present the Mathematica application DoFun which allows to derive Dyson-Schwinger equations and renormalization group flow equations for n-point functions in a simple manner. DoFun offers several tools which considerably simplify the derivation of these equations from a given physical action. We discuss the application of DoFun by means of two different types of quantum field theories, namely a bosonic O(N) theory and the Gross-Neveu model. Program summaryProgram title:DoFun Catalogue identifier: AELN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 506 No. of bytes in distributed program, including test data, etc.: 571 837 Distribution format: tar.gz Programming language: Mathematica 7 and higher Computer: PCs and workstations Operating system: All on which Mathematica is available (Windows, Unix, MacOS) Classification: 11.1, 11.4, 11.5, 11.6 Nature of problem: Derivation of functional renormalization group equations and Dyson-Schwinger equations from the action of a given theory. Solution method: Implementation of an algorithm to derive functional renormalization group and Dyson-Schwinger equations. Unusual features: The results can be plotted as Feynman diagrams in Mathematica. The output is compatible with the syntax of many other programs and is therefore suitable for further (algebraic) computations. Running time: Seconds to minutes

  4. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    SciTech Connect

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; Tucker, Lyndsay; Correia, Bruna; Do-Thanh, Chi-Linh; Dai, Sheng; Hancock, Robert D.; Bryantsev, Vyacheslav S.

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pKa values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pKa values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopic titrations to measure the pKa values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pKa values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pKa units and 0.35 pKa units, respectively, and a root mean square deviation of 0.46 pKa units and 0.45 pKa units, respectively. Finally, we employ our two best methods to predict the pKa values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.

  5. Acidity of the amidoxime functional group in aqueous solution. A combined experimental and computational study

    DOE PAGESBeta

    Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.; Tucker, Lyndsay; Correia, Bruna; Do-Thanh, Chi-Linh; Dai, Sheng; Hancock, Robert D.; Bryantsev, Vyacheslav S.

    2015-01-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. It has been demonstrated repeatedly in the literature that the success of these materials is due to the amidoxime functional group. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pKa values that have been reported for the amidoxime functional group in the literature. To resolve this existing controversy we investigated the pKa values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopicmore » titrations to measure the pKa values of representative amidoximes, acetamidoxime and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pKa values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance with a mean absolute error of 0.33 pKa units and 0.35 pKa units, respectively, and a root mean square deviation of 0.46 pKa units and 0.45 pKa units, respectively. Finally, we employ our two best methods to predict the pKa values of promising, uncharacterized amidoxime ligands. Hence, our study provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents used to mine uranium from seawater.« less

  6. Neurocognitive functioning in a group of offspring genetically at high-risk for schizophrenia in Eastern Turkey.

    PubMed

    Ozan, Erol; Deveci, Erdem; Oral, Meltem; Karahan, Utku; Oral, Elif; Aydin, Nazan; Kirpinar, Ismet

    2010-05-31

    We assessed major cognitive domains in symptom-free children of patients with schizophrenia compared to the healthy children of parents with no psychopathology using neurocognitive tests. We hypothesized that, offspring at high-risk for schizophrenia would have significant impairment in major domains: attention, memory, verbal-linguistic ability and executive functions. Thirty symptom-free children (17-males, 13-females; intelligence quotient=99.6+/-13.6; age=12.69+/-2.32 and education=5.8+/-2.3 years) having a parent diagnosed with schizophrenia and 37 healthy children matched for gender (19-males, 18-females), IQ (106.05+/-14.70), age (12.48+/-2.58) and years of education (6.0+/-2.5) were evaluated. The study group showed significant poor performance in cognitive domains, such as working memory (assessed with Auditory consonant trigram test), focused attention (Stroop test), attention speed (Trail making test), divided attention (Auditory consonant trigram test), executive functions (Wisconsin card sorting test), verbal fluency (Controlled word association test) and declarative memory (Rey verbal learning and Short-term memory test). However, no group differences were detected either on verbal attention (Digit span forward test) or sustained attention (TOVA, a continuous performance task); the latter as consistently reported to be a predictor of schizophrenia. In order to determine the cognitive endophenotype of schizophrenia, it seems more rational to conduct comprehensive evaluation of neurocognitive domains in well-matched groups via using sufficiently challenging tests to detect slight deficits. In addition, longitudinal studies with a larger sample size evaluating neurocognitive functions combined with genetic analysis may provide clues about explaining the genetic background of the disorder within the endophenocognitype concept and serve as new targets for early interventions. PMID:20435102

  7. Quantifying Functional Group Interactions that Determine Urea Effects on Nucleic Acid Helix Formation

    PubMed Central

    Guinn, Emily J.; Schwinefus, Jeffrey J.; Cha, Hyo Keun; McDevitt, Joseph L.; Merker, Wolf E.; Ritzer, Ryan; Muth, Gregory W.; Engelsgjerd, Samuel W.; Mangold, Kathryn E.; Thompson, Perry J.; Kerins, Michael J.; Record, Thomas

    2013-01-01

    Urea destabilizes helical and folded conformations of nucleic acids and proteins, as well as protein-nucleic acid complexes. To understand these effects, extend previous characterizations of interactions of urea with protein functional groups, and thereby develop urea as a probe of conformational changes in protein and nucleic acid processes, we obtain chemical potential derivatives (μ23 = dμ2/dm3) quantifying interactions of urea (component 3) with nucleic acid bases, base analogs, nucleosides and nucleotide monophosphates (component 2) using osmometry and hexanol-water distribution assays. Dissection of these μ23 yields interaction potentials quantifying interactions of urea with unit surface areas of nucleic acid functional groups (heterocyclic aromatic ring, ring methyl, carbonyl and phosphate O, amino N, sugar (C,O)); urea interacts favorably with all these groups, relative to interactions with water. Interactions of urea with heterocyclic aromatic rings and attached methyl groups (as on thymine) are particularly favorable, as previously observed for urea-homocyclic aromatic ring interactions. Urea m-values determined for double helix formation by DNA dodecamers near 25°C are in the range 0.72 to 0.85 kcal mol−1 m−1 and exhibit little systematic dependence on nucleobase composition (17–42% GC). Interpretation of these results using the urea interaction potentials indicates that extensive (60–90%) stacking of nucleobases in the separated strands in the transition region is required to explain the m-value. Results for RNA and DNA dodecamers obtained at higher temperatures, and literature data, are consistent with this conclusion. This demonstrates the utility of urea as a quantitative probe of changes in surface area (ΔASA) in nucleic acid processes. PMID:23510511

  8. The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function

    PubMed Central

    Clemmensen, C; Smajilovic, S; Wellendorph, P; Bräuner-Osborne, H

    2014-01-01

    GPRC6A (GPCR, class C, group 6, subtype A) is a class C GPCR that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L-lysine and L-ornithine are the most potent compounds with EC50 values in the mid-micromolar range. In addition, several groups have shown that the receptor is either directly activated or positively modulated by divalent cations such as Ca2+ albeit in concentrations above 5 mM, which is above the physiological concentration in most tissues. More recently, the peptide osteocalcin and the steroid testosterone have also been suggested to be endogenous GPRC6A agonists. The receptor is widely expressed in all three species which, along with the omnipresence of the amino acids and divalent cation ligands, suggest that the receptor could be involved in a broad range of physiological functions. So far, this has mainly been addressed by analyses of genetically modified mice where the GPRC6A receptor has been ablated. Although there has been some discrepancies among results reported from different groups, there is increasing evidence that the receptor is involved in regulation of inflammation, metabolism and endocrine functions. GPRC6A could thus be an interesting target for new drugs in these therapeutic areas. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24032653

  9. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo

    2013-12-01

    Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation

  10. Functional gene group analysis indicates no role for heterotrimeric G proteins in cognitive ability.

    PubMed

    Hill, W David; de Leeuw, Christiaan; Davies, Gail; Liewald, David Cherry McLachlan; Payton, Anthony; Craig, Leone C A; Whalley, Lawrence J; Horan, Mike; Ollier, William; Starr, John M; Pendleton, Neil; Posthuma, Danielle; Bates, Timothy C; Deary, Ian J

    2014-01-01

    Previous functional gene group analyses implicated common single nucleotide polymorphisms (SNPs) in heterotrimeric G protein coding genes as being associated with differences in human intelligence. Here, we sought to replicate this finding using five independent cohorts of older adults including current IQ and childhood IQ, and using both gene- and SNP-based analytic strategies. No significant associations were found between variation in heterotrimeric G protein genes and intelligence in any cohort at either of the two time points. These results indicate that, whereas G protein systems are important in cognition, common genetic variation in these genes is unlikely to be a substantial influence on human intelligence differences. PMID:24626473

  11. Effects of Functional Groups and Sugar Composition of Quercetin Derivatives on Their Radical Scavenging Properties.

    PubMed

    Kato, Komei; Ninomiya, Masayuki; Tanaka, Kaori; Koketsu, Mamoru

    2016-07-22

    Quercetin derivatives are widespread in the plant kingdom and exhibit various biological actions. The aim of this study was to investigate the structure-activity relationships of quercetin derivatives, with a focus on the influence of functional groups and sugar composition on their antioxidant capacity. A series of quercetin derivatives were therefore prepared and assessed for their DPPH radical scavenging properties. Isoquercetin O-gallates were more potent radical scavengers than quercetin. The systematic analysis highlights the importance of the distribution of hydroxy substituents in isoquercetin O-gallates to their potency. PMID:27314621

  12. Functional renormalization group study of an 8-band model for the iron arsenides

    NASA Astrophysics Data System (ADS)

    Honerkamp, Carsten; Lichtenstein, Julian; Maier, Stefan A.; Platt, Christian; Thomale, Ronny; Andersen, Ole Krogh; Boeri, Lilia

    2014-03-01

    We investigate the superconducting pairing instabilities of eight-band models for 1111 iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  13. Functional groups in a single pteridosperm species: Variability and circumscription (Pennsylvanian, Nova Scotia, Canada)

    USGS Publications Warehouse

    Zodrow, E.L.; Mastalerz, Maria

    2007-01-01

    Multiple foliar specimens of the Late Pennsylvanian fossil pteridosperm [gymnosperm] Alethopteris zeilleri (Ragot) Wagner were collected from one restricted stratigraphical horizon in the Canadian Sydney Coalfield. Variability of functional-group distribution using FTIR technique was studied in compressions, adaxial versus abaxial cuticles, and in unseparated cuticles as a function of maceration time from 48 to 168??h. The results obtained document spectral variability that could be expected within specimens of one species. For example, CH2/CH3 and Al/ox ratios can differ by as much as 20% of the values. Moreover, the experiments performed confirm that by using a previously established maceration protocol, long maceration periods do not bias FTIR spectra in terms of oxygenation overprinting. The inference that this cuticle is robust, under the given diagenetic level, probably reflects a reassuring degree of chemical fidelity of the Pennsylvanian plant to support Carboniferous chemotaxonomic observations. ?? 2006 Elsevier B.V. All rights reserved.

  14. Functional renormalization group approach to the Yang-Lee edge singularity

    NASA Astrophysics Data System (ADS)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2016-07-01

    We determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ɛ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O({partial}^4) truncations of the scale-dependent effective action.

  15. Block renormalization group in a formalism with lattice wavelets: Correlation function formulas for interacting fermions

    SciTech Connect

    Pereira, E.; Procacci, A.

    1997-03-01

    Searching for a general and technically simple multiscale formalism to treat interacting fermions, we develop a (Wilson{endash}Kadanoff) block renormalization group mechanism, which, due to the property of {open_quotes}orthogonality between scales,{close_quotes} establishes a trivial link between the correlation functions and the effective potential flow, leading to simple expressions for the generating and correlation functions. Everything is based on the existence of {open_quotes}special configurations{close_quotes} (lattice wavelets) for multiscale problems: using a simple linear change of variables relating the initial fields to these configurations, we establish the formalism. The algebraic formulas show a perfect parallel with those obtained for bosonic problems, considered in previous works. {copyright} 1997 Academic Press, Inc.

  16. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  17. Intracellular localization of a group II chaperonin indicates a membrane-related function

    PubMed Central

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60°C and 76°C or heat-shocked at 85°C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76°C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92°C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60°C and 76°C or heat-shocked at 85°C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface. PMID:14673104

  18. Nitrogen niches revealed through species and functional group removal in a boreal shrub community.

    PubMed

    Gundale, Michael J; Hyodo, Fujio; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche

  19. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. PMID:25345650

  20. A multigene phylogeny of the fly superfamily Asiloidea (Insecta): Taxon sampling and additional genes reveal the sister-group to all higher flies (Cyclorrhapha).

    PubMed

    Trautwein, Michelle D; Wiegmann, Brian M; Yeates, David K

    2010-09-01

    Asiloidea are a group of 9 lower brachyceran fly families, considered to be the closest relative to the large Metazoan radiation Eremoneura (Cyclorrhapha+Empidoidea). The evidence for asiloid monophyly is limited, and few characters define the relationships between the families of Asiloidea and Eremoneura. Additionally, enigmatic genera, Hilarimorpha and Apystomyia, retain morphological characters of both asiloids and higher flies. We use the nuclear protein-coding gene CAD and 28S rDNA to test the monophyly of Asiloidea and to resolve its relationship to Eremoneura. We explore the effects of taxon sampling on support values and topological stability, the resolving power of additional genes, and hypothesis testing using four-cluster likelihood mapping. We find that: (1) the 'asiloid' genus Apystomyia is sister to Cyclorrhapha, (2) the remaining asiloids are monophyletic at the exclusion of the family Bombyliidae, and (3) our best estimate of relationships places the asiloid flies excluding Bombyliidae as the sister-group to Eremoneura, though high support is lacking. PMID:20399874

  1. Effect of functional groups on the crystallization of ferric oxides/oxyhydroxides in suspension environment

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Albert, Olga; Deng, Hua; Yu, Xiao-Long; Cao, Yang; Li, Jian-Bao; Huang, Xin

    2012-12-01

    This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (-OH), carboxyl (-COOH), amine (-NH2) and methyl (-CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that ɛ-Fe2O3 was detected on -NH2 surface. Crystallization for 10 h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ɛ-Fe2O3 was found on -OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on -NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area.

  2. Generation of Benzyne Species from Diphenylphosphoryl Derivatives: Simultaneous Exchange of Three Functional Groups.

    PubMed

    Gorobets, Evgueni; Parvez, Masood; Derksen, Darren J; Keay, Brian A

    2016-06-13

    Interaction of (2-diphenylphosphoryl-3-iodo-4-methoxy-phenyl) methanol with NaH in DMF at ambient temperature results in the generation of benzyne intermediates that can be trapped by furan or DMF. Trapping with DMF forms 3-(dimethylaminomethyl)-2-hydroxy-6-methoxybenzaldehyde demonstrating the simultaneous exchange of three functionalities in a single step. The presence of the alkoxy substituent adjacent to iodine is critical for high regioselectivity addition of DMF. The corresponding bromide or triflate can be used in place of the iodide with equal efficiency. This methodology was used to synthesize the reported structure of gigasol and leading to a structural reassignment of this biscoumarin natural product. PMID:27144945

  3. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    SciTech Connect

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  4. Left Ventricular Function during Acute High-Altitude Exposure in a Large Group of Healthy Young Chinese Men

    PubMed Central

    Rao, Mingyue; Li, Jiabei; Qin, Jun; Zhang, Jihang; Gao, Xubin; Yu, Shiyong; Yu, Jie; Chen, Guozhu; Xu, Baida; Li, Huijie; Rao, Rongsheng; Huang, Lan; Jin, Jun

    2015-01-01

    Objective The purpose of this study was to observe left ventricular function during acute high-altitude exposure in a large group of healthy young males. Methods A prospective trial was conducted in Szechwan and Tibet from June to August, 2012. By Doppler echocardiography, left ventricular function was examined in 139 healthy young Chinese men at sea level; within 24 hours after arrival in Lhasa, Tibet, at 3700 m; and on day 7 following an ascent to Yangbajing at 4400 m after 7 days of acclimatization at 3700 m. The resting oxygen saturation (SaO2), heart rate (HR) and blood pressure (BP) were also measured at the above mentioned three time points. Results Within 24 hours of arrival at 3700 m, the HR, ejection fraction (EF), fractional shortening (FS), stroke volume (SV), cardiac output (CO), and left ventricular (LV) Tei index were significantly increased, but the LV end-systolic dimension (ESD), end-systolic volume (ESV), SaO2, E/A ratio, and ejection time (ET) were significantly decreased compared to the baseline levels in all subjects. On day 7 at 4400 m, the SV and CO were significantly decreased; the EF and FS Tei were not decreased compared with the values at 3700 m; the HR was further elevated; and the SaO2, ESV, ESD, and ET were further reduced. Additionally, the E/A ratio was significantly increased on day 7 but was still lower than it was at low altitude. Conclusion Upon acute high-altitude exposure, left ventricular systolic function was elevated with increased stroke volume, but diastolic function was decreased in healthy young males. With higher altitude exposure and prolonged acclimatization, the left ventricular systolic function was preserved with reduced stroke volume and improved diastolic function. PMID:25629435

  5. Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa–B. oleracea monosomic alien addition lines

    PubMed Central

    Heneen, Waheeb K.; Geleta, Mulatu; Brismar, Kerstin; Xiong, Zhiyong; Pires, J. Chris; Hasterok, Robert; Stoute, Andrew I.; Scott, Roderick J.; King, Graham J.; Kurup, Smita

    2012-01-01

    Background and Aims Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. Methods A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. Key Results The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker

  6. Trophic links between functional groups of arable plants and beetles are stable at a national scale.

    PubMed

    Brooks, David R; Storkey, Jonathan; Clark, Suzanne J; Firbank, Les G; Petit, Sandrine; Woiwod, Ian P

    2012-01-01

    1. There is an urgent need to accurately model how environmental change affects the wide-scale functioning of ecosystems, but advances are hindered by a lack of knowledge of how trophic levels are linked across space. It is unclear which theoretical approach to take to improve modelling of such interactions, but evidence is gathering that linking species responses to their functional traits can increase understanding of ecosystem dynamics. Currently, there are no quantitative studies testing how this approach might improve models of multiple, trophically interacting species, at wide spatial scales. 2. Arable weeds play a foundational role in linking food webs, providing resources for many taxa, including carabid beetles that feed on their seeds and weed-associated invertebrate prey. Here, we model associations between weeds and carabids across farmland in Great Britain (GB), to test the hypothesis that wide-scale trophic links between these groups are structured by their species functional traits. 3. A network of c. 250 arable fields, covering four crops and most lowland areas of GB, was sampled for weed, carabid and invertebrate taxa over 3 years. Data sets of these groups were closely matched in time and space, and each contained numerous species with a range of eco-physiological traits. The consistency of trophic linkages between multiple taxa sharing functional traits was tested within multivariate and log-linear models. 4. Robust links were established between the functional traits of taxa and their trophic interactions. Autumn-germinating, small-seeded weeds were associated with smaller, spring-breeding carabids, more specialised in seed feeding, whereas spring-germinating, large-seeded weeds were associated with a range of larger, autumn-breeding omnivorous carabids. These relationships were strong and dynamic, being independent of changes in invertebrate food resources and consistent across sample dates, crops and regions of GB. 5. We conclude that, in at

  7. Catalytic functionalities of supported sulfides. I. Effect of support and additives on the CoMo catalyst

    SciTech Connect

    Muralidhar, G.; Massoth, F.E.; Shabtai, J.

    1984-01-01

    C-S hydrogenolysis (HDS) of thiophene, hydrogenation (HYD) of 1-hexene, and hydrocracking (HCG) of 2,4,4-trimethyl-1-pentene, were used as separate model test reactions to differentiate and assess the catalytic functionalities of sulfided CoMo catalysts, and their dependence on the nature of the support and incorporation of additives. Rate constants and relative catalyst activities for these three reaction types were determined. HDS and HYD activities of CoMo supported on different types of Al/sub 2/O/sub 3/ were higher, while the HCG activity was lower compared with CoMo supported on SiO/sub 2/-Al/sub 2/O/sub 3/, SiO/sub 2/-MgO, or TiO/sub 2/. For SiO/sub 2/-Al/sub 2/O/sub 3/ supports both HDS and HYD activities decreased with increase in SiO/sub 2/ content from 10 to 75%, while HCG activity showed the opposite trend. Additives to a finished CoMo catalyst at 0.5% level caused variations in HDS and HCG activities, while HYD was essentially unaffected. HDS was promoted by NH/sub 4/HF/sub 2/ and NH/sub 4/Cl, but depressed by NaNO/sub 3/, Ca(NO/sub 3/)/sub 2/, and H/sub 3/BO/sub 3/. HCG was promoted by NH/sub 4/HF/sub 2/, NH/sub 4/Cl, and H/sub 3/BO/sub 3/. Additives at 5% level, prior to or after CoMo impregnation, showed a strong depressing effect on HDS and a lesser effect on HYD, while HCG was strongly promoted by NH/sub 4/HF/sub 2/, Ti isopropoxide, and H/sub 3/BO/sub 3/. The changes in catalytic functionalities are rationalized in terms of different interactions between CoMo phase, support, and additives. 3 tables, 1 figure.

  8. Existence of ultrafine crevices and functional groups along the edge surfaces of graphitized thermal carbon black.

    PubMed

    Zeng, Yonghong; Do, D D; Nicholson, D

    2015-04-14

    Adsorption of different gases on graphitized thermal carbon black (GTCB) has been studied with a new molecular model to examine the consequences of micropore crevices and functional groups at the junctions between adjacent basal planes. Adsorption was simulated in the Grand Canonical Monte Carlo ensemble and the theoretical Henry constants were calculated by Monte Carlo volume integration over the Boltzmann factor of the solid-fluid potential. The simulation results are in good agreement with high-resolution experimental isotherms for argon on mineralogical graphite measured by Lopez-Gonzalez et al.1 From detailed inspection of the argon isotherms at extremely low coverages, we find two distinct Henry law regions, separated by a plateau (suggesting saturation of the stronger sites) that spans over a few decades of pressure. The first Henry law region is attributed to adsorption in the ultrafine crevices at the junctions between two adjacent basal planes, and the second region corresponds to adsorption on the basal plane, as confirmed by the theoretical Henry constant. The simulated isosteric heat and snapshots of molecular configurations show that argon adsorbs preferentially in the ultrafine crevices where there is a deep potential well due to overlap from the opposite pore walls. Similar behavior was found for other nonassociating fluids (Ar, N2, and CO2); however, for associating fluids (NH3 and H2O), the strong sites for adsorption and nucleation come from the combined effects of functional groups and ultrafine crevices, since the latter cannot alone account for the observed adsorption. PMID:25797845

  9. Acidity of the amidoxime functional group in aqueous solution: a combined experimental and computational study.

    PubMed

    Mehio, Nada; Lashely, Mark A; Nugent, Joseph W; Tucker, Lyndsay; Correia, Bruna; Do-Thanh, Chi-Linh; Dai, Sheng; Hancock, Robert D; Bryantsev, Vyacheslav S

    2015-02-26

    Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. While the amidoxime-uranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pK(a) values that have been reported for the amidoxime functional group. To resolve this existing controversy we investigated the pK(a) values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopic titrations to measure the pK(a) values of representative amidoximes, acetamidoxime, and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pK(a) values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance, with a root-mean-square deviation of 0.46 pK(a) units and 0.45 pK(a) units, respectively. Finally, we employ our two best methods to predict the pK(a) values of promising, uncharacterized amidoxime ligands, which provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents. PMID:25621618

  10. Voluntary leadership roles in religious groups and rates of change in functional status during older adulthood.

    PubMed

    Hayward, R David; Krause, Neal

    2014-06-01

    Linear growth curve modeling was used to compare rates of change in functional status between three groups of older adults: Individuals holding voluntary lay leadership positions in a church, regular church attenders who were not leaders, and those not regularly attending church. Functional status was tracked longitudinally over a 4-year period in a national sample of 1,152 Black and White older adults whose religious backgrounds were either Christian or unaffiliated. Leaders had significantly slower trajectories of increase in both the number of physical impairments and the severity of those impairments. Although regular church attenders who were not leaders had lower mean levels of impairment on both measures, compared with those not regularly attending church, the two groups of non-leaders did not differ from one another in their rates of impairment increase. Leadership roles may contribute to longer maintenance of physical ability in late life, and opportunities for voluntary leadership may help account for some of the health benefits of religious participation. PMID:23606309

  11. Solubility and crystallizability: facile access to functionalized π-conjugated compounds with chlorendylimide protecting groups.

    PubMed

    Gebers, Jan; Rolland, Damien; Marty, Roman; Suàrez, Stéphane; Cervini, Luca; Scopelliti, Rosario; Brauer, Jan Cornelius; Frauenrath, Holger

    2015-01-19

    Functional π-conjugated molecules are relevant for the preparation of new organic electronic materials with improved performance. However, their synthesis is often rendered difficult by their inherently low solubility, and the permanent attachment of solubilizing groups may change the properties of the material. Here, we introduced the chlorendylimidyl moiety as a new temporary protecting group for the straightforward large-scale synthesis of protected quarter-, sexi-, octathiophene, and perylene bisimide diamine and dicarboxylic acid derivatives. The obtained chlorendylimides and chlorendylimidyl active esters were highly soluble in organic solvents, and optical spectroscopy confirmed the low tendency of the compounds to aggregate in solution. At the same time, they could be conveniently purified by recrystallization or precipitation. Single-crystal X-ray structures obtained for most compounds showed supramolecular motifs highlighting the role of the rigid, polychlorinated chlorendyl moieties in their crystallization. The obtained protected diamine and dicarboxylic acid derivatives were easily deprotected and converted into various amide-substituted oligothiophenes and perylene bisimides that are of interest as new functional materials for organic electronic thin film or nanowire devices. PMID:25427947

  12. Two-Band Fibonacci Quasicrystal with Hybridization:. Exact Local GREEN’S Function Using the Renormalization-Group Method

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.; Karmakar, S. N.; Moitra, R. K.

    In this paper we present a study of the electronic properties of a one-dimensional Fibonacci chain with two hybridizing bands. Our study is motivated by recent experiments with quasicrystals in which transition metal atoms occupy positions of icosahedral symmetry. Using a recently proposed real space renormalization group scheme we make an exact analytical study of the two-band problem. We examine the effect of hybridization on the energy spectrum, the wave functions and the density of states of the Fibonacci chain. We find that the spectrum continues to remain a Cantor set even in the presence of hybridization. We conclude therefore this property of the spectrum is a purely structural effect. We present our results on the electronic density of states and show how hybridization produces additional structures in the energy spectrum.

  13. Tailoring the mass distribution and functional group density of dimethylsiloxane-based films by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Töpper, Tino; Lörcher, Samuel; Weiss, Florian; Müller, Bert

    2016-05-01

    The tailoring of molecular weight distribution and the functional group density of vinyl-terminated polydimethylsiloxane (PDMS) by molecular beam deposition is demonstrated herein. Thermally evaporated PDMS and its residue are characterized using gel permeation chromatography and nuclear magnetic resonance. Thermal fragmentation of vinyl groups occurs for evaporation temperatures above 487 K (214 °C). At a background pressure of 10-6 mbar, the maximum molecular weight distribution is adjusted from (700 ± 100) g/mol to (6100 ± 100) g/mol with a polydispersity index of 1.06 ± 0.02. The content of vinyl-termination per repeating unit of PDMS is tailored from (2.8 ± 0.2)% to (5.6 ± 0.1)%. Molecular weights of vinyl-terminated PDMS evaporated at temperatures above 388 K (115 °C) correspond to those attributed to trimethyl-terminated PDMS. Side groups of linear PDMS dominate intermolecular interactions and vapor pressure.

  14. Phylogenetic Analyses and Characterization of RNase X25 from Drosophila melanogaster Suggest a Conserved Housekeeping Role and Additional Functions for RNase T2 Enzymes in Protostomes

    PubMed Central

    Ambrosio, Linda; Bailey, Ryan; Ding, Jian; MacIntosh, Gustavo C.

    2014-01-01

    Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins. PMID:25133712

  15. In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass.

    PubMed

    Kirtania, Kawnish; Tanner, Joanne; Kabir, Kazi Bayzid; Rajendran, Sharmen; Bhattacharya, Sankar

    2014-01-01

    Three types of woody biomass were investigated under pyrolysis condition to observe the change in the surface functional groups by Fourier transform infrared (FTIR) technique with increasing temperature under two different (5 and 150°C/min) heating rates. The experiments were carried out in situ in the infrared microscopy beamline (IRM) of the Australian Synchrotron. The capability of the beamline made it possible to focus on single particles to obtain low noise measurements without mixing with KBr. At lower heating rate, the surface functional groups were completely removed by 550°C. In case of higher heating rate, a delay was observed in losing the functional groups. Even at a high temperature, significant number of functional groups was retained after the higher heating rate experiments. This implies that at considerably high heating rates typical of industrial reactors, more functional groups will remain on the surface. PMID:24189382

  16. Elusive transmetalation intermediate in copper-catalyzed conjugate additions: direct NMR detection of an ethyl group attached to a binuclear phosphoramidite copper complex.

    PubMed

    von Rekowski, Felicitas; Koch, Carina; Gschwind, Ruth M

    2014-08-13

    Copper-catalyzed asymmetric conjugate addition reactions are a very powerful and widely applied method for enantioselective carbon-carbon bond formation. However, structural and mechanistic insight into these famous reactions has been very limited so far. In this article, the first direct experimental detection of transmetalation intermediates in copper-catalyzed reactions is presented. Special combinations of (1)H,(31)P HMBC spectra allow for the identification of complexes with chemical bonds between the alkyl groups and the copper complexes. For the structural characterization of these transmetalation intermediates, a special approach is applied, in which samples using enantiopure ligands are compared with samples using enantiomeric mixtures of ligands. It is experimentally proven, for the first time, that the dimeric copper complex structure is retained upon transmetalation, providing an intermediate with mixed trigonal/tetrahedral coordination on the copper atoms. In addition, monomeric intermediates with one ligand, but no intermediates with two ligands, are detected. These experimental results, in combination with the well-known optimal ligand-to-copper ratio of 2:1 in synthetic applications, allow us to propose that a binuclear transmetalation intermediate is the reactive species in copper-catalyzed asymmetric conjugate addition reactions. This first direct experimental insight into the structure of the transmetalation intermediate is expected to support the mechanistic and theoretical understanding of this important class of reactions and to enable their further synthetic development. In addition, the special NMR approach presented here for the identification and characterization of intermediates below the detection limit of (1)H NMR spectra can be applied also to other classes of catalyses. PMID:25072403

  17. Factors Predicting Health Related Quality of Life in Pediatric Liver Transplant Recipients in the Functional Outcomes Group

    PubMed Central

    Alonso, Estella M; Martz, Karen; Wang, Deli; Yi, Michael S.; Neighbors, Katie; Varni, James W; Bucuvalas, John C.

    2013-01-01

    Data from 997 pediatric liver transplant (LT) recipients were used to model demographic and medical variables as predictors of lower levels of health related quality of life (HRQOL). Data were collected through Studies of Pediatric Liver Transplantation (SPLIT) Functional Outcomes Group (FOG) project. Patients were between 2-18 years of age and survived LT by at least 12 months. Parents and children (age ≥ 8 years) completed PedsQL ™ 4.0 Generic Core and Cognitive Functioning Scales at one time point. Demographic and medical variables were obtained from SPLIT. HRQOL scores were categorized “poor” based on lower 25% of scores for each measure. Logistic regression models were generated. Single-parent households (OR 1.94, CI 1.13 – 3.33, p=0.017), anti-seizure medications (OR 3.99, CI 1.26 – 12.70, p=0.019) and number of days hospitalized (OR 1.03, CI 1.01 – 1.06, p=0.0067) were associated with lower self-reported HRQOL. Parent data identified increasing age at transplant, age 5-12 years at survey, hospitalization > 21 days at LT, re-operations, diabetes and growth failure at LT as additional predictors of generic HRQOL. Male gender, single-parent households, higher bilirubin levels at LT and use of anti-seizure medication predicted lower cognitive function scores. HRQOL following pediatric LT is related to medical and demographic variables. PMID:23902630

  18. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    PubMed

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. PMID:26652367

  19. Resonance scattering and radiation force calculations for an elastic cylinder using the translational addition theorem for cylindrical wave functions

    SciTech Connect

    Mitri, F. G.

    2015-09-15

    The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.

  20. Improved synthesis of a highly fluorinated boronic ester as dual functional additive for lithium-ion batteries.

    SciTech Connect

    Weng, W.; Zhang, Z.; Schlueter, J. A.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

    2011-02-01

    The electrolyte additive 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (PFPTFBB, 1) was found to have a reversible redox potential at 4.43 V vs. Li{sup +}/Li. This compound can function as an overcharge protection additive as well as anion receptor for lithium-ion batteries. It has drawn a great deal of interest from industry, but its use in relatively large quantities is limited by the production challenges of tetrafluorocatechol (TFC, 3), which is the key starting chemical for the synthesis of PFPTFBB. As part of a continuous effort in our research toward improving the safety of lithium-ion batteries, we have performed the synthesis of TFC and optimized its synthesis process. The X-ray single-crystal structures of TFC and the intermediate product 5,6,7,8-tetrafluoro-1,4-benzodioxane (4) during the process of PFPTFBB synthesis are reported for the first time. Also presented is the lithium ion cell performance of PFPTFBB as redox shuttle in various electrolyte systems.

  1. Group social skills interventions for adults with high-functioning autism spectrum disorders: A systematic review.

    PubMed

    Spain, Debbie; Blainey, Sarah H

    2015-10-01

    Autism spectrum disorders are characterised by impairments in communication and social interaction. Social skills interventions have been found to ameliorate socio-communication deficits in children and adolescents with autism spectrum disorders. Little is known about the effectiveness of social skills interventions for adults with high-functioning autism spectrum disorders (hf-ASD) - a clinical population who can present with more subtle core deficits, but comparable levels of impairment and secondary difficulties. A systematic review was undertaken to investigate the effectiveness of social skills interventions for adults with high-functioning autism spectrum disorders. Five studies met the pre-specified review inclusion criteria: two quasi-experimental comparative trials and three single-arm interventions. There was a degree of variation in the structure, duration and content of the social skills interventions delivered, as well as several methodological limitations associated with included studies. Nevertheless, narrative analysis tentatively indicates that group social skills interventions may be effective for enhancing social knowledge and understanding, improving social functioning, reducing loneliness and potentially alleviating co-morbid psychiatric symptoms. PMID:26045543

  2. IL-12 drives functional plasticity of human group 2 innate lymphoid cells.

    PubMed

    Lim, Ai Ing; Menegatti, Silvia; Bustamante, Jacinta; Le Bourhis, Lionel; Allez, Matthieu; Rogge, Lars; Casanova, Jean-Laurent; Yssel, Hans; Di Santo, James P

    2016-04-01

    Group 2 innate lymphoid cells (ILC2) include IL-5- and IL-13-producing CRTh2(+)CD127(+)cells that are implicated in early protective immunity at mucosal surfaces. Whereas functional plasticity has been demonstrated for both human and mouse ILC3 subsets that can reversibly give rise to IFN-γ-producing ILC1, plasticity of human or mouse ILC2 has not been shown. Here, we analyze the phenotypic and functional heterogeneity of human peripheral blood ILC2. Although subsets of human CRTh2(+)ILC2 differentially express CD117 (c-kit receptor), some ILC2 surface phenotypes are unstable and can be modulated in vitro. Surprisingly, human IL-13(+)ILC2 can acquire the capacity to produce IFN-γ, thereby generating plastic ILC2. ILC2 cultures demonstrated that IFN-γ(+)ILC2 clones could be derived and were stably associated with increased T-BET expression. The inductive mechanism for ILC2 plasticity was mapped to the IL-12-IL-12R signaling pathway and was confirmed through analysis of patients with Mendelian susceptibility to mycobacterial disease due to IL-12Rβ1 deficiencies that failed to generate plastic ILC2. We also detected IL-13(+)IFN-γ(+)ILC2 ex vivo in intestinal samples from Crohn's disease patients. These results demonstrate cytokine production plasticity for human ILC2 and further suggest that environmental cues can dictate ILC phenotype and function for these tissue-resident innate effector cells. PMID:26976630

  3. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells. PMID:26808673

  4. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group.

    PubMed

    Deutz, Nicolaas E P; Bauer, Jürgen M; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznariç, Zeljko; Nair, K Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C

    2014-12-01

    The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made (a) for healthy older people, the diet should provide at least 1.0-1.2 g protein/kg body weight/day, (b) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2-1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (c) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible. PMID:24814383

  5. Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function.

    PubMed

    Becker, Maxi; Schubert, Torsten; Strobach, Tilo; Gallinat, Jürgen; Kühn, Simone

    2016-07-01

    There is a vast amount of literature indicating that multiple language expertise leads to positive transfer effects onto other non-language cognitive domains possibly due to enhanced cognitive control. However, there is hardly any evidence about underlying mechanisms on how complex behavior like simultaneous interpreting benefits cognitive functioning in other non-language domains. Therefore, we investigated whether simultaneous interpreters (SIs) exhibit cognitive benefits in tasks measuring aspects of cognitive control compared to a professional multilingual control group. We furthermore investigated in how far potential cognitive benefits are related to brain structure (using voxel-based morphometry) and function (using regions-of-interest-based functional connectivity and graph-analytical measures on low-frequency BOLD signals in resting-state brain data). Concerning cognitive control, the results reveal that SIs exhibit less mixing costs in a task switching paradigm and a dual-task advantage compared to professional multilingual controls. In addition, SIs show more gray matter volume in the left frontal pole (BA 10) compared to controls. Graph theoretical analyses revealed that this region exhibits higher network values for global efficiency and degree and is functionally more strongly connected to the left inferior frontal gyrus and middle temporal gyrus in SIs compared to controls. Thus, the data provide evidence that SIs possess cognitive benefits in tasks measuring cognitive control. It is discussed in how far the central role of the left frontal pole and its stronger functional connectivity to the left inferior frontal gyrus represents a correlate of the neural mechanisms for the observed behavioral effects. PMID:27085505

  6. Studies on cyanobacterial extracellular polymeric substances: functional groups, calcite biomineralization and formation of capsular polymeric substances

    NASA Astrophysics Data System (ADS)

    Dittrich, M.; Sibler, S.; Matsko, N.

    2006-12-01

    Extracellular polymeric substances (EPS) of microbial origin are an important class of polymeric materials which have been involved in different processes such as biofilm development or mineral precipitation. Cyanobacteria have been known as potential EPS producers for a long time. Despite their ubiquitous distribution, there is still a great lack of knowledge concerning the diversity of EPS binding sites of different picocyanobacterial strains on the one hand and the specific components of EPS which are responsible for calcite precipitation and crystal morphology on the other hand. It is generally accepted that capsular extracellular polymeric substances are the main components of biofilm matrixes. In this context, it is important to understand under which conditions cyanobacteria produce surface polysaccharides. In a recent study, we characterized the binding sites of EPS of three unicellular autotrophic picocyanobacterial strains of the Synechococcus-type. Potentiometric titrations were conducted to determine different types of functional groups present at the various sites. Precipitation experiments with EPS of different strains allowed for estimating the potential of EPS to precipitate calcium carbonate and the impact of functional groups composition on crystal morphology. In order to clarify the conditions under which cyanobacteria formed capsular EPS, we performed growth experiments in nutrients medium with different phosphorus concentrations (0.4, 4.1, 8.2 and 41 mgP/l). Cyanobacterial cells produced capsular EPS under phosphorus concentrations of 0.4, 4.1 and 8.2 mgP/l, while no capsular EPS were observed for the highest P concentration (41 mgP/l). At this concentration, however, calcium rich storage products were detected in the cells. The results thus suggest that both extracellular and intracellular products are regulated through phosphorus concentrations in growth solutions. Titrations reveal five or six distinct sites on surfaces of picocyanobacterial

  7. Hydrated goethite (alpha-FeOOH) (100) interface structure: Ordered water and surface functional groups.

    SciTech Connect

    Ghose, S.K.; Waychunas, G.A.; Trainor, T.P.; Eng, P.J.

    2009-12-15

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous stud-ies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite(100) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the(100) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface

  8. Functional renormalization group analysis of the soft mode at the QCD critical point

    NASA Astrophysics Data System (ADS)

    Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji

    2016-07-01

    We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions ρ_{σ, π}(ω, p) in the scalar (σ) and pseudoscalar (π) channels beyond the random phase approximation in the quark-meson model. At finite baryon chemical potential μ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the σ channel has a support not only in the time-like (ω > p) but also in the space-like (ω < p) regions, which correspond to the mesonic and the particle-hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the (ω, p) plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations ω_{σ.ph}(p), and it turns out that ω_{σ}(p) crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.

  9. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy

    PubMed Central

    Li, Xiaoming; Shen, Qirong; Zhang, Dongqing; Mei, Xinlan; Ran, Wei; Xu, Yangchun; Yu, Guanghui

    2013-01-01

    While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) 13C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars. PMID:23840381

  10. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1989-10-01

    The reaction of Cl{ovr POCH{sub 2}CH{sub 2}O} (2) with moisture in pyridine extracts of Argonne standard coal samples has been found to give results comparable with the ASTM D3302 moisture analyses of these samples. Differences in the two sets of results are discussed. Some exceptionally large solvent effects on {sup 31}P chemical shifts of model compounds derivatized with 2 and 8 have been discovered. Initial experiments aimed at labile hydrogen functional group analysis of solid coal samples with 2 and Me{sub 2}N{ovr POCH{sub 2}CH{sub 2}O} (15) are described. 17 refs., 1 fig., 6 tabs.

  11. The nuts and bolts of pills and portions: the functions of a drug safety working group.

    PubMed

    Nath, Noleen S; Jones, Ellen H; Stride, Peter; Premaratne, Manuja; Thaker, Darshit; Lim, Ivan

    2011-11-01

    Hospitalised patients commonly experience adverse drug events (ADEs) and medication errors. Runciman reported that ADEs in hospitals account for 20% of reported adverse events and contribute to 27% of deaths where death followed an adverse event. Hughes recommends multidisciplinary hospital drug committees to assess performance and raise standards. The new Code of Conduct of the Medical Board of Australia recommends participation in systems for surveillance and monitoring of adverse events, and to improve patient safety. We describe the functions and role of a Drug Safety Working Group (DSWG) in a suburban hospital, which aims to audit and promote a culture of prescribing and medication administration that is prudent and cautious to minimise the risk of harm to patients. We believe that regular prescription monitoring and feedback to Resident Medical Officers (RMOs) improves medication management in our hospital. PMID:22126939

  12. Effect of weak impurities on electronic properties of graphene: Functional renormalization-group analysis

    NASA Astrophysics Data System (ADS)

    Katanin, A.

    2013-12-01

    We consider an effect of weak impurities on the electronic properties of graphene within the functional renormalization-group approach. The energy dependences of the electronic self-energy and density of states near the neutrality point are discussed. Depending on the symmetry of the impurities, the electronic damping Γ and density of states ρ can deviate substantially from those given by the self-consistent Born approximation. We investigate the crossover from the results of the self-consistent Born approximation, which are valid far from the neutrality point to the strong-coupling (diffusive) regime near the neutrality point. For impurities, which are diagonal in both valley and sublattice indices, we obtain a finite density of states at the Fermi level with values which are much bigger than the result of the self-consistent Born approximation.

  13. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult.

    PubMed

    van de Pavert, Serge A; Vivier, Eric

    2016-01-01

    Group 3 innate lymphoid cells (ILC3) represent a heterogeneous population of cells that share the nuclear hormone receptor RORγt (retinoic acid receptor-related orphan receptor γt) as a master regulator for differentiation and function. ILC3 can be divided into two major subsets based on the cell surface expression of the natural cytotoxicity receptor (NCR), NKp46. A subset of NCR(-) ILC3 includes the previously known lymphoid-tissue inducer cells that are essential for the embryonic formation of peripheral lymph nodes and Peyer's patches. After birth, the NCR(-) and NCR(+) ILC3 contribute to the maintenance of health but also to inflammation in mucosal tissues. This review will describe the differentiation pathways of ILC3, their involvement in the development of the adaptive immune system and their role in the establishment and maintenance of gut immunity. PMID:26374472

  14. Role of functional groups in surface bonding of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Bauer, Oliver; Mercurio, Giuseppe; Willenbockel, Martin; Reckien, Werner; Heinrich Schmitz, Christoph; Fiedler, Benjamin; Soubatch, Serguei; Bredow, Thomas; Tautz, Frank Stefan; Sokolowski, Moritz

    2012-12-01

    The trends in the bonding mechanism of 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA) to the Ag(111), Ag(100), and Ag(110) surfaces were analyzed on the basis of data obtained from x-ray standing waves and dispersion-corrected density functional theory. Of importance are the attractive local O-Ag bonds on the anhydride groups. They are the shorter, the more open the surface is, and lead even to partly repulsive interactions between the perylene core and the surface. In parallel, there is an increasing charge donation from the Ag surface into the π system of the PTCDA. This synergism explains the out-of-plane distortion of the adsorbed PTCDA and the surface buckling.

  15. Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad.

    PubMed

    Hobbs, Jennifer A; Towal, R Blythe; Hartmann, Mitra J Z

    2016-01-01

    During natural exploration, rats exhibit two particularly conspicuous vibrissal-mediated behaviors: they follow along walls, and "dab" their snouts on the ground at frequencies related to the whisking cycle. In general, the walls and ground may be located at any distance from, and at any orientation relative to, the rat's head, which raises the question of how the rat might determine the position and orientation of these surfaces. Previous studies have compellingly demonstrated that rats can accurately determine the horizontal angle at which a vibrissa first touches an object, and we therefore asked whether this parameter could provide the rat with information about the pitch, distance, and yaw of a surface relative to its head. We used a three-dimensional model of the whisker array to construct mappings between the horizontal angle of contact of each vibrissa and every possible (pitch, distance, and yaw) configuration of the head relative to a flat surface. The mappings revealed striking differences in the patterns of contact for vibrissae in different regions of the array. The exterior (A, D, E) rows provide information about the relative pitch of the surface regardless of distance. The interior (B, C) rows provide distance cues regardless of head pitch. Yaw is linearly correlated with the difference between the number of right and left whiskers touching the surface. Compared to the long reaches that whiskers can make to the side and below the rat, the reachable distance in front of the rat's nose is relatively small. We confirmed key predictions of these functional groupings in a behavioral experiment that monitored the contact patterns that the vibrissae made with a flat vertical surface. These results suggest that vibrissae in different regions of the array are not interchangeable sensors, but rather functionally grouped to acquire particular types of information about the environment. PMID:26745501

  16. Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad

    PubMed Central

    Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.

    2016-01-01

    During natural exploration, rats exhibit two particularly conspicuous vibrissal-mediated behaviors: they follow along walls, and “dab” their snouts on the ground at frequencies related to the whisking cycle. In general, the walls and ground may be located at any distance from, and at any orientation relative to, the rat’s head, which raises the question of how the rat might determine the position and orientation of these surfaces. Previous studies have compellingly demonstrated that rats can accurately determine the horizontal angle at which a vibrissa first touches an object, and we therefore asked whether this parameter could provide the rat with information about the pitch, distance, and yaw of a surface relative to its head. We used a three-dimensional model of the whisker array to construct mappings between the horizontal angle of contact of each vibrissa and every possible (pitch, distance, and yaw) configuration of the head relative to a flat surface. The mappings revealed striking differences in the patterns of contact for vibrissae in different regions of the array. The exterior (A, D, E) rows provide information about the relative pitch of the surface regardless of distance. The interior (B, C) rows provide distance cues regardless of head pitch. Yaw is linearly correlated with the difference between the number of right and left whiskers touching the surface. Compared to the long reaches that whiskers can make to the side and below the rat, the reachable distance in front of the rat’s nose is relatively small. We confirmed key predictions of these functional groupings in a behavioral experiment that monitored the contact patterns that the vibrissae made with a flat vertical surface. These results suggest that vibrissae in different regions of the array are not interchangeable sensors, but rather functionally grouped to acquire particular types of information about the environment. PMID:26745501

  17. Tree species from different functional groups respond differently to environmental changes during establishment.

    PubMed

    Barbosa, Eduardo R M; van Langevelde, Frank; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T

    2014-04-01

    Savanna plant communities change considerably across time and space. The processes driving savanna plant species diversity, coexistence and turnover along environmental gradients are still unclear. Understanding how species respond differently to varying environmental conditions during the seedling stage, a critical stage for plant population dynamics, is needed to explain the current composition of plant communities and to enable us to predict their responses to future environmental changes. Here we investigate whether seedling response to changes in resource availability, and to competition with grass, varied between two functional groups of African savanna trees: species with small leaves, spines and N-fixing associations (fine-leaved species), and species with broad leaves, no spines, and lacking N-fixing associations (broad-leaved species). We show that while tree species were strongly suppressed by grass, the effect of resource availability on seedling performance varied considerably between the two functional groups. Nutrient inputs increased stem length only of broad-leaved species and only under an even watering treatment. Low light conditions benefited mostly broad-leaved species' growth. Savannas are susceptible to ongoing global environment changes. Our results suggest that an increase in woody cover is only likely to occur in savannas if grass cover is strongly suppressed (e.g. by fire or overgrazing). However, if woody cover does increase, broad-leaved species will benefit most from the resulting shaded environments, potentially leading to an expansion of the distribution of these species. Eutrophication and changes in rainfall patterns may also affect the balance between fine- and broad-leaved species. PMID:24337711

  18. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility, and selected bacterial groups in the gastrointestinal tract of piglets.

    PubMed

    Maenner, K; Vahjen, W; Simon, O

    2011-07-01

    The aim of this study was to assess the effects of 2 different phytogenic products on performance, ileal nutrient digestibility, and composition of the intestinal microbiota. The 2 phytogenic products contained different essential oil mixtures (EOM) characterized by either menthol (Mentha arvensis; EOM-M) or cinnamon aldehyde (Cinnamomum aromaticum; EOM-C) as main constituents. Three treatments consisted of control diet without EOM addition and diets supplemented with EOM-M or EOM-C. Reproducibility of the effects was examined in 4 trials with a total of 300 male castrated and female piglets weaned at 25 d of age. The number of pens per treatment in trials I through III were 7, 9, and 9, respectively, for research station conditions, and 10 in trial IV for simulated farm conditions. In research station conditions, the experimental unit consisted of flat deck pens with 2 piglets per pen, whereas it consisted of floor pens with straw bedding with 5 piglets per pen in farm conditions. The feed additives had no effect on feed intake or BW gain. Improvements (P < 0.05) in G:F were observed for EOM-M supplemented diets in 2 of 4 trials as well as for the combined data of all trials. These improvements were associated with greater (P<0.05) apparent ileal digestibility of CP and of most AA. The effect of EOM-C on these response criteria was intermediate between control and EOM-M. Real-time PCR analysis of the gastrointestinal contents for 7 bacterial groups (Lactobacillus spp., Enterococcus spp., Clostridium coccoides and Clostridium leptum cluster, Escherichia spp., and Escherichia coli toxin estII) indicated no effect of treatments on the gastrointestinal microbiota. It was concluded that EOM-M consistently improved feed efficiency in weaned piglets, and it was associated with improved ileal protein and AA digestibility. In general, however, the effectiveness of EOM as feed additives differs considerably depending on the constituents. PMID:21357448

  19. Why species matter: an experimental assessment of assumptions and predictive ability of two functional-group models.

    PubMed

    Fong, Caitlin R; Fong, Peggy

    2014-08-01

    Community ecologists use functional groups based on the rarely tested assumption that within-group responses to ecological processes are similar and thus members are functionally equivalent. However, recent research suggests that functional equivalency may break down with human impacts. We tested the equivalency assumption and model predictions of responses to simulated human alterations in nutrients and large herbivores for two models of coral reef algae, the Relative Dominance Model (RDM) and the Functional Group Model (FGM). Results of both mesocosm and field experiments using assembled communities were compared to model predictions, and within- and between-group variability were assessed. Both models' predictions of group response to herbivory matched experimental outcomes, but only the RDM predicted response to nutrients. However, within-group variability was dramatic, because the RDM grouped species with opposite responses to herbivory and the FGM grouped species with unique responses to nutrients. These heterogeneous responses resulted in loss of information and masked strong interactions between herbivory and nutrients that were not included in the models. As humans continue to impact major ecological processes in ecosystems globally, we postulate that functional-group models may need to be reformulated to account for shifting baselines. PMID:25230457

  20. Delineating native and invasive plant functional groups in shrub-steppe vegetation using bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Naupari, Javier A.; Vierling, Lee A.; Eitel, Jan U. H.

    2013-01-01

    Delineating invasive and native plant types using remote sensing is important for managing rangelands. Remote characterization of rangeland vegetation often utilizes only the nadir view, which can be complicated by background soil reflectance. We therefore collected bidirectional radiometric measurements on a shrub-steppe vegetated landscape throughout the mid- to late-growing season to: (1) quantify the BRFs of four rangeland vegetation functional groups (native shrub, native grasses, invasive annual grasses, and forbs), and (2) examine ways in which bidirectional reflectance values may help delineate native and invasive vegetation types. We found that the invasive grass medusahead rye (Taeniatherum caput-medusae [L.] Nevski) could be discriminated from other vegetation types at nadir and across four forward-viewing zenith angles because this species exhibited structural changes when leaf orientation changed from erectophile to planophile during and after the filling of seedheads. We also confirmed that native shrubs exhibited the highest anisotropy in all wavebands, as the relatively complex structure of the shrub canopy and concomitant shadowing greatly affected values of normalized difference vegetation index across all view angles. In order to delineate rangeland vegetation types at coarser scales, further study is needed to quantify the spectral angular signatures of these plant groups using satellite-based images.