Science.gov

Sample records for additional groundwater wells

  1. Isobaric groundwater well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  2. Nevada Test Site Groundwater Well Rehabilitation Plan

    SciTech Connect

    David B. Hudson

    2006-12-01

    This plan describes actions to improve the utility and credibility of the Nevada Test Site (NTS) interim groundwater monitoring program. The two principal actions are: (1) well maintenance/rehabilitation activities and (2) the deployment of dedicated low-cost and reliable jack-pumps for groundwater sampling from deep monitoring wells. The scope of this proposal is to perform these actions on some number of nine selected wells (Figure 1) to evaluate whether these actions are achievable, practical, cost effective, and result in improved groundwater data quality.

  3. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  4. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  5. Groundwater levels for selected wells in Upper Kittitas County, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  6. Groundwater data for selected wells within the Eastern San Joaquin Groundwater Subbasin, California, 2003-8

    USGS Publications Warehouse

    Clark, Dennis A.; Izbicki, John A.; Metzger, Loren F.; Everett, Rhett; Smith, Gregory A.; O'Leary, David R.; Teague, Nicholas F.; Burgess, Matthew K.

    2012-01-01

    Data were collected by the U.S. Geological Survey from 2003 through 2008 in the Eastern San Joaquin Groundwater Subbasin, 80 miles east of San Francisco, California, as part of a study of the increasing chloride concentrations in groundwater processes. Data collected include geologic, geophysical, chemical, and hydrologic data collected during and after the installation of five multiple-well monitoring sites, from three existing multiple-well sites, and from 79 selected public-supply, irrigation, and domestic wells. Each multiple-well monitoring site installed as part of this study contained three to five 2-inch diameter polyvinyl chloride (PVC)-cased wells ranging in depth from 68 to 880 feet below land surface. Continuous water-level data were collected from the 19 wells installed at these 5 sites and from 10 existing monitoring wells at 3 additional multiple-well sites in the study area. Thirty-one electromagnetic logs were collected seasonally from the deepest PVC-cased monitoring well at seven multiple-well sites. About 200 water samples were collected from 79 wells in the study area. Coupled well-bore flow data and depth-dependent water-quality data were collected from 12 production wells under pumped conditions, and well-bore flow data were collected from 10 additional wells under unpumped conditions.

  7. Calendar Year 2002 RCRA & CERCLA Groundwater Monitoring Well summary report

    SciTech Connect

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year 2002 field activities associated with installing four new groundwater monitoring wells in the 200 West Area of the Hanford Site. Two groundwater monitoring wells are located around waste management area (WMA) TX-TY to support the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and two groundwater monitoring wells are located in the 200-UP-1 and 200-ZP-1 operable units (OU) to support the ''Comprehensive Environmental Response, Compensation, and Liability Act of 1980'' (CERCLA).

  8. SPATIALLY-BALANCED SURVEY DESIGN FOR GROUNDWATER USING EXISTING WELLS

    EPA Science Inventory

    Many states have a monitoring program to evaluate the water quality of groundwater across the state. These programs rely on existing wells for access to the groundwater, due to the high cost of drilling new wells. Typically, a state maintains a database of all well locations, in...

  9. Groundwater Circulating Well Assessment and Guidance

    DTIC Science & Technology

    1998-04-03

    PERFORMANCE DATA Radius of Influence: Coptamin•nt ID TPH: PM1; PM2 ; PM3 DCE: PM1; PM2 ; PM3 ND denotes not determined 5 :\\SIIARII\\GWCASII.OO 18... 5 1 .3 . 1 Methods for Moving Groundwater... 5 1 .3 . 1 . 1 Air l ift Pumping

  10. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    EPA Science Inventory

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  11. The buffer value of groundwater when well yield is limited

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Speir, C.

    2017-04-01

    A large proportion of the total value of groundwater in conjunctive use systems is associated with the ability to smooth out shortfalls in surface water supply during droughts. Previous research has argued that aquifer depletion in these regions will impact farmers negatively by reducing the available stock of groundwater to buffer production in future periods, and also by increasing the costs of groundwater extraction. However, existing studies have not considered how depletion may impact the productivity of groundwater stocks in conjunctive use systems through reductions in well yields. In this work, we develop a hydro-economic modeling framework to quantify the effects of changes in well yields on the buffer value of groundwater, and apply this model to an illustrative case study of tomato production in California's Central Valley. Our findings demonstrate that farmers with low well yields are forced to forgo significant production and profits because instantaneous groundwater supply is insufficient to buffer surface water shortfalls in drought years. Negative economic impacts of low well yields are an increasing function of surface water variability, and are also greatest for farmers operating less efficient irrigation systems. These results indicate that impacts of well yield reductions on the productivity of groundwater are an important economic impact of aquifer depletion, and that failure to consider this feedback may lead to significant errors in estimates of the value of groundwater management in conjunctive use systems.

  12. Inducing mineral precipitation in groundwater by addition of phosphate

    PubMed Central

    2011-01-01

    Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of

  13. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  14. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  15. Case Study: Leaking Groundwater Monitor Well Casting

    DTIC Science & Technology

    1994-07-01

    Jerald D. Broughton ; prepared for U.S. Army Environmental Center. 55 p . T ill. * 28 cm. -- (Miscellaneous paper; GL-94-28) Includes bibliographic...4 Chapter 1 Inboduojon LEG END ALLANALML A mm~rm qj -Mn- SUWM IWA11OI PT FM ftJM§ iiiR3 mT, P I *:.*’.’............ c h~ h~r, sni*co 2 Monitor Well...Sample 1455 fmm well 4- w sa0 prXge volume Iample taken on 16 FsMunq. Ouet problns with the sufterste pump afw fte sml Was taken, sampling was sopped

  16. Groundwater quality in the Indian Wells Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  17. Chemical and mechanical clogging of groundwater abstraction wells at well field Heel, the Netherlands

    NASA Astrophysics Data System (ADS)

    van Beek, C. G. E. M.; Hubeek, A. A.; de la Loma Gonzalez, B.; Stuyfzand, P. J.

    2016-09-01

    Well field Heel, in the south east of the Netherlands, consists of a row of wells drilled in an anoxic pyrite-containing aquifer alongside a former gravel pit, which now serves as a recharge basin, where water is actively aerated. All wells are seriously affected by chemical (screen slot) and/or mechanical (well bore) clogging. The objective of this study is to explain this combined occurrence. A combination of chemical, hydraulic and well-maintenance data indicate three groundwater quality types: (1) oxic basin water, (2) anoxic iron-containing basin water after oxidation of the traversed aquifer, and (3) deeply anoxic native groundwater. Wells abstracting a mixture of oxic basin water and anoxic basin water and/or native groundwater experience chemical well clogging, whereas wells abstracting (only or partly) native groundwater are vulnerable to mechanical well clogging. In the end, after oxic basin water has completely oxidized the traversed the aquifer, only two groundwater quality types will be present. Wells abstracting only oxic basin water will show no clogging, and wells abstracting a mixture of native groundwater and oxic basin water will experience chemical and possibly also mechanical well clogging. In this reasoning, the sequence in abstracted groundwater quality types coincides with a sequence in well clogging: from mechanical to chemical to no clogging. As well field Heel is situated in sloping terrain, the interplay between regional hydraulic gradient and different water qualities results in one-sided chemical clogging in the upper part of the well screen during abstraction, and in the lower part during the resting phase.

  18. Testing groundwater for arsenic in Bangladesh before installing a well.

    PubMed

    van Geen, A; Protus, T; Cheng, Z; Horneman, A; Seddique, A A; Hoque, M A; Ahmed, K M

    2004-12-15

    Profiles of groundwater and sediment properties were collected at three sites in Bangladesh with an inexpensive sampling device that is deployed by modifying the local manual drilling method. Dissolved As concentrations in the groundwater samples ranging from 5 to 600 microg/L between 5 and 50 m depth closely matched vertical profiles from nearby nests of monitoring wells. In combination with a field kit, the device provides a means of targeting aquifers for the installation of tube wells that meet the drinking water standard for As. The device is also a useful research tool for unraveling the relationships between the As content of groundwater and the complex structure of flood plain and deltaic environments throughout South Asia.

  19. Application of step-drawdown test for planning agricultural groundwater well maintenance in S. Korea

    NASA Astrophysics Data System (ADS)

    Song, Sung-Ho; Lee, Byung-Sun

    2015-04-01

    Well efficiency decreases with time after development and the pumping rate is reduced sharply at a certain point. However, the rapid decrease of the efficiency definitely depends upon the physical characteristics of the aquifer, chemical properties of groundwater, pore clogging by adsorptive/precipitable materials, and use of groundwater well. In general, it is expected that an adequate and ongoing maintenance for the well is effective in extension of operating periods because major maintenance frequency requirement at municipal wells placed in the crystalline rock aquifer is known to be relatively longer. The proportion of agricultural wells (583,748) against the total groundwater ones (1,380,715) is 42.3% in 2011, S. Korea. Groundwater use accounts for 1.9 billion m3/year which indicates 48.9% of total amount available groundwater resources. Approximate 69% of the total agricultural public wells placed in crystalline rock aquifer have passed more than 10 years after development. In this study, the increase of well efficiency before and after the well disinfection/cleaning for agricultural groundwater wells in the mountains, plains, and coastal aquifer with the data of step-drawdown test was evaluated, respectively. With the concept of critical yield, the increase of available amount of groundwater was quantitatively analyzed after treatment. From the results, well efficiency increased approximately 1.5 to 4 times depending on pumping rate when the proper disinfection/cleaning methods to the wells were applied. In addition, it showed that the pumping rate of approximate 4-8% with the critical yield from step-drawdown test increased and these effects were the highest in wells which are more than 10 years elapsed. Therefore, it would be concluded that the well disinfection/cleaning methods for the purpose of increasing the efficiency are more effective for the wells that are older than 10 years.

  20. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  1. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  2. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater.

    PubMed

    Meliker, Jaymie R; Slotnick, Melissa J; Avruskin, Gillian A; Haack, Sheridan K; Nriagu, Jerome O

    2009-02-01

    Arsenic concentrations exceeding 10 microg/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination.

  3. EVALUATION OF GROUNDWATER FLOW PATTERNS AROUND A DUAL-SCREENED GROUNDWATER CIRCULATION WELL

    EPA Science Inventory

    Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective...

  4. Kansas ground-water observation-well network, 1985

    USGS Publications Warehouse

    Dague, B.J.; Stullken, L.E.

    1986-01-01

    Water level measurements are made in 1,892 selected wells in 73 counties, which currently (1985) comprise the Kansas groundwater observation-well network. These measurements are made on a continuous, monthly, quarterly, or annual basis. Water level measurements have been made in observation wells since 1937 as part of a cooperative program among the Kansas Geological Survey , the Kansas State Board of Agriculture, the city of Wichita, and the U.S. Geological Survey. The objectives of the observation-well cooperative program are: (1) to provide long-term records of water level fluctuations in representative wells, (2) to facilitate the determination of possible water level trends that may indicate future availability of groundwater supplies, (3) to aid in the determination of possible changes in the base flow of streams, and (4) to provide information for use in water-resources research. This report lists for each well in the network the location, the first year of recorded water level measurement, the frequency and number of measurements, the land-surface altitude, hexagon-grid identifiers for wells in the High Plains aquifer, and the principal geologic unit(s) in which the well is completed. (USGS)

  5. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells.

    PubMed

    Aisopou, Angeliki; Binning, Philip J; Albrechtsen, Hans-Jørgen; Bjerg, Poul L

    2015-01-01

    This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations.

  6. Depth and Well Type Related to Groundwater Microbiological Contamination

    PubMed Central

    Maran, Nayara Halimy; Crispim, Bruno do Amaral; Iahnn, Stephanie Ramirez; de Araújo, Renata Pires; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2016-01-01

    Use of groundwater from private wells in households has increased considerably, owing to a better cost/benefit ratio than that of water provided by local utilities for a fee. However, this water is usually untreated, which makes it a vehicle for diseases. Thus, monitoring this water is necessary to ensure its integrity and quality. We aimed to evaluate the physical, chemical, and microbiological parameters of untreated groundwater drawn from different types of wells, and the antimicrobial susceptibility profile of the bacteria isolated from this water. Wellwater samples were collected in two Brazilian cities. Although physical and chemical parameters of the water were suitable for drinking, Escherichia coli was detected in 33% of the samples. E. coli contaminated 65% of dug wells and 10.25% of drilled wells. Many bacteria isolated were resistant to multiple antibacterial agents, including β-lactams. Microbial contamination of this water was related to the well depth, and was more common in dug wells, making this water unfit for human consumption. Consumption of such contaminated and untreated water is a public health concern. Thus, individuals who regularly use such water must be alerted so they may either take preventive measures or connect to the water distribution system operated by local utilities. PMID:27775681

  7. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    DTIC Science & Technology

    2010-04-01

    shifts the δ13C to more positive values. This is used in age dating the groundwater with radiocarbon (14C). For a detailed discussion of... radiocarbon dating methods, other references should be consulted. See Reference 20 for an excellent summary of the methods. For this project, the following...well. Radiocarbon Data. In addition to the 14C age dates discussed in this report, there are an additional 21 values for wells further into the

  8. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    SciTech Connect

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  9. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  10. Groundwater geochemistry in the Seminole Well Field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, Robert A.

    1999-01-01

    The City of Cedar Rapids obtains its municipal water supply from four well fields in an alluvial aquifer along the Cedar River in east-central Iowa. Since 1992, the City and the U.S. Geological Survey have cooperatively studied the groundwater-flow system and water chemistry near the well fields. The geochemistry in the alluvial aquifer near the Seminole Well Field was assessed to identify potentially reactive minerals and possible chemical reactions that produce observed changes in water chemistry. Calcite, dolomite, ferrihydrite, quartz, rhodochrosite, and siderite were identified as potentially reactive minerals by calculating saturation indexes. Aluminosiicate minerals including albite, Ca-montmorillonite, gibbsite, illite, K-feldspar, and kaolinite were identified as potentially reactive minerals using hypothetical saturation indexes calculated with an assumed dissolved aluminum concentration of 1 microgram per liter. Balanced chemical equations derived from inverse-modeling techniques were used to assess chemical reactions as precipitation percolates to the water table. Calcite dissolution was predominate, but aluminosilicate weathering, cation exchange, and redox reactions also likely occurred. Microbial-catalyzed redox reactions altered the chemical composition of water infiltrating from the Cedar River into the alluvial aquifer by consuming dissolved oxygen, reducing nitrate, and increasing dissolved iron and manganese concentrations. Nitrate reduction only occurred in relatively shallow (3 to 7 meters below land surface) groundwater near the Cedar River and did not occur in water infiltrating to deeper zones of the alluvial aquifer.

  11. In-situ bioremediation of groundwater using a horizontal injection well in clay soil, Madisonville, TN

    SciTech Connect

    Miller, M.B.; Clark, D.A.; Handler, M.; Zhing-Ming Huang

    1996-09-01

    Tennessee`s first horizontal groundwater remediation well was installed at Madisonville located in the eastern Valley and Ridge Province. The open-ended well, drilled through clay soil, is constructed of 280 feet HDPE pipe, 2 inches in diameter, with a screen length of 100 feet at 18 feet below ground surface. The purpose of the well is to remediate gasoline contaminated groundwater that resulted from a leaking underground storage tank (UST) system. The groundwater benzene and TPH plumes covered an area of one-half acre and extended beneath a rural grocery store. Remediation is achieved by injecting aerated water, nutrients and microbes to reduce contaminant levels to drinking water standards. MODFLOW was utilized to computer-model the development of the groundwater mound that would result from injection. It was calculated that one horizontal injection well would equal the efficiency of 80 vertical injection wells. Benzene and TPH masses have been reduced by 92% and 95% respectively. BIOTRANS calculated the bio-decay rate to determine remediation time. This system will reduce project life and eliminate additional costs associated with: operations and maintenance (versus vertical pump and treat), water disposal, emissions controls, well installations, and site disturbance. A {open_quotes}Minimum Economic Plume Size{close_quotes}, the minimum plume volume required to support a horizontal system has been developed. Although costs per foot are greater for horizontal drilling than vertical drilling, project costs savings are realized later in the project.

  12. India's Groundwater Storage Trends Influenced by Tube Well Intensification.

    PubMed

    Chinnasamy, Pennan; Agoramoorthy, Govindasamy

    2016-09-01

    Agriculture is a major occupation for people who inhabit the state of West Bengal in India. In order to boost irrigation, 570 tube wells per year were installed during 2002-2008, and 12,000 wells per year were installed during 2009-2013, contributing to higher groundwater (GW) withdrawal. However, the impact of tube wells on GW storage levels has not been well-studied, both spatially and temporally. Hence, this study used remote sensing data from NASA's Gravity Recovery and Climate Experiment and the Global Land Data Assimilation Systems to assess change in GW storage. Results showed that GW is being depleted at 8, 5.3, and 14.7 cm (Billion Cubic Meters)/year during the study period. After tube well intensification, the state-wide average net GW recharge was 15.33 BCM/year, while the net GW discharge was at 19 BCM/year. The spatiotemporal GW storage data presented in this paper will benefit managers and policymakers in identifying suitable mitigation plans for future management of GW resources.

  13. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  14. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    NASA Astrophysics Data System (ADS)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  15. Using hydrogeology to identify the source of groundwater to Montezuma Well, a natural spring in central Arizona: part 1

    USGS Publications Warehouse

    Johnson, Raymond H.; DeWitt, Ed H.; Arnold, L. Rick

    2012-01-01

    Montezuma Well is a natural spring located within a “sinkhole” in the desert environment of the Verde Valley in Central Arizona. It is managed by the National Park Service as part of Montezuma Castle National Monument. Because of increasing development of groundwater in the area, this research was undertaken to better understand the sources of groundwater to Montezuma Well. The use of well logs and geophysics provides details on the geology in the area around Montezuma Well. This includes characterizing the extent and position of a basalt dike that intruded a deep fracture zone. This low permeability barrier forces groundwater to the surface at the Montezuma Well “pool” with sufficient velocity to entrain sand-sized particles from underlying bedrock. Permeable fractures along and above the basalt dike provide conduits that carry deep sourced carbon dioxide to the surface, which can dissolve carbonate minerals along the transport path in response to the added carbon dioxide. At the ground surface, CO2 degasses, depositing travertine. Geologic cross sections, rock geochemistry, and semi-quantitative groundwater flow modeling provide a hydrogeologic framework that indicates groundwater flow through a karstic limestone at depth (Redwall Limestone) as the most significant source of groundwater to Montezuma Well. Additional groundwater flow from the overlying formations (Verde Formation and Permian Sandstones) is a possibility, but significant flow from these units is not indicated.

  16. Well Construction Details, Groundwater Elevations, and Figures for the Tijeras Arroyo Groundwater Area at Sandia National Laboratories, New Mexico

    SciTech Connect

    Copland, John R.

    2017-01-01

    This Sandia National Laboratories / New Mexico (SNL/NM) submittal contains groundwater information that the United States Geological Survey (USGS) has requested. The USGS will use the information to assist Kirtland Air Force Base (KAFB) in its ongoing groundwater studies. The information in this submittal contains well-construction details and groundwater-elevation data for monitoring wells that SNL/NM has installed. Relevant well-construction data from other government agencies are also summarized. This submittal contains four data tables and three figures. Information in the tables has been used by SNL/NM to prepare groundwater compliance reports that have previously incorporated the three figures. The figures depict the potentiometric surface for the Perched Groundwater System, the potentiometric surface for the Regional Aquifer, and a Conceptual Site Model for the vicinity of Tijeras Arroyo in the northern portion of KAFB.

  17. Influence of vertical flows in wells on groundwater sampling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

    2014-11-15

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  18. GROUND-WATER SAMPLING BIAS OBSERVED IN SHALLOW, CONVENTIONAL WELLS

    EPA Science Inventory

    A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of rec...

  19. Water and rock geochemistry, geologic cross sections, geochemical modeling, and groundwater flow modeling for identifying the source of groundwater to Montezuma Well, a natural spring in central Arizona

    USGS Publications Warehouse

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Arnold, L. Rick; Horton, John D.

    2011-01-01

    The National Park Service (NPS) seeks additional information to better understand the source(s) of groundwater and associated groundwater flow paths to Montezuma Well in Montezuma Castle National Monument, central Arizona. The source of water to Montezuma Well, a flowing sinkhole in a desert setting, is poorly understood. Water emerges from the middle limestone facies of the lacustrine Verde Formation, but the precise origin of the water and its travel path are largely unknown. Some have proposed artesian flow to Montezuma Well through the Supai Formation, which is exposed along the eastern margin of the Verde Valley and underlies the Verde Formation. The groundwater recharge zone likely lies above the floor of the Verde Valley somewhere to the north or east of Montezuma Well, where precipitation is more abundant. Additional data from groundwater, surface water, and bedrock geology are required for Montezuma Well and the surrounding region to test the current conceptual ideas, to provide new details on the groundwater flow in the area, and to assist in future management decisions. The results of this research will provide information for long-term water resource management and the protection of water rights.

  20. Relation between organic-wastewater compounds, groundwater geochemistry, and well characteristics for selected wells in Lansing, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Luukkonen, Carol L.

    2013-01-01

    well opening was significantly correlated with detections of OWCs. No specific well or aquifer characteristic was correlated with OWC detections; however, wells with detections tended to have less modeled confining material thickness (as simulated in the regional groundwater flow model), which is an estimate of the amount of clay or shale between the Glacial and Saginaw aquifers. Additional analyses and collection of other data would be required to more conclusively identify the source and to determine the potential vulnerability of other wells because each BWL well may have a somewhat unique set of characteristics that governs its response to pumping. Therefore, it is possible that a relevant explanatory variable was not included in this analysis. The current patterns of geochemistry, and the relation between these patterns and volume of pumpage for the BWL wells, indicates other wells may be susceptible to OWCs in the future.

  1. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  2. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    SciTech Connect

    Kamp, Susan; Dayvault, Jalena

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  3. Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model

    USGS Publications Warehouse

    Konikow, Leonard F.; Hornberger, George Z.; Halford, Keith J.; Hanson, Randall T.; Harbaugh, Arlen W.

    2009-01-01

    Wells that are open to multiple aquifers can provide preferential pathways to flow and solute transport that short-circuit normal fluid flowlines. Representing these features in a regional flow model can produce a more realistic and reliable simulation model. This report describes modifications to the Multi-Node Well (MNW) Package of the U.S. Geological Survey (USGS) three-dimensional ground-water flow model (MODFLOW). The modifications build on a previous version and add several new features, processes, and input and output options. The input structure of the revised MNW (MNW2) is more well-centered than the original verion of MNW (MNW1) and allows the user to easily define hydraulic characteristics of each multi-node well. MNW2 also allows calculations of additional head changes due to partial penetration effects, flow into a borehole through a seepage face, changes in well discharge related to changes in lift for a given pump, and intraborehole flows with a pump intake located at any specified depth within the well. MNW2 also offers an improved capability to simulate nonvertical wells. A new output option allows selected multi-node wells to be designated as 'observation wells' for which changes in selected variables with time will be written to separate output files to facilitate postprocessing. MNW2 is compatible with the MODFLOW-2000 and MODFLOW-2005 versions of MODFLOW and with the version of MODFLOW that includes the Ground-Water Transport process (MODFLOW-GWT).

  4. Use of multi-node wells in the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.

    2013-01-01

    Many groundwater wells are open to multiple aquifers or to multiple intervals within a single aquifer. These types of wells can be represented in numerical simulations of groundwater flow by use of the Multi-Node Well (MNW) Packages developed for the U.S. Geological Survey’s MODFLOW model. However, previous versions of the Groundwater-Management (GWM) Process for MODFLOW did not allow the use of multi-node wells in groundwater-management formulations. This report describes modifications to the MODFLOW–2005 version of the GWM Process (GWM–2005) to provide for such use with the MNW2 Package. Multi-node wells can be incorporated into a management formulation as flow-rate decision variables for which optimal withdrawal or injection rates will be determined as part of the GWM–2005 solution process. In addition, the heads within multi-node wells can be used as head-type state variables, and, in that capacity, be included in the objective function or constraint set of a management formulation. Simple head bounds also can be defined to constrain water levels at multi-node wells. The report provides instructions for including multi-node wells in the GWM–2005 data-input files and a sample problem that demonstrates use of multi-node wells in a typical groundwater-management problem.

  5. Analysis of censored data in groundwater monitoring wells at the Savannah River Site

    SciTech Connect

    Weber, J.H.

    1994-07-01

    It is common in environmental analyses to deal with censored data. Censored data characteristically arise through laboratory analysis of samples with contaminant concentrations less than what the analytical method is able to reliably detect. These data are called ``less than detectable.`` Comparisons between downgradient or monitoring groundwater wells and upgradient or background wells are frequently done to determine if downgradient wells are more contaminated than background or some established maximum concentration limits (MCL`s). In addition, parameter estimates are often desired. The presence of censored data complicates the statistics that can be used as estimators for individual populations or to estimate differences between two populations. This paper describes the current process at Savannah River Site (SRS) to determine constituents of concern (COC`s) for complying with groundwater monitoring and clean-up regulations. COC`s are analytes found in downgradient monitoring wells in concentrations significantly greater than in background wells or significantly greater than the MCL`S. Both parametric and non-parametric statistics are explored. Data plots are examined for outliers, trends, laboratory or sampling contamination, and unusually large detection limits for censored results. Wells are grouped by similar concentration levels to form a ``characteristic`` well, improving the estimation and decision process.

  6. An Enhanced Method Using MODFLOW to simulate Groundwater Extraction/Injection through Wells Penetrating Multiple Aquifers

    NASA Astrophysics Data System (ADS)

    Teasdale, E.; Zhang, J.; Parrish, K.

    2007-12-01

    In a MODFLOW simulation of groundwater extraction and/or injection through a well penetrating multiple aquifers, the conventional method is to represent this type of well with a group of single-layer wells, each open to one of the model layers penetrated by the multi-layer wells Each of the single-layer wells have an individual rate specified for each stress period. Using this method, the total extraction and/or injection rate must be allocated among the individual layers. A common method of doing this is to divide the extraction and/or injection rates in proportion to the layer transmissivities. This partitioning has to be implemented by the user externally to MODFLOW for each multi-layer well and for each stress period in the MODFLOW well package. This approach fails to take into account the interconnection between various layers penetrated by the well, and is thus an incomplete solution to the problem. In both theory and practice, the extraction and/or injection rates through those well-penetrated aquifers also depend on the storativity and hydraulic head. Using transmissivity alone to partition the extraction and/or injection rates is only appropriate if both storativity and hydraulic head are very close for all well-penetrated aquifers. In cases where the top well-penetrated aquifer is unconfined, this method does not work because the storativity in an unconfined aquifer is often much higher than that of a confined aquifer. In addition, for transient flow simulations, the transmissivity of an unconfined aquifer changes with time due to the groundwater table variations resulting from extraction and/or injection (induced by constant or time-variable extraction/injection rates) or other time-variable boundary conditions such as seasonal groundwater recharge. This paper presents an enhanced method to resolve the above problem. With the new method, only the total extraction and/or injection rate of the well needs to be specified, and MODFLOW automatically allocates

  7. A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.

    PubMed

    Xu, Jin; Wang, Xudong

    2016-09-01

    A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.

  8. Determination of protection zones for Dutch groundwater wells against virus contamination--uncertainty and sensitivity analysis.

    PubMed

    Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M

    2006-09-01

    Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.

  9. Methods for simulating solute breakthrough curves in pumping groundwater wells

    USGS Publications Warehouse

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios C.; Robbins, Gary A.

    2012-01-01

    In modeling there is always a trade-off between execution time and accuracy. For gradient-based parameter estimation methods, where a simulation model is run repeatedly to populate a Jacobian (sensitivity) matrix, there exists a need for rapid simulation methods of known accuracy that can decrease execution time, and thus make the model more useful without sacrificing accuracy. Convolution-based methods can be executed rapidly for any desired input function once the residence-time distribution is known. The residence-time distribution can be calculated efficiently using particle tracking, but particle tracking can be ambiguous near a pumping well if the grid is too coarse. We present several embedded analytical expressions for improving particle tracking near a pumping well and compare them with a finely gridded finite-difference solution in terms of accuracy and CPU usage. Even though the embedded analytical approach can improve particle tracking near a well, particle methods reduce, but do not eliminate, reliance on a grid because velocity fields typically are calculated on a grid, and additional error is incurred using linear interpolation of velocity. A dilution rate can be calculated for a given grid and pumping well to determine if the grid is sufficiently refined. Embedded analytical expressions increase accuracy but add significantly to CPU usage. Structural error introduced by the numerical solution method may affect parameter estimates.

  10. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  11. Well data and groundwater flow direction problem: Steuben County, Indiana case study

    SciTech Connect

    Goings, M.H. ); Isiorho, S.A. . Dept. of Geosciences)

    1994-04-01

    The rapid industrial growth in Northeastern Indiana has lead to the demand for more complete geologic information for Steuben County, Indiana by the citizenry. The information would allow environmental scientists, geologists and engineers to more accurately predict the potential migration and impact of pollutants on the soil and groundwater. As part of ongoing environmental site investigations in Steuben County, well data were collected from Indiana Department of Environmental management (IDEM) and the State of Indiana Department of Natural Resources to determine local and regional groundwater flow directions. Of the 162 registered wells in the study area, only 67 of them, that is, 41% of the data could be used. The remaining well data could not be used because of poor, inaccurate or incomplete information on the forms (i.e., location description, well log, elevation, etc.). The regional groundwater flow direction was northwest as would be expected from the topography. A groundwater divide or ridge that was implied from the local groundwater flow directions could not be confirmed due to poor well data. The determination of groundwater flow direction was made more complicated due to incomplete well logs from drillers. Increased industrial activities in the region could lead to greater potential for surface and groundwater pollution problems. It is recommended that well data be collected by qualified personnel (field geologists) during well drilling.

  12. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  13. Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms

    SciTech Connect

    Taylor, S.W.; Lange, C.R.; Lesold, E.A.

    1997-11-01

    The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descending numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.

  14. Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin

    PubMed Central

    Borchardt, Mark A.; Bertz, Phil D.; Spencer, Susan K.; Battigelli, David A.

    2003-01-01

    Recent studies on the contamination of groundwater with human enteric viruses have focused on public water systems, whereas little is known about the occurrence of viruses in private household wells. The objective of the present study was to estimate the incidence of viruses in Wisconsin household wells located near septage land application sites or in rural subdivisions served by septic systems. Fifty wells in seven hydrogeologic districts were sampled four times over a year, once each season. Reverse transcriptase PCR (RT-PCR), followed by Southern hybridization, was used to detect enteroviruses, rotavirus, hepatitis A virus (HAV), and Norwalk-like viruses (NLVs). In addition, cell culture was used to detect culturable enteroviruses. Companion water samples were collected for total coliforms, Escherichia coli, fecal enterococci, F-specific RNA coliphages, nitrate, and chloride analyses. Among the 50 wells, four (8%) were positive for viruses by RT-PCR. Three wells were positive for HAV, and the fourth well was positive for both rotavirus and NLV in one sample and an enterovirus in another sample. Contamination was transient, since none of the wells was virus positive for two sequential samples. Culturable enteroviruses were not detected in any of the wells. Water quality indicators were not statistically associated with virus occurrence, although some concordance was noted for chloride. The present study is the first in the United States to systematically monitor private household wells for virus contamination and, combined with data for public wells, provides further insight on the extent of groundwater contamination with human enteric viruses. PMID:12571044

  15. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage.

  16. Groundwater-well data of San Miguel County, New Mexico, 1970-2010

    USGS Publications Warehouse

    Matherne, Anne Marie; Stewart, Anne M.

    2012-01-01

    The hydrologic resources of San Miguel County, New Mexico, are increasingly relied upon to meet growing domestic, livestock, and agricultural needs. The U.S. Geological Survey, in cooperation with San Miguel County, conducted a study during 2010-11 to assess current publicly available information regarding the hydrologic resources of San Miguel County. As part of that study, groundwater-well data from wells located in San Miguel County were acquired from two sources: San Miguel County groundwater-well information archived in the State of New Mexico Water Rights Reporting System online database and groundwater-well information archived in the National Water Information System of the U.S. Geological Survey. The collected data provide information regarding depth to groundwater and depth of well completions in the context of physiographic features of the county.

  17. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  18. Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary

    SciTech Connect

    Chase, J.A.

    1995-03-01

    During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  19. Analysis of Groundwater-Level Changes in High-Frequency Monitoring Wells

    NASA Astrophysics Data System (ADS)

    LIU, C.; Lee, C.; Lin, C.; Chia, Y.; Kuo, K.

    2013-12-01

    Earthquake-related groundwater level changes have often been observed in many places in Taiwan. The monitoring well stations that reflected coseismic groundwater-level changes were often recorded in 1-hour interval, and installed in the coastal plain or hillsides. Hourly groundwater-level data have been recorded by a dense monitoring network since 1980s, but high-frequency data, in second interval, record instrument were installed in only a few monitoring wells starting from the mid-2000s. Two types of earthquake-related groundwater-level changes, oscillatory and sustained, can be observed from high-frequency monitoring data. In this study, we analyzed groundwater-level data from seven wells (Chishan, Donher, Hualien, Liujar, Naba, Sheliao, Tunwei) to investigate the characteristic of groundwater level to earthquakes and different background factors, such as rainfall, barometric pressure and earth tides. Five earthquake cases were studied, four occurred in Taiwan island, the 2010 ML6.4 Kaohsiung earthquake, the 2012 ML6.4 Pingtung earthquake, the 2013 ML6.2 and ML6.5 Nantou earthquake, and one happened distance away, the 2011 MW 9.0 Japan Tohoku earthquake. Oscillatory groundwater-level changes were observed from all earthquake events, but sustained changes differed in each well. The duration of sustained groundwater-level changes ranged from a few minutes to an hour, which may reflect the hydrogeological condition or the redistribution of crustal stress and strain. High-frequency and high-resolution data can reflect the process of coseismic groundwater-level change, and is an indicator for studying the response to earthquakes or fault movement.

  20. Program plan for TNX Area groundwater characterization wells

    SciTech Connect

    Nichols, R.L.

    1989-05-19

    The TNX Area post-Cretaceous hydrogeological section consists of an unconfined aquifer in recent to Pliestocene age sediments and a confined aquifer in tertiary aged sediments. The unconfined aquifer is a local water bearing reservoir and will not be correlated to a specific stratigraphic unit at this time. Depth to the water table ranges from 25 feet at the New TNX Seepage Basin to 50 feet at the Old TNX Seepage Basin. The unconfined aquifer is 45--50 feet thick and outcrops in the swamp to the west of TNX. The hydraulic gradient in the unconfined aquifer decreases westerly across the TNX Area from 0.05 to 0.01. The unconfined aquifer is separated from the underlying confined aquifer by a sandy slit aquitard (A1) which is approximately 5--10 feet thick. Researchers reported an increase in hydraulic head across this unit of approximately 8 feet which results in an upward gradient between the unconfined and confined aquifer. The confined Tertiary aquifer (C1) at TNX is 25--30 feet thick and can generally be found 60 to 90 feet below the surface. The C1 aquifer is part of the aquifer commonly referred to as the Congaree'' which occurs in the Congaree Formation. The C1 aquifer lies on the Lower Tertiary aquitard (A2) which is 45--55 feet thick and is commonly referred to as the Ellenton Formation.'' Currently there is an upward gradient across A2 with a head differential of 28 feet. Regional hydrogeologic models indicate that the C1 aquifer discharges to the Savannah River producing westward groundwater flow in C1. 3 figs., 1 tab.

  1. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  2. Report on the radiochemical and environmental isotope character for monitoring well UE-1-q: Groundwater Characterization Program

    SciTech Connect

    Davisson, M.L.; Hudson, G.B.; Kenneally, J.; Nimz, G.J.; Rego, J.H.

    1993-06-01

    Well UE-1-q is located in the northeastern portion of area 1 of the Nevada Test Site in southwestern Nevada, 1244.1 meters above sea level. The well was originally an exploratory hole drilled to a depth of 743 meters below the surface (mbs) by LANL in November of 1980. In May 1992, the Groundwater Characterization Program (GCP) extended the total depth to approximately 792.5 mbs. UE-1-q is cased to a total depth of 749.5 mbs, with the remaining uncased depth exposed exclusively to Paleozoicaged carbonate rock, the principle zone of groundwater sampling. Geologic logging indicates approximately 390 meters of tuffaceous and calcareous alluvium overlies 320 meters of Tertiary-aged volcanic ash-flow and bedded tuffs. Paleozoic carbonate lithology extends from 716 mbs to the total well depth and is separated from the overlying Tertiary volcanic deposits by 6 meters of paleocolluvium. This report outlines the results and interpretations of radiochemical and environmental isotopic analyses of groundwater sampled from UE-1-q on July 10, 1992 during the well pump test following well development. In addition, results of the field tritium monitoring performed during the well drilling are reported in Appendix 1. Sampling, analytical techniques, and analytical uncertainties for the groundwater analyses are presented in Appendix 2.

  3. How appropriate is the Thiem equation for describing groundwater flow to actual wells?

    NASA Astrophysics Data System (ADS)

    Tügel, Franziska; Houben, Georg J.; Graf, Thomas

    2016-12-01

    The Thiem equation of radial groundwater flow to a well is more than 100 years old and is still commonly used. Here, deviations caused by some of its simplifications are quantified by comparing the analytical to a numerical model that allows the implementation of more complex geometries. The assumption of horizontal flow in the Thiem equation, which necessitates uniform inflow over the entire screen length of the fully penetrating well, was found to cause deviations from actual pumping wells where the pump is placed above the screen, resulting in non-uniform inflow and additional drawdown. The same applies to partially penetrating wells, where inflow peaks and additional drawdown occur, especially when the well is screened in the lower part of the aquifer. The use of the Thiem equation in the near-field of a well should thus be restricted to situations where the screen inflow is relatively uniformly distributed, e.g. when it covers large portions of the aquifer thickness. The presence of a gravel pack and a background gradient, on the other hand, are of limited importance.

  4. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    USGS Publications Warehouse

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  5. The Impact of an Open Loop Geothermal System with Multiple Wells on Groundwater Temperature

    NASA Astrophysics Data System (ADS)

    Susanto, S.

    2015-12-01

    As the demand of groundwater as a source of energy has increased in recent years, the Upper Carbonate Aquifer beneath the City of Winnipeg is heavily utilized for cooling and heating. Majority open loop systems discharge thermal wastewater into the aquifer and increase the groundwater temperature. A numerical model was developed to study the impact of a geothermal system with multiple wells located in the Tuxedo area on groundwater temperature. Analysis was performed using SEAWAT with GUI Visual MODFLOW. Surface elevation, model boundary and wells locations were developed using ArcGIS. The model was run in steady state flow for static water level calibration and in transient mode for calibration using data of a pumping test. Preliminary investigation with three years simulation predicts a 600 m by 660 m area of temperature increase. Groundwater temperature in production wells will increase 0.5°C within 2 years and 1°C within 3 years. Factors that influence the temperature changes and its distribution in the groundwater are production flow rate, recharge flow rate, groundwater flow, return water distribution into recharge wells, distance between production wells and recharge wells, spacing between recharge wells, and layout of geothermal pumping wells. The simulated and observed temperature increase is mainly caused by higher production rate for cooling than for heating. The result from this study will strongly contribute knowledge in the development of a 3D numerical model of the Upper Carbonate Aquifer beneath the City of Winnipeg to investigate the impact of geothermal systems to the groundwater temperature.

  6. Fluid loss control additives for oil well cementing compositions

    SciTech Connect

    Crema, S.C.; Kucera, C.H.

    1992-03-03

    This patent describes a cementing composition useful in cementing oil, gas and water wells. It comprises hydraulic cement; and a fluid loss additive in an amount effective to reduce fluid loss, the fluid loss additive comprised of a copolymer of acrylamide monomer and vinyl formamide monomer and derivatives thereof in a weight percent ratio of from about 95:5 to 5:95, the copolymer having a molecular weight range of from about 10,000 to 3,000,000, the acrylamide monomer being selected from the group consisting of acrylamide, methacrylamide, N,N-dimethyl(meth)acrylamide, dialkylaminoalkyl(meth) acrylamide and mixtures thereof, the vinyl formamide monomer being selected from the group consisting of vinyl formamide, its hydrolysis products and derivatives thereof.

  7. Modeling groundwater nitrate concentrations in private wells in Iowa.

    PubMed

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  8. Modeling groundwater nitrate concentrations in private wells in Iowa

    USGS Publications Warehouse

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  9. Technetium-99 in Groundwater at Hanford Well 299-W23-19 Option Analysis & Recommended Action Report

    SciTech Connect

    MYERS, D.A.

    2002-04-01

    Feasibilities options report for remediation of contamination of groundwater Well 299-W23-19 CHG-0102661R1. Document results of aquifer testing & groundwater sampling 12/2001 & 01/2002. Path fwd. Corrective actions Technetium-99 in groundwater Well 299-W23-19.

  10. Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands.

    PubMed

    Schipper, P N M; Vissers, M J M; van der Linden, A M A

    2008-01-01

    In the Netherlands, many of the fresh groundwater resources are vulnerable to pollution. Owing to high population densities and intensive farming practices, pesticide residues are found in groundwater at many places. Hence a number of drinking water abstraction wells contain pesticides residues, causing considerable costs for purification. The Water Framework Directive (WFD) requires countries to assess the chemical status of groundwater bodies and set up monitoring plans for groundwater quality, including pesticides. 771 groundwater samples were taken from monitoring wells in 2006 and analysed for a broad list of pesticides in order to fulfil these requirements. Pesticide were detected in 27% of samples, while in 11% the WFD limit of 0.1 microg/l was exceeded. In this paper, these and earlier measurements are evaluated further, considering also measurements in drinking water wells, information about the origin of measured pesticides and calculated trends in use and emissions. The measurements in the monitoring wells showed that where pesticides are used, 15-55% (minimal and maximal estimation) of the wells in shallow groundwater (1 to 20 m below soil surface) contain pesticides residues at concentrations above 0.1 microg/l. When the metabolites BAM and AMPA are excluded (as not relevant in human toxicological terms), the estimation range is 7-37%. These patterns observed in shallow groundwater are reflected by the occurrence of pesticides in vulnerable abstraction wells that are used for the production of drinking water. The WFD requires the determination of both status and trends. The design of current monitoring network is evaluated from this perspective. Several recommendations are made for more adequate and efficient monitoring.

  11. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    NASA Astrophysics Data System (ADS)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  12. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation

  13. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well].

    PubMed

    Bai, Jing; Zhao, Yong-Sheng; Sun, Chao; Qin, Chuan-Yu; Yu, Ling

    2014-10-01

    A two-dimension simulated sand box was set up to investigate the influencing factors, such as the initial groundwater level, aeration rate and the initial groundwater rate, that affect groundwater circulation well (GCW) by determining the intensity of groundwater circulation which was characterized by the variation of groundwater level before and after aeration. The optimal operating parameters were used to remediate nitrobenzene contaminated aquifer. The results demonstrated that: GCW could be well operated under the conditions of 45 cm groundwater level, 0.7 m3 · h(-1) aeration rate. The effects of groundwater velocity less than 1.0 m · d(-1) could be ignored. The lateral mobility rate of nitrobenzene was faster than that of longitudinal. The average concentration of nitrobenzene was 246.97 mg · L(-1) on day 50 of leakage. During the remediation of circulation well, an efficient organics remediation region was gradually formed around the circulation well. The organics in this region was removed preferentially, and the concentration decreased continuously. Besides the efficient remediation region, there was a transient region, where the concentration of organics was influenced by the combined effects of adsorption/desorption and migration potential of organics. During the whole remediation process, the concentration of nitrobenzene went through three stages described as rapid removal, slow removal. After 14h aeration, the nitrobenzene average concentration was reduced to 71.19 mg L(-1). The residual nitrobenzene was distributed in regions far away from GCW. Therefore, nitrobenzene contaminated aquifer could be well remediated by GCW, and there were optimal operation conditions and appropriate remediation time which guaranteed the best remediation effect.

  14. The origin and distribution of nitrate in groundwater from village wells in Kotagede, Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey D.; Wetselaar, Robbert; Fox, James J.; van de Graaff, Robert H. M.; Moeljohardjo, Doeljachman; Sarwono, Joko; Wiranto, James A.; Asj'ari, Sri Rahajoe; Tjojudo, Suharto; Basuki, H.

    1999-12-01

    The causes and nature of nitrate pollution of wells in a village within Kotagede, a subdistrict of the city of Yogyakarta, Indonesia, were investigated in a detailed hydrological study. Nitrate concentrations in groundwater frequently exceeded the WHO recommended limit of 50 mg L - 1. Groundwater nitrate concentrations were measured over a 19-month period in monitoring wells and in piezometers placed strategically in relation to sewage tanks within the village. Results indicate that the tanks are major sources of nitrate in the groundwater and that the input is markedly dependent on rainfall, resulting in a surge of nitrate into the groundwater at the beginning of each wet season. That the tanks are a major source was confirmed by measuring nitrate in soil cores obtained by augering close to selected tanks. Washrooms, where people wash themselves, are not significant sources of nitrate. Faecal coliform counts in groundwater from a random selection of wells are very high. The results have implications for the siting of wells and toilets within villages in Indonesia.

  15. Dual-Screened Vertical Circulation Wells for Groundwater Lowering in Unconfined Aquifers.

    PubMed

    Jin, Yulan; Holzbecher, Ekkehard; Sauter, Martin

    2016-01-01

    A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free-surface, by coupling the arbitrary Lagrangian-Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.

  16. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    USGS Publications Warehouse

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  17. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    PubMed

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  18. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    USGS Publications Warehouse

    Bachmann, Matthew P.

    2015-10-21

    Generalized groundwater-flow directions in unconsolidated basin-fill deposits were towards the Yakima River, which acts as a local sink for shallow groundwater, and roughly parallel to topographic gradients. Particles backtracked from more shallow aquifer locations traveled shorter distances before reaching the water table than particles from deeper locations. Flowpaths for particles starting at wells completed in the basalt units underlying the basin-fill deposits sometimes were different than for wells with similar lateral locations but more shallow depths. In cases where backtracking particles reached geologic structures simulated as flow barriers, abrupt changes in direction in some particle pathlines suggest significant changes in simulated hydraulic gradients that may not accurately reflect actual conditions. Most groundwater wells sampled had associated zones of contribution within the Toppenish/Benton subbasin between the well and the nearest subbasin margin, but interpretation of these results for any specific well is likely to be complicated by the assumptions and simplifications inherent in the model construction process. Delineated zones of contribution for individual wells are sensitive to the depths assigned to the screened interval of the well, resulting in simulated areal extents of the zones of contribution to a discharging well that are elongated in the direction of groundwater flow.

  19. Evaluation of groundwater influences and thermal profiles of a well in Pohang, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, Cholwoo; Park Park, Chan-Hee; Lim, Woori; Lee, Youngmin; Park, Deok Won; Park, Inhwa; Shim, Byoung-Ohan

    2016-04-01

    A well of 2,300 m depth in Pohang area, South Korea are used for core and temperature logs and a pumping test. Core consists of tuff, mudstone, and sandstone. Due to pressure gradient along the rock boundaries of the aquifers, groundwater is observed to flow vertically from top to bottom in the well. Geothermal gradient is logged to about 40℃/km. Based on the pumping test, transmissivity is calculated to be 4.44 m2/d. Temperature of pumped water was about 32℃. Comparing water temperature with the geothermal gradient, it appeared that groundwater residing at the depth of 400m is pumped out.

  20. Borehole summary report for five ground-water monitoring wells constructed in the 1100 Area

    SciTech Connect

    Bryce, R.W.; Goodwin, S.M.

    1989-05-01

    This report contains the data collected during the installation and initial sampling of five ground-water monitoring wells between the 1100 Area and Richland City water supply wells. The five wells were installed to provide for early detection of contaminants and to provide data that may be used in making decisions on the management of the North Richland Well Field and recharge basins. 2 refs., 1 fig.

  1. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2012

    USGS Publications Warehouse

    Thomas, Judith C.; Arnold, Larry R. Rick

    2015-07-06

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Ten monitoring wells were installed during October and November 2012. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system will provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  2. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  3. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  4. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  5. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  6. Statement of Work for Drilling Five CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect

    Williams, Bruce A.

    2005-08-01

    Pacific Northwest National Laboratory, the U.S. Department of Energy (DOE), and the regulators have agreed that two characterization wells along with three additional performance monitoring wells shall be installed in the 300-FF-5 Operable Unit as defined in the proposed Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [TPA]) Milestone M-24-57 and the 300-FF-5 Limited Field Investigation plan (DOE/RL-2005-47). This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells during FY 2006.

  7. Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    USGS Publications Warehouse

    Arnold, L.R.; Flynn, J.L.; Paschke, S.S.

    2009-01-01

    The High Plains aquifer is an important water source for irrigated agriculture and domestic supplies in northeastern Colorado. To address the needs of Colorado's Groundwater Protection Program, the U.S. Geological Survey designed and installed a groundwater monitoring-well network in cooperation with the Colorado Department of Agriculture in 2008 to characterize water quality in the High Plains aquifer underlying areas of irrigated agriculture in eastern Colorado. A 30-well network was designed to provide for statistical representation of water-quality conditions by using a computerized technique to generate randomly distributed potential groundwater sampling sites based on aquifer extent, extent of irrigated agricultural land, depth to water from land surface, and saturated thickness. Twenty of the 30 sites were selected for well installation, and wells were drilled and installed during the period June-September 2008. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Documentation of the well-network design, site selection, lithologic logs, well-construction diagrams, and well-development records is presented in this report.

  8. Observation-well network for collection of ground-water level data in Massachusetts

    USGS Publications Warehouse

    Socolow, Roy S.

    1994-01-01

    Aquifers--water-bearing deposits of sand and gravel, glacial till, and fractured bedrock--provide an extensive and readily accessible ground-water supply in Massachusetts. Ground water affects our everyday lives, not just in terms of how much water is available, but also in terms of the position of ground-water levels in relation to land surface. Knowledge of ground-water levels is needed by Federal, State, and local agencies to help plan, manage, and protect ground-water supplies, and by private construction companies for site planning and evaluation. A primary part of the mission of the U.S. Geological Survey (USGS), Water Resources Division, is the systematic collection of ground-water, surface-water, and water-quality data. These data are needed to manage and protect the nation's water resources. The Massachusetts-Rhode Island District of the USGS, in cooperation with the Massachusetts Department of Environmental Management (DEM), Office of Water Resources, and county and town environmental agencies, has maintained a network of observation wells throughout the Commonwealth since the mid 1930's. The purpose of this network is to monitor seasonal and long-term changes in groundwater storage in different lithologic, topographic, and geographic settings. These data are analyzed to provide a monthly index of ground-water conditions to aid in water-resources management and planning, and to define long-term changes in water levels resulting from manmade stresses (such as pumping and construction-site drainage) and natural stresses (such as floods and droughts).

  9. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.

    PubMed

    Hudak, Paul F

    2014-01-01

    This modeling study compared the performance of a no-action and four active groundwater remediation alternatives: a permeable reactive barrier, a funnel and gate, nonpumped wells with filter media, and a low-capacity extraction and injection well. The simulated aquifer had an average seepage velocity of 0.04 m d(-1), and the initial contaminant plume was 58 m long and 13 m wide. For each active alternative, mass transport modeling identified the smallest structure necessary to contain and remove the contaminant plume. Although the no-action alternative did not contain the plume, each active alternative did contain and remove the plume, but with significantly different installation and operation requirements. Low-capacity pumping wells required the least infrastructure, with one extraction well and one injection well each discharging only 1.7 m(3) d(-1). The amount of time necessary to remove the contaminant plume was similar among active alternatives, except for the funnel and gate, which required much more time. Results of this study suggest that, for a modest seepage velocity and relatively narrow contaminant plume, low-capacity wells may be an effective alternative for groundwater remediation.

  10. Groundwater Chemistry Change due to Tidal Fluctuations in the Stonehouse Brewery Well, Plymouth, England

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. S.

    1985-04-01

    The Stonehouse Brewery Well is sunk 24 m into the well-cemented, fissure-dominated Plymouth Limestone. Groundwater within the well can be shown to be in hydraulic continuity with the marine waters of Plymouth Sound. Groundwater was discharged from the well for 28 hours at approximately 13,500 L/h and samples taken hourly were subsequently analyzed for pH, conductivity, magnesium, potassium, sodium, chloride, calcium, and nitrate. The results of these analyses are reported and briefly discussed in particular the apparent tidally influenced cyclicity of certain data sets and the apparent influence of the upcoming of saline water beneath the pumped well upon the chemistry of the discharged well water.

  11. Well installation and ground-water sampling plan for 1100 Area environmental monitoring wells

    SciTech Connect

    Bryce, R.W.

    1989-05-01

    This report outlines a plan for the installation and sampling of five wells between inactive waste sites in the 1100 Area of the Hanford Site and Richland City water supply wells. No contamination has been detected in water pumped from the water supply wells to date. The five wells are being installed to provide for early detection of contaminants and to provide data that may be used to make decisions concerning the management of the North Richland Well Field. This plan describes the existing waste disposal facilities and water supply wells, hydrogeology of the area, well completion specifics, and the data to be gathered from the five new wells. 26 refs., 8 figs., 4 tabs.

  12. Ground-water records for southeastern Oklahoma : Part 1, records of wells, test-holes, and springs

    USGS Publications Warehouse

    Havens, John S.; Bergman, DeRoy L.

    1976-01-01

    The U. S. Geological Survey has collected data on Oklahoma's ground-water resources since 1934. Most of these data were collected as part of specific ground-water studies conducted in cooperation with various Federal, State, and local agencies. Although a large amount of ground-water data have been published, they are scattered through a variety of reports and are not readily available on a regional basis. Furthermore, a considerable amount of data have never been published and can be obtained only from the files of the Geological Survey. The purpose of this report is to make available both published and unpublished records for approximately 1,780 wells, test-holes, and springs in 16 counties in northeastern Oklahoma. In addition, selected references to pertinent ground-water reports covering parts of the 16-county area are included for those requiring more specific information. The stratigraphic nomenclature and age determinations used in the report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey. Acknowledgment is extended to the many hundreds of individuals who have provided the data compiled in this report.

  13. Ground-water records for northeastern Oklahoma : Part 1, records of wells, test-holes, and springs

    USGS Publications Warehouse

    Havens, John S.; Bergman, DeRoy L.

    1976-01-01

    The U. S. Geological Survey has collected data on Oklahoma's ground-water resources since 1934. Most of these data were collected as part of specific ground-water studies conducted in cooperation with various Federal, State, and local agencies. Although a large amount of ground-water data have been published, they are scattered through a variety of reports and are not readily available on a regional basis. Furthermore, a considerable amount of data have never been published and can be obtained only from the files of the Geological Survey. The purpose of this report is to make available both published and unpublished records for approximately 3,360 wells, test-holes, and springs in 23 counties in northeastern Oklahoma. In addition, selected references to pertinent ground-water reports covering parts of the 23-county area are included for those requiring more specific information. The stratigraphic nomenclature and age determinations used in the report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey. Acknowledgment is extended to the many hundreds of individuals who have provided the data compiled in this report.

  14. Analysis of the impacts of well yield and groundwater depth on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Butler, A. P.

    2015-04-01

    Previous research has found that irrigation water demand is relatively insensitive to water price, suggesting that increased pumping costs due to declining groundwater levels will have limited effects on agricultural water management practices. However, non-linear changes in well yields as aquifer saturated thickness is reduced may have large impacts on irrigated production that are currently neglected in projections of the long-term sustainability of groundwater-fed irrigation. We conduct empirical analysis of observation data and numerical simulations for case studies in Nebraska, USA, to compare the impacts of changes in well yield and groundwater depth on agricultural production. Our findings suggest that declining well pumping capacities reduce irrigated production areas and profits significantly, whereas increased pumping costs reduce profits but have minimal impacts on the intensity of groundwater-fed irrigation. We suggest, therefore, that management of the dynamic relationship between well yield and saturated thickness should be a core component of policies designed to enhance long-term food security and support adaptation to climate change.

  15. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  16. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2006-12-01

    This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the

  17. Using geochemistry to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: Part 2

    USGS Publications Warehouse

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Manning, Andrew H.; Hunt, Andrew G.

    2012-01-01

    Montezuma Well is a unique natural spring located in a sinkhole surrounded by travertine. Montezuma Well is managed by the National Park Service, and groundwater development in the area is a potential threat to the water source for Montezuma Well. This research was undertaken to better understand the sources of groundwater to Montezuma Well. Strontium isotopes (87Sr/86Sr) indicate that groundwater in the recharge area has flowed through surficial basalts with subsequent contact with the underlying Permian aged sandstones and the deeper, karstic, Mississippian Redwall Limestone. The distinctive geochemistry in Montezuma Well and nearby Soda Springs (higher concentrations of alkalinity, As, B, Cl, and Li) is coincident with added carbon dioxide and mantle-sourced He. The geochemistry and isotopic data from Montezuma Well and Soda Springs allow for the separation of groundwater samples into four categories: (1) upgradient, (2) deep groundwater with carbon dioxide, (3) shallow Verde Formation, and (4) mixing zone. δ18O and δD values, along with noble gas recharge elevation data, indicate that the higher elevation areas to the north and east of Montezuma Well are the groundwater recharge zones for Montezuma Well and most of the groundwater in this portion of the Verde Valley. Adjusted groundwater age dating using likely 14C and δ13C sources indicate an age for Montezuma Well and Soda Springs groundwaters at 5,400–13,300 years, while shallow groundwater in the Verde Formation appears to be older (18,900). Based on water chemistry and isotopic evidence, groundwater flow to Montezuma Well is consistent with a hydrogeologic framework that indicates groundwater flow by (1) recharge in higher elevation basalts to the north and east of Montezuma Well, (2) movement through the upgradient Permian and Mississippian units, especially the Redwall Limestone, and (3) contact with a basalt dike/fracture system that provides a mechanism for groundwater to flow to the surface

  18. Human and animal enteric virus in groundwater from deep wells, and recreational and network water.

    PubMed

    Fongaro, Gislaine; Padilha, J; Schissi, C D; Nascimento, M A; Bampi, G B; Viancelli, A; Barardi, C R M

    2015-12-01

    This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health.

  19. Slug tests in wells screened across the water table: some additional considerations.

    PubMed

    Butler, J J

    2014-01-01

    The majority of slug tests done at sites of shallow groundwater contamination are performed in wells screened across the water table and are affected by mechanisms beyond those considered in the standard slug-test models. These additional mechanisms give rise to a number of practical issues that are yet to be fully resolved; four of these are addressed here. The wells in which slug tests are performed were rarely installed for that purpose, so the well design can result in problematic (small signal to noise ratio) test data. The suitability of a particular well design should thus always be assessed prior to field testing. In slug tests of short duration, it can be difficult to identify which portion of the test represents filter-pack drainage and which represents formation response; application of a mass balance can help confirm that test phases have been correctly identified. A key parameter required for all slug test models is the casing radius. However, in this setting, the effective casing radius (borehole radius corrected for filter-pack porosity), not the nominal well radius, is required; this effective radius is best estimated directly from test data. Finally, although conventional slug-test models do not consider filter-pack drainage, these models will yield reasonable hydraulic conductivity estimates when applied to the formation-response phase of a test from an appropriately developed well.

  20. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    USGS Publications Warehouse

    Wellman, Tristan

    2015-01-01

    A network of candidate monitoring wells was proposed to initiate a regional monitoring program. Consistent monitoring and analysis of groundwater levels will be needed for informed decisions to optimize beneficial use of water and to limit high groundwater levels in susceptible areas. Finalization of the network will require future field reconnaissance to assess local site conditions and discussions with State authorities.

  1. Saturated brine well treating fluids and additives therefore

    SciTech Connect

    Dobson, J.W. Jr.; Mondshine, A.T.; Mondshine, T.C.

    1989-04-18

    A well treating fluid is described, comprising a saturated aqueous saline solution, a water soluble particulate salt which is insoluble in the saturated aqueous saline solution, a xanthomonas gum, and an eicholorhydrin crosslinked hydroxypropyl starch wherein the concentration of the xanthomonas gum is from about 0l.5 kg/m/sup 3/ to about 5.7 kg/m/sup 3/ of the well treating fluid and the concentration of the epichlorohydrin crosslinked hyroxypropyl starch is from about 0.7 kg/cm/sup 3/ to about 42 kg/m/sup 3/ of the well treating fluid.

  2. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only ~3 mg l-1 of purified humic acid. Destruction by UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon

  3. Occurrence, distribution and source of arsenic in deep groundwater wells in Maydavood area, southwestern Iran

    NASA Astrophysics Data System (ADS)

    Chitsazan, M.; Dorraninejad, M. S.; Zarasvandi, A.; Mirzaii, S. Y.

    2009-08-01

    Groundwater in some deep wells of Maydavood aquifer, southwestern Iran, contains relatively high concentrations of arsenic. Detailed hydrochemical analysis of these groundwaters (with ICP-OES instrument) showed that concentrations of iron, manganese, nickel, and vanadium are also high in them and concentrations of total arsenic in 81% of deep wells are greater than World Health Organization’s permissible value (10 ppb). XRF analysis of surrounding geological formations and aquifer sediments proposed that original source of arsenic in aquifer material can be attributed to minerals from Asmari Formation. It appears that a key mechanism for arsenic mobilizing to deep wells is microbial biodegradation of petroleum related organic matters (PROMs), which exist in aquifer sediments and originates from the bedrock of the aquifer (Gachsaran Formation). This process is followed by microbially mediated reductive dissolution of arsenic-bearing iron/manganese oxyhydroxides/oxides and further by nickel and vanadium mobilizing to groundwater. According to hydrogeochemical conditions and cluster analysis, water wells in Maydavood aquifer are divided to four subgroups: the wells with mildly reducing condition (subgroup I), moderately reducing condition (subgroup II), reducing condition (subgroup III), and high reducing condition (subgroup IV). Affected wells to arsenic are belonged to subgroups III and IV.

  4. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    SciTech Connect

    Conrad, Mark E.; Brodie, Eoin L.; Radtke, Corey W.; Bill, Markus; Delwiche, Mark E.; Lee, M. Hope; Swift, Dana L.; Colwell, Frederick S.

    2010-05-17

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH4 in the groundwater extending 250 m from the injection well. The delta13C of the CH4 increases from 56o/oo in the source area to -13 o/oo with distance from the injection well, whereas the delta13C of dissolved inorganic carbon decreases from 8 o/oo to -13 o/oo, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH4-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with 13C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.

  5. Hydrographs showing groundwater levels for selected wells in the Puyallup River watershed and vicinity, Pierce and King Counties, Washington

    USGS Publications Warehouse

    Lane, R.C.; Julich, R.J.; Justin, G.B.

    2013-01-01

    Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.

  6. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  7. Searching for anomalous methane in shallow groundwater near shale gas wells

    NASA Astrophysics Data System (ADS)

    Li, Zhenhui; You, Cheng; Gonzales, Matthew; Wendt, Anna K.; Wu, Fei; Brantley, Susan L.

    2016-12-01

    Since the 1800s, natural gas has been extracted from wells drilled into conventional reservoirs. Today, gas is also extracted from shale using high-volume hydraulic fracturing (HVHF). These wells sometimes leak methane and must be re-sealed with cement. Some researchers argue that methane concentrations, C, increase in groundwater near shale-gas wells and that "fracked" wells leak more than conventional wells. We developed techniques to mine datasets of groundwater chemistry in Pennsylvania townships where contamination had been reported. Values of C measured in shallow private water wells were discovered to increase with proximity to faults and to conventional, but not shale-gas, wells in the entire area. However, in small subareas, C increased with proximity to some shale-gas wells. Data mining was used to map a few hotspots where C significantly correlates with distance to faults and gas wells. Near the hotspots, 3 out of 132 shale-gas wells ( 2%) and 4 out of 15 conventional wells (27%) intersect faults at depths where they are reported to be uncased or uncemented. These results demonstrate that even though these data techniques do not establish causation, they can elucidate the controls on natural methane emission along faults and may have implications for gas well construction.

  8. Searching for anomalous methane in shallow groundwater near shale gas wells.

    PubMed

    Li, Zhenhui; You, Cheng; Gonzales, Matthew; Wendt, Anna K; Wu, Fei; Brantley, Susan L

    2016-12-01

    Since the 1800s, natural gas has been extracted from wells drilled into conventional reservoirs. Today, gas is also extracted from shale using high-volume hydraulic fracturing (HVHF). These wells sometimes leak methane and must be re-sealed with cement. Some researchers argue that methane concentrations, C, increase in groundwater near shale-gas wells and that "fracked" wells leak more than conventional wells. We developed techniques to mine datasets of groundwater chemistry in Pennsylvania townships where contamination had been reported. Values of C measured in shallow private water wells were discovered to increase with proximity to faults and to conventional, but not shale-gas, wells in the entire area. However, in small subareas, C increased with proximity to some shale-gas wells. Data mining was used to map a few hotspots where C significantly correlates with distance to faults and gas wells. Near the hotspots, 3 out of 132 shale-gas wells (~2%) and 4 out of 15 conventional wells (27%) intersect faults at depths where they are reported to be uncased or uncemented. These results demonstrate that even though these data techniques do not establish causation, they can elucidate the controls on natural methane emission along faults and may have implications for gas well construction.

  9. Occurrence and distribution of 210Pb and 210Po in selected California groundwater wells.

    PubMed

    Ruberu, Shiyamalie R; Liu, Yun-Gang; Perera, S Kusum

    2007-05-01

    Groundwater wells from across the State of California were sampled and analyzed for Pb and Po. The separation method involved Fe(OH)3 precipitation from a 5-L groundwater sample followed by electrodeposition of Po on a nickel disk. The resulting solution was passed through an ion-exchange resin column for the isolation of Pb. De-ionized water spiked at a concentration range from 4.92 mBq L(-1) to 755 mBq L(-1) with these radionuclide standards showed excellent accuracy and precision of the method. In the groundwater wells, overall activity of Pb ranged from 3.7 mBq L(-1) to 1,481 mBq L(-1) and the Po activity ranged from 0.25 mBq L(-1) to 555 mBq L(-1). Of the select wells tested, 27% for Pb and 19% for Po were above the proposed maximum contamination limits for these radionuclides, which are set at 37 mBq L(-1) and 26 mBq L(-1), respectively. From a public health perspective this is a concern, since the drinking water screening levels for gross alpha is at 555 mBq L(-1) and gross beta is at 1,850 mBq L(-1). At such high screening levels Pb and Po will not be captured, and this situation was found in several of the wells studied. The occurrence of Pb and Po are not correlated within the sources, however; the polonium concentrations were always lower than the lead concentrations. Activities of Pb measured from wells two years apart clearly demonstrated the continuous flux of groundwater within aquifers.

  10. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction.

    PubMed

    Goltz, Mark N; Huang, Junqi; Close, Murray E; Flintoft, Mark J; Pang, Liping

    2008-09-10

    Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.

  11. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    USGS Publications Warehouse

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  12. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California

    USGS Publications Warehouse

    Pigati, J.S.; Miller, D.M.; Bright, J.E.; Mahan, S.A.; Nekola, J.C.; Paces, J.B.

    2011-01-01

    groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4-12 ??C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0-11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing of these fluctuations is consistent with

  13. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Miller, David M.; Bright, Jordon E.; Mahan, Shannon; Nekola, Jeffrey C.; Paces, James B.

    2011-01-01

    During the late Pleistocene, emergent groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4–12 °C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0–11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing

  14. Association of groundwater constituents with topography and distance to unconventional gas wells in NE Pennsylvania.

    PubMed

    Yan, Beizhan; Stute, Martin; Panettieri, Reynold A; Ross, James; Mailloux, Brian; Neidell, Matthew J; Soares, Lissa; Howarth, Marilyn; Liu, Xinhua; Saberi, Pouné; Chillrud, Steven N

    2017-01-15

    Recently we reported an association of certain diseases with unconventional gas development (UGD). The purpose of this study is to examine UGD's possible impacts on groundwater quality in northeastern Pennsylvania. In this study, we compared our groundwater data (Columbia 58 samples) with those published data from Cabot (1701 samples) and Duke University (150 samples). For each dataset, proportions of samples with elevated levels of dissolved constituents were compared among four groups, identified as upland far (i.e. ≥1km to the nearest UGD gas well), upland near (<1km), valley far (≥1km), and valley near (<1km) groups. The Columbia data do not show statistically significant differences among the 4 groups, probably due to the limited number of samples. In Duke samples, Ca and CI levels are significantly higher in the valley near group than in the valley far group. In the Cabot dataset, methane, Na, and Mn levels are significantly higher in valley far samples than in upland far samples. In valley samples, Ca, Cl, SO4, and Fe are significantly higher in the near group (i.e. <1km) than in the far group. The association of these constituents in valley groundwater with distance is observed for the first time using a large industry dataset. The increase may be caused by enhanced mixing of shallow and deep groundwater in valley, possibly triggered by UGD process. If persistent, these changes indicate potential for further impact on groundwater quality. Therefore, there is an urgent need to conduct more studies to investigate effects of UGD on water quality and possible health outcomes.

  15. Evaluating the sources of water to wells: Three techniques for metamodeling of a groundwater flow model

    USGS Publications Warehouse

    Fienen, Michael N.; Nolan, Bernard T.; Feinstein, Daniel T.

    2016-01-01

    For decision support, the insights and predictive power of numerical process models can be hampered by insufficient expertise and computational resources required to evaluate system response to new stresses. An alternative is to emulate the process model with a statistical “metamodel.” Built on a dataset of collocated numerical model input and output, a groundwater flow model was emulated using a Bayesian Network, an Artificial neural network, and a Gradient Boosted Regression Tree. The response of interest was surface water depletion expressed as the source of water-to-wells. The results have application for managing allocation of groundwater. Each technique was tuned using cross validation and further evaluated using a held-out dataset. A numerical MODFLOW-USG model of the Lake Michigan Basin, USA, was used for the evaluation. The performance and interpretability of each technique was compared pointing to advantages of each technique. The metamodel can extend to unmodeled areas.

  16. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    none,

    2013-09-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted "active" status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted "inactive" status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  17. Nitrate Contamination of Shallow Groundwater in The San Joaquin Valley - A Domestic Well Survey

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; King, A.

    2011-12-01

    Groundwater quality has been, and continues to be, a major concern in agricultural areas where concentrated animal feeding operations (CAFO) exist or where fertilizers are applied. In the San Joaquin Valley, California, the majority of land-use is agricultural and groundwater contamination by nitrate is common in areas where many people rely on shallow domestic wells. Elevated levels of nitrate in drinking water have been linked to adverse health effects. This project sampled 200 domestic wells in Stanislaus, Merced, Tulare, and Kings Counties for nitrate as NO3-N. Wells were given a "dairy" or "non-dairy" designation depending on the distance to the nearest dairy corral or lagoon. This study found 46% of wells sampled in Tulare and Kings Counties and 42% of wells sampled in Stanislaus and Merced Counties exceeded the MCL for nitrate (10 mg/l). In Tulare and Kings Counties, non-dairy wells had a significantly greater mean nitrate value than dairy wells, and Tulare and Kings County non-dairy wells had a significantly greater mean nitrate value than Stanislaus and Merced non-dairy wells. Stanislaus and Merced County dairy wells had a significantly greater mean nitrate value than Tulare and Kings dairy wells. Tulare and Kings non-dairy wells may have greater nitrate values due to overlying row-crop and orchard land-use (commonly citrus) and the large quantities of fertilizers typically applied to these crops. Stanislaus and Merced Counties contain some of the densest CAFO areas of the state, possibly leading to Stanislaus and Merced dairy wells having higher nitrate concentrations than Tulare and Kings dairy wells.

  18. Simulated effects of pumping irrigation wells on ground-water levels in western Saginaw County, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2001-01-01

    Success of agriculture in many areas of Michigan relies on withdrawal of large quantities of ground water for irrigation. In some areas of the State, water-level declines associated with large ground-water withdrawals may adversely affect nearby residential wells. Residential wells in several areas of Saginaw County, in Michigan's east-central Lower Peninsula, recently went dry shortly after irrigation of crop lands commenced; many of these wells also went dry during last year's agricultural cycle (summer 2000). In September 2000, residential wells that had been dry returned to function after cessation of pumping from large-capacity irrigation wells. To evaluate possible effects of groundwater withdrawals from irrigation wells on residential wells, the U.S. Geological Survey used hydrogeologic data including aquifer tests, water-level records, geologic logs, and numerical models to determine whether water-level declines and the withdrawal of ground water for agricultural irrigation are related. Numerical simulations based on representative irrigation well pumping volumes and a 3-month irrigation period indicate water-level declines that range from 5.3 to 20 feet, 2.8 to 12 feet and 1.7 to 6.9 feet at distances of about 0.5, 1.5 and 3 miles from irrigation wells, respectively. Residential wells that are equipped with shallow jet pumps and that are within 0.5 miles of irrigation wells would likely experience reduced yield or loss of yield during peak periods of irrigation. The actual 1 extent that irrigation pumping cause reduced function of residential wells, however, cannot be fully predicted on the basis of the data analyzed because many _other factors may be adversely affecting the yield of residential wells.

  19. Relative efficiency of multi-transect, non-pumped, reactive well networks for removing contaminated groundwater.

    PubMed

    Hudak, Paul F

    2012-01-01

    Alternative networks of non-pumped wells filled with reactive media were evaluated for groundwater remediation capability. Wells were screened across the saturated zone of a simulated, unconfined aquifer with a heterogeneous hydraulic conductivity. A numerical mass transport model generated an initial contaminant plume and then simulated its movement through different networks of non-pumped wells. Two cases were investigated: (1) a linear transect of wells downgradient of the plume; and (2) a downgradient linear transect combined with a second linear transect crossing the plume's interior. Several simulations were conducted for each case to determine the smallest number of wells necessary to prevent the plume from traveling offsite. Case 2 required 11% more wells, but reduced cleanup time by 21%.

  20. Assessing groundwater quality trends in pumping wells using spatially varying transfer functions

    NASA Astrophysics Data System (ADS)

    Baillieux, A.; Moeck, C.; Perrochet, P.; Hunkeler, D.

    2015-11-01

    When implementing remediation programs to mitigate diffuse-source contamination of aquifers, tools are required to anticipate if the measures are sufficient to meet groundwater quality objectives and, if so, in what time frame. Transfer function methods are an attractive approach, as they are easier to implement than numerical groundwater models. However, transfer function approaches as commonly applied in environmental tracer studies are limited to a homogenous input of solute across the catchment area and a unique transfer compartment. The objective of this study was to develop and test an original approach suitable for the transfer of spatially varying inputs across multiple compartments (e.g. unsaturated and saturated zone). The method makes use of a double convolution equation accounting for transfer across two compartments separately. The modified transfer function approach was applied to the Wohlenschwil aquifer (Switzerland), using a formulation of the exponential model of solute transfer for application to subareas of aquifer catchments. A minimum of information was required: (1) delimitation of the capture zone of the outlet of interest; (2) spatial distribution of historical and future pollution input within the capture zone; (3) contribution of each subarea of the recharge zone to the flow at the outlet; (4) transfer functions of the pollutant in the aquifer. A good fit to historical nitrate concentrations at the pumping well was obtained. This suggests that the modified transfer function approach is suitable to explore the effect of environmental projects on groundwater concentration trends, especially at an early screening stage.

  1. Water-level predictions for Indian Wells Valley ground-water basin, California, 1978

    USGS Publications Warehouse

    Mallory, Michael J.

    1979-01-01

    Ground-water pumpage in Indian Wells Valley, virtually a closed basin in the Mojave Desert of southern California, has increased gradually since 1945 and presently exceeds the long-term mean annual recharge (perennial supply). In order to aid in the understanding and management of the ground-water basin, a digital ground-water model was constructed by the U.S. Geological Survey. Since the original development of this model, conditions in the basin, including areal distribution and rates of ground-water pumpage, have changed. The results of simulation for the period 1969-76 constitute a second verification of the original model. Calculated heads for 1976 agree with the observed heads, indicating a good calibration of the original model. A predictive simulation for the period 1977-2020 used pumpage values increasing from about 15,500 acre-feet per year to about 26,000 acre-feet per year. The pumpage used in this report reflects a slightly slower growth rate and a more concentrated pattern of development than that investigated when the model was originally developed. The effects of this pattern of pumpage are reflected in the water levels simulated by the model. Predicted drawdowns for 1983 are less extensive but locally more severe than those predicted earlier. The reversal of the hydraulic gradient between China Lake playa and the city of Ridgecrest, as produced by these drawdowns by the year 2020, suggests that the water-quality effects of such drawdowns should be investigated, as this could result in inferior water from the China Lake playa area flowing southward into areas of withdrawal. (Woodard-USGS)

  2. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    SciTech Connect

    Chapman, Jenny; Lyles, Brad; Cooper, Clay; Hershey, Ron; Healey, John

    2015-06-01

    CAU. The sampling plan is designed to ensure that monitoring activities occur in compliance with the UGTA Quality Assurance Plan (DOE, 2012). The sampling plan should be referenced for Quality Assurance (QA) elements and procedures governing sampling activities. The NNSS Integrated Sampling Plan specifies the groundwater monitoring that will occur in CAU 98 until the long-term monitoring program is approved in the Closure Report. The plan specifies the wells that must be monitored and categorizes them by their sampling objective with the associated analytical requirements and frequency. Possible sample collection methods and required standard operating procedures are also presented. The intent of this handbook is to augment the NNSS Integrated Sampling Plan by providing well-specific details for the sampling professional implementing the Sampling Plan in CAU 98, Frenchman Flat. This handbook includes each CAU 98 well designated for sampling in the NNSS Integrated Sampling Plan. The following information is provided in the individual well sections: 1. The purpose of sampling. 2. A physical description of the well. 3. The chemical characteristics of the formation water. 4. Recommended protocols for purging and sampling. The well-specific information has been gathered from numerous historical and current sources cited in each section, but two particularly valuable resources merit special mention. These are the USGS NNSS website (http://nevada.usgs.gov/doe_nv/ntsarea5.cfm) and the UGTA Field Operations website (https://ugta.nv.doe.gov/sites/Field%20Operations/default.aspx). 2 Land surface elevation and measuring point for water level measurements in Frenchman Flat were a focus during CAU investigations (see Appendix B, Attachment 1 in Navarro-Intera, 2014). Both websites listed above provide information on the accepted datum for each well. A summary is found on the home page for the well on the USGS website. Additional information is available through a link in the

  3. Several natural indicators of radial well ageing at the Belgrade groundwater source, part 2.

    PubMed

    Dimkić, M; Pusić, M; Obradović, V; Djurić, D

    2011-01-01

    From 2005 to 2009, research was conducted at the Belgrade Groundwater Source (BGWS) to investigate the process of clogging of wells with horizontal lateral screens (radial wells). The clogging process was monitored via the kinetics of the increase in hydraulic losses at the laterals. A correlation of this process with the redox potential, the iron concentration in water, and the microbial population growth at the laterals and in their immediate vicinity was established. Research outcomes are presented here from a study of five wells where laterals were replaced between 2006 and 2008. Derived dependencies were later used to define the preferred approach to the installation and maintenance of well laterals at the BGWS. Results contribute to the study of well ageing caused by biochemical clogging.

  4. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    USGS Publications Warehouse

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing

  5. Ground-Water Age Dating in Community Wells in Oswego County, New York

    USGS Publications Warehouse

    Komor, Stephen C.

    2001-01-01

    Officials in Oswego County, in north-central New York, have been concerned about potential contamination of community wells. Many of these wells are completed in unconfined glacial sand-and-gravel aquifers, although some are finished in till or in the underlying fractured and jointed bedrock of Late Ordovician and Early Silurian ages. Local shallow ground-water flow is affected by the orientation and hydraulic characteristics of the local topography and surficial sediments, whereas deeper regional flow is toward Lake Ontario. Concentrations of chlorofluorocarbons and tritium in water samples from 28 wells in the county were measured in 1999 for ground-water-age dating; results yield recharge dates ranging from about 1955 to 1994. The presence of water older than about 15 years in the sand-and-gravel aquifers differs from previous concepts of recharge sources and ground-water movement that were based on numerical modeling of ground-water flow. Young ground water (1 to 5 years old) probably represents recharge from recent precipitation and seepage from streams, whereas the oldest ground water (more than 40 years old) probably is derived from the fractured bedrock that underlies the glacial sediments or has moved along long flow paths in unconsolidated deposits, or through poorly permeable material. Some sand-and-gravel aquifers in Oswego County contain mixtures of old and young water. Wellhead-protection efforts need to focus on protection of the quality of young water in the sand-and-gravel aquifers because young water is more likely to be contaminated than old water.

  6. Groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri, well field

    USGS Publications Warehouse

    Wilkison, Donald H.

    2012-01-01

    Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.

  7. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.

    PubMed

    Bashi-Azghadi, Seyyed Nasser; Kerachian, Reza

    2010-04-15

    In this paper, a new methodology is proposed for optimally locating monitoring wells in groundwater systems in order to identify an unknown pollution source using monitoring data. The methodology is comprised of two different single and multi-objective optimization models, a Monte Carlo analysis, MODFLOW, MT3D groundwater quantity and quality simulation models and a Probabilistic Support Vector Machine (PSVM). The single-objective optimization model, which uses the results of the Monte Carlo analysis and maximizes the reliability of contamination detection, provides the initial location of monitoring wells. The objective functions of the multi-objective optimization model are minimizing the monitoring cost, i.e. the number of monitoring wells, maximizing the reliability of contamination detection and maximizing the probability of detecting an unknown pollution source. The PSVMs are calibrated and verified using the results of the single-objective optimization model and the Monte Carlo analysis. Then, the PSVMs are linked with the multi-objective optimization model, which maximizes both the reliability of contamination detection and probability of detecting an unknown pollution source. To evaluate the efficiency and applicability of the proposed methodology, it is applied to Tehran Refinery in Iran.

  8. Monitoring-well installation, slug testing, and groundwater quality for selected sites in South Park, Park County, Colorado, 2013

    USGS Publications Warehouse

    Arnold, Larry R. Rick

    2015-01-01

    During May–June, 2013, the U.S. Geological Survey, in cooperation with Park County, Colorado, drilled and installed four groundwater monitoring wells in areas identified as needing new wells to provide adequate spatial coverage for monitoring water quality in the South Park basin. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Slug tests were performed to estimate hydraulic-conductivity values for aquifer materials in the screened interval of each well, and groundwater samples were collected from each well for analysis of major inorganic constituents, trace metals, nutrients, dissolved organic carbon, volatile organic compounds, ethane, methane, and radon. Documentation of lithologic logs, well construction, well development, slug testing, and groundwater sampling are presented in this report.

  9. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  10. Groundwater quality for 75 domestic wells in Lycoming County, Pennsylvania, 2014

    USGS Publications Warehouse

    Gross, Eliza L.; Cravotta, Charles A.

    2017-03-06

    Groundwater is a major source of drinking water in Lycoming County and adjacent counties in north-central and northeastern Pennsylvania, which are largely forested and rural and are currently undergoing development for hydrocarbon gases. Water-quality data are needed for assessing the natural characteristics of the groundwater resource and the potential effects from energy and mineral extraction, timber harvesting, agriculture, sewage and septic systems, and other human influences.This report, prepared in cooperation with Lycoming County, presents analytical data for groundwater samples from 75 domestic wells sampled throughout Lycoming County in June, July, and August 2014. The samples were collected using existing pumps and plumbing prior to any treatment and analyzed for physical and chemical characteristics, including nutrients, major ions, metals and trace elements, volatile organic compounds, gross-alpha particle and gross beta-particle activity, uranium, and dissolved gases, including methane and radon-222.Results indicate groundwater quality generally met most drinking-water standards, but that some samples exceeded primary or secondary maximum contaminant levels (MCLs) for arsenic, iron, manganese, total dissolved solids (TDS), chloride, pH, bacteria, or radon-222. Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 9 of the 75 (12 percent) well-water samples, with concentrations as high as 23.6 μg/L; arsenic concentrations were higher than the health advisory level (HAL) of 2 μg/L in 23 samples (31 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 μg/L in 20 of the 75 samples. Total manganese concentrations exceeded the SMCL of 50 μg/L in 20 samples and the HAL of 300 μg/L in 2 of those samples. Three samples had chloride concentrations that exceeded the SMCL of 250 milligrams per liter (mg/L); two of those samples exceeded the SMCL of 500 mg/L for TDS. The pH ranged

  11. Groundwater Quality Assessment Plan: Dickson County Landfill, Dickson County, Tennessee, including Application for Authorization for Class V Underground Injection Well

    EPA Pesticide Factsheets

    Contains site investigation plan & data for assessment of groundwater quality at Dickson County Landfill, Dickson, Tennessee, with figures, tables, appendices, November 1994, including Application for Authorization for Class V Underground Injection Well.

  12. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU

  13. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    SciTech Connect

    Pickering, D.A.; Laase, A.D. ); Locke, D.A. )

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  14. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    SciTech Connect

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  15. Preliminary results from exploratory sampling of wells for the California oil, gas, and groundwater program, 2014–15

    USGS Publications Warehouse

    McMahon, Peter B.; Kulongoski, Justin T.; Wright, Michael T.; Land, Michael T.; Landon, Matthew K.; Cozzarelli, Isabelle M.; Vengosh, Avner; Aiken, George R.

    2016-08-03

    This report evaluates the utility of the chemical, isotopic, and groundwater-age tracers for assessing sources of salinity, methane, and petroleum hydrocarbons in groundwater overlying or near several California oil fields. Tracers of dissolved organic carbon inoil-field-formation water are also discussed. Tracer data for samples collected from 51 water wells and 4 oil wells are examined.

  16. Remediation of Explosives in Groundwater Using Zero-Valent Iron In Situ Treatment Wells

    DTIC Science & Technology

    2008-03-01

    Phase 1) ................................................................. 14 3.6.1 Groundwater Chemical Analysis ...27 5.2 Performance Confirmation Methods ...5.3 Data Analysis , Interpretation, and Evaluation ........................................................................ 29 5.3.1 Groundwater Pumping

  17. Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95

    USGS Publications Warehouse

    Huff, G.F.

    1996-01-01

    Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and

  18. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems.

    PubMed

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C

    2017-01-19

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  19. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    PubMed Central

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290

  20. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  1. Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi

    NASA Astrophysics Data System (ADS)

    Mkandawire, T.

    Access to adequate and safe drinking water still remains a challenge in developing countries. Some people especially in the rural areas use untreated surface and groundwater. An assessment of groundwater quality from shallow wells was carried out in nine villages in Blantyre district of Malawi. Water samples from nine randomly selected shallow wells (7 covered or protected and 2 open) were analysed for biological (total and faecal coliforms), chemical (hardness, nitrate, nitrite, sulphate, ammonia, pH, electrical conductivity and arsenic) and physical (total dissolved solids and turbidity) parameters of water using a portable water testing kit (Paqualab 50). Sampling was carried out four times during the year, i.e. twice in the dry season (August and October) and twice in the wet season (February and April) to find out if the quality of water changes with season. Results indicate that drinking water from shallow wells is heavily polluted by both total and faecal coliforms. The pollution level was higher in the wet season compared to the dry season. All the samples tested in the wet season did not meet the guideline value of 50 total coliforms (colony forming units) per 100 ml of the sample water (50 cfu/100 ml) set by the Malawi Ministry of Water Development (MoWD) for untreated water for drinking purposes (e.g. groundwater), while 22% of the samples met the guideline during the dry season. The difference in the contamination level between the dry and wet season was not significant for total coliforms ( p = 0.13 > 0.05). All chemical (hardness, nitrate, nitrite, sulphate, ammonia, pH, electrical conductivity and arsenic) and physical (total dissolved solids and turbidity) parameters tested except for turbidity were within the guideline values set by MoWD for untreated water. About 11% of the wells tested failed to meet the turbidity guideline value for the Ministry of Water Development of 25 NTU while about 22% failed to meet the World Health Organisation (WHO) and

  2. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  3. Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater.

    PubMed

    Brodie, Eoin L; Joyner, Dominique C; Faybishenko, Boris; Conrad, Mark E; Rios-Velazquez, Carlos; Malave, Josue; Martinez, Ramon; Mork, Benjamin; Willett, Anna; Koenigsberg, Steven; Herman, Donald J; Firestone, Mary K; Hazen, Terry C

    2011-10-01

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  4. Demonstration of a Groundwater Age Determination Using 39Ar in Support of a Multi-Tracer Groundwater Analysis of Wells in Fresno, CA

    NASA Astrophysics Data System (ADS)

    Wurstner White, S.; Brandenberger, J. M.; Kulongoski, J. T.; Aalseth, C.; Williams, R. M.; Mace, E. K.; Humble, P.; Seifert, A.; Cloutier, J. M.

    2015-12-01

    Argon-39 has a half-life of 269 years, making it an ideal tracer for groundwater dating in the age range of 50-1000 years. In September 2014, two production wells within the San Joaquin Valley Aquifer System, located in Fresno, CA were sampled and analyzed for a suite of inorganic and organic contaminants and isotopic constituents. The radiotracers 3H (< 50 years) and 14C (> 1000 years) are routinely measured as part of the U. S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Enhanced Trends Network project. Adding 39Ar to the suite of tracers provides age data in the intermediate range to refine the groundwater age distribution of mixed waters and establishes groundwater residence times and flow rates. Characterizing the groundwater recharge and flow rate is of particular interest at these wells for determining the sources and movement of contaminants in groundwater, particularly nitrate, DBCP, and perchlorate. The sampled wells were pumped and purged. The sample collection for the 39Ar measurements required extracting the dissolved gases from 3000-5000 L of groundwater using a membrane degasification system with a maximum flow rate of 50 gpm (11.4 m^3/hr). The membranes are plastic hollow fibers that are hydrophobic. The gas was collected in duplicate large aluminum coated plastic sample bags. The gas was purified and then counted via direct beta counting using ultra-low background proportional counters loaded with a mixture of geologic Ar and methane to enhance the sensitivity for Ar measurements. The activity of 39Ar is 1.01 Bq/kg Ar, corresponding to an abundance of 0.808 ppq. The estimated absolute ages of the samples from the two groundwater wells were 23.3 and 27.0 percent of modern Ar. The comparison of the groundwater residence times determined using the suite of radiotracers (3H, 39Ar, and 14C) highlighted the value of knowing the intermediate age of groundwater when determining contaminant fate and transport pathways.

  5. Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany

    NASA Astrophysics Data System (ADS)

    Osenbrück, Karsten; Fiedler, Stefan; KnöLler, Kay; Weise, Stephan M.; Sültenfuß, Jürgen; Oster, Harald; Strauch, Gerhard

    2006-12-01

    Nitrate pollution from agricultural activities often persistently affects groundwater quality due to long residence times in the vadose and saturated zone. In this study we used a lumped parameter approach to estimate the residence time of groundwater and nitrate from the agriculturally used Jahna-Aue drinking water catchment in Saxonia, Germany. Inverse modeling of measured concentrations of tritium and tritiogenic 3He revealed consistent mean residence times between 25 and 50 years for the young, nitrate-rich groundwater component, and high contributions (>75%) of an old, tracer-free, and nitrate-poor groundwater. The obtained age distributions are in accordance with the complex hydrogeological situation of the investigated catchment, suggesting that the shallow and therefore most vulnerable part of the aquifer is not connected to the production wells. High residence times are supported by low concentrations of CFCs and by radiogenic 4He as an independent age indicator. CFC concentrations only yield lower age limits due to identified problems with CFC contamination. Using the tracer-calibrated age distributions, future nitrate concentrations in the production wells most probably will remain below the drinking water limit because of the high dilution with old, nitrate-poor groundwater. Deterioration of the groundwater quality with respect to nitrate may occur if the groundwater pumping regime is changed so that the fraction of the younger, nitrate-bearing water is increased.

  6. Comparison of CO2 Detection Methods Tested in Shallow Groundwater Monitoring Wells at a Geological Sequestration Site

    SciTech Connect

    Edenborn, Harry M.; Jain, Jinesh N.

    2016-05-17

    The geological storage of anthropogenic carbon dioxide (CO2) is one method of reducing the amount of CO2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO2 injection to evaluate if impacts related to injection have occurred. Because CO2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO2 in the field and lab are currently used, but most methods have significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO2 in water by monitoring temperature and pressure changes and calculating the PCO2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO2. The NDIR sensor results correlated well (r2= 0.93) with the CarboQC data, but CO2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both

  7. An improved liquid scintillation counting method for the determination of gross alpha activity in groundwater wells.

    PubMed

    Ruberu, Shiyamalie R; Liu, Yun-Gang; Perera, S Kusum

    2008-10-01

    A liquid scintillation counting (LSC) method having several advantages over the gas proportional counting (GPC) U.S. Environmental Protection Agency (EPA) Method 900.0 for the detection of gross alpha activity in drinking water was evaluated in this study. The improved method described here involves the use of nitromethane as the quench agent for establishing counting efficiencies and spillover factors, and it minimizes sample preparation. It has the advantage of achieving the regulatory detection limit of 111 mBq L(-1) with short count times (100 min) and small sample aliquot sizes. A thorough method validation study was performed by testing field samples ranging in total dissolved solids (TDS) from 0.3 mg L(-1) to 1,000 mg L(-1) and spiking each matrix from 194 mBq L(-1) to 11.6 Bq L(-1). Comparable method precision and accuracy was observed on the two types of LSC instruments tested, Perkin Elmer Quantulus 1220 and Packard 2550, with the former giving better performance. Data presented demonstrate that this efficient and high throughput LSC method is suitable for groundwater samples in excess of 1,000 mg L(-1) of TDS in contrast with the 500 mg L(-1) limit by the routine GPC method. Groundwater wells across the state of California were sampled, analyzed for gross alpha activity using the EPA- approved method and the improved LSC method, and the results were compared.

  8. Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.

    2006-01-01

    As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.

  9. An investigative comparison of purging and non-purging groundwater sampling methods in Karoo aquifer monitoring wells

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2015-03-01

    An investigation was conducted to statistically compare the influence of non-purging and purging groundwater sampling methods on analysed inorganic chemistry parameters and calculated saturation indices. Groundwater samples were collected from 15 monitoring wells drilled in Karoo aquifers before and after purging for the comparative study. For the non-purging method, samples were collected from groundwater flow zones located in the wells using electrical conductivity (EC) profiling. The two data sets of non-purged and purged groundwater samples were analysed for inorganic chemistry parameters at the Institute of Groundwater Studies (IGS) laboratory of the Free University in South Africa. Saturation indices for mineral phases that were found in the data base of PHREEQC hydrogeochemical model were calculated for each data set. Four one-way ANOVA tests were conducted using Microsoft excel 2007 to investigate if there is any statistically significant difference between: (1) all inorganic chemistry parameters measured in the non-purged and purged groundwater samples per each specific well, (2) all mineral saturation indices calculated for the non-purged and purged groundwater samples per each specific well, (3) individual inorganic chemistry parameters measured in the non-purged and purged groundwater samples across all wells and (4) Individual mineral saturation indices calculated for non-purged and purged groundwater samples across all wells. For all the ANOVA tests conducted, the calculated alpha values (p) are greater than 0.05 (significance level) and test statistic (F) is less than the critical value (Fcrit) (F < Fcrit). The results imply that there was no statistically significant difference between the two data sets. With a 95% confidence, it was therefore concluded that the variance between groups was rather due to random chance and not to the influence of the sampling methods (tested factor). It is therefore be possible that in some hydrogeologic conditions

  10. Ground-water flow and water quality of the Indian Island well field near Grand Island, Nebraska, 1994-95

    USGS Publications Warehouse

    Emmons, Patrick J.; Bowman, Phillip R.

    2000-01-01

    Ground water is the principal source of water for public and self-supplied domestic use in Nebraska. Ground water supplied about 235 Mgal/d (million gallons per day) in 1990, or about 78 percent of the estimated public-water supply in Nebraska. In addition, ground water supplied about 1,017 Mgal/d, or about 83 percent of the irrigation water in the Platte River Valley (Nebraska Natural Resources Commission, 1994). Withdrawing ground water in the valley induces recharge from the river and has the potential to change ground-water quality near the river where many public-supply wells are located. The Platte River alluvial aquifer, which underlies the Platte River Valley (fig. 1), is the single most important source of water for public supply in central and eastern Nebraska. The aquifer, which is part of the High Plains aquifer, consists of stream-laid deposits of sand and gravel with discontinuous layers of clay and silt, and is connected hydraulically to the Platte River. The aquifer provides about 117 Mgal/d, or nearly 50 percent of the total daily ground-water production for Nebraska (Nebraska Natural Resources Commission, 1994). The aquifer also supplies water to Nebraska's largest cities including Kearney, Grand Island, Lincoln, and Omaha.

  11. Groundwater withdrawals and associated well descriptions for the Nevada National Security Site, Nye County, Nevada, 1951-2008

    USGS Publications Warehouse

    Elliott, Peggy E.; Moreo, Michael T.

    2011-01-01

    From 1951 to 2008, groundwater withdrawals totaled more than 25,000 million gallons from wells on and directly adjacent to the Nevada National Security Site. Total annual groundwater withdrawals ranged from about 30 million gallons in 1951 to as much as 1,100 million gallons in 1989. Annual withdrawals from individual wells ranged from 0 million gallons to more than 325 million gallons. Monthly withdrawal data for the wells were compiled in a Microsoft(copyright) Excel 2003 spreadsheet. Groundwater withdrawal data are a compilation of measured and estimated withdrawals obtained from published and unpublished reports, U.S. Geological Survey files, and/or data reported by other agencies. The withdrawal data were collected from 42 wells completed in 33 boreholes. A history of each well is presented in terms of its well construction, borehole lithology, withdrawals, and water levels.

  12. Ground-water flow in the Saginaw Aquifer in the vicinity of the north Lansing well field, Lansing, Michigan

    USGS Publications Warehouse

    Luukkonen, C.L.; Grannemann, N.G.; Holtschlag, D.J.

    1997-01-01

    Vinyl chloride has been detected in water from the Saginaw aquifer near Lansing Board of Water and Light wells in the north Lansing well field. These public-supply wells have the potential to withdraw contaminated ground water. Groundwater-flow simulations and particle-tracking analyses with a regional model were used to investigate local ground-water movement. The effectiveness of hypothetical purge wells to remove ground water containing vinyl chloride was also evaluated. Five pumping scenarios were developed to assess effects of existing groundwater pumping conditions and alternative groundwater management options on the movement of the vinyl chloride plume in the Saginaw aquifer. Results indicate that under 1995 average pumping conditions, four public-supply wells in the north Lansing well field will remove water that originates in a portion of the Saginaw aquifer known to be contaminated with vinyl chloride. When pumping rates by wells in the north Lansing well field are reduced to simulate winter withdrawals, four public-supply wells to the west and south of the north Lansing well field remove water that originates in a portion of the Saginaw aquifer known to be contaminated with vinyl chloride. Simulation results indicate that purge wells can be used to capture most contaminated water and prevent interception of contaminated water by supply wells. However, further analysis is needed to determine the full extent of the vinyl chloride plume and the potential impact on Lansing Board of Water and Light public-supply wells.

  13. The Dual Pumping Technique (DPT) for level-determined sampling in fully screened groundwater wells

    NASA Astrophysics Data System (ADS)

    Rapp, M. C.; Fulda, C.; Schäfer, W.; Kinzelbach, W.

    1998-06-01

    A new and inexpensive technique to obtain vertical hydrochemical profiles in aquifers is presented. The Dual Pumping Technique (DPT) is designed for use in fully-screened groundwater wells and represents an alternative to packer installations or similar sampling devices. Two pumps are placed at either end of the well screen. The ratio of their pumping rates is varied from 1 to 0. Depending on this ratio, the two pumps abstract variable portions of the influx distribution. A water divide develops in the well, separating the flow upward from the flow downward. A set of samples from the upper and lower pump are taken for different pumping rate ratios. Measured solute concentrations in these samples, together with the influx distribution determined by flow logging, are used to reconstruct vertical concentration profiles. The measured data are evaluated with a simple, robust algorithm, which is derived in the text and exemplified in the Appendix. The DPT was used to determine vertical concentration distributions of chlorinated hydrocarbon solvents (CHS) and tritium in a contaminated aquifer near Heidelberg, Germany. Comparison of the concentration profile obtained with the DPT with CHS and tritium data from a 50-m distant multilevel well showed the principal applicability of the new technique. The pattern of the vertical concentration distributions was successfully identified with the DPT, but the absolute CHS concentration values were one order of magnitude higher in the multilevel well, due to the fact that the multilevel well is probably closer to the centre of the plume than the well used for the DPT. The 3H values could be compared directly and showed an excellent agreement. Further evaluation of the DPT in a situation where a multilevel reference well is in closer vicinity to the test well is planned.

  14. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  15. Sampling and analysis plan for the characterization of groundwater quality in two monitoring wells near Pavillion, Wyoming

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming to study groundwater quality. The U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, designed a plan to collect groundwater data from these monitoring wells. This sampling and analysis plan describes the sampling equipment that will be used, well purging strategy, purge water disposal, sample collection and processing, field and laboratory sample analysis, equipment decontamination, and quality-assurance and quality-control procedures.

  16. Assessment of groundwater quality in shallow wells within the southern districts of Malawi

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Mkandawire, T.; O'Neill, J. G.

    Lack of safe drinking water is a major problem in developing countries. Within Africa most people rely mainly on local groundwater sources for their water needs. These can be deep boreholes or shallow wells, the latter are normally found in poorer communities as they are the least expensive to construct. Over time water from these sources can be contaminated leading to fatal consequences. Previous monitoring of the quality of water from boreholes and shallow wells have been irregular, with the focus being mainly on boreholes. Information on seasonal water quality changes in shallow wells used by rural communities in Malawi has generally been lacking. A study was conducted from 2006 to 2007 to determine the quality of water from shallow wells in three districts in southern Malawi namely, Balaka, Chikwawa and Zomba districts. Water samples from 21 covered and five open shallow wells were analysed for chemical, microbiological and physical parameters using a portable water testing kit. Sampling was carried out at four different times of the year i.e. in August and October 2006 (dry season) and February and April 2007 (wet season). Microbiological data indicated that around 80% of the samples, obtained from the covered wells, failed to meet safe drinking water limits, set by World Health Organisation guidelines and Malawi Bureau of Standards, of zero total and faecal colony forming units (cfu)/100 ml. Values in excess of 1000 cfu/100 ml were noted in 10% of the samples, indicating gross contamination and the probability of pathogens being present. Contamination levels were higher during the wet season than the dry season in all three districts. Arsenic, ammonia, nitrate, nitrite and sulphate were all within the acceptable limits. Elevated levels of hardness, turbidity were noted in certain wells.

  17. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    USGS Publications Warehouse

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  18. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    PubMed

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  19. Groundwater Science

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.

    A good introductory groundwater textbook must strike a delicate balance in presenting the basics of the physical, chemical, geological, mathematical, and engineering aspects of the groundwater field without being too lengthy or overly detailed. Charles Fitts states that his motivation for writing Groundwater Science was to be able to “…teach concepts and quantitative analyses with a clear, lean, but thorough book.” He has succeeded in striking this balance of having just the right amount of information, and has met his goals of producing a concise book that can be used to teach the concepts and analyses necessary for the study of groundwater.Overall, Groundwater Science would serve well as the text for an introductory groundwater course at the college senior or first-year graduate level. The author and the publisher have made excellent use of two-color, gray and blue-scale images throughout the book. The graphics are crisp and explanatory. Data sets needed to work some of the problems in the book are available as text files from its Web site (http://www.academicpress.com/groundwater). I found these files to be complete and easy to understand. The references are up to date and point the reader to additional information across a wide range of groundwater issues, and also provide a number of examples to illustrate different points made in the book.

  20. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2009-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on

  1. Developing a methodology for identifying action zones to protect and manage groundwater well fields

    NASA Astrophysics Data System (ADS)

    Bellier, Sandra; Viennot, Pascal; Ledoux, Emmanuel; Schott, Celine

    2013-04-01

    Implementation of a long term action plan to manage and protect well fields is a complex and very expensive process. In this context, the relevance and efficiency of such action plans on water quality should be evaluated. The objective of this study is to set up a methodology to identify relevant actions zones in which environmental changes may significantly impact the quantity or quality of pumped water. In the Seine-et-Marne department (France), under French environmental laws three sectors integrating numerous well-field pumping in Champigny's limestone aquifer are considered as priority. This aquifer, located at south-east of Paris, supplies more than one million people with drinking water. Catchments areas of these abstractions are very large (2000 km2) and their intrinsic vulnerability was established by a simple parametric approach that does not permit to consider the complexity of hydrosystem. Consequently, a methodology based on a distributed modeling of the process of the aquifer was developed. The basin is modeled using the hydrogeological model MODCOU, developed in MINES ParisTech since the 1980s. It simulates surface and groundwater flow in aquifer systems and allows to represent the local characteristics of the hydrosystem (aquifers communicating by leakage, rivers infiltration, supply from sinkholes and locally perched or dewatering aquifers). The model was calibrated by matching simulated river discharge hydrographs and piezometric heads with observed ones since the 1970s. Thanks to this modelling tool, a methodology based on the transfer of a theoretical tracer through the hydrosystem from the ground surface to the outlets was implemented to evaluate the spatial distribution of the contribution areas at contrasted, wet or dry recharge periods. The results show that the surface of areas contributing to supply most catchments is lower than 300 km2 and the major contributory zones are located along rivers. This finding illustrates the importance of

  2. Real-time management of an urban groundwater well field threatened by pollution.

    PubMed

    Bauser, Gero; Franssen, Harrie-Jan Hendricks; Kaiser, Hans-Peter; Kuhlmann, Ulrich; Stauffer, Fritz; Kinzelbach, Wolfgang

    2010-09-01

    We present an optimal real-time control approach for the management of drinking water well fields. The methodology is applied to the Hardhof field in the city of Zurich, Switzerland, which is threatened by diffuse pollution. The risk of attracting pollutants is higher if the pumping rate is increased and can be reduced by increasing artificial recharge (AR) or by adaptive allocation of the AR. The method was first tested in offline simulations with a three-dimensional finite element variably saturated subsurface flow model for the period January 2004-August 2005. The simulations revealed that (1) optimal control results were more effective than the historical control results and (2) the spatial distribution of AR should be different from the historical one. Next, the methodology was extended to a real-time control method based on the Ensemble Kalman Filter method, using 87 online groundwater head measurements, and tested at the site. The real-time control of the well field resulted in a decrease of the electrical conductivity of the water at critical measurement points which indicates a reduced inflow of water originating from contaminated sites. It can be concluded that the simulation and the application confirm the feasibility of the real-time control concept.

  3. Well logging methods in groundwater surveys of complicated aquifer systems: Bohemian Cretaceous Basin

    NASA Astrophysics Data System (ADS)

    Datel, Josef V.; Kobr, Miroslav; Prochazka, Martin

    2009-05-01

    Geophysical well logging methods (including borehole flow logging) can significantly contribute to a detailed understanding of hydrogeological conditions in basins with complicated sedimentary structure in studies undertaken to make optimal use of water sources, or to protect those resources from contamination. It is a common practice to delineate geological and hydrogeologic conditions at the scale used in geological maps and surface surveys. However, there is a need for more detailed descriptions of basin structure for many tasks related to water resources management and hydrologic research. This paper presents four specific examples of boreholes in complex hydrogeologic settings where useful information was provided by geophysical logging: (1) identification of large-scale upward cross-flow between aquifer horizons in an open borehole; (2) confirmation of continuous permeability throughout a long borehole interval; (3) identification of leakage into a test well via a defective casing joint; (4) evidence for downward flow in open boreholes; and (5) identification of permeable beds associated with water inflows during aquifer tests. These borehole geophysical measurements provide important information about the detailed lithological profiles of aquifers (especially in the absence of core), enabling the optimization of groundwater monitoring, resource use, and wellhead protection activities.

  4. Ground-water levels in selected well fields and in west-central Florida, May 1982

    USGS Publications Warehouse

    Barr, G.L.

    1982-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,700-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with the seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well fields that supplied 181.1 million gallons to municipalities on May 10, 1982. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal on ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. In May 1982, ground-water levels were lower than those of September 1981. Seasonal recharge from above-average rainfall and reduced pumpage aided in the water-level recovery from record to near record levels of May 1981. (USGS)

  5. Ground-water levels in selected well fields and in west-central Florida, September 1981

    USGS Publications Warehouse

    Yobbi, D.K.; Barr, G.L.

    1982-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well fields that supplied 140.3 million gallons to municipalities on September 21, 1981. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal on ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. In September 1981, ground-water levels were significantly higher than those of May 1981 and were unchanged or within a few feet of those in September 1980. Seasonal recharge from summer rains and reduced pumpage are factors in the water-level recovery from record and near record low levels of May 1981. (USGS)

  6. Bacterial growth and biofilm formation in household-stored groundwater collected from public wells.

    PubMed

    Burkowska-But, Aleksandra; Kalwasińska, Agnieszka; Swiontek Brzezinska, Maria

    2015-06-01

    The research was aimed at assessing changes in the number of bacteria and evaluating biofilm formation in groundwater collected from public wells, both aspects directly related to the methods of household storage. In the research, water collected from Cretaceous aquifer wells in Toruń (Poland) was stored in a refrigerator and at room temperature. Microbiological parameters of the water were measured immediately after the water collection, and then after 3 and 7 days of storage under specified conditions. The microbiological examination involved determining the number of heterotrophic bacteria capable of growth at 22 and 37 °C, the number of spore-forming bacteria, and the total number of bacteria on membrane filters. The storage may affect water quality to such an extent that the water, which initially met the microbiological criteria for water intended for human consumption, may pose a health risk. The repeated use of the same containers for water storage results in biofilm formation containing live and metabolically active bacterial cells.

  7. Comparison of particle-tracking and lumped-parameter models for determining groundwater age distributions and nitrate in water-supply wells, Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Jurgens, B. C.; Bohlke, J. K.; Kauffman, L. J.; Belitz, K.

    2013-12-01

    regional groundwater flow model. The LPMs also indicated that groundwater less than 50 years old comprised about 40% of the aquifer and had reached an average depth of about 52 meters below the water table as of 2006. This study shows that regional groundwater flow models and LPMs are capable of providing reasonable estimates of the age distribution and predictions of non-point source contaminant trends in wells, although regional numerical models in this study area might yield better results when constructed with a predevelopment condition and calibrated using age tracer information. In addition, the partial exponential model (PEM) can be a useful age distribution model for public-supply wells in unconsolidated aquifers, and it can be parameterized directly with well construction data.

  8. Groundwater quality from private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana

    USGS Publications Warehouse

    Risch, Martin R.; Silcox, Cheryl A.

    2016-06-02

    The U.S. Geological Survey provided technical support to the Agency for Toxic Substances and Disease Registry for site selection and sample collection and analysis in a 2012 investigation of groundwater quality from 29 private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana. Petroleum hydrocarbons, oil and grease, aromatic volatile organic compounds, methane concentrations greater than 8,800 micrograms per liter, chloride concentrations greater than 250 milligrams per liter, and gross alpha radioactivity greater than 15 picocuries per liter were reported in the analysis of groundwater samples from 11 wells.

  9. Potential effects of roadside dry wells on groundwater quality on the Island of Hawai'i-Assessment using numerical groundwater models

    USGS Publications Warehouse

    Izuka, Scot K.

    2011-01-01

    Widespread use of dry wells to dispose of roadside runoff has raised concern about the potential effects on the quality of groundwater on the Island of Hawai‘i. This study used semi-generic numerical models of groundwater flow and contaminant transport to assess the potential effect of dry wells on groundwater quality on the Island of Hawai‘i. The semi-generic models are generalized numerical groundwater-flow and solute-transport models that have a range of aquifer properties and regional groundwater gradients that are characteristic for the island. Several semi-generic models were created to study the effect of dry wells in different hydrogeologic conditions, such as different unsaturated-zone thicknesses or different aquifer characteristics. Results indicate that mixing of contaminated water from the surface with contaminant-free water in the saturated aquifer immediately reduces the contaminant concentration. The amount the concentration is reduced depends on the hydraulic properties of the aquifer in a given area, the thickness of the unsaturated zone, and whether the infiltration is focused in a small area of a dry well or spread naturally over a larger area. Model simulations indicate that focusing infiltration of contaminated runoff through a dry well can substantially increase contaminant concentrations in the underlying saturated aquifer relative to infiltration under natural conditions. Simulated concentrations directly beneath a dry well were nearly 8 times higher than the simulated concentrations directly beneath a broad infiltration area representing the natural condition. Where dry wells are present, contaminant concentrations in the underlying saturated aquifer are lower when the unsaturated zone is thicker and higher when the unsaturated zone is thinner. Contaminant concentrations decline quickly as the contaminant plume migrates, with the regional groundwater flow, away from the dry well. The differences among concentrations resulting from the

  10. Hydrogeology and simulation of ground-water flow at the South Well Field, Columbus, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Bair, E.S.; Yost, W.P.

    1996-01-01

    The City of Columbus, Ohio, operates four radial collector wells in southern Franklin County. The 'South Well Field' is completed in permeable outwash and ice-contact deposits, upon which flow the Scioto River and Big Walnut Creek. The wells are designed to yield approximately 42 million gallons per day; part of that yield results from induced infiltration of surface water from the Scioto River and Big Walnut Creek. The well field supplied up to 30 percent of the water supply of southern Columbus and its suburbs in 1991. This report describes the hydrogeology of southern Franklin County and a tran sient three-dimensional, numerical ground-water- flow model of the South Well Field. The primary source of ground water in the study area is the glacial drift aquifer. The glacial drift is composed of sand, gravel, and clay depos ited during the Illinoian and Wisconsinan glaciations. In general, thick deposits of till containing lenses of sand and gravel dominate the drift in the area west of the Scioto River. The thickest and most productive parts of the glacial drift aquifer are in the buried valleys in the central and eastern parts of the study area underlying the Scioto River and Big Walnut Creek. Horizontal hydraulic conductivity of the glacial drift aquifer differs spa tially and ranges from 30 to 375 feet per day. The specific yield ranges from 0.12 to 0.30. The secondary source of ground water within the study area is the underlying carbonate bedrock aquifer, which consists of Silurian and Devonian limestones, dolomites, and shales. The horizontal hydraulic conductivity of the carbonate bedrock aquifer ranges from 10 to 15 feet per day. The storage coefficient is about 0.0002. The ground-water-flow system in the South Well Field area is recharged by precipitation, regional ground-water flow, and induced stream infiltration. Yearly recharge rates varied spatially and ranged from 4.0 to 12.0 inches. The three-dimensional, ground-water-flow model was constructed by

  11. [Endotoxin Contamination and Correlation with Other Water Quality Parameters of Groundwater from Self-Contained Wells in Beijing].

    PubMed

    Zhang, Can; Liu, Wen-jun; Ao, Lu; Shi, Yun; An, Dai-zhi; Liu, Zhi-ping

    2015-12-01

    A survey of endotoxin activity in groundwater from 14 self-contained wells in PLA units stationed in Beijing was conducted by the kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL). Bacteriological parameters, including total cell counts detected by flow cytometry, heterotrophic plate counts (HPC), standard plate counts and total coliforms were analyzed. Additionally, suspended particles, turbidity, dissolved organic carbon (DOC), and UV₂₅₄ were investigated. Total endotoxin activities ranged from 0. 15 to 13.20 EU · mL⁻¹, free endotoxin activities ranged from 0.10 to 5.29 EU · mL⁻¹ and bound endotoxin activities ranged from 0.01 to 8.60 EU · mL⁻¹. Most of the endotoxins in heavily contaminated groundwater existed as bound endotoxins. As for total endotoxins, the sequence of correlation coefficients with other parameters was total cell counts (r = 0.88 ) > HPC (r = 0.79) > DOC (r = 0.77) > UV₂₅₄ (r = 0.57) > total coliforms (r = 0.50) > standard plate counts (r = 0.49) = turbidity (r = 0. 49) > total particles (r = 0.41). The sequence of correlations of the bound endotoxins with other parameters was total cell counts (r = 0.81) > HPC (r = 0.66) > total coliforms (r = 0.65) > turbidity (r = 0.62) > total particles (r = 0.58) > standard plate counts (r = 0.22). Free endotoxins were correlated with DOC and UV₂₅₄, r = 0.58 and 0.26, respectively. Result showed free endotoxins had a higher correlation with DOC, and a lower correlation with UV₂₅₄.

  12. Ground-water data of selected test holes and wells along the Verdigris River in Wagoner and Rogers Counties, Oklahoma

    USGS Publications Warehouse

    Tanaka, H.H.; Hart, D.L.; Knott, R.K.

    1965-01-01

    The data in this report were collected during the period 1958-64 by the U.S. Geological Survey in cooperation with the U.S. Army, Corps of Engineers, as part of a comprehensive study of the ground-water resources of the alluvium along the Arkansas and Verdigris Rivers between Moffett and Catoosa, Oklahoma (fig. 1). The purpose of this report is to make the hydrologic data obtained during the study of ground water in the alluvium along the Verdigris River in Wagoner and Rogers Counties readily available to the public. The data in this report should be useful in predicting geologic and hydrologic conditions when drilling new wells. Table 1 gives information on the sizes, depths, yields, and other characteristics of wells in the area. The table also provides a key to the additional information for each well site given in tables 2 through 6. Table 2 gives logs for the materials penetrated at test holes and wells in the report area; table 3 gives depths to water measured in wells; table 4 includes chemical analyses of water from wells; table 5 gives laboratory determinations of particle-size distribution of earth samples collected from test holes and wells; and table 6 gives coefficients of permeability and other hydrologic properties of earth samples from the selected test holes. Similar data for Sequoyah County, LeFlore-Haskell Counties, and Muskogee County are available in other open-file reports. An interpretive report, 'Hydrology of the alluvium of the Arkansas River, Muskogee, Oklahoma, to Fort Smith, Arkansas,' by Harry H. Tanaka and Jerrald R. Hollowell will be published as U.S. Geological Survey Water-Supply Paper 1809-T.

  13. Ground-water data of selected test holes and wells along the Arkansas River in Sequoyah County, Oklahoma

    USGS Publications Warehouse

    Tanaka, H.H.; Hart, D.L.; Knott, R.K.

    1965-01-01

    The data in this report were collected during the period 1958-64 by the U.S. Geological Survey in cooperation with the U.S. Army, Corps of Engineers, as part of a comprehensive study of the ground-water resources of the alluvium along the Arkansas and Verdigris Rivers between Moffett and Catoosa, Oklahoma (fig. 1). The purpose of this report is to make the hydrologic data obtained during the study of ground water in the alluvium along the Arkansas River in Sequoyah County readily available to the public. The data in this report should be useful in predicting geologic and hydrologic conditions when drilling new wells. Table 1 gives information on the sizes, depths, yields, and other characteristics of wells in the area. The table also provides a key to the additional information for each well site given in tables 2 through 6. Table 2 gives logs for the materials penetrated at test holes and wells in the report area; table 3 gives depths to water measured in wells; table 4 includes chemical analyses of water from wells; table 5 gives laboratory determinations of particle-size distribution of earth samples collected from test holes and wells; and table 6 gives coefficients of permeability and other hydrologic properties of earth samples from the selected test holes. Similar data for LeFlore-Haskell Counties, Muskogee County, and Wagoner-Rogers Counties are available in other open-file reports. An interpretive report, 'Hydrology of the alluvium of the Arkansas River, Muskogee, Oklahoma, to Fort Smith, Arkansas,' by Harry H. Tanaka and Jerrald R. Hollowell will be published as U.S. Geological Survey Water-Supply Paper 1809-T.

  14. Ground-water data of selected test holes and wells along the Arkansas river in Muskogee County, Oklahoma

    USGS Publications Warehouse

    Tanaka, H.H.; Hart, D.L.; Knott, R.K.

    1965-01-01

    The data in this report were collected during the period 1958-64 by the U.S. Geological Survey in cooperation with the U.S. Army, Corps of Engineers, as part of a comprehensive study of the ground-water resources of the alluvium along the Arkansas and Verdigris Rivers between Moffett and Catoosa, Oklahoma (fig. 1). The purpose of this report is to make the hydrologic data obtained during the study of ground water in the alluvium along the Arkansas River in Muskogee County readily available to the public. The data in this report should be useful in predicting geologic and hydrologic conditions when drilling new wells. Table 1 gives information on the sizes, depths, yields, and other characteristics of wells in the area. The table also provides a key to the additional information for each well site given in tables 2 through 6. Table 2 gives logs for the materials penetrated at test holes and wells in the report area; table 3 gives depths to water measured in wells; table 4 includes chemical analyses of water from wells; table 5 gives laboratory determinations of particle-size distribution of earth samples collected from test holes and wells; and table 6 gives coefficients of permeability and other hydrologic properties of earth samples from the selected test holes. Similar data for Sequoyah County, LeFlore-Haskell Counties, and Wagoner-Rogers Counties are available in other open-file reports. An interpretive report, 'Hydrology of the alluvium of the Arkansas River, Muskogee, Oklahoma, to Fort Smith, Arkansas,' by Harry H. Tanaka and Jerrald R. Hollowell will be published as U.S. Geological Survey Water-Supply Paper 1809-T.

  15. Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites.

    PubMed

    Furukawa, Yasuhide; Mukai, Kazuhiro; Ohmura, Keisuke; Kobayashi, Takeshi

    2017-03-01

    Soil contamination has become a crucial issue in urban redevelopment. Japan has many contaminated sites on which manufacturing has been conducted over several decades. Site holders are now under pressure to manage chemical contamination; however, the use of heavy machinery is difficult in remedial operations on restricted sites, especially where there are still working factories. The slant well is a potentially useful technique in such settings, but its use is technically challenging because of the need for high drilling accuracy and the difficulty in sealing the slanted bores. In this study, we investigated an improved technique for slant drilling that can be used around existing structures to treat contaminated soil and groundwater. A key to this novel approach was the use of water-swelling materials as sealants. Research at a test site investigated the accuracy of drilling. Tracer tests were also conducted using sodium chloride and urea. The improved slant borings showed a deviation of less than 2% from the target bore. The spread of the two tracers at different depths was demonstrated. The proposed technique provides a useful approach to the treatment of brownfield sites in countries where in situ remediation has not yet been undertaken.

  16. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    USGS Publications Warehouse

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  17. EPA announces additional groundwater investigation at Delaware City PVC Superfund site

    EPA Pesticide Factsheets

    PHILADELPHIA (Oct. 15, 2015) - The U.S. Environmental Protection Agency today announced a new investigation to determine the nature and extent of groundwater contamination at the Delaware City PVC Superfund site in New Castle County.

  18. Validating Northern Texas High Plains Groundwater Model with Data from Observation Wells

    NASA Astrophysics Data System (ADS)

    Hernandez, J. E.; Gowda, P. H.; Misra, D.; Marek, T. H.; Howell, T. A.

    2009-12-01

    Diminishing groundwater supplies will severely reduce regional crop and animal production in the Northern High Plains of Texas where irrigated crop production accounts for a major portion of groundwater withdrawals from the Ogallala aquifer. The objective of this study was to develop, calibrate and validate a groundwater model for a 4-county area (Dallam, Sherman, Hartley, and Moore counties) in the Northwest region of the Texas High Plains. This study is a major component of a comprehensive regional analysis of groundwater depletion in the Ogallala aquifer region with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. Hydrologic simulations were conducted using the MODFLOW-2000. The model was calibrated for predevelopment period by reproducing and comparing groundwater levels of the 1950s using steady state boundary conditions representing no change in the land use. Similarly, the model was calibrated for the period 1950-2000 with a transient model to account for agricultural development occurred during that period. The model was validated by simulating and comparing ground water levels with the observed data for the period 2001-2008. Calibration and validation results indicate that model performed satisfactorily. The calibrated model will be used to evaluate the effects of change in land use/land cover on sustainability of the aquifer life in the Texas High Plains.

  19. Assessing the Use of Dry Wells as a Tool for Stormwater Management and Groundwater Recharge in Urban Areas

    NASA Astrophysics Data System (ADS)

    Edwards, E.; Harter, T.; Fogg, G. E.; Washburn, B.; Bryson, R.; Meirovitz, C.; Fawcett, J.; Kretsinger Grabert, V. J.; Bowles, C.; Carr, M.; Nelson, C.

    2014-12-01

    Dry wells are gravity-fed, excavated pits with perforated casings used to facilitate stormwater infiltration and groundwater recharge in areas comprised primarily of impermeable surfaces or low permeability soils. Stormwater runoff that would otherwise be routed to streams or drains in urban areas is used as a source of aquifer recharge. However, the potential for groundwater contamination caused by urban runoff bypassing surface soil filtration has prevented more widespread use of dry wells as a recharge mechanism. We present the results of a literature survey to assess the potential of dry wells for safe stormwater recharge. Dry wells have been inculpated in groundwater contamination events, although accusations were typically not backed by scientific data. In 1989 groundwater in Modesto, CA, was contaminated with tetrachloroethylene from a dry cleaning facility. The city had been using dry wells to manage stormwater for more than 50 years without detrimental impacts before the contamination. A USGS monitoring study proved that the contamination was from sewer system leakage, and did not involve the dry wells. Some areas of the country have used dry wells with positive results. The Underground Injection Control system (UICs) study in Portland, OR, has been active for ten years, and currently operates over 9,000 UICs. Initially, a ten foot separation distance was enforced between the seasonal high water table and the bottom perforation of the UIC; however, due to monitoring and modeling results that indicate the protectiveness of groundwater, this distance has been reduced to zero feet. Future work will include a comparative pilot study involving a residential and an industrial site in Elk Grove, CA. The study will use modeling tools to assess the recharge potential and groundwater protectiveness of dry wells. Both sites are outfitted with four monitoring wells each: an upgradient monitoring well, two downgradient monitoring wells, and a vadose zone monitoring

  20. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai'i

    USGS Publications Warehouse

    Street, J.H.; Knee, K.L.; Grossman, E.E.; Paytan, A.

    2008-01-01

    Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02-0.65??m3??m- 2 d- 1at the various sites. Groundwater nutrient fluxes of 0.04-40??mmol N m- 2 d- 1 and 0.01-1.6??mmol P m- 2 d- 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites. ?? 2007 Elsevier B.V. All rights reserved.

  1. Geohydrology and simulations of ground-water flow at Verona well field, Battle Creek, Michigan, 1988

    USGS Publications Warehouse

    Lynch, E.A.; Grannemann, N.G.

    1997-01-01

    Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flow-meter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium

  2. STRMDEPL08 - An extended version of STRMDEPL with additional analytical solutions to calculate streamflow depletion by nearby pumping wells

    USGS Publications Warehouse

    Reeves, Howard W.

    2008-01-01

    STRMDEPL, a one-dimensional model using two analytical solutions to calculate streamflow depletion by a nearby pumping well, was extended to account for two additional analytical solutions. The extended program is named STRMDEPL08. The original program incorporated solutions for a stream that fully penetrates the aquifer with and without streambed resistance to ground-water flow. The modified program includes solutions for a partially penetrating stream with streambed resistance and for a stream in an aquitard subjected to pumping from an underlying leaky aquifer. The code also was modified to allow the user to input pumping variations at other than 1-day intervals. The modified code is shown to correctly evaluate the analytical solutions and to provide correct results for half-day time intervals.

  3. AN UNEXPECTED TEMPORAL PATTERN OF COLIPHAGE ISOLATION IN GROUNDWATERS SAMPLED FROM WELLS AT VARIED DISTANCES FROM RECLAIMED WATER RECHARGE SITES

    EPA Science Inventory

    Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...

  4. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  5. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  6. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    USGS Publications Warehouse

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    storage area compared to metered recharge of 1,796 acre-ft indicates some loss of metered recharge. Increased storage outside of the basin storage area of 183 acre-ft accounts for all but 6 acre-ft or 0.33 percent of the total. Previously estimated recharge credits for 2007 and 2008 are 1,018 and 600 acre-ft, respectively, and a total estimated recharge credit of 1,618 acre-ft. Storage changes calculated for this study are 4.42 percent less for 2007 and 5.67 percent more for 2008 than previous estimates. Total storage change for 2007 and 2008 is 0.68 percent less than previous estimates. The small difference between the increase in storage from artificial recharge estimated with the groundwater-flow model and metered recharge indicates the groundwater model correctly accounts for the additional water recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project. Small percent differences between inflows and outflows for all stress periods and all index cells in the basin storage area, improved calibration compared to the previous model, and a reasonable match between simulated and measured long-term base flow indicates the groundwater model accurately simulates groundwater flow in the study area. The change in groundwater level through recent years compared to the August 1940 groundwater level map has been documented and used to assess the change of storage volume of the Equus Beds aquifer in and near the Wichita well field for three different areas. Two methods were used to estimate changes in storage from simulation results using simulated change in groundwater levels in layer 1 between stress periods, and using ZONEBUDGET to calculate the change in storage in the same way the effects of artificial recharge were estimated within the basin storage area. The three methods indicate similar trends although the magnitude of storage changes differ. Information about the change in storage in response to hydrologic stresses is important for managing

  7. [Groundwater].

    PubMed

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  8. Effects of Proposed Additional Ground-Water Withdrawals from the Mississippi River Valley Alluvial Aquifer on Water Levels in Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2006-01-01

    The Grand Prairie Water Users Association, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from their current (2005) rate of about 400 gallons per minute to 1,400 gallons per minute (2,016,000 gallons per day). The effect of pumping from a proposed well was simulated using a digital model of ground-water flow. The proposed additional withdrawals were added to an existing pumping cell specified in the model, with increased pumping beginning in 2005, and specified to pump at a total combined rate of 2,016,000 gallons per day for a period of 46 years. In addition, pumping from wells owned by Cabot Water Works, located about 2 miles from the proposed pumping, was added to the model beginning in 2001 and continuing through to the end of 2049. Simulated pumping causes a cone of depression to occur in the alluvial aquifer with a maximum decline in water level of about 8.5 feet in 46 years in the model cell of the proposed well compared to 1998 withdrawals. However, three new dry model cells occur south of the withdrawal well after 46 years. This total water-level decline takes into account the cumulative effect of all wells pumping in the vicinity, although the specified pumping rate from all other model cells in 2005 is less than for actual conditions in 2005. After 46 years with the additional pumping, the water-level altitude in the pumped model cell was about 177.4 feet, which is 41.7 feet higher than 135.7 feet, the altitude corresponding to half of the original saturated thickness of the alluvial aquifer (a metric used to determine if the aquifer should be designated as a Critical Ground-Water Area (Arkansas Natural Resources Commission, 2006)).

  9. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  10. Well-response model of the confined area, Bunker Hill ground-water basin, San Bernardino County, California

    USGS Publications Warehouse

    Durbin, Timothy J.; Morgan, Charles O.

    1978-01-01

    The Bunker Hill ground-water basin, in the vicinity of San Bernardino, Calif., is being artificially recharged with imported water. Current and future artificial recharge of the basin may cause the potentiometric surface in an area of confined ground water to rise above land surface and water to flow from uncapped and unplugged wells. This could cause damage to structures where the soil becomes waterlogged and where buried wells begin to flow beneath the structures. A well-response model was used to generate a series of water-level hydrographs representing the response of the ground-water basin to six possible combinations of conditions for each well; one pumping rate, two artificial-recharge rate, and three natural-recharge rates. Inflow to the ground-water basin exceeds outflow for all tested combinations. According to model predictions, the accumulation of stored ground water resulting from the excess of inflow is sufficient to cause the water level in the selected wells to rise above land surface for all but one of the combinations of conditions tested. Water levels in wells are predicted to rise above the land surface as early as 1981 for the combination with the greatest excess of inflow. (Woodard-USGS)

  11. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  12. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  13. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  14. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    SciTech Connect

    2006-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  15. Analytical solutions of three-dimensional groundwater flow to a well in a leaky sloping fault-zone aquifer

    NASA Astrophysics Data System (ADS)

    Zhao, Yuqing; Zhang, You-Kuan; Liang, Xiuyu

    2016-08-01

    A semi-analytical solution was presented for groundwater flow due to pumping in a leaky sloping fault-zone aquifer surrounded by permeable matrices. The flow in the aquifer was descried by a three-dimensional flow equation, and the flow in the upper and lower matrix blocks are described by a one-dimensional flow equation. A first-order free-water surface equation at the outcrop of the fault-zone aquifer was used to describe the water table condition. The Laplace domain solution was derived using Laplace transform and finite Fourier transform techniques and the semi-analytical solutions in the real time domain were evaluated using the numerical inverse Laplace transform method. The solution was in excellent agreement with Theis solution combined with superposition principle as well as the solution of Huang et al. (2014). It was found that the drawdown increases as the sloping angle of the aquifer increases in early time and the impact of the angle is insignificant after pumping for a long time. The free-water surface boundary as additional source recharges the fault aquifer and significantly affect the drawdown at later time. The surrounding permeable matrices have a strong influence on drawdown but this influence can be neglected when the ratio of the specific storage and the ratio of the hydraulic conductivity of the matrices to those of the fault aquifer are less than 0.001.

  16. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm(-3), a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol(-1), and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m(-2) was generated. The MFC ran continuously up to 120 days without maintenance.

  17. Ground-water levels in observation wells in Oklahoma, 1982-83 climatic years

    USGS Publications Warehouse

    Goemaat, R.L.; Mize, L.D.; Spiser, D.E.

    1984-01-01

    In the 1982-83 climatic years, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources, collected ground-water level data in Oklahoma from 1,087 sites in 77 counties. This report presents those data points.

  18. Ground-water levels in observation wells in Oklahoma, 1983-84 climatic year

    USGS Publications Warehouse

    Goemaat, R.L.; Mize, L.D.; Spiser, D.E.

    1985-01-01

    During the 1983-84 climatic years, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, collected ground-water level data in Oklahoma from 1,083 sites in 77 counties. This report presents those data points.

  19. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (<10,000 ppm TDS) water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  20. Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.

    2016-01-01

    This study develops a three-dimensional (3-D) mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The streams with low-permeability streambeds fully penetrate the aquifer. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. Robin boundary conditions are adopted to describe fluxes across the streambeds. The head solution for the point sink is derived by applying the methods of finite integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length, and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow for the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.

  1. Analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.

    2015-08-01

    This study develops a three-dimensional mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. The head solution for the point sink is derived by applying the methods of double-integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.

  2. Continuous monitoring and discrete water-quality data from groundwater wells in the Edwards aquifer, Texas, 2014–15

    USGS Publications Warehouse

    Opsahl, Stephen P.; Musgrove, Marylynn; Slattery, Richard N.

    2017-01-01

    In cooperation with the San Antonio Water System, continuous and discrete water-quality data were collected from groundwater wells completed in the Edwards aquifer, Texas, 2014-2015. Discrete measurements of nitrate were made by using a nitrate sensor. Precipitation data from two sites in the National Oceanic and Atmospheric Administration Global Historical Climatology Network are included in the dataset. The continuous monitoring data were collected using water quality sensors and include hourly measurements of nitrate, specific conductance, and water level in two wells. Discrete measurements of nitrate, specific conductance, and vertical flow rate were collected from one well site at different depths throughout the well bore.

  3. Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  4. A Generalized Approach for the Interpretation of Geophysical Well Logs in Ground-Water Studies - Theory and Application

    USGS Publications Warehouse

    Paillet, Frederick L.; Crowder, R.E.

    1996-01-01

    Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not

  5. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  6. Simulation of ground-water flow and delineation of areas contributing recharge to municipal water-supply wells, Muscatine, Iowa

    USGS Publications Warehouse

    Savoca, Mark E.; Lucey, Keith J.; Lanning, Brian D.

    2002-01-01

    Mississippi River alluvium in the Muscatine, Iowa, area provides large quantities of good quality ground water for municipal, industrial, and agricultural supplies. Three municipal well fields for the City of Muscatine produce a total of about 27 million gallons per day from the alluvium. A previously published steady-state ground-water flow model was modified, and results from the model were used with particle-tracking software to delineate approximate areas contributing recharge to Muscatine Power and Water municipal supply wells and to determine zones of transport within the areas contributing recharge. Under steady-state conditions and 1998 pumpage, primary sources of inflow to the ground-water flow system are recharge through infiltration of precipitation and upland runoff (53 percent) and Mississippi River leakage (41 percent). The primary components of outflow from the ground-water flow system are pumpage (39.6 percent), flow to drainage ditches in Illinois (32.9 percent), and Muscatine Slough leakage (24.7 percent). Several sources of water are present within estimated areas contributing recharge to Muscatine Power and Water municipal well fields including ground water from the alluvial aquifer, Mississippi River water, and recharge originating as runoff from two unnamed creeks in the northern part of the study area. Recharge originating from the Mississippi River accounts for about 46 percent of the total water discharged from the municipal well fields. The average simulated traveltime of particles tracked from recharge to discharge at the municipal well fields was 13.6 years. Particle-tracking results illustrate the influence of nearby industrial supply wells on the shape and size of the area contributing recharge to Muscatine Power and Water wells. Two large embayments into the area contributing recharge to municipal wells are present along the Mississippi River. These areas represent ground water that is unavailable to municipal wells due to withdrawals

  7. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  8. Local Modelling of Groundwater Flow Using Analytic Element Method Three-dimensional Transient Unconfined Groundwater Flow With Partially Penetrating Wells and Ellipsoidal Inhomogeneites

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Barnes, R. J.; Soule, R.

    2001-12-01

    The analytic element method is used to model local three-dimensional flow in the vicinity of partially penetrating wells. The flow domain is bounded by an impermeable horizontal base, a phreatic surface with recharge and a cylindrical lateral boundary. The analytic element solution for this problem contains (1) a fictitious source technique to satisfy the head and the discharge conditions along the phreatic surface, (2) a fictitious source technique to satisfy specified head conditions along the cylindrical boundary, (3) a method of imaging to satisfy the no-flow condition across the impermeable base, (4) the classical analytic solution for a well and (5) spheroidal harmonics to account for the influence of the inhomogeneities in hydraulic conductivity. Temporal variations of the flow system due to time-dependent recharge and pumping are represented by combining the analytic element method with a finite difference method: analytic element method is used to represent spatial changes in head and discharge, while the finite difference method represents temporal variations. The solution provides a very detailed description of local groundwater flow with an arbitrary number of wells of any orientation and an arbitrary number of ellipsoidal inhomogeneities of any size and conductivity. These inhomogeneities may be used to model local hydrogeologic features (such as gravel packs and clay lenses) that significantly influence the flow in the vicinity of partially penetrating wells. Several options for specifying head values along the lateral domain boundary are available. These options allow for inclusion of the model into steady and transient regional groundwater models. The head values along the lateral domain boundary may be specified directly (as time series). The head values along the lateral boundary may also be assigned by specifying the water-table gradient and a head value at a single point (as time series). A case study is included to demonstrate the application

  9. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-02-15

    We assessed spatial distribution of total dissolved solids (TDS) in shallow (<50 m), intermediate (50-150 m), and deep (>150 m) municipal (domestic and public supply) wells in nine major aquifers in Texas for the 1960s-1970s and 1990s-2000s periods using geochemical data obtained from the Texas Water Development Board. For both time periods, the highest median groundwater TDS concentrations in shallow wells were found in the Ogallala and Pecos Valley aquifers and that in the deep wells were found in the Trinity aquifer. In the Ogallala, Pecos Valley, Seymour and Gulf Coast aquifers, >60% of observations from shallow wells exceeded the secondary maximum contaminant level (SMCL) for TDS (500 mg L(-1)) in both time periods. In the Trinity aquifer, 72% of deep water quality observations exceeded the SMCL in the 1990s-2000s as compared to 64% observations in the 1960s-1970s. In the Ogallala, Edwards-Trinity (plateau), and Edwards (Balcones Fault Zone) aquifers, extent of salinization decreased significantly (p<0.05) with well depth, indicating surficial salinity sources. Geochemical ratios revealed strong adverse effects of chloride (Cl(-)) and sulfate (SO4(2-)) on groundwater salinization throughout the state. Persistent salinity hotspots were identified in west (southern Ogallala, north-west Edwards-Trinity (plateau) and Pecos Valley aquifers), north central (Trinity-downdip aquifer) and south (southern Gulf Coast aquifer) Texas. In west Texas, mixed cation SO4-Cl facies led to groundwater salinization, as compared to Na-Cl facies in the southern Gulf Coast, and Ca-Na-HCO3 and Na-HCO3 facies transitioning to Na-Cl facies in the Trinity-downdip regions. Groundwater mixing ensuing from cross-formational flow, seepage from saline plumes and playas, evaporative enrichment, and irrigation return flow had led to progressive groundwater salinization in west Texas, as compared to ion-exchange processes in the north-central Texas, and seawater intrusion coupled with salt

  10. Water resources data, Oklahoma, water year 2003; Volume 2. Red River basin and ground-water wells

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2003 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 139 gaging stations; stage and contents for 17 lakes or reservoirs and 2 gage height stations; water quality for 46 gaging stations; 32 partial-record or miscellaneous streamflow stations and 5 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  11. Groundwater quality monitoring well installation for Upper Waste Areas Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of seven groundwater quality monitoring (GQM) wells on the perimeter of Upper Waste Area Grouping (WAG) 2. Upper WAG 2 is composed of portions of White Oak Creek (WOC), Melton Branch, two of Melton Branch`s tributaries, and the floodplains surrounding these water bodies. The WOC section of the subject site begins at the confluence of WOC and Melton Branch and extends 0.62 mile upstream to the 7,500 bridge. The Melton Branch portion of the site also begins at the confluence of WOC and Melton Branch and extends eastward 0.88 mile upstream. The wells at Upper WAG 2 were drilled and developed between December 1989 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at Upper WAG-2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  12. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    Lehmann, B. E.; Love, A.; Purtschert, R.; Collon, P.; Loosli, H. H.; Kutschera, W.; Beyerle, U.; Aeschbach-Hertig, W.; Kipfer, R.; Frape, S. K.; Herczeg, A.; Moran, J.; Tolstikhin, I. N.; Gröning, M.

    2003-06-01

    The isotopic ratios 81Kr/Kr and 36Cl/Cl and the 4He concentrations measured in groundwater from four artesian wells in the western part of the Great Artesian Basin (GAB) in Australia are discussed. Based on radioactive decay along a water flow path the 81Kr/Kr ratios are directly converted to groundwater residence times. Results are in a range of 225-400 kyr with error bars in the order of 15% primarily due to counting statistics in the cyclotron accelerator mass spectrometer measurement. Additional uncertainties from subsurface production and/or exchange with stagnant porewaters in the confining shales appear to be of the same order of magnitude. These 81Kr ages are then used to calibrate the 36Cl and the 4He dating methods. Based on elemental analyses of rock samples from the sandstone aquifer as well as from the confining Bulldog shale the in situ flux of thermal neutrons and the corresponding 3He/ 4He and 36Cl/Cl ratios are calculated. From a comparison of: (i) the 3He/ 4He ratios measured in the groundwater samples with the calculated in situ ratios in rocks and (ii) the measured δ 37Cl ratios with the 4He concentrations measured in groundwater it is concluded that both helium and chloride are most likely added to the aquifer from sources in the stagnant porewaters of the confining shale by diffusion and/or mixing. Based on this 'working hypothesis' the 36Cl transport equation in groundwater is solved taking into account: (i) radioactive decay, (ii) subsurface production in the sandstone aquifer (with an in situ 36Cl/Cl ratio of 6×10 -15) and (iii) addition of chloride from a source in the confining shale (with a 36Cl/Cl ratio of 13×10 -15). Lacking better information it is assumed that the chloride concentration increased linearly with time from an (unknown) initial value Ci to its measured present value C= Ci+ Ca, where Ca represents the (unknown) amount of chloride added from subsurface sources. Using the 81Kr ages of the four groundwater samples and a

  13. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    USGS Publications Warehouse

    Sloto, Ronald A.

    2014-01-01

    Differences in groundwater chemistry were related to pH. Water with a pH greater than 7.6 generally had low dissolved oxygen concentrations, indicating reducing conditions in the aquifer. These high pH waters also had relatively elevated concentrations of methane, arsenic, boron, bromide, fluoride, lithium, and sodium but low concentrations of copper, nickel, and zinc. Water samples with a pH greater than 7.8 had methane concentrations equal to or greater than 0.04 mg/L.

  14. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by Use of Elemental and Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Ransom, K.; Grote, M. N.; Deinhart, A.; Eppich, G.; Kendall, C.; Sanborn, M.; Souders, K.; Wimpenny, J.; Yin, Q. Z.; Young, M. B.; Harter, T.

    2015-12-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Nitrate from fertilizers and animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are prevailing sources of nitrate in groundwater for the San Joaquin Valley with septic waste contributing as a major source in some areas. The rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (less than 150 m deep), of which many have been affected by nitrate. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. In contrast, Bayesian mixing models treat source contributions probabilistically, building statistical variation into the inferences for each well. The authors developed a Bayesian mixing model on a pilot network of 56 private domestic wells in the San Joaquin Valley for which nitrogen, oxygen, and boron isotopes as well as nitrate and iodine were measured. Nitrogen, oxygen, and boron isotopes as well as iodine can be used as tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate (which can contribute nitrate in concentrations up to 4 mg/L). In this work, the isotopic and elemental tracers were used to estimate the proportional contribution of manure, fertilizers, septic waste, and natural sources to overall groundwater nitrate concentration in individual wells. Prior distributions for the four tracers for each of the four

  15. Final work plan : targeted groundwater sampling and monitoring well installation for potential site reclassification at Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2006-07-11

    This ''Work Plan'' outlines the scope of work for a targeted groundwater sampling investigation and monitoring well installation at Barnes, Kansas. This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with the intergovernmental agreement between the KDHE and the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA). Data resulting from the proposed work will be used to determine the hydraulic gradient near the former CCC/USDA facility, delineate the downgradient carbon tetrachloride plume, and determine additional monitoring requirements at Barnes. The overall goal is to establish criteria for monitoring leading to potential site reclassification. The proposed work will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Farm Service Agency of the USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a ''Master Work Plan'' (Argonne 2002) to provide general guidance for all investigations at former CCC/USDA facilities in Kansas. The ''Master Work Plan'', approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Barnes.

  16. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    USGS Publications Warehouse

    Ransom, Katherine M; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Sounders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan B.; Harter, Thomas

    2016-01-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  17. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    NASA Astrophysics Data System (ADS)

    Ransom, Katherine M.; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Souders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan; Harter, Thomas

    2016-07-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  18. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    selected samplings. One set of ground-water samples was collected for helium-3/tritium and chlorofluorocarbon (CFC) age dating. Several lines of evidence indicate that surface water is the primary input to the Straight Creek ground-water system. Straight Creek streamflow and water levels in wells closest to the apex of the Straight Creek debris fan and closest to Straight Creek itself appear to respond to the same seasonal inputs. Oxygen and hydrogen isotopic compositions in Straight Creek surface water and ground water are similar, and concentrations of most dissolved constituents in most Straight Creek surface-water and shallow (debris-flow and alluvial) aquifer ground-water samples correlate strongly with sulfate (concentrations decrease linearly with sulfate in a downgradient direction). After infiltration of surface water, dilution along the flow path is the dominant mechanism controlling ground-water chemistry. However, concentrations of some constituents can be higher in ground water than can be accounted for by concentrations in Straight Creek surface water, and additional sources of these constituents must therefore be inferred. Constituents for which concentrations in ground water can be high relative to surface water include calcium, magnesium, strontium, silica, sodium, and potassium in ground water from debris-flow and alluvial aquifers and manganese, calcium, magnesium, strontium, sodium, and potassium in ground water from the bedrock aquifer. All ground water is a calcium sulfate type, often at or near gypsum saturation because of abundant gypsum in the aquifer material developed from co-existing calcite and pyrite mineralization. Calcite dissolution, the major buffering mechanism for bedrock aquifer ground water, also contributes to relatively higher calcium concentrations in some ground water. The main source of the second most abundant cation, magnesium, is probably dissolution of magnesium-rich carbonates or silicates. Strontium may also be

  19. Improvement of casing cementation of deep and ultradeep wells. Part 2: Oilfield cements and cement additives

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Oilfield cements and cement additives were investigated in order to improve the casing cementation of deep and ultradeep wells. Characterization and evaluation of the main oil field cements commercially available were studied. The testing was carried out according to American Petroleum Institute API standards and nonstandardized test methods (dynamic modulus of elasticity, expansion/shrinkage), especially the rheology, thickening time and the influence of pressure, temperature and water-cement ratio, were considered. The main emphasis in the field of cement additives was on the evaluation of cement retarders for high temperatures, accelerators, and additives for cement expansion. Furthermore oil field cements were tested, and their properties are described.

  20. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  1. Gaining the necessary geologic, hydrologic, and geochemical understanding for additional brackish groundwater development, coastal San Diego, California, USA

    USGS Publications Warehouse

    Danskin, Wesley R.

    2012-01-01

    Local water agencies and the United States Geological Survey are using a combination of techniques to better understand the scant freshwater resources and the much more abundant brackish resources in coastal San Diego, California, USA. Techniques include installation of multiple-depth monitoring well sites; geologic and paleontological analysis of drill cuttings; geophysical logging to identify formations and possible seawater intrusion; sampling of pore-water obtained from cores; analysis of chemical constituents including trace elements and isotopes; and use of scoping models including a three-dimensional geologic framework model, rainfall-runoff model, regional groundwater flow model, and coastal density-dependent groundwater flow model. Results show that most fresh groundwater was recharged during the last glacial period and that the coastal aquifer has had recurring intrusions of fresh and saline water. These intrusions disguise the source, flowpaths, and history of ground water near the coast. The flow system includes a freshwater lens resting on brackish water; a 100-meter-thick flowtube of freshwater discharging under brackish estuarine water and above highly saline water; and broad areas of fine-grained coastal sediment filled with fairly uniform brackish water. Stable isotopes of hydrogen and oxygen indicate the recharged water flows through many kilometers of fractured crystalline rock before entering the narrow coastal aquifer.

  2. Groundwater quality and water-well characteristics in the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 1948--2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    In 2012, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, compiled historical groundwater-quality data collected from 1948 to 2011 and water-well completion information in parts of Lincoln, Oklahoma, and Pottawatomie Counties in central Oklahoma to support the development of a comprehensive water-management plan for the Tribe’s jurisdictional area. In this study, water-quality data from 155 water wells, collected from 1948 to 2011, were retrieved from the U.S. Geological Survey National Water Information System database; these data include measurements of pH, specific conductance, and hardness and concentrations of the major ions, trace elements, and radionuclides that have Maximum Contaminant Levels or Secondary Maximum Contaminant Levels in public drinking-water supplies. Information about well characteristics includes ranges of well yield and well depth of private water wells in the study area and was compiled from the Oklahoma Water Resources Board Multi-Purpose Well Completion Report database. This report also shows depth to water from land surface by using shaded 30-foot contours that were created by using a geographic information system and spatial layers of a 2009 potentiometric surface (groundwater elevation) and land-surface elevation. Wells in the study area produce water from the North Canadian River alluvial and terrace aquifers, the underlying Garber Sandstone and Wellington Formation that compose the Garber–Wellington aquifer, and the Chase, Council Grove, and Admire Groups. Water quality varies substantially between the alluvial and terrace aquifers and bedrock aquifers in the study area. Water from the alluvial aquifer has relatively high concentrations of dissolved solids and generally is used for livestock only, whereas water from the terrace aquifer has low concentrations of dissolved solids and is used extensively by households in the study area. Water from the bedrock aquifer also is used extensively by

  3. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    USGS Publications Warehouse

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  4. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    NASA Astrophysics Data System (ADS)

    Jurgens, Bryant C.; Böhlke, J. K.; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-12-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters - the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  5. Lithologic Framework Modeling of the Fruitvale Oil Field Investigating Interaction Between Wastewater Injection Wells and Usable Groundwater

    NASA Astrophysics Data System (ADS)

    Treguboff, E. W.; Crandall-Bear, A. T.

    2015-12-01

    The Fruitvale Oil Field lies in a populated area where oil production, water disposal injection wells, and drinking water wells lie in close proximity. The purpose of this project is to build a lithological framework of the area that can then be used to determine if water disposal from petroleum production has a chance of reaching usable groundwater aquifers. Using the DOGGR database, data were collected from well logs. Lithologic data from drilling logs and cores were coded and entered into a relational database, where it was combined with the surface elevation and location coordinates of each well. Elevation data was acquired through ArcGIS using a USGS 24k 10 m DEM. Drillers logs that started at the surface, and were continuous, were sorted by the density of intervals recorded, in order to select high quality drillers logs for use in creating a model. About 900 wells were coded and approximately 150 wells were used in the model. These wells were entered into the modeling program (Rockworks), which allowed the wells to be visualized as strip logs and also as cross sections, and 2D fence models were created to represent subsurface conditions. The data were interpolated into 3D models of the subsurface. Water disposal wells, with the depths of the perforation intervals as well as injection volume, were added to the model, and analyzed. Techniques of interpolation used in this project included kriging, which requires statistical analysis of the data collected. This allowed correlation between widely-spaced wells. Up scaling the data to a coarse or fine texture was also been found to be effective with the kriging technique. The methods developed on this field can be used to build framework models of other fields in the Central Valley to explore the relationship between water disposal injection and usable groundwater.

  6. Source, Distribution, and Management of Arsenic in Water from Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Metzger, Loren F.; Halford, Keith J.; Kulp, Thomas R.; Bennett, George L.

    2008-01-01

    Between 1974 and 2001 water from as many as one-third of wells in the Eastern San Joaquin Ground Water Subbasin, about 80 miles east of San Francisco, had arsenic concentrations greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 micrograms per liter (ug/L). Water from some wells had arsenic concentrations greater than 60 ug/L. The sources of arsenic in the study area include (1) weathering of arsenic bearing minerals, (2) desorption of arsenic associated with iron and manganese oxide coatings on the surfaces of mineral grains at pH's greater than 7.6, and (3) release of arsenic through reductive dissolution of iron and manganese oxide coatings in the absence of oxygen. Reductive dissolution is responsible for arsenic concentrations greater than the MCL. The distribution of arsenic varied areally and with depth. Concentrations were lower near ground-water recharge areas along the foothills of the Sierra Nevada; whereas, concentrations were higher in deeper wells at the downgradient end of long flow paths near the margin of the San Joaquin Delta (fig. 1). Management opportunities to control high arsenic concentrations are present because water from the surface discharge of wells is a mixture of water from the different depths penetrated by wells. On the basis of well-bore flow and depth-dependent water-quality data collected as part of this study, the screened interval of a public-supply well having arsenic concentrations that occasionally exceed the MCL was modified to reduce arsenic concentrations in the surface discharge of the well. Arsenic concentrations from the modified well were about 7 ug/L. Simulations of ground-water flow to the well showed that although upward movement of high-arsenic water from depth within the aquifer occurred, arsenic concentrations from the well are expected to remain below the MCL.

  7. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    USGS Publications Warehouse

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  8. Aquifer-test evaluation and potential effects of increased ground-water pumpage at the Stovepipe Wells Hotel area, Death Valley National Monument, California

    USGS Publications Warehouse

    Woolfenden, L.R.; Martin, Peter; Baharie, Brian

    1988-01-01

    Ground-water use in the Stovepipe Wells Hotel area in Death Valley National Monument is expected to increase significantly if the nonpotable, as well as potable, water supply is treated by reverse osmosis. During the peak tourist season, October through March, ground-water pumpage could increase by 37,500 gallons per day, or 76%. The effects of this additional pumpage on water levels in the area, particularly near a strand of phreatophytes about 10,000 feet east of the well field, are of concern. In order to evaluate the effects of increased pumpage on water levels in the Stovepipe Wells Hotel area well field, two aquifer tests were performed at the well field to determine the transmissivity and storage coefficients of the aquifer. Analysis of the aquifer test determined that a transmissivity of 1,360 feet squared per day was representative of the aquifer. The estimated value of transmissivity and the storage-coefficient values that are representative of confined (1.2 x .0004) and unconfined (0.25) conditions were used in the Theis equation to calculate the additional drawdown that might occur after 1, 10, and 50 years of increased pumpage. The drawdown calculated by using the lower storage-coefficient value represents the maximum additional drawdown that might be expected from the assumed increase in pumpage; the drawdown calculated by using the higher storage-coefficient value represents the minimum additional drawdown. Calculated additional drawdowns after 50 years of pumping range from 7.8 feet near the pumped well to 2.4 feet at the phreatophyte stand assuming confined conditions, and from 5.7 feet near the pumped well to 0.3 foot at the phreatophyte stand assuming unconfined conditions. Actual drawdowns probably will be somewhere between these values. Drawdowns measured in observation wells during 1973-85, in response to an average pumpage of 34,200 gallons per day at the Stovepipe Wells Hotel well field, are similar to the drawdowns calculated by the Theis

  9. Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique

    NASA Astrophysics Data System (ADS)

    Chirindja, F. J.; Dahlin, T.; Juizo, D.

    2017-02-01

    Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.

  10. Guidelines and standard procedures for studies of ground-water quality; selection and installation of wells, and supporting documentation

    USGS Publications Warehouse

    Lapham, W.W.; Wilde, F.D.; Koterba, M.T.

    1997-01-01

    This is the first of a two-part report to document guidelines and standard procedures of the U.S. Geological Survey for the acquisition of data in ground-water-quality studies. This report provides guidelines and procedures for the selection and installation of wells for water-quality studies/*, and the required or recommended supporting documentation of these activities. Topics include (1) documentation needed for well files, field folders, and electronic files; (2) criteria and information needed for the selection of water-supply and observation wells, including site inventory and data collection during field reconnaissance; and (3) criteria and preparation for installation of monitoring wells, including the effects of equipment and materials on the chemistry of ground-water samples, a summary of drilling and coring methods, and information concerning well completion, development, and disposition.

  11. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    SciTech Connect

    Roth, R.J.; Bianco, P.; Kirshner, M.; Pressly, N.C.

    1996-12-31

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes.

  12. Areas contributing recharge to production wells and effects of climate change on the groundwater system in the Chipuxet River and Chickasheen Brook Basins, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.; Stone, Janet R.

    2015-01-01

    Predicted changes in the magnitude and seasonal distribution of recharge in the 21st century increase simulated base flows and groundwater levels in the winter months for both emission scenarios, but because of less recharge in the fall and less or about the same recharge in the preceding months of spring and summer, base flows and groundwater levels in the fall months decrease for both emission scenarios. October has the largest base flow and groundwater level decreases. By the late 21st century, base flows at the Chipuxet River in October are projected to decrease by 9 percent for the lower emissions scenario and 18 percent for the higher emissions scenario. For a headwater stream in the upland till with shorter groundwater-flow paths and lower storage properties in its drainage area, base flows in October are projected to diminish by 28 percent and 42 percent for the lower and higher emissions scenarios by the late 21st century. Groundwater level changes in the uplands show substantial decreases in fall, but because of the large storage capacity of stratified deposits, water levels change minimally in the valley. By the late 21st century, water levels in large areas of upland till deposits in October are projected to decrease by up to 2 feet for the lower emissions scenario, whereas large areas decrease by up to 5 feet, with small areas with decreases of as much as 10 feet, for the higher emissions scenario. For both emission scenarios, additional areas of till go dry in fall compared with the late 20th century. Thus projected changes in recharge in the 21st century might extend low flows and low water levels for the year later in fall and there might be more intermittent headwater streams compared with the late 20th century with corresponding implications to aquatic habitat. Finally, the size and location of the simulated areas contributing recharge to the production wells are minimally affected by climate change because mean annual recharge, which is used to

  13. Hydrogeologic framework, ground-water quality, and simulation of ground-water flow at the Fair Lawn Well Field Superfund site, Bergen County, New Jersey

    USGS Publications Warehouse

    Lewis-Brown, Jean C.; Rice, Donald E.; Rosman, Robert; Smith, Nicholas P.

    2005-01-01

    Production wells in the Westmoreland well field, Fair Lawn, Bergen County, New Jersey (the 'Fair Lawn well field Superfund site'), are contaminated with volatile organic compounds, particularly trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. In 1983, the U.S. Environmental Protection Agency (USEPA) placed the Westmoreland well field on its National Priority List of Superfund sites. In an effort to determine ground-water flow directions, contaminant-plume boundaries, and contributing areas to production wells in Fair Lawn, and to evaluate the effect of present pump-and-treat systems on flowpaths of contaminated ground water, the U.S. Geological Survey (USGS), in cooperation with the USEPA, developed a conceptual hydrogeologic framework and ground-water flow model of the study area. MODFLOW-2000, the USGS three-dimensional finite-difference model, was used to delineate contributing areas to production wells in Fair Lawn and to compute flowpaths of contaminated ground water from three potential contaminant sources to the Westmoreland well field. Straddle-packer tests were used to determine the hydrologic framework of, distribution of contaminants in, and hydrologic properties of water-bearing and confining units that make up the fractured-rock aquifer underlying the study area. The study area consists of about 15 square miles in and near Fair Lawn. The area is underlain by 6 to 100 feet of glacial deposits and alluvium that, in turn, are underlain by the Passaic Formation. In the study area, the Passaic Formation consists of brownish-red pebble conglomerate, medium- to coarse-grained feldspathic sandstone, and micaceous siltstone. The bedrock strata strike N. 9o E. and dip 6.5o to the northwest. The bedrock consists of alternating layers of densely fractured rocks and sparsely fractured rocks, forming a fractured-rock aquifer. Ground-water flow in the fractured-rock aquifer is anisotropic as a result of the interlayering of dipping water-bearing and

  14. Artificial recharge of groundwater

    SciTech Connect

    Asano, T.

    1985-01-01

    The vast underground reservoirs formed by aquifers constitute invaluable water supply sources as well as water storage facilities. Because natural replenishment of the supply occurs very slowly, continued excessive exploitation of it causes groundwater levels to decline with time. If not corrected this leads to an eventual depletion of a valuable natural resource. To prevent mining and groundwater pollution, the artificial recharge of groundwater basins is becoming increasingly important in groundwater management as a way to increase this natural supply of water. Artificial recharge can reduce, stop, and even reverse declining levels of groundwater. In addition, it can protect underground freshwater in coastal aquifers against salt-water intrusion from the ocean, and can be used to store surface and reclaimed water for future use. This book is a treatise of the artificial recharge of groundwater, with particular emphasis on recharge with reclaimed municipal wastewater.

  15. Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, R.A.

    2000-01-01

    Water samples were collected near a Cedar Rapids, Iowa municipal well field from June 1998 to August 1998 and analyzed for selected triazine and acetanilide herbicides and degradates. The purpose of the study was to evaluate the occurrence of herbicides and herbicide degradates in the well field during a period following springtime application of herbicides to upstream cropland. The well field is in an alluvial aquifer adjacent to the Cedar River. Parent herbicide concentrations generally were greatest in June, and decreased in July and August. Atrazine was most frequently detected and occurred at the greatest concentrations; acetochlor, cyanazine and metolachlor also were detected, but at lesser concentrations than atrazine. Triazine degradate concentrations were relatively small (<0.50 ??g/l) and generally decreased from June to August. Although the rate of groundwater movement is relatively fast (approx. 1 m per day) in the alluvial aquifer near the Cedar River, deethylatrazine (DEA) to atrazine ratios in groundwater samples collected near the Cedar River indicate that atrazine and DEA probably are gradually transported into the alluvial aquifer from the Cedar River. Deisopropylatrazine (DIA) to DEA ratios in water samples indicate most DIA in the Cedar River and alluvial aquifer is produced by atrazine degradation, although some could be from cyanazine degradation. Acetanilide degradates were detected more frequently and at greater concentrations than their corresponding parent herbicides. Ethanesulfonic-acid (ESA) degradates comprised at least 80% of the total acetanilide-degradate concentrations in samples collected from the Cedar River and alluvial aquifer in June, July and August; oxanilic acid degradates comprised less than 20% of the total concentrations. ESA-degradate concentrations generally were smallest in June and greater in July and August. Acetanilide degradate concentrations in groundwater adjacent to the Cedar River indicate acetanilide

  16. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-08-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.

  17. Differential-Evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept

    NASA Astrophysics Data System (ADS)

    Elçi, Alper; Ayvaz, M. Tamer

    2014-04-01

    The objective of this study is to present an optimization approach to determine locations of new groundwater production wells, where groundwater is relatively less susceptible to groundwater contamination (i.e. more likely to obtain clean groundwater), the pumping rate is maximum or the cost of well installation and operation is minimum for a prescribed set of constraints. The approach also finds locations that are in suitable areas for new groundwater exploration with respect to land use. A regional-scale groundwater flow model is coupled with a hybrid optimization model that uses the Differential Evolution (DE) algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method as the global and local optimizers, respectively. Several constraints such as the depth to the water table, total well length and the restriction of seawater intrusion are considered in the optimization process. The optimization problem can be formulated either as the maximization of the pumping rate or as the minimization of total costs of well installation and pumping operation from existing and new wells. Pumping rates of existing wells that are prone to seawater intrusion are optimized to prevent groundwater flux from the shoreline towards these wells. The proposed simulation-optimization model is demonstrated on an existing groundwater flow model for the Tahtalı watershed in Izmir-Turkey. The model identifies for the demonstration study locations and pumping rates for up to four new wells and one new well in the cost minimization and maximization problem, respectively. All new well locations in the optimized solution coincide with areas of relatively low groundwater vulnerability. Considering all solutions of the demonstration study, groundwater vulnerability indices for new well locations range from 29.64 to 40.48 (on a scale of 0-100, where 100 indicates high vulnerability). All identified wells are located relatively close to each other. This implies that the method pinpoints the

  18. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not

  19. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  20. Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ammar, A. I.; Kruse, S. E.

    2016-04-01

    Seasonal shortages of groundwater are common in parts of the Arabian Shield, where complex basement hydrogeology can make siting of water wells difficult. To identify optimal production well locations, six 200-400 m-long Very Low Frequency (VLF) electromagnetic traverses and ten Vertical Electrical Soundings (VESes) were run at the western edge of the Arabian Shield near At-Taif town, Saudi Arabia. Here wadi sediments overlie fractured Precambrian basement, which in turn overlies unfractured basement. The fractured basement forms the water supply aquifer. Both VLF and VES data indicate significant lateral heterogeneity in the electrical conductivity of both wadi and basement deposits over lengths scales as small as ∼100 m. VES results correlate closely with data from two wells in the study area. The change in resistivity at the wadi-to-fractured basement contact is relatively subtle, but the transition from low resistivity fractured basement to high resistivity unfractured basement is well resolved. Inferred wadi thicknesses range from 0 to 14 m; the electrically conductive fractured basement extends from wadi down to 12-32 m depth. VES data indicate the fractured basement aquifer thickens progressively to the south in this area. A production well, sited on the basis of the VES analysis, successfully yielded 70m3/day. The relationship between VLF and VES data is complex, suggesting that the terrain is heterogeneous on the scale of the different effective sampling volumes of the two methods, and/or that fracture azimuth is locally heterogeneous. Overall resistivities in this study are similar to those observed at other locations in Saudi Arabia, suggesting these methods may be widely applicable for siting of groundwater wells in the complex basement of the Arabian Shield.

  1. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  2. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  3. Limits to Global Groundwater Consumption

    NASA Astrophysics Data System (ADS)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  4. Borehole geophysical methods for analyzing specific capacity of multiaquifer wells : ground-water hydraulics

    USGS Publications Warehouse

    Bennett, Gordon D.; Patten, Eugene P.

    1960-01-01

    Conventional well-logging techniques, combined with measurements of flow velocity in the borehole, can provide information on the discharge-drawdown characteriBtic8 of the several aquifers penetrated by a well. The information is most conveniently presented in a graph showing aquifer discharges as functions of the water level in the well at a particular time. To determine the discharge-drawdown characteristics, a well is pumped at a steady rate for a certain length of time. While the well is being pumped, measurements are made of drawdown and of the discharge rates of the individual aquifers within the well. Discharge rates and drawdowns ,are usually recorded as functions of time, and their values for any given time during the test are obtained by interpolation. The procedure is repeated for several different rates of total well discharge. The well may be allowed to recover after each step, or discharge may be changed from one rate to another, and changes in discharge and drawdown may be measured by extrapolation. The flow measurements within the well may be made by use of a subsurface flowmeter or by one of several techniques involving the injection of electrolytic or radioactive tracers. The method was tested on a well in Mercer County, Pa., and provided much useful information on aquifer yields, 'thieving,' and hydrostatic heads of the individual zones.

  5. Baseline groundwater quality from 20 domestic wells in Sullivan County, Pennsylvania, 2012

    USGS Publications Warehouse

    Sloto, Ronald A.

    2013-01-01

    Concentrations of dissolved methane ranged from less than 0.001 to 51.1 mg/L. Methane was not detected in water samples from 13 wells, and the methane concentration was less than 0.07 mg/L in samples from five wells. The highest dissolved methane concentrations were 4.1 and 51.1 mg/L, and the pH of the water from both wells was greater than 8. Water samples from these wells were analyzed for isotopes of carbon and hydrogen in the methane. The isotopic ratio values fell in the range for a thermogenic (natural gas) source. The water samples from these two wells had the highest concentrations of arsenic, boron, bromide, chloride, fluoride, lithium, molybdenum, and sodium of the 20 wells sampled.

  6. Groundwater quality at the Saline Valley Conservancy District well field, Gallatin County, Illinois

    USGS Publications Warehouse

    Gorczynska, Magdalena; Kay, Robert T.

    2016-08-29

    The Saline Valley Conservancy District (SVCD) operates wells that supply water to most of the water users in Saline and Gallatin Counties, Illinois. The SVCD wells draw water from a shallow sand and gravel aquifer located in close proximity to an abandoned underground coal mine, several abandoned oil wells, and at least one operational oil well. The aquifer that yields water to the SVCD wells overlies the New Albany Shale, which may be subjected to shale-gas exploration by use of hydraulic fracturing. The SVCD has sought technical assistance from the U.S. Geological Survey to characterize baseline water quality at the SVCD well field so that future changes in water quality (if any) and the cause of those changes (including mine leachate and hydraulic fracturing) can be identified.

  7. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests.

    SciTech Connect

    Reimus, P. W.; Umari M. J.; Roback, R.; Earle, John,; Darnell Jon; Farnham, Irene

    2002-01-01

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  8. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    PubMed

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  9. Ground-Water Data for Indian Wells Valley, Kern, Inyo, and San Bernardino Counties, California, 1977-84

    USGS Publications Warehouse

    Berenbrock, Charles

    1987-01-01

    Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for

  10. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater.

    PubMed

    Liu, Na; Ding, Feng; Wang, Liu; Liu, Peng; Yu, Xiaolong; Ye, Kang

    2016-05-01

    A laboratory-scale bio-permeable reactive barrier (bio-PRB) was constructed and combined with enclosed in-well aeration system to treat nitrobenzene (NB) and aniline (AN) in groundwater. Batch-style experiments were first conducted to evaluate the effectiveness of NB and AN degradation, using suspension (free cells) of degrading consortium and immobilized consortium by a mixture of perlite and peat. The NB and AN were completely degraded in <3 days using immobilized consortium, while 3-5 days were required using free cells. The O2 supply efficiency of an enclosed in-well aeration system was assessed in a box filled with perlite and peat. Dissolved O2 (DO) concentrations increased to 8-12 mg L(-1) in 12 h for sampling ports within 12 cm of the aeration well. A diffusion coefficient as 33.5 cm(2) s(-1) was obtained. The DO concentration was >4 mg L(-1) when the aeration system was applied into the bio-PRB system. The NB and AN were effectively removed when the aeration system was functional in the bio-PRB. The removal efficiency decreased when the aeration system malfunctioned for 20 days, thus indicating that DO was an important factor for the degradation of NB and AN. The regain of NB and AN removal after the malfunction indicates the robustness of degradation consortium. No original organics and new formed by-products were observed in the effluent. The results indicate that NB and AN in groundwater can be completely mineralized in a bio-PRB equipped with enclosed in-well aeration system and filled with perlite and peat attached with degrading consortium.

  11. Guide to Groundwater Well Locations and Information at Oak Ridge National Laboratory

    SciTech Connect

    Huff, D.D.; Faulkner, M.A.

    1991-09-01

    The need for a guide monitoring wells at Oak Ridge National Laboratory (ORNL) has steadily increased over the past decade. This guide displays well locations in the context of waste area groupings (WAGs) and includes a simple tabulation of well location and depth for over 1400 wells. Although this information is not all-inclusive, it allows the reader to identify areas of interest and serves as a starting point for the development of maps and tabular data to meet a variety of needs. The scope of this guide is anticipated is anticipated to expand in the future to include wells that have been plugged and abandoned, and to indicate general water chemistry features. 4 refs., 24 figs., 25 tabs.

  12. Transient effects on groundwater chemical compositions from pumping of supply wells at the Nevada National Security Site, 1951-2008

    USGS Publications Warehouse

    Paces, James B.; Elliott, Peggy E.; Fenelon, Joseph M.; Laczniak, Randell J.; Moreo, Michael T.

    2012-01-01

    Nuclear testing and support activities at the Nevada National Security Site have required large amounts of water for construction, public consumption, drilling, fire protection, hydraulic and nuclear testing, and dust control. To supply this demand, approximately 20,000 million gallons of water have been pumped from 23 wells completed in 19 boreholes located across the Nevada National Security Site starting as early as the 1950s. As a consequence of more or less continuous pumping from many of these wells for periods as long as 58 years, transient groundwater flow conditions have been created in the aquifers that supplied the water. To evaluate whether long-term pumping caused changes in water compositions over time, available chemical analyses of water samples from these 19 boreholes were compiled, screened, and evaluated for variability including statistically significant temporal trends that can be compared to records of groundwater pumping. Data used in this report have been extracted from a large database (Geochem08, revision 3.0, released in September 2008) containing geochemical and isotopic information created and maintained by primary contractors to the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office. Data extracted from this source were compiled for the entire period of record, converted to uniform reporting units, and screened to eliminate analyses of poor or unknown quality, as well as clearly spurious values. The resulting data are included in accompanying spreadsheets that give values for (1) pH and specific conductance, (2) major ion concentrations, (3) trace element concentrations and environmental isotope ratios, and (4) mean, median, and variance estimates for major ion concentrations. The resulting data vary widely in quality and time-series density. An effort has been made to establish reasonable ranges of analytical uncertainty expected for each analyte and eliminate analyses that are obvious outliers

  13. Ground-water resources of the Holloman Air Force Base well field area, 1967, New Mexico

    USGS Publications Warehouse

    Ballance, W.C.; Mattick, Robert E.

    1976-01-01

    Water consumption at Holloman Air Force Base (HAFB), N. Mex., reached an all time high in 1964 and 1965. Further increases in withdrawal without expansion of pumping facilities will hasten the chemical deterioration of the ground water pumped from the well fields. Saline water in the well-field area is present on the north and west sides of the potable-water area and in a thin shallow zone that overlies the potable-water sands in part of the potable-water area. The latter source is affecting quality of the water produced from most wells. The saturated thickness of material underlying the Boles well field ranges from about 3 ,500 feet in the western part of the field to about 1,200 feet in the eastern part of the field. In the Douglass and San Andres well fields, the saturated thickness ranges from 3,500 feet to about 300 feet. Expansion of the Boles and San Andres well fields to the east and southeast would move the center of pumping away from the highly saline water to the north and west. This would eliminate overpumping of the present wells that has resulted from the expanded facilities at Holloman Air Force Base. (Woodard-USGS)

  14. Groundwater quality and simulation of sources of water to wells in the Marsh Creek valley at the U.S. Geological Survey Northern Appalachian Research Laboratory, Tioga County, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Breen, Kevin J.

    2012-01-01

    well 3,500 feet to the southwest that was drilled to provide water for Marcellus gas-well operations. Results of simulations indicate that during average hydrologic conditions, infiltration from Straight Run, a tributary to Marsh Creek, provides nearly all the water to the NARL wells. During dry conditions, the areas contributing recharge expand such that Asaph Run contributes about half of the water to the NARL wells when withdrawals are 1,000 or 2,000 gallons per minute. The addition of a simulated withdrawal of 1,000 gallons per minute from the nearby new well does not substantially affect the sources of water captured by the NARL wells. These results are subject to some limitations. The water-quality samples represent a snapshot of groundwater chemistry for only one hydrologic condition; the concentrations of some constituents may change temporally. In addition, samples were collected and analyzed for hydrocarbon gases, but not organic constituents associated with hydraulic fracturing; additional sampling for these constituents would provide a more complete water-quality baseline. The sources contributing water to the NARL wells and the new well were simulated by use of a simplified one-layer model of the glacial sand and gravel aquifer for steady-state conditions that in reality are never achieved. Steady-state simulations of dry hydrologic conditions show that it is possible for the NARL wells to capture water from Asaph Run; however, maps of simulated groundwater time-of-travel indicate that a dry period of unusually long duration would be required. A better analysis could be done by recalibrating the groundwater-flow model with a finite-difference grid having multiple layers, cells smaller than the 200-foot by 200-foot cells used in this study, and transient stress periods.

  15. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and

  16. Review Team Focused Modeling Analysis of Radial Collector Well Operation on the Hypersaline Groundwater Plume beneath the Turkey Point Site near Homestead, Florida

    SciTech Connect

    Oostrom, Martinus; Vail, Lance W.

    2016-08-01

    Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company’s application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units—Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction and operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.

  17. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand.

    PubMed

    Wongsasuluk, Pokkate; Chotpantarat, Srilert; Siriwong, Wattasit; Robson, Mark

    2014-02-01

    Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004-2.901, 0.053-54.818, 0.003-6.399 and 0.007-26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10(-6) for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.

  18. Optimal Well Placement for Enhanced Degradation during In Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Greene, J. A.; Neupauer, R.; Piscopo, A. N.; Kasprzyk, J. R.

    2015-12-01

    Active spreading strategies have been developed to enhance contaminant degradation during in situ remediation by increasing contact of the injected treatment chemical with the contaminant plume. The contact between these reactants is increased by strategically injecting and extracting water at wells surrounding the plume to reconfigure the treatment chemical and contaminant plume in the aquifer, which leads to enhanced contaminant degradation. The distance and orientation of the wells relative to the contaminant plume affects the ability of active spreading strategies to efficiently degrade contaminant. In this study, we use a multi-objective evolutionary algorithm to optimize the distance and orientation of wells for both circular and elliptical contaminant plumes with uniform and Gaussian initial concentration distributions. The optimization yields results that maximize the amount of degradation achieved during in situ remediation while minimizing any extraction of treatment chemical.

  19. Ground-water levels in selected well fields and in west-central Florida, May 1981

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.

    1981-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semi-annually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well fields that supplied 200.7 million gallons to municipalities on May 18, 1981. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal on ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Water levels were lower in May 1981 than in May and September 1980. Annual change of water levels ranged from decreases of 19 feet at Sun City well field to less than 1 foot at Eldridge-Wilde well field. (USGS)

  20. Ground-water levels in selected well fields and in west-central Florida, May 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared showing water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well-field areas that supplied 155 million gallons to municipalities on May 12, 1980. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Water levels were lower in May 1980 than in September 1979 and a little higher than the average May levels. Change of water levels ranged from a decrease of 12 feet at Verna well field to an increase of 7 feet at Eldridge-Wilde well field. (USGS)

  1. Ground-water levels in selected well fields and in west-central Florida, September 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well fields that supplied 141.8 million gallons to municipalities on September 18, 1980. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Potentiometric levels in the Floridan aquifer were higher in September 1980 than in May 1980 and generally lower than in September 1979. Annual change of water levels ranged from a decrease of 6 feet at Morris Bridge well field to an increase of 2 feet at Eldridge-Wilde well field. (USGS)

  2. Ground-water levels in selected well fields and in west-central Florida, September 1979

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels, and each September to coincide with seasonal high levels. The mapped area shows 16 well fields which supplied 123.7 million gallons to municipalities on September 18, 1979. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Water levels were generally higher in September 1979 than in May 1979 and higher than the average September levels. Change of water levels ranged from an increase of 15 feet at Cosme well field to a decrease of 9 feet at Verna well field. (USGS)

  3. The handbook of groundwater engineering

    SciTech Connect

    Delleur, J.W.

    1998-12-31

    From an engineering perspective, this book provides a practical treatment of groundwater flow; substance transport, well construction, groundwater production, site characterization, and remediation of groundwater pollution.

  4. A technique for estimating ground-water levels at sites in Rhode Island from observation-well data

    USGS Publications Warehouse

    Socolow, Roy S.; Frimpter, Michael H.; Turtora, Michael; Bell, Richard W.

    1994-01-01

    Estimates of future high, median, and low ground- water levels are needed for engineering and architectural design decisions and for appropriate selection of land uses. For example, the failure of individual underground sewage-disposal systems due to high ground-water levels can be prevented if accurate water-level estimates are available. Estimates of extreme or average conditions are needed because short duration preconstruction obser- vations are unlikely to be adequately represen- tative. Water-level records for 40 U.S. Geological Survey observation wells in Rhode Island were used to describe and interpret water-level fluctuations. The maximum annual range of water levels average about 6 feet in sand and gravel and 11 feet in till. These data were used to develop equations for estimating future high, median, and low water levels on the basis of any one measurement at a site and records of water levels at observation wells used as indexes. The estimating technique relies on several assumptions about temporal and spatial variations: (1) Water levels will vary in the future as they have in the past, (2) Water levels fluctuate seasonally (3) Ground-water fluctuations are dependent on site geology, and (4) Water levels throughout Rhode Island are subject to similar precipitation and climate. Comparison of 6,697 estimates of high, median, and low water levels (depth to water level exceeded 95, 50, and 5 percent of the time, respectively) with the actual measured levels exceeded 95, 50, and 5 percent of the time at 14 sites unaffected by pumping and unknown reasons, yielded mean squared errors ranging from 0.34 to 1.53 square feet, 0.30 to 1.22 square feet, and 0.32 to 2.55 square feet, respectively. (USGS)

  5. Groundwater resource development

    SciTech Connect

    Hamill, L.

    1986-01-01

    This book provides engineers with a treatment of the steps involved in the exploration and evaluation of aquifers, the construction and testing of water supply boreholes, and the management of the resource. The important subjects of water quality criteria, pollution hazards and modeling techniques are also included. Contents: Development of Groundwater Resources; Groundwater: Fundamentals; Groundwater Exploration; Assessment of Aquifer Recharge and Potential Well Yield; Groundwater Quality; Well Design and Construction; Aquifer Hydraulics and Pumping Tests; Groundwater Pollution; Groundwater Management; Groundwater Modeling Techniques.

  6. In Situ Catalytic Groundwater Treatment Using Pd-Catalysts and Horizontal Flow Treatment Wells

    DTIC Science & Technology

    2007-02-01

    feed lines for backflushing and regenerating reactors coupled with high costs for removing reactors from the wells for maintenance, leak checks, etc...Analyses for Wastewater," J. Glaser , D. Foerst, G. McKee, S. Quave, W. Budde, Environmental Science and Technology, Vol. 15, Number 12, page 1426...will permeate through PTFE tubing, all GC carrier gas lines and purge gas plumbing should be constructed of stainless steel or copper tubing

  7. Characterisation of microbial activity in the framework of natural attenuation without groundwater monitoring wells?: a new Direct-Push probe.

    PubMed

    Schurig, Christian; Melo, Vinicio Alejandro; Miltner, Anja; Kaestner, Matthias

    2014-01-01

    At many contaminated field sites in Europe, monitored natural attenuation is a feasible site remediation option. Natural attenuation includes several processes but only the microbial degradation leads to real contaminant removal and very few methods are accepted by the authorities providing real evidence of microbial contaminant degradation activity. One of those methods is the recently developed in situ microcosm approach (BACTRAP®). These in situ microcosms consist of perforated stainless steel cages or PTFE tubes filled with an activated carbon matrix that is amended with 13C-labelled contaminants; the microcosms are then exposed within groundwater monitoring wells. Based on this approach, natural attenuation was accepted by authorities as a site remediation option for the BTEX-polluted site Zeitz in Germany. Currently, the in situ microcosms are restricted to the use inside groundwater monitoring wells at the level of the aquifer. The (classical) system therefore is only applicable on field sites with a network of monitoring wells, and only microbial activity inside the monitoring wells at the level of the aquifer can be assessed. In order to overcome these limitations, a new Direct-Push BACTRAP probe was developed on the basis of the Geoprobe® equipment. With respect to the mechanical boundary conditions of the DP technique, these new probes were constructed in a rugged and segmented manner and are adaptable to various sampling concepts. With this new probe, the approach can be extended to field sites without existing monitoring wells, and microbial activity was demonstrated to be measureable even under very dry conditions inside the vadose zone above the aquifer. In a field test, classical and Direct-Push BACTRAPs were applied in the BTEX-contaminated aquifer at the ModelPROBE reference site Zeitz (Germany). Both types of BACTRAPs were incubated in the centre and at the fringe of the BTEX plume. Analysis of phospholipid fatty acid (PLFA) patterns showed

  8. Two well storage systems for combined heating and airconditioning by groundwater heatpumps in shallow aquifers

    SciTech Connect

    Pelka, W.

    1980-07-01

    The use of soil and ground water as an energy source and heat storage systems for heat pumps in order to conserve energy in heating and air conditioning buildings is discussed. Information is included on heat pump operation and performance, aquifer characteristics, soil and ground water temperatures, and cooling and heating demands. Mathematical models are used to calculate flow and temperature fields in the aquifer. It is concluded that two well storage systems with ground water heat pumps are desirable, particularly in northern climates. (LCL)

  9. Two well storage systems for combined heating and airconditioning by groundwater heatpumps in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Pelka, W.

    1980-07-01

    The use of soil and ground water as an energy source and heat storage systems for heat pumps in order to conserve energy in heating and air conditioning buildings is discussed. Information is included on heat pump operation and performance, aquifer characteristics, soil and ground water temperatures, and cooling and heating demands. Mathematical models are used to calculate flow and temperature fields in the aquifer. It is concluded that two well storage systems with ground water heat pumps are desirable, particularly in northern climates.

  10. A strategy for delineating the area of ground-water contribution to wells completed in fractured bedrock aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, D.W.; Barton, G.J.

    1995-01-01

    Delineating a contributing area to a well completed in a fractured bedrock aquifer in Pennsylvania is difficult because the hydrogeologic characteristics of fractured rocks are extremely complex. Because of this complexity, a single method or technique to delineate a contributing area will not be applicable for all wells completed in fractured-bedrock aquifers. Therefore, a strategy for refining the understanding of boundary conditions and major heterogeneities that control ground-water flow and sources of water to a supply well is suggested. The strategy is based on developing and refining a conceptual model for the sources of water to the well. Specifically, the strategy begins with an initial conceptual model of the ground-water-flow system, then requires the collection of hydrogeologic information to refine the conceptual model in a stepwise manner from one or more of sic categories: (1) hydrogeologic mapping, (2) water-level and streamflow measurements, (3) geochemistry, (4) geophysics and borehole flowmetering, (5) aquifer testing, and (6) tracer testing. During the refinement process, the applicability of treating the fratured-rock aquifer as a hydrologic continuum is evaluated, and the contributing area is delineated. Choice of the method used to delineate the contributing area is less important than insuring that the method is consistent with the refined conceptual model. By use of such a strategy, the improved understanding of the ground-water-flow system will lead to a technically defensible delineation of the contributing area.

  11. Ground-water flow in the Saginaw Aquifer in the vicinity of the north Lansing well field, Lansing, Michigan

    USGS Publications Warehouse

    Luukkonen, C.L.; Grannemann, N.G.; Holtschlag, D.J.

    1997-01-01

    Vinyl chloride has been detected in water from the Saginaw aquifer near Lansing Board of Water and Light wells in the north Lansing well field. These public-supply wells have the potential to withdraw contaminated ground water. The effects of reduced grid spacing for the existing TriCounty regional ground-water-flow model on local ground-water movement were investigated. This refinement of the grid eliminated multiple wells in a cell and reduced the number of wells represented as weak sinks. Two pumping scenarios were developed to investigate the effects of pumping conditions, plume size, and hypothetical purge well locations on the movement of the vinyl chloride plume in the Saginaw aquifer. Under 1995 pumping conditions, water that originates in the central portion of the Saginaw aquifer known to be contaminated with vinyl chloride is prevented from reaching Lansing Board of Water and Light supply wells when hypothetical purge wells located west of the plume are simulated as pumping either 100 gallons per minute or 200 gallons per minute. Purge wells located north of the plume are effective at preventing contamination from reaching Lansing Board of Water and Light supply wells when simulated as pumping 200 gallons per minute. Water that originates within and surrounding the area known to be contaminated with vinyl chloride is not prevented from reaching Lansing Board of Water and Light supply wells under 1995 conditions using either purge well location or pumping rate. Under 1997 pumping conditions, water that originates in the central portion of the Saginaw aquifer known to be contaminated with vinyl chloride is prevented from reaching Lansing Board of Water and Light supply wells when hypothetical purge wells located either west or north of the plume are simulated as pumping 200 gallons per minute. Water that originates within and surrounding the area known to be contaminated with vinyl chloride is not prevented from reaching Lansing Board of Water and Light

  12. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    USGS Publications Warehouse

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal

  13. Self-decomposable Fibrous Bridging Additives for Temporary Cementitious Fracture Sealers in EGS Wells

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.; Kisslinger, K.; Iverson, B.; Bour, D.

    2012-11-01

    This study evaluates compatibility of a self-degradable temporary fracture sealer with the drilling mud and plugging and self-degrading performance of different fibers to be used in combination with the sealer. The sodium silicate-activated slag/Class C fly ash (SSASC) cementitious sealer must plug fractures at 85oC to allow continuous well drilling and it must degrade and leave the fractures open for water at later times when exposed to temperatures above 200oC. The sealer showed good compatibility with the mud. Even the blend of 80/20 vol.% of sealer/mud reached a compressive strength of more than 2000 psi set as one of the material criteria, mostly due to the additional activation of the slag and Class C fly ash by the alkaline ingredient present in the drilling fluid. In contrast, the drilling fluid was detrimental to the compressive strength development in conventional Class G well cement, so that it failed to meet this criterion. Among several organic fibers tested both polyvinyl alcohol (PVA)-and nylon-based fibers showed adequate plugging of the sealer in slot nozzles of 1-in. wide x 6-in. long x 0.08 in. and 0.24 in. high under pressures up to 700 psi. PVA fibers displayed better compressive toughness and self-degrading properties than nylon. The compressive toughness of sealers made by adding 1.0 wt% 6 mm-length PVA and 0.5 wt% 19 mm-length PVA was 9.5-fold higher than that of a non-bridged sealer. One factor governing the development of such high toughness was an excellent adherence of PVA to the SSASC cement. The alkali-catalyzed self-decomposition of PVA at 200°C led to the morphological transformation of the material from a fibrous structure to a microscale flake-like structure that helped the desirable conversion of the sealer into small fragments. In contrast, nylon’s decomposition provided a reticular network structure in the self-degraded sealer resulting in bigger fragments compared against the sealer with PVA. The PVA fiber has a high

  14. Use of Multi-Level Wells in Developing a 3-Dimensional Understanding of Groundwater Flow and Contaminant Migration at the Savannah River Site

    SciTech Connect

    Vangelas, K M; Nichols, R L; Flach, G P; Sappington, F; Simmons, J L; Betivas, C R; Shoffner, L R; Falise, F R

    2003-02-25

    Understanding the flow of groundwater and contaminants in 3-dimensions, along with hydraulic properties, is instrumental in selection and implementation of successful remediation efforts. Advances in multi-level groundwater monitoring at the Savannah River Site (SRS) are enabling engineers and geologists to collect the needed characterization data in an efficient, cost-effective manner. The SRS has developed a new multi-level groundwater monitoring well, "StrataSampler", which is being deployed for characterization and monitoring at several large groundwater plumes on the SRS. The installation method used allowed collection of data during the drilling process allowing optimization of screen placement within the aquifers and minimization of drilling costs and waste generation. Data generated during the installation of the StrataSamplers along with data collected from the installed wells is being used to understand the 3-dimensional nature of contaminant fate and transport. The L-Area Southern Groundwater Operable Unit is the first full-scale deployment of StrataSampler wells at SRS. Twenty-two StrataSampler wells with a total of 52 sampling zones were installed. The installation, development, hydraulic testing, sampling of the StrataSamplers at this unit and the resulting understanding of the contaminant plumes will be discussed in the paper and presentation.

  15. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    PubMed

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources.

  16. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  17. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence.

    PubMed

    Flanagan, Sara V; Marvinney, Robert G; Zheng, Yan

    2015-02-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner's responsibility to test and treat the water. A mailed household survey was implemented in January 2013 in 13 towns of Central Maine with the goal of understanding the population's testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported that their well has been tested, half of it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember the results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree that water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing that regular testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers.

  18. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence

    PubMed Central

    Flanagan, Sara V.; Marvinney, Robert G.; Zheng, Yan

    2014-01-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner’s responsibility to test and treat the water. A mailed household survey was implemented January 2013 in 13 towns of central Maine with the goal of understanding the population’s testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported their well has been tested, for half it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing regularly testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers. PMID:24875279

  19. Simulation of Ground-Water Flow and Areas Contributing Recharge to Production Wells in Contrasting Glacial Valley-Fill Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.; Stone, Janet Radway

    2007-01-01

    Areas contributing recharge and sources of water to a production well field in the Village of Harrisville and to a production well field in the Town of Richmond were delineated on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The study sites represent contrasting glacial valley-fill settings. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Harrisville, the production well field is composed of three wells in a narrow, approximately 0.5-mile-wide, valley-fill setting on opposite sides of Batty Brook, a small intermittent stream that drains 0.64 square mile at its confluence with the Clear River. Glacial stratified deposits are generally less areally extensive than previously published. The production wells are screened in a thin (30 feet) but transmissive aquifer. Paired measurements of ground-water and surface-water levels indicated that the direction of flow between the brook and the aquifer was generally downward during pumping conditions. Long-term mean annual streamflow from two streams upgradient of the well field totaled 0.72 cubic feet per second. The simulated area contributing recharge for the 2005 average well-field withdrawal rate of 224 gallons per minute extended upgradient to ground-water divides in upland areas and encompassed 0.17 square mile. The well field derived 62 percent of pumped water from intercepted ground water and 38 percent from infiltrated stream water from the Batty Brook watershed. For the maximum simulated well-field withdrawal of 600 gallons per minute, the area contributing recharge expanded to 0.44 square mile to intercept additional ground water and infiltration of stream water; the percentage of water derived from surface water, however, was the same as for the average pumping rate. Because of the small size of Batty Brook watershed, most of the

  20. EPA Proposes Additional Water Line Connections for Groundwater Contamination at Tinkham Garage Superfund Site in Londonderry, NH

    EPA Pesticide Factsheets

    The U.S. EPA in consultation with NHDES, is proposing additional connections to an existing water line for residents whose wells have been found to have contamination and whom live northeast section of the Tinkham Garage Superfund Site (Site).

  1. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system

    NASA Astrophysics Data System (ADS)

    Gandhi, Rahul K.; Hopkins, Gary D.; Goltz, Mark N.; Gorelick, Steven M.; McCarty, Perry L.

    2002-04-01

    Recirculating well systems provide an engine for the in situ treatment of subsurface contaminants. Although numerous recirculating wells have been installed in the field, for such systems, there is a paucity of comprehensive monitoring data and models constrained to data appearing in the research literature. Here we present an extensive data set combined with detailed inverse and simulation analyses for a two-well groundwater recirculation system used for in situ bioremediation at Edwards Air Force Base in southern California. The ``conveyor belt'' flow system, which was established for in situ treatment of trichloroethylene (TCE) in two bioactive zones, was created by pumping water upward in one well and downward in another well, each well being screened in both the upper and lower aquifers. A bromide tracer test was conducted and extensively monitored for 60 days. Combined inverse analysis was conducted on hydraulic heads from 38 monitoring wells, 32 bromide concentration histories, and a constraint on the degree of recirculation that was based on TCE concentration data. Four different formulations involving alternative weighting schemes used in a nonlinear weighted least squares simulation-regression analysis were explored. The best formulation provided parameter estimates with tight bounds on estimated covariances, suggesting that the model provides a reasonable description of the hydrogeologic system. Our investigation indicates the geometry of the recirculation zone and the degree of recirculation under two different sets of operating conditions. Surprisingly, our analysis suggests that the effects of aquifer heterogeneity are not significant at this site under the conditions of forced recirculation. Furthermore, anomalous flow through an open monitoring well created significant vertical short-circuiting between the generally insulated aquifers. Flow through this small open conduit was equivalent to as much as 33% of the flow through the pumping wells. Using

  2. Geochemical, isotopic, and dissolved gas characteristics of groundwater in a fractured crystalline-rock aquifer, Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Tetrachloroethylene (PCE), a volatile organic compound, was detected in groundwater from deep (more than (>) 300 feet (ft) below land surface) fractures in monitoring wells tapping a crystalline-rock aquifer beneath operable unit 1 (OU1) of the Savage Municipal Well Superfund site (Weston, Inc., 2010). Operable units define remedial areas of contaminant concern. PCE contamination within the fractured-rock aquifer has been designated as a separate operable unit, operable unit 3 (OU3; Weston, Inc., 2010). PCE contamination was previously detected in the overlying glacial sand and gravel deposits and basal till, hereafter termed the Milford-Souhegan glacial-drift (MSGD) aquifer (Harte, 2004, 2006). Operable units 1 and 2 encompass areas within the MSGD aquifer, whereas the extent of the underlying OU3 has yet to be defined. The primary original source of contamination has been identified as a former manufacturing facility—the OK Tool manufacturing facility; hence OU1 sometimes has been referred to as the OK Tool Source Area (New Hampshire Department of Environmental Services, undated). A residential neighborhood of 30 to 40 houses is located in close proximity (one-quarter of a mile) from the PCE-contaminated monitoring wells. Each house has its own water-supply well installed in similar rocks as those of the monitoring wells, as indicated by the New Hampshire State geologic map (Lyons and others, 1997). An investigation was initiated in 2010 by the U.S. Environmental Protection Agency (USEPA) region 1, and the New Hampshire Department of Environmental Services (NHDES) to assess the potential for PCE transport from known contaminant locations (monitoring wells) to the residential wells. The U.S. Geological Survey (USGS) and the NHDES entered into a cooperative agreement in 2011 to assist in the evaluation of PCE transport in the fractured-rock aquifer. Periodic sampling over the last decade by the USEPA and NHDES has yet to detect PCE in groundwater from the

  3. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  4. Hydrogeologic properties and ground-water chemistry of the Rattlesnake Ridge interbed at well 699-25-80 (DB-14) Hanford Site

    SciTech Connect

    Spane, F.A. Jr.; Howland, M.D.; Strait, S.R.

    1980-11-01

    Offsite migration studies were conducted to characterize the hydraulic properties and groundwater chemistry of confined aquifer systems within the Hanford Site. These studies support the recommendations in ERDA-1538 to provide input for hydrologic modeling of groundwater flow within the Hanford Site, to afford information concerning possible contamination of underlying confined aquifer systems and to make the results available to the public. This report presents analytical results and aquifer test procedures used in characterizing the Rattlesnake Ridge interbed at well 699-25-80. The overall close association in groundwater chemistries and presence of elevated nitrate levels suggest that the Rattlesnake Ridge interbed may be locally in communication with the overlying unconfined aquifer system. Other physical evidence which indicates a potential local communication with the unconfined aquifer system includes: favorable stratigraphic position; absence of the confining Elephant Mountain basalt in surrounding areas; and intersection of a recharge boundary during aquifer tests of well 699-25-80.

  5. Significance of ground-water chemistry in performance of North Sahara Tube wells in Algeria and Tunisia

    USGS Publications Warehouse

    Clarke, Frank Eldridge; Jones, Blair F.

    1972-01-01

    Nine ground-water samples from the principal shallow and deep North Sahara aquifers of Algeria and Tunisia were examined to determine the relation of their chemical composition to corrosion and mineral encrustation thought to be contributing to observed decline in well capacities within a UNESCO/UNDP Special Fund Project area. Although the shallow and deep waters differ significantly in certain quality factors, all are sulfochloride types with corrosion potentials ranging from moderate to extreme. None appear to be sufficiently supersaturated with troublesome mineral species to cause rapid or severe encrustation of filter pipes or other well parts. However, calcium carbonate encrustation of deep-well cooling towers and related irrigation pipes can be expected because of loss of carbon dioxide and water during evaporative cooling. Corrosion products, particularly iron sulfide, can be expected to deposit in wells producing waters from the deep aquifers. This could reduce filterpipe openings and increase casing roughness sufficiently to cause significant reduction in well capacity. It seems likely, however, that normal pressure reduction due to exploitation of the artesian systems is a more important control of well performance. If troublesome corrosion and related encrustation are confirmed by downhole inspection, use of corrosion-resisting materials, such as fiber-glass casing and saw-slotted filter pipe (shallow wells only), or stainless-steel screen, will minimize the effects of the waters represented by these samples. A combination of corrosion-resisting stainless steel filter pipe electrically insulated from the casing with a nonconductive spacer and cathodic protection will minimize external corrosion of steel casing, if this is found to be a problem. However, such installations are difficult to make in very deep wells and difficult to control in remote areas. Both the shallow waters and the deep waters examined in this study will tend to cause soil

  6. Ground-water data of selected test holes and wells along the Arkansas River in LeFlore and Haskell Counties, Oklahoma

    USGS Publications Warehouse

    Tanaka, H.H.; Hart, D.L.; Knott, R.K.

    1965-01-01

    The data in this report were collected during the period 1958-64 by the U.S. Geological Survey in cooperation with the U.S. Army, Corps of Engineers, as part of a comprehensive study of the ground-water resources of the alluvium along the Arkansas and Verdigris Rivers between Moffett and Catoosa, Oklahoma (fig. 1). The purpose of this report is to make the hydrologic data obtained during the study of ground water in the alluvium along the Arkansas River in Le Flore and Haskell Counties readily available to the public. The data in this report should be useful in predicting geologic and hydrologic conditions when drilling new wells. Table 1 gives information on the sizes, depths, yields, and other characteristics of wells in the area. The table also provides a key to the additional information for each well site given in tables 2 through 6. Table 2 gives logs for the materials penetrated at test holes and wells in the report area; table 3 gives depths to water measured in wells; table 4 includes chemical analyses of water from wells; table 5 gives laboratory determinations of particle-size distribution of earth samples collected from test holes and wells; and table 6 gives coefficients of permeability and other hydrologic properties of earth samples from the selected test holes. Similar data for Sequoyah County, Muskogee County, and Wagoner-Rogers Counties are available in other open-file reports. An interpretive report, 'Hydrology of the alluvium of the Arkansas River, Muskogee, Oklahoma, to Fort Smith, Arkansas,' by Harry H. Tanaka and Jerrald R. Hollowell will be published as U.S. Geological Survey Water-Supply Paper 1809-T.

  7. Bioaccumulation monitoring and toxicity testing in streams and groundwater wells at the US Department of Energy Kansas City Plant

    SciTech Connect

    Southworth, G.R.; Stewart, A.J.; Peterson, M.J.; Ashwood, T.L.

    1992-03-01

    The Kansas City Plant (KCP) is part of a federal complex located in south Kansas City, Missouri. The plant, operated by Allied-Signal Inc., Kansas City Division for the US Department of Energy (DOE), occupies 137 of the 300 acres covered by the complex. Blue River and its tributary Indian Creek receive surface water runoff, discharges permitted under the National Pollutant Discharge Elimination System (NPDES), and groundwater from the complex. Indian Creek also receives runoff from residential and commercial facilities and discharges from a sewage treatment plant upstream from the KCP. Blue River, a tributary of the Missouri River, receives runoff from an urban area, including a large landfill downstream from the KCP. Polychlorinated biphenyls (PCBs) have been detected in outfall 002 and in soils in various locations around the KCP. The Missouri Department of Conservation (MDC) found that both carp and channel catfish collected from the Blue River were contaminated with PCBs and chlordane; however, the source of this contamination was not identified. Trichlorethene (TCE) and 1,2-dichloroethene (DCE) are present in some wells adjacent to the Blue River, both TCE and DCE have been detected in outfall 001. To assess the biological significance of PCB and chlorinated solvent contamination from the KCP and to determine whether the KCP was a significant source of PCB contamination in fish, two separate studies were conducted by staff members of Oak Ridge National Laboratory (ORNL). This report presents the results of these studies.

  8. Hydrological response to earthquakes in the Haibara well, central Japan - I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses

    USGS Publications Warehouse

    Matsumoto, N.; Kitagawa, G.; Roeloffs, E.A.

    2003-01-01

    For the groundwater level observed at the Haibara well, Shizuoka Prefecture, central Japan, time series analysis using state-space modelling is applied to extract hydrological anomalies related to earthquakes. This method can decompose observed groundwater level time series into five components: atmospheric pressure, tidal, and precipitation responses, observation noise, and residual water level. The decomposed responses to atmospheric pressure and precipitation are independently determined and are consistent with the expected response to surface loading. In the groundwater level at the Haibara well, 28 coseismic changes can be discerned during the period from 1981 April to 1997 December. There is a threshold in the relationship between earthquake magnitude and the well-hypocentre distance, above which earthquakes cause coseismic changes in the residual water level. All of the coseismic water level changes at the Haibara well are decreases, although 33 per cent of the estimated coseismic volumetric strain steps are contraction, which would be expected to cause water level increases. The coseismic changes in groundwater level are more closely proportional to the estimated ground motion than to coseismic volumetric strain steps, suggesting that ground motion due to earthquakes is the major cause of the coseismic water level drops and that the contribution from static strain is rather small. Possible pre- or inter-earthquake water level changes have occurred at the Haibara well and may have been caused by local aseismic crustal deformation.

  9. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    NASA Astrophysics Data System (ADS)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  10. Application of the Local Grid Refinement package to an inset model simulating the interactions of lakes, wells, and shallow groundwater, northwestern Waukesha County, Wisconsin

    USGS Publications Warehouse

    Feinstein, D.T.; Dunning, C.P.; Juckem, P.F.; Hunt, R.J.

    2010-01-01

    Groundwater use from shallow, high-capacity wells is expected to increase across southeastern Wisconsin in the next decade (2010-2020), owing to residential and business growth and the need for shallow water to be blended with deeper water of lesser quality, containing, for example, excessive levels of radium. However, this increased pumping has the potential to affect surface-water features. A previously developed regional groundwater-flow model for southeastern Wisconsin was used as the starting point for a new model to characterize the hydrology of part of northwestern Waukesha County, with a particular focus on the relation between the shallow aquifer and several area lakes. An inset MODFLOW model was embedded in an updated version of the original regional model. Modifications made within the inset model domain include finer grid resolution; representation of Beaver, Pine, and North Lakes by use of the LAK3 package in MODFLOW; and representation of selected stream reaches with the SFR package. Additionally, the inset model is actively linked to the regional model by use of the recently released Local Grid Refinement package for MODFLOW-2005, which allows changes at the regional scale to propagate to the local scale and vice versa. The calibrated inset model was used to simulate the hydrologic system in the Chenequa area under various weather and pumping conditions. The simulated model results for base conditions show that groundwater is the largest inflow component for Beaver Lake (equal to 59 percent of total inflow). For Pine and North Lakes, it is still an important component (equal, respectively, to 16 and 5 percent of total inflow), but for both lakes it is less than the contribution from precipitation and surface water. Severe drought conditions (simulated in a rough way by reducing both precipitation and recharge rates for 5 years to two-thirds of base values) cause correspondingly severe reductions in lake stage and flows. The addition of a test well

  11. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells

    USGS Publications Warehouse

    Ayotte, J.D.; Szabo, Z.; Focazio, M.J.; Eberts, S.M.

    2011-01-01

    The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in

  12. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public

  13. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    EPA Science Inventory

    A groundwater treatment technology based on catalytic reductive
    dehalogenation has been developed to efficiently destroy chlorinated
    hydrocarbons in situ using a reactive well approach. The treatment process
    utilizes dissolved H2 as an electron donor, in...

  14. Compilation of ground-water quality data for selected wells in Elmore, Owyhee, Ada, and Canyon counties, Idaho, 1945 through 1982

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    Well-inventory and groundwater-quality data for 665 sites with a total of 1,318 chemical analyses were compiled from Elmore, Owyhee, Ada, and Canyon Counties. Data are sorted by water temperature (less than 20 degrees Celsius is considered nonthermal; 20 degrees Celcius or greater is considered thermal) to facilitate their use.

  15. Memorandum on ground-water investigation of four proposed stock wells in Puertocito Area, Socorro County and Canoncito Area, Bernalillo and Valencia Counties, New Mexico

    USGS Publications Warehouse

    Repenning, C.A.; Galloway, S.E.

    1952-01-01

    At the request of the Navajo Service, Office ot Indian Affairs, a groundwater iinvestigation of four proposed stock wells in the Puertocito Area, Socorro county and the Canoncito Area., Bernalillo and Valencia counties,New Mexico, was made in November, 1951 (see fig. 1). Although these areas are not on the Navajo Indian Reservation, they were included in the program of study of ground-water resources or the Navajo and Hopi Indian Reservations now being conducted by the Ground Water Branch of the United States Geological Survey. The work was financed by and was in cooperation with the Navajo Service, Office of Indian Affairs.

  16. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  17. Simulation of cylindrical flow to a well using the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1993-01-01

    Cylindrical (axisymmetric) flow to a well is an important specialized topic of ground-water hydraulics and has been applied by many investigators to determine aquifer properties and determine heads and flows in the vicinity of the well. A recent modification to the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model provides the opportunity to simulate axisymmetric flow to a well. The theory involves the conceptualization of a system of concentric shells that are capable of reproducing the large variations in gradient in the vicinity of the well by decreasing their area in the direction of the well. The computer program presented serves as a preprocessor to the U.S. Geological Survey model by creating the input data file needed to implement the axisymmetric conceptualization. Data input requirements to this preprocessor are described, and a comparison with a known analytical solution indicates that the model functions appropriately.

  18. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  19. Evaluation of the effects of precipitation on ground-water levels from wells in selected alluvial aquifers in Utah and Arizona, 1936-2005

    USGS Publications Warehouse

    Gardner, Philip M.; Heilweil, Victor M.

    2009-01-01

    -level residual time series for each well was matched with the 2- to 10-year moving average of annual precipitation with which it was best correlated and the results were compared across basins and hydrologic settings. Analysis of water-level residuals and moving averages of annual precipitation indicate that ground-water levels in the Utah basins respond more slowly to precipitation patterns than those from the Arizona basins. This is attributed to the dominant mechanism of recharge that most directly influences the respective valley aquifers. Substantial recharge in the Utah basins likely originates as infiltrating snowmelt in the mountain block far from the valley aquifer, whereas mountain-front recharge and streambed infiltration of runoff are the dominant recharge mechanisms operating in the Arizona basins. It was determined that the fraction of water-level variation caused by local precipitation patterns becomes more difficult to resolve with increasing effects of ground-water pumping, especially from incomplete records. As the demand for ground water increases in the southwestern United States, long-term records of ground-water levels have the potential to provide valuable information about the precipitation-driven variation in water levels, which has implications to water management related to water availability.

  20. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    Groundwater public-supply systems in areas of high intrinsic susceptibility and with a large number of potential contaminant sources within the recharge or source-water-protection area of individual wells or well fields are potentially vulnerable to contamination and probably warrant further evaluation as potential SWIGS. However, measures can be taken to educate the local population and initiate safety protocols and protective strategies to appropriately manage contaminant sources to prevent release of contaminants to the aquifer, therefore, reducing vulnerability of these systems to contamination. However, each public groundwater supply source needs to be assessed on an individual basis. Data presented in this report can be used to categorize and prioritize wells and springs that have a high potential for intrinsic susceptibility or vulnerability to contamination.

  1. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  2. Groundwater quality

    SciTech Connect

    Ward, C.H.; Giger, W.; McCarty, P.L.

    1985-01-01

    This book is a collection of 28 selected papers presented at the First International Conference on Groundwater Quality Research, at Rice University in October 1981. Several studies provide an overview of chemical and microbial contamination. Local groundwater pollution problems in the Netherlands and metals motility in New Zealand are described. In addition, the effects to groundwater quality due to the discharge of treated wastewaters in the Netherlands, Great Britain, and Houston, Texas are described. Mathematical models are presented that can be used to simulate and predict the transport of contaminants in a saturated groundwater system. Studies describing the sorption of halogenated hydrocarbons, the survival and transport of pathogenic bacteria, the biodegradation of contaminants, and anaerobic transformation in subsurface environments are included. Other topics of discussion include methods for obtaining representative groundwater samples, methods for assessing groundwater problems, methods for designing and constructing microcosms and the microbial characterization of subsurface systems.

  3. Ground-water levels and related hydrologic data from selected observation wells in Nassau County, Long Island, New York

    USGS Publications Warehouse

    Isbister, John

    1959-01-01

    Nassau County has experienced a rapid growth in population and industry in the past 20 years that has resulted in increased development of its ground-water resources. The county is located in west-central Long Island and its boundaries enclose a land area of 274 square miles. The climate is relatively mild and precipitation averages 43 inches a year. The precipitation is the ultimate source of natural replenishment to the ground-water reservoir. Ground water is found in the pore spaces of unconsolidated sands, gravels, and clays which overlay a basement of crystalline bedrock.

  4. Optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China

    NASA Astrophysics Data System (ADS)

    Han, Wei; Cao, Ling; Zhang, Ya; Cui, Kaiqiang; Wu, Shengli

    2015-04-01

    The adaptation and survive of introduced plants to local well brine groundwater irrigation is an important issue, while people introduce some plants to improve the local environment in the construction of urban greening oases in arid areas, north China. We measured some of the photosynthetic characteristics of introduced Bamboo willow irrigated by different local well brine groundwater in the wild controlled experiments, in May 2014 in Kelamayi city in north China, which to seek the most appropriate irrigation concentration of underground saline water, and to clarify the physiological ecological adaptation to the local habitat. The parameters, measured by Li-6400XT, a portable photosynthesis system, include the following ones, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the internal CO2 concentration (Ci) and efficiency of water application (WUE) of one-year old introduced Bamboo willow irrigated by set salinity groundwater gradient, as 0 g/L, 5 g/L and 10 g/L. the results showed that (1) In each salt water concentration, the diurnal variation curve of net photosynthetic rate showed as "bimodal curve" style, and obvious "midday depression". (2) The parameter Pn of Bamboo willow irrigated by salt water of 5g/L was highest compared with the other two, and the value Pn irrigated by salt water concentration of 10g/L down. The net photosynthetic rate would increase in the salt concentration of 10g/L. In conclusion, the salt groundwater concentration of 10g/L was the optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China.

  5. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    DTIC Science & Technology

    2002-03-01

    term remediation at hundreds of sites across the Air Force. Complementary modeling and column studies examined the potential for controlling and...the treatment phase after pumping. Complementary modeling and column studies examined the potential for controlling and treating groundwater...possible by the highly chemically reducing environment created in the organic-rich wetland sediment. This dynamic and productive region

  6. Effect of Additional Respiratory Muscle Endurance Training in Young Well-Trained Swimmers

    PubMed Central

    Lemaitre, Frédéric; Coquart, Jérémy B.; Chavallard, Florence; CASTRES, Ingrid; MUCCI, Patrick; Costalat, Guillaume; Chollet, Didier

    2013-01-01

    While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved only in the RMET group. Moreover, perceived exertion and dyspnea were lower in the RMET group in both trials (i.e., 50- and 200-m). Consequently, the swim training associated with RMET was more effective than swim training alone in improving swimming performances. RMET can therefore be considered as a worthwhile ergogenic aid for young competitive swimmers. Key Points Respiratory muscle endurance training improves the performance. Respiratory muscle endurance training improves the ventilatory function parameters, chest expansion, respiratory muscle strength and endurance. Respiratory muscle endurance training decreases the perceived exertion and dyspnea. Respiratory muscle endurance training can be considered as a worthwhile ergogenic aid for young competitive swimmers. PMID:24421721

  7. Effect of additional respiratory muscle endurance training in young well-trained swimmers.

    PubMed

    Lemaitre, Frédéric; Coquart, Jérémy B; Chavallard, Florence; Castres, Ingrid; Mucci, Patrick; Costalat, Guillaume; Chollet, Didier

    2013-01-01

    While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved only in the RMET group. Moreover, perceived exertion and dyspnea were lower in the RMET group in both trials (i.e., 50- and 200-m). Consequently, the swim training associated with RMET was more effective than swim training alone in improving swimming performances. RMET can therefore be considered as a worthwhile ergogenic aid for young competitive swimmers. Key PointsRespiratory muscle endurance training improves the performance.Respiratory muscle endurance training improves the ventilatory function parameters, chest expansion, respiratory muscle strength and endurance.Respiratory muscle endurance training decreases the perceived exertion and dyspnea.Respiratory muscle endurance training can be considered as a worthwhile ergogenic aid for young competitive swimmers.

  8. The installation of the Westbay multiport ground-water sampling system in well 699-43-42K near the 216-B-3 pond

    SciTech Connect

    Gilmore, T.J.

    1989-09-01

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport ground-water sampling system in well 699-43-42K drilled near the 216-B-3 Pond on the Hanford Site in southeastern Washington state. The multiport system will be used to evaluate methods for determining the vertical distribution of contaminants and hydraulic heads in ground water. This installation was in conjunction with a similar multiport installation near the 300 Area of the Hanford Site. Well 699-43-42K is adjacent to two Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells, which will allow for a comparison of sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Eight sampling ports were installed in the upper unconfined aquifer by backfilling at depths of 161.1 ft, 174.1 ft, 187.1 ft, 201.17 ft, 217.2 ft, 230.2 ft, 243.2 ft, and 255.2 ft below land surface. However, because of damage to the casing during installation, only the top four ports should be used for pressure measurements and sampling until repairs occur. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. 4 refs., 8 figs.

  9. Groundwater quality monitoring well installation for Lower Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 11 groundwater quality monitoring (GQM) wells on the perimeter of Lower Waste Area Grouping (WAG) 2. Lower WAG 2 consists of White Oak Lake and the embayment below White Oak Dam above the Clinch River. The wells in Lower WAG 2 were drilled and developed between December 1989 and September 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at Lower WAG 2 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of three basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at Lower WAG 2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  10. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  11. Distribution of Groundwater Ages at Public-Supply Wells: Comparison of Results from Lumped Parameter and Numerical Inverse Models with Multiple Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Eberts, S.; Bohlke, J. K.

    2009-12-01

    Estimates of groundwater age distributions at public-supply wells can provide insight into the vulnerability of these wells to contamination. Such estimates can be used to explore past and future water-quality trends and contaminant peak concentrations when combined with information on contaminant input at the water table. Information on groundwater age distributions, however, is not routinely applied to water quality issues at public-supply wells. This may be due, in part, to the difficulty in obtaining such estimates from poorly characterized aquifers with limited environmental tracer data. To this end, we compared distributions of groundwater ages in discharge from public-supply wells estimated from age tracer data (SF6, CFCs, 3H, 3He) using two different inverse modeling approaches: relatively simple lumped parameter models and more complex distributed-parameter numerical flow models with particle tracking. These comparisons were made in four contrasting hydrogeologic settings across the United States: unconsolidated alluvial fan sediments, layered confined unconsolidated sediments, unconsolidated valley-fill sediments, and carbonate rocks. In all instances, multiple age tracer measurements for the public-supply well of interest were available. We compared the following quantities, which were derived from simulated breakthrough curves that were generated using the various estimated age distributions for the selected wells and assuming the same hypothetical contaminant input: time lag to peak concentration, dilution at peak concentration, and contaminant arrival and flush times. Apparent tracer-based ages and mean and median simulated ages also were compared. For each setting, both types of models yielded similar age distributions and concentration trends, when based on similar conceptual models of local hydrogeology and calibrated to the same tracer measurements. Results indicate carefully chosen and calibrated simple lumped parameter age distribution models

  12. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10

  13. Low-Level Volatile Organic Compounds in Active Public Supply Wells as Ground-Water Tracers in the Los Angeles Physiographic Basin, California, 2000

    USGS Publications Warehouse

    Shelton, Jennifer L.; Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Land, Michael; Gronberg, JoAnn

    2001-01-01

    facilities, where clay layers impede the vertical migration of ground water (pressure areas).VOCs are not uniformly distributed over the study area. Most of the wells with multiple VOC detections, which also have the highest concentrations, are in the forebay areas and are clustered proximal to the recharge facilities. In addition, the number of VOC detections and VOC concentrations decrease beyond about 10-15 kilometers from the recharge facilities. The distribution of individual VOCs is also related to their history of use. MTBE traces ground water recharged during about the last decade and is detected almost exclusively in the forebay areas. Chloroform, which has been used since the 1920s, is more widely distributed and is detected at the greatest distances from the recharge facilities.Downward migration of VOCs from the land surface may be a viable process for VOCs to reach aquifers in parts of the forebay areas, but there is little indication that the same process is active in the pressure area. The lack of contrast in the number of VOC detections between wells of different depths over most of the study area suggests that the downward migration from the land surface is not a dominant pathway for VOCs to travel to the capture zones of public supply wells. Isolated occurrences of multiple VOC detections and high concentrations of VOCs in individual wells may indicate rapid vertical transport from a localized source. Stable isotope data indicate that ground water containing VOCs is a mixture of local precipitation and runoff with water that is isotopically lighter (more negative) than the local sources. The isotopically lighter water could either be Colorado River water or State Water Project water, both of which are imported to the basin and used as a source of recharge to the ground-water flow system. The stable isotope data support the interpretation that VOCs in ground water are associated with the engineered recharge facilities.Two of the most frequently detecte

  14. Identifying the Source and Generation of Thermal Groundwaters based on Stable Isotopes and Rare Earths - the Case of the Lower Yarmouk Gorge Artesian Wells.

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Möller, P.; Magri, F.; Kraushaar, S.; Dulski, P.; Guttman, J.; Rödiger, T.

    2014-12-01

    Along the Lower Yarmouk Gorge, thermal groundwaters with varying chemical and isotopic signatures emerge from Cenozoic Limestones. The bordering semiarid Golan and Ajloun Heights host fresh and variable tempered groundwaters in Cretaceous and Cenozoic strata. Sources and mineralisation of these groundwaters are derived from mutual discussion of d2H, d18O and d34S, major elements, rare earth distribution patterns and the (hydro)geological setting. Positive shift of d18O and d2H occur due to evaporation before replenishment and the interaction with basalts. Major infiltration areas for Golan Heights are the limy foothills of the Mt. Hermon and for the Ajloun Heights the Plateau itself. To a less degree, precipitation infiltrates also the basaltic catchments. Groundwaters are mineralised by water/rock (i) variably altered limestones by diagenesis, (ii) evaporates and seawater brines enclosed in limestone matrix and (iii) locally occurring basaltic intrusiva. In the Yarmouk Gorge, a deep-seated brine of the Ha'on type ascends and mixes with the fresh shallow groundwater. REY and isotope fingerprints prove that water from the Syrian Hauran Plateau is recharging springs and wells in the lowermost Yamouk Gorge. Although capping wide areas, the basaltic cover of the Golan Heights is of minor importance for recharge of the underlying A7/B2 aquifer, which becomes recharged at the foothills of Mt. Hermon and gets confined southwards, leading ibid. to ascension of water into the basaltic cover. Anomalous heat flux near the Yarmouk gorge and locally in the western escarpment of the Ajloun may be produced by ascending fluids from greater depth and/or by basaltic intrusions.

  15. Simulations of Groundwater Flow and Particle Tracking Analysis in the Area Contributing Recharge to a Public-Supply Well near Tampa, Florida, 2002-05

    USGS Publications Warehouse

    Crandall, Christy A.; Kauffman, Leon J.; Katz, Brian G.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.

    2009-01-01

    Shallow ground water in the north-central Tampa Bay region, Florida, is affected by elevated nitrate concentrations, the presence of volatile organic compounds, and pesticides as a result of groundwater development and intensive urban land use. The region relies primarily on groundwater for drinking-water supplies. Sustainability of groundwater quality for public supply requires monitoring and understanding of the mechanisms controlling the vulnerability of public-supply wells to contamination. A single public-supply well was selected for intensive study based on the need to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Upper Floridan aquifer in the City of Temple Terrace near Tampa, Florida, and the presence of a variety of chemical constituents in water from the well. A network of 29 monitoring wells was installed, and water and sediment samples were collected within the area contributing recharge to the selected public-supply well to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state groundwater flow model was developed to evaluate the age of groundwater reaching the well and to test hypotheses on the vulnerability of the well to nonpoint source input of nitrate. Particle tracking data were used to calculate environmental tracer concentrations of tritium and sulfur hexafluoride and to calibrate traveltimes and compute flow paths and advective travel times in the model area. The traveltime of particles reaching the selected public-supply well ranged from less than 1 day to 127.0 years, with a median of 13.1 years; nearly 45 percent of the simulated particle ages were less than about 10 years. Nitrate concentrations, derived primarily from residential/commercial fertilizer use and atmospheric deposition, were highest (2.4 and 6.11 milligrams per liter as nitrogen, median and maximum, respectively) in shallow

  16. A literature survey of information on well installation and sample collection procedures used in investigations of ground-water contamination by organic compounds

    USGS Publications Warehouse

    Dumouchelle, D.H.; Lynch, E.A.; Cummings, T.R.

    1990-01-01

    A survey of literature on well installation and water-quality sampling, particularly as they relate to investigations of ground-water contamination by organic compounds, has been conducted. Library card files and computerized data bases were searched to identify journal articles, conference proceedings, technical reports, books, and other publications. Pertinent information has been extracted from 105 references; each reference is listed in a bibliography. Material contained in the report is organized by topical categories that include drilling methods and equipment, well construction, well development, sampling materials and equipment, decontamination of equipment, and sampling techniques and procedures. Unpublished data of the U.S. Geological Survey on sample collection are briefly cited also.

  17. Effects of Pumping on Ground-Water Flow Near Water-Supply Wells in the Lower Potomac-Raritan-Magothy Aquifer, Pennsauken Township, Camden County, New Jersey

    USGS Publications Warehouse

    Walker, Richard L.

    2001-01-01

    Since the 1970's, hexavalent chromium has been detected in concentrations as great as 1.0 milligram per liter in wells at the Puchack well field operated by the Camden City Department of Utilities, Water Division (Water Department), forcing the Water Department to progressively remove five of its six wells from service between 1975 and 1988. The wells in the Puchack well field range in depth from 140 to 220 feet and are screened in the Lower Potomac-Raritan-Magothy aquifer. The Water Department has continued to pump Puchack Well 1 to maintain a hydraulic gradient toward the well field in an attempt to limit contaminant migration. In late 1997, concerns about treating the water withdrawn from Puchack Well 1 led water managers to consider temporarily discontinuing the pumping. In the spring of 1998, the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection, began a preliminary assessment of the potential effects of temporarily removing Puchack Well 1 from service. Water levels in the Lower Potomac-Raritan-Magothy aquifer were measured during both pumping and nonpumping conditions to determine the direction and velocity of ground-water flow and the results were compared. Data collected in late March and early April 1998 indicate the presence of a ground-water divide between the Puchack well field and the Morris and Delair well fields when Puchack Well 1 was being pumped. A similar divide also was present when the well was not being pumped. The position and persistence of this divide limits the probability that contaminants in the vicinity of the Puchack well field will reach the Delair and Morris well fields during either pumping condition. Another divide southeast of Puchack Well 1 while the well was being pumped was no longer evident when the pumping was stopped and water levels had recovered. Under non-pumping conditions, ground water between Puchack Well 1 and this divide could begin to migrate toward other large

  18. Groundwater Field Station for Geoscience Students.

    ERIC Educational Resources Information Center

    Hudak, Paul F.

    1999-01-01

    Details how to create a low-cost groundwater field station for a college hydrogeology course. Discusses how students use the station to collect and interpret data from wells and to study spatial hydraulic-head measurements to comprehend groundwater flow. Explains why hands-on activities are a valuable addition to the course. (DSK)

  19. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  20. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  1. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  2. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  3. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  4. Statistical evaluation of the vulnerability of ground-water wells, a case study of data from the Strasbourg polygone pumping field

    SciTech Connect

    Jamet, P.; Vincent, F.; Sampson, P.D.

    1997-05-01

    The case study presented in this paper illustrates how statistical methods can help to understand the relationships between ground-water wells and pollutant sources in alluvial systems. The observation of a time series of chloride concentrations in a specific well in Strasbourg, France, influenced by the infiltration of chlorinated water from the Rhine river, made it possible to derive a two-predictor model of the water quality in the well. This model combines a linear dependence upon a time-lagged chloride concentration in the river, reflecting the steady-state water balance in the well, and a nonlinear dependence upon average lagged water output pumped from the well. This simple model explains 86% of the variance in well chloride concentration measured weekly over a two year period.

  5. Depth to Water, Saturated Thickness, and Other Geospatial Datasets Used in the Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    USGS Publications Warehouse

    Flynn, Jennifer L.; Arnold, L. Rick; Paschke, Suzanne S.

    2009-01-01

    These datasets were compiled in support of U.S. Geological Survey Data Series 456, Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado. These datasets were developed as part of a cooperative project between the U.S. Geological Survey and the Colorado Department of Agriculture. The purpose of the project was to design a 30-well network and install 20 of the 30 wells to characterize water quality in the High Plains aquifer in areas of irrigated agriculture in Colorado. The five datasets are described as follows and are further described in Data Series 456: (1) ds472_dtw: This dataset represents the depth to groundwater in the High Plains Aquifer in Colorado in 2000. This grid was used to determine areas where the depth to water was less than 200 feet below land surface. (2) Ds472_sat: This dataset represents the saturated thickness of the High Plains aquifer within Colorado in 2000. This grid was used to determine areas where the saturated thickness was greater than 50 feet. (3) Ds472_equalareas: This dataset includes 30 equal-area polygons overlying the High Plains Aquifer in Colorado having a depth to water less than 200 feet, a saturated thickness greater than 50 feet, and underlying irrigated agricultural lands. (4) Ds472_randomsites: This dataset includes 90 randomly-generated potential groundwater sampling sites. This dataset provides a first, second, and third choice placed within the 30 equal area polygons of dataset dsXX_equalareas. (5) Ds472_welldata: This dataset includes point locations and well completion data for the 20 wells installed as part of this project. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.

  6. Simulation of the effects of nearby quarrying operations on ground-water flow at the South Well Field, Franklin County, Ohio

    USGS Publications Warehouse

    Nalley, Gregory M.; Haefner, Ralph J.

    1999-01-01

    The City of Columbus, Ohio, operates a municipal well field in southern Franklin County that is adjacent to a sand and gravel mining operation. Mining operations have the potential to alter ground-water flowpaths and change the sources of water to pumped wells. Previous ground-water-flow modeling of the area has shown that water pumped from the supply wells is derived from infiltration from nearby rivers and surrounding bedrock. Some of that water flows through existing quarries. Because water quality differs among these sources and is affected by the path along which water flows to the wells, five flow conditions were simulated to evaluate the influence of different mining scenarios on sources of water as related to the size and shape of contributing recharge areas (CRAs) to wells. The first simulation was based on a revision of an existing model by Schalk (1996). The second and third simulations included one in which a 20-foot layer of undisturbed aquifer material within the quarry above the bedrock is left intact, and another in which the 20-foot layer is removed. The fourth and fifth simulations included one in which the 20-foot layer of undisturbed aquifer material is left above the bedrock and the quarry is backfilled with fine- grained sand and silt (a byproduct of the mining operations), and another in which the 20-foot layer is removed before the quarry is backfilled with the fine-grained sand and silt. The results of the five model simulations indicate that the overall volumetric budgets among models change only slightly in response to changing conditions at the quarry. The most significant change is noted in the amount of water that the aquifers gained from constant head and river leakage. This change is due to the way the quarries were simulated and lower heads in the aquifers compared to those in simulations made with earlier models. Previously published model simulations showed that the 5-year CRAs did not extend into the area of the newest sand and

  7. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R (2) < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R (2) values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  8. Natural methane occurrence in domestic wells is common in sodium-rich shallow groundwater in valley settings overlying the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Lautz, L.; Christian, K.; Hoke, G. D.; Siegel, D. I.; Lu, Z.; Kessler, J. D.

    2015-12-01

    Unconventional gas production from the Marcellus shale has proliferated in the past decade, raising concerns regarding impacts on fresh groundwater resources. Methane contamination of shallow groundwater can result from faulty seals on gas production wells or migration of methane along fractures during well development. Characterizing such contamination is of particular concern in the rural Marcellus shale region, where the water supply is primarily private, domestic wells and methane occurs naturally in shallow groundwater. High volume hydraulic fracturing (HVHF) is currently used to produce gas in all states overlying the Marcellus shale, with the exception of New York (NY), where HVHF is permanently banned. Given the similar regional geology, climate, and land use across areas underlain by the Marcellus, studies of methane occurrence in domestic wells in NY are representative of methane occurrence prior to HVHF in an area with conventional gas production. We measured methane concentrations in 137 domestic wells across 5 counties in southern NY covering an area of 10,230 km2. For each well, we determined the topographic position (valley or upland), the geologic unit of water extraction, the chemical water type, and distances to the nearest fault, lineament, and active or other conventional gas well. Methane concentrations in domestic wells were not significantly different between geologic units of extraction, nor did they correlate with distances to faults, lineaments, or gas wells. Methane concentrations did differ between valleys and uplands, but the significance of such differences varied based on the method of classification. Methane concentrations were significantly different between water types; Na-HCO3 waters had significantly higher methane concentrations than Ca-HCO3 waters (median values of 0.78 and 0.002 mg/L, respectively). Combining methane and water quality data from this study and other prior studies in NY and Pennsylvania (n=724), we found that

  9. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  10. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    USGS Publications Warehouse

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  11. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  12. Ground-water availability in part of the Borough of Carroll Valley, Adams County, Pennsylvania, and the establishment of a drought-monitor well

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2002-01-01

    Continued population growth in the Borough of Carroll Valley (Borough) coupled with the drought of 2001 have increased the demand for ground water in the Borough. This demand has led Borough officials to undertake an effort to evaluate the capability of the crystalline-bedrock aquifers to meet future, projected growth and to establish a drought-monitor well within and for the use of the Borough. As part of this effort, this report summarizes ground-water data available from selected sections within the Borough and provides geohydrologic information needed to evaluate ground-water availability and recharge sources within part of the Borough. The availability of ground water in the Borough is limited by the physical characteristics of the underlying bedrock, and its upland topographic setting. The crystalline rocks (metabasalt, metarhyolite, greenstone schist) that underlie most of the study area are among the lowest yielding aquifers in the Commonwealth. More than 25 percent of the wells drilled in the metabasalt, the largest bedrock aquifer in the study area, have driller reported yields less than 1.25 gallons per minute. Driller reports indicate also that water-producing zones are shallow and few in number. In general, 50 percent of the water-producing zones reported by drillers are penetrated at depths of 200 feet or less and 90 percent at depths of 370 feet or less. Borehole geophysical data indicate that most of the water-producing zones are at lithologic contacts, but such contacts are penetrated infrequently and commonly do not intersect areas of ground-water recharge. Single-well aquifer tests and slug tests indicate that the bedrock aquifers also do not readily transmit large amounts of water. The median hydraulic conductivity and transmissivity of the bedrock aquifers are 0.01 foot per dayand 2.75 feet squared per day, respectively. The crystalline and siliciclastic (Weverton and Loudoun Formations) bedrock aquifers are moderately to highly resistant to

  13. Flooded area and plant zonation in isolated wetlands in well fields in the Northern Tampa Bay Region, Florida, following reductions in groundwater-withdrawal rates

    USGS Publications Warehouse

    Haag, Kim H.; Pfeiffer, William R.

    2012-01-01

    WAP scores and weighted average scores for wetland vegetation were generally consistent with the results of the flooded area analysis. The WAP scores and weighted average scores were higher overall and did not decline with time at four wetlands in well fields (W-33, W-56, Starkey N, and Starkey 108) during the years following reductions in groundwater-withdrawal rates. These four wetlands also had increases in the extent and duration of the flooded area during the post-reduction period. Scores for trees were more consistent than scores for shrubs and groundcover. WAP scores remained relatively low or generally declined at five well-field wetlands (Q-1, W-17, W-41, Starkey D, and Starkey E) during the years following reductions in groundwater-withdrawal rates, and weighted average scores either declined over time or remained low. These five wetlands either did not have an increase in the extent and duration of the flooded area, or if there was an increase, it was small.

  14. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  15. An 8-year record of gas geochemistry and isotopic composition of methane during baseline sampling at a groundwater observation well in Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Humez, P.; Mayer, B.; Nightingale, M.; Ing, J.; Becker, V.; Jones, Don; Lam, Vien

    2016-02-01

    Variability in baseline groundwater methane concentrations and isotopic compositions was assessed while comparing free and dissolved gas sampling approaches for a groundwater monitoring well in Alberta (Canada) over an 8-year period. Methane concentrations in dissolved gas samples ( n = 12) were on average 4,380 ± 2,452 μg/L, yielding a coefficient of variation (CV) >50 %. Methane concentrations in free gas samples ( n = 12) were on average 228,756 ± 62,498 ppm by volume, yielding a CV of 27 %. Quantification of combined sampling, sample handling and analytical uncertainties was assessed via triplicate sampling (CV of 19 % and 12 % for free gas and dissolved gas methane concentrations, respectively). Free and dissolved gas samples yielded comparable methane concentration patterns and there was evidence that sampling operations and pumping rates had a marked influence on the obtained methane concentrations in free gas. δ13CCH4 and δ2HCH4 values of methane were essentially constant (-78.6 ± 1.3 and -300 ± 3 ‰, respectively) throughout the observation period, suggesting that methane was derived from the same biogenic source irrespective of methane concentration variations. The isotopic composition of methane constitutes a robust and highly valuable baseline parameter and increasing δ13CCH4 and δ2HCH4 values during repeat sampling may indicate influx of thermogenic methane. Careful sampling and analytical procedures with identical and repeatable approaches are required in baseline-monitoring programs to generate methane concentration and isotope data for groundwater that can be reliably compared to repeat measurements once potential impact from oil and gas development, for example, may occur.

  16. Depth-dependent groundwater quality sampling at City of Tallahassee test well 32, Leon County, Florida, 2013

    USGS Publications Warehouse

    McBride, William S.; Wacker, Michael A.

    2015-01-01

    A test well was drilled by the City of Tallahassee to assess the suitability of the site for the installation of a new well for public water supply. The test well is in Leon County in north-central Florida. The U.S. Geological Survey delineated high-permeability zones in the Upper Floridan aquifer, using borehole-geophysical data collected from the open interval of the test well. A composite water sample was collected from the open interval during high-flow conditions, and three discrete water samples were collected from specified depth intervals within the test well during low-flow conditions. Water-quality, source tracer, and age-dating results indicate that the open interval of the test well produces water of consistently high quality throughout its length. The cavernous nature of the open interval makes it likely that the highly permeable zones are interconnected in the aquifer by secondary porosity features.

  17. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Zhou, Rui; Yang, Shuai; Ren, Hejun

    2016-06-01

    The formation and activity of aniline-degrading biofilms developed by the psychrotrophic Pseudomonas migulae AN-1 were studied for the in situ remediation of contaminated aquifer using in-well bioreactor of groundwater circulating wells (GCWs). Biofilms grown in mineral salt medium with aniline exhibited tolerance to high concentrations of aniline. In aniline degradation rate, AN-1 biofilms exhibited slight differences compared with planktonic cells. The effectiveness and bio-implication of AN-1 biofilms in GCWs were investigated to treat aniline-contaminated aquifer. The results demonstrate that AN-1 biofilms survived the GCWs treatment process with high aniline-degrading efficiency. This system provides a novel environmentally friendly technology for the in situ bioremediation of low-volatile contaminants.

  18. Aquifer Testing Recommendations for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect

    Spane, Frank A.; Newcomer, Darrell R.

    2009-03-10

    Aquifer characterization needs are currently being assessed to optimize pump-and-treat remedial strategies within the 200-ZP-1 Operable Unit (OU), specifically for the immediate area of the 241-TX-TY Tank Farm. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system to remediate the existing groundwater contamination within this general area. Four of these wells (299-W15-40, 299-W15-43, 299-W15-44, and 299-W15-765) are targeted to remediate contamination within the immediate 241-TX-TY Tank Farm area. The major contaminant of concern (COC) for the 200-ZP-1 OU is carbon tetrachloride. Other COC’s include total chromium (trivalent [III] and hexavalent [VI], nitrate, trichloroethlyene, iodine-129, technetium-99, and tritium.

  19. A GIS Analysis of the Relationship between Sinkholes, Dry-Well Complaints and Groundwater Pumping for Frost-Freeze Protection of Winter Strawberry Production in Florida

    PubMed Central

    Aurit, Mark D.; Peterson, Robert O.; Blanford, Justine I.

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry- wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur. PMID:23326518

  20. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    PubMed

    Aurit, Mark D; Peterson, Robert O; Blanford, Justine I

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  1. Selected well and ground-water chemistry data for the Boise River Valley, southwestern Idaho, 1990-95

    USGS Publications Warehouse

    Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina

    1996-01-01

    Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.

  2. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  3. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  4. Geophysical-log and hydraulic-test analyses of groundwater-production wells at the Hannahville Indian Community, Menominee County, Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Anderson, J. Alton; Lampe, David C.; Williams, John H.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Hannahville Indian Community, evaluated the geohydrology of the bedrock formations and hydraulic properties of groundwater-production wells at the Hannahville Indian Community in Menominee County, Michigan. Geophysical logs were collected from five wells at two sites during September 2012. The logs were analyzed to characterize the lithostratigraphy, bedding and fractures, and hydraulic properties of the geologic formations and aquifers beneath the Hannahville Indian Community. The geophysical logs collected included natural gamma radiation, electromagnetic conductivity, wellbore image, caliper, ambient and stressed flowmeter, fluid resistivity, temperature, and wellbore deviation. The geophysical logs were analyzed with results from short-term hydraulic tests to estimate the transmissivity and water-level altitudes of flow zones penetrated by the wells. The geophysical log analysis indicated the wells penetrated four distinct lithostratigraphic units—shale and carbonate rock, upper carbonate rock, carbonate rock and glauconitic sandstone, and lower carbonate rock. Most of the fractures penetrated by the wellbores appeared to be related bedding partings. The lower carbonate rock unit contained solution features. Analysis of the geophysical logs and hydraulic tests indicated that each of the five wells penetrated from one to four flow zones. The Casino 5 well penetrated a flow zone that was associated with solution features and had an estimated total transmissivity of 4,280 feet squared per day (ft2/d), the highest estimate for all the wells. The Casino 3 well penetrated four flow zones and had an estimated total transmissivity of 3,570 ft2/d. The flow zones penetrated in the lower carbonate rock unit by the Casino 3 and 5 wells were hydraulically connected. The Golf Shack well penetrated two flow zones and had an estimated total transmissivity of 40 ft2/d, the lowest estimate for all the wells. The Community 1

  5. Simulation of ground-water flow to assess geohydrologic factors and their effect on source-water areas for bedrock wells in Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway

    2005-01-01

    Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably

  6. Preliminary simulation of chloride transport in the Equus Beds aquifer and simulated effects of well pumping and artificial recharge on groundwater flow and chloride transport near the city of Wichita, Kansas, 1990 through 2008

    USGS Publications Warehouse

    Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.

    2014-01-01

    model had poor fit between simulated chloride concentrations and observed chloride concentrations, including the area between Arkansas River and the southern part of the Wichita well field, and the Hollow-Nikkel area about 6 miles north of Burrton. Compared to the interpreted location of the 250-milligrams per liter-chloride front based on data collected in 2011, in the Arkansas River area the simulated 250-milligrams per liter-chloride front moved from the river toward the well field about twice the rate of the actual 250-milligrams per liter-chloride front in the shallow layer and about four times the rate of the actual 250-milligrams per liter-chloride front in the deep layer. Future groundwater-flow and chloride-transport modeling efforts may achieve better agreement between observed and simulated chloride concentrations in these areas by taking the chloride-transport model fit into account when adjusting parameters such as hydraulic conductivity, riverbed conductance, and effective porosity during calibration. Results of the hypothetical scenarios simulated indicate that the Burrton chloride plume will continue moving toward the well field regardless of pumping in the area and that one alternative may be to increase pumping from within the plume area to reverse the groundwater-flow gradients and remove the plume. Additionally, the results of modeling these scenarios indicate that eastward movement of the Burrton plume could be slowed by the additional artificial recharge at the Phase 1 sites and that decreasing pumping along the Arkansas River or increasing water levels could retard the movement of chloride and may prevent further encroachment into the southern part of the well field area.

  7. Evaluation of site-selection criteria, well design, monitoring techniques, and cost analysis for a ground-water supply in Piedmont crystalline rocks, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.

    1990-01-01

    A statistical analysis of data from wells drilled into the crystalline rocks of the Piedmont and Blue Ridge provinces of North Carolina verified and refined previously proposed criteria for the siting of wells to obtain greater than average yields. An opportunity to test the criteria was provided by the expansion of the town of Cary's municipal ground-water system. Three criteria were used: type of rock, thickness of saturated regolith based upon topography, and presence of fractures and joints based upon drainage lineations. A conceptual model of the local hydrogeologic system was developed to guide the selection of the most favorable well sites, and on the basis of the model, six type sites were determined. Eleven of 12 test wells that were located on the basis of type sites yielded from slightly above average to as much as six times the average yield to be expected from particular rock types as reported in the literature. Only one well drilled at a type site had a less than average yield. One well not located at any of the type sites produced little water. Long-term testing and monitoring after the wells were put into production showed that an 18-hour-on, 6-hour-off pumping cycle was much more effective in terms of total production, reduced head loss, and less drawdown than a 5-day-on and 2-day-off cycle. It was also observed that long-term yields by the production wells were about 75 percent of those predicted on the basis of 24-hour pumping tests and only about 60 percent of the driller's reported yields. Cost analysis showed that, by using criteria-selected well sites, a cost-effective well system can be developed that will provide water at an equivalent or lower cost than a surface-water supply. The analysis showed that the system would be cost effective if only one high-yield well were obtained out of every four drilled.

  8. Field tests of diffusion samplers for inorganic constituents in wells and at a ground-water discharge zone

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.

    2002-01-01

    Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect

  9. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  10. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Domenik; Evans, Katy

    2014-05-01

    Sampling fluids from deep wells and subsequent sample treatment prior to gas and liquid analysis requires special equipment and sampling techniques to account for the relatively high temperatures, pressures, and potential gas content present at depth. This paper reviews five major sampling methodologies, ranging from different in situ wireline samplers to producing pumps and the U-tube and discusses their advantages and drawbacks in the light of three principal applications, deep groundwater research, unconventional geothermal exploration, and carbon storage. Geochemical modelling is used to investigate the probability of decarbonation and concomitant carbonate scaling during sampling in geothermal and carbon sequestration applications. The two principal sample recovery techniques associated with the fluid samplers are also presented.

  11. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  12. An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada)

    NASA Astrophysics Data System (ADS)

    Chemingui, Asma; Sulis, Mauro; Paniconi, Claudio

    2015-12-01

    Estimation of groundwater recharge is of critical importance for effective management of freshwater resources. Three common and distinct approaches for calculating recharge rely on techniques of baseflow separation, well hydrograph analysis, and numerical modeling. In this study, these three methods are assessed for a watershed in southwestern Quebec, Canada. A physically based surface-subsurface model provides estimates of spatially distributed recharge; two baseflow separation filters estimate recharge from measured streamflow; and a well hydrograph master recession curve technique calculates recharge from water-table elevation records. The recharge results obtained are in good agreement over the entire catchment, producing an annual aquifer recharge of 10-30 % of rainfall. The annual average estimated across all methods is 200 mm/year. High variability is obtained for the monthly and seasonal recharge patterns (e.g. respectively, 0-30 mm for September and 0-95 mm for the summer), in particular between the baseflow filters and the well hydrograph technique and between the hydrograph technique and the simulated estimates at the observation wells. Recharge occurs predominantly in the spring months for the different approaches, except for the master recession curve method for which the highest recharge estimates are obtained during the summer. The recharge distribution obtained with the model shows that the main recharge area of the aquifer is the Covey Hill region. The use of a fully integrated physically based model enables the construction of an arbitrary number of well hydrographs to enhance the representativity of the master recession curve technique.

  13. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    USGS Publications Warehouse

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  14. Use of a ground-water flow model to delineate contributing areas to the Puchack Well Field, Pennsauken township and vicinity, Camden county, New Jersey

    USGS Publications Warehouse

    Pope, Daryll A.; Watt, Martha K.

    2005-01-01

    The New Jersey Department of Environmental Protection (NJDEP) Well Head Protection Program, developed in response to the 1986 Federal Safe Drinking Water Act Amendments, requires delineation of Well Head Protection Areas (WHPA's), commonly called contributing areas, for all public and non-community water-supply wells in New Jersey. Typically, WHPA's for public community water-supply wells in New Jersey are delineated using a two-dimensional ground-water flow model incorporating the regional hydraulic gradient; however, NJDEP guidelines allow for the use of a three-dimensional flow model to delineate contributing areas to wells in complex hydrogeologic settings. The Puchack well field in Pennsauken Township, Camden County, N.J., is an area of strong hydraulic connection between the Lower aquifer of the Potomac-Raritan-Magothy aquifer system and the Delaware River. Interactions among and within the public-supply well fields in the area are complex. To delineate the contributing area to the Puchack well field, the U.S. Geological Survey, in cooperation with the NJDEP, developed an 11-layer ground-water flow model of the Potomac-Raritan-Magothy aquifer system in the Pennsauken Township area to simulate flow in the vicinity of the well field. The model incorporates the interaction between the aquifer system and the Delaware River, and includes boundary flows from an existing regional model of the Camden area. Recharge used in the model ranged from 4.5 to 14 inches per year, and horizontal hydraulic conductivity ranged from 50 to 250 feet per day. Values of vertical hydraulic conductivity ranging from 0.001 to 0.5 feet per day were assigned to zones created on the basis of variations in hydrogeologic conditions observed in geophysical logs from wells. A steady-state simulation was used to calibrate the model to synoptic water-level data collected in March 1998. Near the Puchack well field, simulated heads generally were within 1 foot of the measured heads in both the

  15. Experiences with groundwater contamination

    SciTech Connect

    Not Available

    1984-01-01

    This book discusses developments in combating groundwater contamination. The papers include: Regulation of Groundwater; Utility Experiences Related to Existing and Proposed Drinking Water Regulations; Point-of-Use Treatment Technology to Control Organic and Inorganic Contamination; Hazardous Waste Disposal Practices and Groundwater Contamination; Reverse Osmosis Treatment to Control Inorganic and Volatile Organic Contamination; The Dilemma of New Wells Versus Treatment; Characteristics and Handling of Wastes From Groundwater Treatment Systems; and Removing Solvents to Restore Drinking Water at Darien, Connecticut.

  16. Effects of drain wells on the ground-water quality of the western Snake Plain Aquifer, Idaho

    USGS Publications Warehouse

    Moreland, Joe A.; Seitz, Harold R.; LaSala, Albert Mario

    1976-01-01

    Approximately 3,100 drain wells injects irrigation waste water, urban runoff, septic-tank effluent, and industrial waste water into the Snake Plain aquifer in Minidoka, Gooding, Jerome, and Lincoln Counties, Idaho. About 29,000 acre-feet of irrigation waste water, 100 acre-feet of urban runoff, 400 acre-feet of septic-tank effluent, and 1,000 acre-feet of industrial waste water are injected annually. The quality of irrigation waste water is highly variable, depending upon its source, method and rate of application, amount of fertilizer added, and other factors. The quality of urban runoff water is generally much better than irrigation waste water. Septic-tank effluent is relatively high in nutrient concentrations. Chloride concentrations also are high, and bacterial concentrations are exceedingly high. The only industrial waste water sampled during this study had been used for cooling. No chemical changes were noted, but temperature was significantly increased. The data indicate that drain-well inflow does move appreciable distances through the aquifer and can be detected in downgradient wells. (Woodard-USGS)

  17. INTEC Groundwater Monitoring Report 2006

    SciTech Connect

    J. R. Forbes S. L. Ansley M. Leecaster

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  18. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not

  19. Groundwater level changes in a deep well in response to a magma intrusion event on Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Hurwitz, S.; Johnston, M.J.S.

    2003-01-01

    On May 21, 2001, an abrupt inflation of Kilauea Volcano's summit induced a rapid and large increase in compressional strain, with a maximum of 2 ??strain recorded by a borehole dilatometer. Water level (pressure) simultaneously dropped by 6 cm. This mode of water level change (drop) is in contrast to that expected for compressional strain from poroelastic theory, and therefore it is proposed that the stress applied by the intrusion has caused opening of fractures or interflows that drained water out of the well. Upon relaxation of the stress recorded by the dilatometer, water levels have recovered at a similar rate. The proposed model has implications for the analysis of ground surface deformation and for mechanisms that trigger phreatomagmatic eruptions.

  20. Groundwater quality in Geauga County, Ohio: status, including detection frequency of methane in water wells, 2009, and changes during 1978-2009

    USGS Publications Warehouse

    Jagucki, Martha L.; Kula, Stephanie P.; Mailot, Brian E.

    2015-01-01

    To evaluate whether constituent concentrations consistently increased or decreased over time, the strength of the association between sampling year (time) and constituent concentration was statistically evaluated for 116 water-quality samples collected by the USGS in 1978, 1980, 1986, 1999, and 2009 from a total of 65 wells across the county (generally domestic wells or wells serving small businesses or churches). Results indicate that many of the constituents that have been analyzed for decades exhibited no consistent temporal trends at a statistically significant level (p-value less than 0.05); fluctuations in concentrations of these constituents represent natural variation in groundwater quality. Dissolved oxygen, calcium, and sulfate concentrations and chloride:bromide ratios increased over time in one or more aquifers, while pH and concentrations of bromide and dissolved organic carbon decreased over time. Detections of total coliform bacteria and nitrate did not become more frequent from 1986 to 2009, even though potential sources of these constituents, such as number of septic systems (linked to population) and percent developed land in the county, increased during this period.

  1. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  2. Groundwater demand management at local scale in rural areas of India: a strategy to ensure water well sustainability based on aquifer diffusivity and community participation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Himanshu; Vijay Shankar, P. S.; Deolankar, S. B.; Shah, Mihir

    Watershed development programmes provide an opportunity for sustainable management strategies, although currently, they remain largely `supply-side' mechanisms of water resources development. Hydrogeological conditions, community participation and status of groundwater usage are important in evolving strategies on `demand-side' groundwater management. Neemkheda aquifer is a typical low-storage, low-hydraulic conductivity aquifer from a watershed in the dryland regions of Madhya Pradesh State of central India. A shallow unconfined aquifer, it consists of an upper coarse, calcareous sandstone unit underlain by a fine-grained sandstone unit. A `well commune' of seven wells is poised to test the concept of joint groundwater management, wherein wells are mechanisms of tapping a common water source, the Neemkheda aquifer. The strategy for systematic groundwater management in the Neemkheda well commune is based upon the relationship between Transmissivity (T) and Storage coefficient (S), i.e. aquifer diffusivity, and its variation within the aquifer. Wells within a high diffusivity domain tend to dewater more quickly than wells within a low diffusivity domain. A well-use schedule during the dry season, based upon aquifer diffusivity forms the basis of the groundwater management concept. The distribution of local aquifer diffusivities governs the relationship between local and regional aquifer depletion times and forms the basis of the groundwater management exercise being proposed for the Neemkheda aquifer. Los programas de desarrollo de una cuenca hídrica son una oportunidad para el uso de estrategias de gestión sostenible, aunque hoy en día estas siguen siendo principalmente mecanismos para el desarrollo de recursos hídricos con énfasis en la ``oferta''. Las condiciones hidrogeológicas, la participación comunitaria y la condición de utilización del agua subterránea, son importantes en el desarrollo de estrategias para la gestión del agua subterránea, desde

  3. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    USGS Publications Warehouse

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    The effect of short-circuit pathways, for example karst conduits, in the flow system on the movement of young water to the selected public-supply well could greatly alter contaminant arrival times compared to what might be expected from advection in a system without short circuiting. In a forecasting exercise, the simulated concentrations showed rapid initial response at the beginning and end of chemical input, followed by more gradual response as older water moved through the system. The nature of karst groundwater flow, where flow predominantly occurs via conduit flow paths, could lead to relatively rapid water quality responses to land-use changes. Results from the forecasting exercise indicate that timescales for change in the quality of water from the selected public-supply well could be on the order of a few years to decades for land-use changes that occur over days to decades, which has implications for source-water protection strategies that rely on land-use change to achieve water-quality objectives.

  4. Groundwater quality data in 15 GAMA study units: results from the 2006–10 Initial sampling and the 2009–13 resampling of wells, California GAMA Priority Basin Project

    USGS Publications Warehouse

    Kent, Robert

    2015-08-31

    Most constituents that were detected in groundwater samples from the trend wells were found at concentrations less than drinking-water benchmarks. Two volatile organic compounds (VOCs)—tetrachloroethene and trichloroethene—were detected in samples from one or more wells at concentrations greater than their health-based benchmarks, and three VOCs—chloroform, tetrachloroethene, and trichloroethene—were detected in at least 10 percent of the trend-well samples from the initial sampling period and the later trend sampling period. No pesticides were detected at concentrations near or greater than their health-based benchmarks. Three pesticide constituents—atrazine, deethylatrazine, and simazine—were detected in more than 10 percent of the trend-well samples in both sampling periods. Perchlorate, a constituent of special interest, was detected at a concentration greater than its health-based benchmark in samples from one trend well in the initial sampling and trend sampling periods, and in an additional trend well sample only in the trend sampling period. Most detections of nutrients, major and minor ions, and trace elements in samples from trend wells were less than health-based benchmarks in both sampling periods. Exceptions included nitrate, fluoride, arsenic, boron, molybdenum, strontium, and uranium; these were all detected at concentrations greater than their health-based benchmarks in at least one well sample in both sampling periods. Lead and vanadium were detected above their health-based benchmarks in one sample each collected in the initial sampling period only. The isotopic ratios of oxygen and hydrogen in water and the activities of tritium and carbon-14 generally changed little between sampling periods.

  5. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation.

    PubMed

    Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  6. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    NASA Astrophysics Data System (ADS)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  7. Brackish groundwater in the United States

    USGS Publications Warehouse

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    in the United States. Previously published digital data relating to brackish groundwater resources were limited to a small number of State- and regional-level studies. Data sources for this assessment ranged from single publications to large datasets and from local studies to national assessments. Geochemical data included concentrations of dissolved solids, major ions, trace elements, nutrients, and radionuclides as well as physical properties of the water (pH, temperature, and specific conductance). Additionally, the database provides selected well information (location, yield, depth, and contributing aquifer) necessary for evaluating the water resource.The assessment was divided into national-, regional-, and aquifer-scale analyses. National-scale analyses included evaluation of the three-dimensional distribution of observed dissolved-solids concentrations in groundwater, the three-dimensional probability of brackish groundwater occurrence, and the geochemical characteristics of saline (greater than or equal to 1,000 mg/L of dissolved solids) groundwater resources. Regional-scale analyses included a summary of the percentage of observed grid cell volume in the region that was occupied by brackish groundwater within the mixture of air, water, and rock for multiple depth intervals. Aquifer-scale analyses focused primarily on four regions that contained the largest amounts of observed brackish groundwater and included a generalized description of hydrogeologic characteristics from previously published work; the distribution of dissolved-solids concentrations; considerations for developing brackish groundwater resources, including a summary of other chemical characteristics that may limit the use of brackish groundwater and the ability of sampled wells producing brackish groundwater to yield useful amounts of water; and the amount of saline groundwater being used in 2010.

  8. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  9. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  10. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  11. Simulation of ground-water flow and delineation of areas contributing recharge within the Mt. Simon-Hinckley Aquifer to well fields in the Prairie Island Indian Community, Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    2002-01-01

    A steady state single layer, two-dimensional ground-water flow model constructed with the computer program MODFLOW,combined with the particle-tracking computer program MODPATH, was used to track water particles (upgradient) from the two well fields. A withdrawal rate of 625 m3/d was simulated for each well field. The ground-water flow paths delineated areas of contributing recharge that are 0.38 and 0.65 km2 based on 10- and 50-year travel times, respectively. The flow paths that define these areas extend for maximum distances of about 350 and 450 m, respectively, from the wells. At well field A the area of contributing recharge was delineated for each well as separate withdrawal points. At well field B the area of contributing recharge was delineated for the two wells as a single withdrawal point. Delineation of areas of contributing recharge to the well fields from land surface would require construction of a multi-layer ground-water flow model.

  12. Sucrose taken during mixed meal has no additional hyperglycaemic action over isocaloric amounts of starch in well-controlled diabetics.

    PubMed

    Slama, G; Haardt, M J; Jean-Joseph, P; Costagliola, D; Goicolea, I; Bornet, F; Elgrably, F; Tchobroutsky, G

    1984-07-21

    The hyperglycaemic effect of 20 g sucrose taken at the end of a regular mixed meal by diabetic patients was measured in six adult type 1 diabetics, C-peptide negative, controlled by the artificial pancreas, and twelve adult type 2 diabetics, with fasting plasma glucose levels below 7.2 mmol/l (130 mg/100 ml) and post-prandial plasma glucose levels below 10.0 mmol/l (180 mg/100 ml), treated by diet alone or with glibenclamide and/or metformin. All the patients were given on consecutive days, in random order, two mixed meals of grilled meat, green beans, and cheese, as well as a cake made either of rice, skimmed milk, and saccharine (meal A) or rice, skimmed milk, and 20 g sucrose (meal B). The meals contained equal amounts of calories and of carbohydrate. There was no difference between the meals in plasma glucose curves and plasma insulin or insulin infusion rate variations whether in peak values, peaking times, or areas under the curves, in either group of patients. Sparing use of sucrose taken during mixed meals might help well-controlled diabetic patients to comply with their daily dietary prescription while maintaining good blood glucose control.

  13. Water Resources Data, New Mexico, Water Year 1999. Volume 2. The Arkansas River Basin; the San Juan River Basin; the Gila River Basin; and Ground-Water Wells

    USGS Publications Warehouse

    Ortiz, David; Lange, Kathy M.; Beal, Linda

    2000-01-01

    wells. Also included are 80 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  14. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  15. Groundwater: Climate-induced pumping

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason J.

    2017-01-01

    Groundwater resources are directly affected by climate variability via precipitation, evapotranspiration and recharge. Analyses of US and India trends reveal that climate-induced pumping indirectly influences groundwater depletion as well.

  16. Evaluating groundwater depletion as computed by a global water model

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix

    2013-04-01

    When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time

  17. Groundwater Budget Analysis of Cross Formational Flow: Hueco Bolson (Texas and Chihuahua)

    NASA Astrophysics Data System (ADS)

    Hutchison, W. R.

    2005-12-01

    Groundwater from the Hueco Bolson supplies the majority of municipal water in El Paso, Texas and Ciudad Juarez, Chihuahua, the largest international border community in the world. For over 100 years, water managers and researchers have been developing an understanding of Hueco Bolson groundwater occurrence and movement, and the interaction between surface water and groundwater. Since 2001, isotopic studies of groundwater chemistry on both sides of the border have provided valuable insights into the occurrence of groundwater and its historic movement. Numerical groundwater flow models of the area have been developed and used since the 1970s. The results of the most recent model were used to develop a detailed analysis of the groundwater inflows, outflows and storage change of the entire area and subregions of the model domain from 1903 to 2002. These detailed groundwater budgets were used to quantify temporal and spatial flow changes that resulted from groundwater pumping: induced inflow of surface water, decreased natural outflows, and storage declines. In addition, the detailed groundwater budgets were used to quantify the changes in cross formational flow between the Rio Grande Alluvium and the Hueco Bolson, as well as the changes in vertical flow within the Hueco Bolson. The groundwater budget results are consistent with the results of the isotopic analyses, providing a much needed confirmation of the overall conceptual model of the numerical model. In addition, the groundwater budgets have provided information that has been useful in further interpreting the results of the isotopic analyses.

  18. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    USGS Publications Warehouse

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  19. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  20. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  1. A high-resolution global-scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  2. Occurrence and Origin of Methane in Relation to Major Ion Concentrations in Groundwater Wells of the Denver-Julesburg and Piceance Basins of Colorado

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Sherwood, O.; Lackey, G.; Burke, T. L.; Osborn, S. G.; Ryan, J. N.

    2014-12-01

    The rapid expansion of unconventional oil and gas development in North America has generated intense public concerns about potential impacts to groundwater quality. To address these concerns, we examined geochemical data from a publicly available Colorado Oil and Gas Conservation Commission (COGCC) database. The data consist of over 17,000 samples from 4,756 unique surface and groundwater locations collected since 1990, representing one of the most extensive databases of groundwater quality in relation to oil and gas development anywhere. Following rigorous data QA/QC, we classified groundwater samples with respect to major ion composition and compared the assigned water "types" along with other geochemical parameters to methane concentrations and carbon isotopes in the Denver-Julesburg (DJ) and Piceance Basins in Colorado. 88% of samples with elevated methane (defined as > 1 mg L-1) were classified as Na-HCO3 type in the DJ basin and 78% were classified as either Na-HCO3 or Na-Cl type in the Piceance basin. Of the elevated methane samples, 96% and 69% in the DJ and Piceance basins respectively had microbial gas signatures, as determined by d13C values < - 60 ‰. Samples with elevated methane concentrations had higher pH, higher concentrations of chloride and sodium and lower concentrations of calcium in both the DJ and Piceance Basin. Elevated methane concentrations were predominately microbial in origin and correlated to indicators of increased water-rock interactions and anaerobic groundwater conditions, indicating that methane observed in these groundwater samples are largely a result of natural processes. Rare occurrences of stray thermogenic gas (d13C > 55 ‰, gas wetness > 5 % C2+ hydrocarbons) were most frequently associated with the Na-HCO3 water type in the DJ basin (67% of occurrences) and were randomly distributed across water types in the Piceance Basin. Investigation of natural and anthropogenic causes for the presence of methane is ongoing, using

  3. Ground-Water Data-Collection Protocols and Procedures for the National Water-Quality Assessment Program: Selection, Installation, and Documentation of Wells, and Collection of Related Data

    USGS Publications Warehouse

    Lapham, Wayne W.; Wilde, Franceska D.; Koterba, Michael T.

    1995-01-01

    Protocols for well installation and documentation are included in a 1989 report written for the National Water-Quality Assessment (NAWQA) Pilot Program of the U.S. Geological Survey (USGS). These protocols were reviewed and revised to address the needs of the full-scale implementation of the NAWQA Program that began in 1991. This report, which is a collaborative effort between the National Water-Quality Assessment Program and the Office of Water Quality, is the result of that review and revision. This report describes protocols and recommended procedures for the collection of data from wells for the NAWQA Program. Protocols and procedures discussed are well selection, installation of monitoring wells, documentation, and the collection of water level and additional hydrogeologic and geologic data.

  4. Groundwater sustainability strategies

    USGS Publications Warehouse

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  5. Water Resources Data, New Mexico, Water Year 1998. Volume 2. The Arkansas River Basin; the San Juan River Basin; the Gila River Basin; and Ground-Water Wells

    USGS Publications Warehouse

    Ortiz, David; Lange, Kathy M.; Beal, Linda

    1999-01-01

    26 lakes and reservoirs; water quality for 34 gaging stations, 23 wells, and 41 partial-record stations and miscellaneous sites; and water levels at 122 observation wells. Also included are 36 crest- stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  6. A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation.

    PubMed

    Trinh, Thi-Kim-Hoang; Passarello, Jean-Philippe; de Hemptinne, Jean-Charles; Lugo, Rafael; Lachet, Veronique

    2016-03-28

    This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745-756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and those from molecular simulations.

  7. Hanford wells

    SciTech Connect

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  8. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  9. A groundwater quality index map for Namibia

    NASA Astrophysics Data System (ADS)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  10. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    PubMed

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  11. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    USGS Publications Warehouse

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  12. Analysis of groundwater anomalies using GRACE over various districts of Jharkhand

    NASA Astrophysics Data System (ADS)

    Verma, Arpita; Kumar, Anant; Kumar, Sanjay

    2016-05-01

    Groundwater is an important requirement for the massive population of India. Generally the groundwater level is monitored by using monitoring wells. In this study, Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage (TWS), Land surface state variable GLDAS and Soil Moisture (SM) data were tested for estimating ground water information and based on these groundwater assessments were carried out over the years 2003 to 2012 for Jharkhand State. Additionally, Tropical Rainfall Measuring Mission (TRMM) accumulated rainfall data was also used for the year's 2008 to 2012.From the study over 120 months span of various districts the maximum depletion in storage of groundwater averaged over the six districts is +/-5cm/yr in the year 2010 and maximum storage year (in term of Equivalent water thickness) groundwater average over the six districts is +/-4.4cm in the year 2003. The study also utilized ground based Seasonal changes in the groundwater resource over 287 monitoring wells and estimated groundwater data using map analysis over Jharkhand. This study analyzed seasonal water level variations based on groundwater anomaly. Remote sensing generated result compared with well data shows R2 = 0.6211 and RMSE = 39.46 cm at average seasonal cycle. Also information of different time periods of rainfall (i.e., pre-monsoon and post-monsoon) was analyzed. The trend analysis of rainfall and estimated groundwater gives the basic knowledge that groundwater storage loss and gain showed similarities with increase and decrease in rainfall.

  13. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  14. Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey

    SciTech Connect

    Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.; Burns, Carolyn A.; Girvin, Donald C.; Phillips, Jerry L.; Devary, Brooks J.; Fischer, Ashley E.; Li, Shu-Mei W.

    2006-11-13

    This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and at lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.

  15. Effects of aquifer heterogeneity on ground-water flow and chloride concentrations in the Upper Floridan aquifer near and within an active pumping well field, west-central Florida

    USGS Publications Warehouse

    Tihansky, A.B.

    2005-01-01

    Chloride concentrations have been increasing over time in water from wells within and near the Eldridge-Wilde well field, near the coast in west-central Florida. Variable increases in chloride concentrations from well to well over time are the combined result of aquifer heterogeneity and ground-water pumping within the Upper Floridan aquifer. Deep mineralized water and saline water associated with the saltwater interface appear to move preferentially along flow zones of high transmissivity in response to ground-water withdrawals. The calcium-bicarbonate-type freshwater of the Upper Floridan aquifer within the study area is variably enriched with ions by mixing with introduced deep and saline ground water. The amount and variability of increases in chloride and sulfate concentrations at each well are related to well location, depth interval, and permeable intervals intercepted by the borehole. Zones of high transmissivity characterize the multilayered carbonate rocks of the Upper Floridan aquifer. Well-developed secondary porosity within the Tampa/Suwannee Limestones and the Avon Park Formation has created producing zones within the Upper Floridan aquifer. The highly transmissive sections of the Avon Park Formation generally are several orders of magnitude more permeable than the Tampa/Suwannee Limestones, but both are associated with increased ground-water flow. The Ocala Limestone is less permeable and is dominated by primary, intergranular porosity. Acoustic televiewer logging, caliper logs, and borehole flow logs (both electromagnetic and heat pulse) indicate that the Tampa/Suwannee Limestone units are dominated by porosity owing to dissolution between 200 and 300 feet below land surface, whereas the porosity of the Avon Park Formation is dominated by fractures that occur primarily from 600 to 750 feet below land surface and range in angle from horizontal to near vertical. Although the Ocala Limestone can act as a semiconfining unit between the Avon Park

  16. Ground-water appraisal of sand plains in Benton, Sherburne, Stearns, and Wright counties, central Minnesota

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1980-01-01

    Both modeled areas will support additional withdrawals, but caution must be exercised because lowering ground-water levels will also lower lake levels and reduce streamflow. In some areas, aquifer dewatering will reduce individual well yields.

  17. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    NASA Technical Reports Server (NTRS)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  18. A new species of the subterranean amphipod genus Stygobromus (Amphipoda: Crangonyctidae) from two caves and a spring in western Maryland, USA with additional records of undescribed species from groundwater habitats in central Maryland.

    PubMed

    Holsinger, John R; Ansell, Lynnette

    2014-02-26

    A new species of the subterranean amphipod genus Stygobromus is described from two caves and a small spring on the Appalachian Plateau in Garrett County in western Maryland, USA. The description of this species brings to six the total number of species in the genus Stygobromus from the state of Maryland. The other five species are recorded from shallow groundwater habitats (e.g., seeps and springs) in the eastern and southeastern parts of the state. In addition, at least four new species of Stygobromus from central Maryland are recognized but remain undescribed to date.

  19. Halon-1301, a new Groundwater Age Tracer

    NASA Astrophysics Data System (ADS)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  20. Simulation of ground-water flow and areas contributing recharge to extraction wells at the Drake Chemical Superfund Site, City of Lock Haven and Castanea Township, Clinton County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    2006-01-01

    Extensive remediation of the Drake Chemical Superfund Site has been ongoing since 1983. Contaminated soils were excavated and incinerated on site between 1996 and 1999. After 1999, remedial efforts focused on contaminated ground water. A ground-water remediation system was started in November 2000. The source area of the contaminated ground water was assumed to be the zone 1 area on the Drake Chemical site. The remedial system was designed to capture ground water migrating from zone 1. Also, the remediation system was designed to pump and treat the water in an anoxic environment and re-infiltrate the treated water underground through an infiltration gallery that is hydrologically downgradient of the extraction wells. A numerical ground-water flow model of the surrounding region was constructed to simulate the areas contributing recharge to remedial extraction wells installed on the Drake Chemical site. The three-dimensional numerical flow model was calibrated using the parameter-estimation process in MODFLOW-2000. The model included three layers that represented three poorly sorted alluvial sediment units that were characterized from geologic well and boring logs. Steady-state ground-water flow was simulated to estimate the areas contributing recharge to three extraction wells for three different pumping scenarios--all wells pumping at 2 gallons per minute, at approximately 5 gallons per minute, and at 8 gallons per minute. Simulation results showed the contributing areas to the three extraction wells encompassed 92 percent of zone 1 at a pumping rate of approximately 5 gallons per minute. The contributing areas did not include a very small area in the southwestern part of zone 1 when the three extraction wells were pumped at approximately 5 gallons per minute. Pumping from a fourth extraction well in that area was discontinued early in the operation of the remediation system because the ground water in that area met performance standards. The areas contributing

  1. Development of a complex groundwater model to assess the relation among groundwater resource exploitation, seawater intrusion and land subsidence

    NASA Astrophysics Data System (ADS)

    Hsi Ting, Fang; Yih Chi, Tan; Chen, Jhong Bing

    2016-04-01

    The land subsidence, which is usually irreversible, in Taiwan Pintung Plain occurred due to groundwater overexploitation. Many of the land subsidence areas in Taiwan are located in coastal area. It could not only result in homeland loss, but also vulnerability to flooding because the function of drainage system and sea wall are weakened for the lowered ground surface. Groundwater salinization and seawater intrusion could happen more easily as well. This research focuses on grasping the trend of environmental change due to the damage and impact from inappropriate development of aquaculture in the last decades. The main task is developing the artificial neural networks (ANNs) and complex numerical model for conjunctive use of surface and groundwater which is composed of a few modules such as land use, land subsidence, contamination transportation and etc. An approach based on self-organizing map (SOM) is proposed to delineate groundwater recharge zones. Several topics will be studied such as coupling of surface water and groundwater modeling, assessing the benefit of improving groundwater resources by recharge, identifying the improper usage of groundwater resources, and investigating the effect of over-pumping on land subsidence in different depth. In addition, a complete plan for managing both the flooding and water resources will be instituted by scheming non-engineering adaptation strategies for homeland planning, ex. controlling pumping behavior in area vulnerable to land subsidence and increasing groundwater recharge.

  2. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  3. Ground-water monitoring plan, water quality, and variability of agricultural chemicals in the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1998-2000

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five

  4. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes

    NASA Astrophysics Data System (ADS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Sanders, Christian J.; Sanders, Luciana M.; Maher, Damien T.

    2015-09-01

    Quantifying groundwater discharge remains a challenge due to its large temporal and spatial variability. Here, we quantify groundwater discharge into a small estuary using radon (222Rn) and radium isotopes (223Ra and 224Ra). High temporal resolution (30 min time steps) radon observations at 4 time series stations were used to determine where groundwater discharge is prevalent in the estuary, and to reduce mass balance model uncertainties. A three-endmember mixing model was developed based on short-lived radium isotopes (sampled at a single location) to separate the shallow saline and deep fresh sources of the discharging groundwater. The results show that using multiple 222Rn time series stations decreased the overall uncertainty of groundwater discharge estimates from about 41% to 23%. The radon derived groundwater flux was 56 ± 13 and 35 ± 12 cm d-1 in wet and dry conditions, respectively. The spatially distributed stations detected a well-defined small area located four kilometers upstream from the mouth of the estuary as a groundwater discharging hotspot. Estimates based on a 223Ra and 224Ra mass balance resulted in groundwater discharge estimates of 65 ± 18 and 84 ± 48 cm d-1 in the wet and 18 ± 5 and 20 ± 6 cm d-1 in the dry. The mixing model revealed contrasting results for deep vs. fresh groundwater contribution in wet and dry conditions. In wet conditions, deep fresh groundwater discharging into the estuary contributed 65% compared to the shallow saline groundwater (35%), while during dry conditions a larger contribution (80%) was related to shallow groundwater. A comprehensive spatial and temporal sampling strategy can produce groundwater discharge estimates with lower uncertainty and provides additional insight on where groundwater enters surface waters.

  5. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  6. Ground-water flow simulation and chemical and isotopic mixing equation analysis to determine source contributions to the Missouri River alluvial aquifer in the vicinity of the Independence, Missouri, well field

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    The city of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Steady-state ground-water flow simulation, particle tracking, and the use of chemical and isotopic composition of river water, ground water, and well-field pumpage in a two-component mixing equation were used to determine the source contributions of induced inflow from the Missouri River and recharge to ground water from precipitation in well-field pumpage. Steady-state flow-budget analysis for the simulation-defined zone of contribution to the Independence well field indicates that 86.7 percent of well-field pumpage is from induced inflow from the river, and 6.7 percent is from ground-water recharge from precipitation. The 6.6 percent of flow from outside the simulation-defined zone of contribution is a measure of the uncertainty of the estimation, and occurs because model cells are too large to uniquely define the actual zone of contribution. Flow-budget calculations indicate that the largest source of water to most wells is the Missouri River. Particle-tracking techniques indicate that the Missouri River supplies 82.3 percent of the water to the Independence well field, ground-water recharge from precipitation supplies 9.7 percent, and flow from outside defined zones of contribution supplies 8.0 percent. Particle tracking was used to determine the relative amounts of source water to total well-field pumpage as a function of traveltime from the source. Well-field pumpage that traveled 1 year or less from the source was 8.8 percent, with 0.6 percent from the Missouri River, none from precipitation, and 8.2 percent between starting cells. Well-field pumpage that traveled 2 years or less from the source was 10.3 percent, with 1.8 percent from the Missouri River, 0.2 percent from precipitation, and 8.3 percent between starting cells. Well-field pumpage that traveled 5 years or less from the source was 36.5 percent, with 27.1 percent from the Missouri River, 1.1 percent

  7. The stabilization value of groundwater: evidence from Indian tank irrigation systems

    NASA Astrophysics Data System (ADS)

    Palanisami, K.; Giordano, Mark; Kakumanu, Krishna Reddy; Ranganathan, C. R.

    2012-08-01

    Groundwater is now a major source of agricultural water supply in many parts of the world. The value of groundwater as a new source of supply is well known. However, its additional buffering or stabilization value is less appreciated and even less analysed. Knowledge on groundwater's stabilization value is advanced by developing and estimating an empirical model using the case of tank irrigation systems in Tamil Nadu, India. Unlike previous work, the model uses cross-sectional rather than time-series data. The results show that for the case-study region, the stabilization function added approximately 15% to supply value. Scenarios with surface water and electricity price were incorporated in the model. Increased surface-water supply and electricity price caused reduction in groundwater use but the percent of stabilization value of groundwater increased. The findings are used both to suggest improvements in tank irrigation systems and to further contextualize knowledge of groundwater's stabilization value.

  8. Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom E.; Atwia, Mohamed G.; El-Horiny, Mohamed M.

    2015-12-01

    Agricultural reclamation activities during the last few decades in the Western Nile Delta have led to great changes in the groundwater levels and quality. In Egypt, changing the desert land into agricultural land has been done using transferred Nile water (through irrigation canal systems) or/and groundwater. This research investigates the hydrogeochemical changes accompanying the reclamation processes in the small basin of Abu Mina, which is part of the Western Nile Delta region. In summer 2008, 23 groundwater samples were collected and groundwater levels were measured in 40 observation wells. Comparing the groundwater data of the pre-reclamation (1974) and the post-reclamation (2008) periods, groundwater seems to have been subjected to many changes: rise in water level, modification of the flow system, improvement of water quality, and addition of new salts through dissolution processes. Generally, Abu Mina basin is subdivided into two areas, recharge and discharge. The dissolution and mixing were recognized in the recharge areas, while the groundwater of the discharge region carries the signature of the diluted pre-reclamation groundwater. The salts of soil and aquifer deposits play an important role in the salt content of the post and pre-reclamation groundwater. NaCl was the predominant water type in the pre-reclamation groundwater, while CaSO4, NaCl and MgSO4 are the common chemical facies in the post-reclamation groundwater. The post-reclamation groundwater mostly indicates mixing between the pre-reclamation groundwater and the infiltrated freshwater with addition of some ions due to interaction with soil and sediments.

  9. Multiple Imputation of Groundwater Data to Evaluate Spatial and Temporal Anthropogenic Influences on Subsurface Water Fluxes in Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Manago, K. F.; Hogue, T. S.; Hering, A. S.

    2014-12-01

    In the City of Los Angeles, groundwater accounts for 11% of the total water supply on average, and 30% during drought years. Due to ongoing drought in California, increased reliance on local water supply highlights the need for better understanding of regional groundwater dynamics and estimating sustainable groundwater supply. However, in an urban setting, such as Los Angeles, understanding or modeling groundwater levels is extremely complicated due to various anthropogenic influences such as groundwater pumping, artificial recharge, landscape irrigation, leaking infrastructure, seawater intrusion, and extensive impervious surfaces. This study analyzes anthropogenic effects on groundwater levels using groundwater monitoring well data from the County of Los Angeles Department of Public Works. The groundwater data is irregularly sampled with large gaps between samples, resulting in a sparsely populated dataset. A multiple imputation method is used to fill the missing data, allowing for multiple ensembles and improved error estimates. The filled data is interpolated to create spatial groundwater maps utilizing information from all wells. The groundwater data is evaluated at a monthly time step over the last several decades to analyze the effect of land cover and identify other influencing factors on groundwater levels spatially and temporally. Preliminary results show irrigated parks have the largest influence on groundwater fluctuations, resulting in large seasonal changes, exceeding changes in spreading grounds. It is assumed that these fluctuations are caused by watering practices required to sustain non-native vegetation. Conversely, high intensity urbanized areas resulted in muted groundwater fluctuations and behavior decoupling from climate patterns. Results provides improved understanding of anthropogenic effects on groundwater levels in addition to providing high quality datasets for validation of regional groundwater models.

  10. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  11. Isotopic fractionation by diffusion in groundwater

    NASA Astrophysics Data System (ADS)

    Labolle, Eric M.; Fogg, Graham E.; Eweis, Juana B.; Gravner, Janko; Leaist, Derek G.

    2008-07-01

    During the last decade, isotopic fractionation has gained acceptance as an indicator of microbiological and chemical transformations of contaminants in groundwater. These transformation processes typically favor isotopically light, compared to isotopically heavy, contaminants, resulting in enrichment of the latter in the residual aqueous phase. In these isotope applications, it has been generally presumed that physical transport processes in groundwater have a negligible effect on isotopic enrichment. It is well known, however, that aqueous phase diffusion generally proceeds faster for isotopically light, compared to isotopically heavy, solute molecules, often resulting in isotopic fractionation in groundwater. This paper considers the potential for isotopic fractionation during transport in groundwater resulting from minute isotopic effects on aqueous diffusion coefficients. Analyses of transport in heterogeneous systems delimit the viable range of isotopic fractionation by diffusion in groundwater. Results show that diffusion can result in similar degrees of depletion and enrichment of isotopically heavy solutes during transport in heterogeneous systems with significant diffusion rate-limited mass transfer between fast- and slow-flow zones. Additional analyses and examples explore conditions that attenuate the development of significant fractionation. Examples are presented for 13C methyl tertiary butyl ether and deuterated and nondeuterated isopropanol and tertiary butyl alcohol using aqueous diffusion coefficients measured by the Taylor dispersion method with refractive index profiling as a part of this study. Examples elucidate the potential for diffusive fractionation as a confounder in isotope applications and emphasize the importance of hydrogeologic analysis for assessing the role of diffusive fractionation in isotope applications at contaminant field sites.

  12. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    USGS Publications Warehouse

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or

  13. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in

  14. Defining groundwater transport times near ASR facilities using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Clark, J. F.

    2001-12-01

    Determining groundwater transport and travel times between recharge facilities and wells has become increasingly important in managing Aquifer Storage and Recovery (ASR) projects. This is especially true in the State of California where water reuse rules that consider groundwater travel time in the permitting process are being discussed. Fundamental geochemical approaches for investigating transport include tritium/helium-3 dating and the addition of sulfur hexafluoride tracer in controlled experiments. When combined, groundwater flow can be imaged with time scales on the order of days to decades. The Orange County Water District recharges to their groundwater basin approximately 250,000 acre-ft of surface water annually from a series of spreading ponds and a 9-km section of the Santa Ana River. Sulfur hexafluoride gas was injected into the Santa Ana River over a period of 2 weeks, tagging approximately 3,000 acre-ft of recharged water. Groundwater flow and transport from the river has been determined for more than three years. Results of the gas tracer experiment demonstrate that linear groundwater flow velocities range from less than 1 km/yr to more than 5 km/yr and that the groundwater flow system is stratified. These results will be used to verify and refine numerical models of transport near the ASR facilities in Orange County and have been used to establish flowlines so that in situ water quality changes can be quantified.

  15. Groundwater management and protection, McMinn County, Tennessee

    SciTech Connect

    Not Available

    1991-08-01

    McMinn County in Tennessee relies heavily on groundwater as a source of potable water. Part of the public water supply for Athens Utilities is groundwater. About 40 percent of the county`s residents rely on private wells for domestic water supply. The groundwater is produced, primarily, in aquifers of fractured limestone with solution channels. The geohydrology of McMinn County makes groundwater protection an important issue. This report represents the results of a cooperative effort to address both immediate and long-term needs for groundwater protection. A three-phased approach is used to suggest specific actions that would help safeguard public health and future economic growth of the county. Phase 1 involves a technical committee to assist local governments on groundwater-related matters, investigation of specific measures for wellhead protection in McMinn County, and public education. Phase 2 focuses on gaining additional technical information through fracture/lineament tracing for the entire county using aerial photography and computerizing the groundwater data which resides in many paper files of the many federal, state, and local governments. Phase 3 suggests a dye tracer and/or aquifer testing for Ingleside Spring to refine the initially identified wellhead protection area.

  16. Groundwater management and protection, McMinn County, Tennessee

    SciTech Connect

    Not Available

    1991-08-01

    McMinn County in Tennessee relies heavily on groundwater as a source of potable water. Part of the public water supply for Athens Utilities is groundwater. About 40 percent of the county's residents rely on private wells for domestic water supply. The groundwater is produced, primarily, in aquifers of fractured limestone with solution channels. The geohydrology of McMinn County makes groundwater protection an important issue. This report represents the results of a cooperative effort to address both immediate and long-term needs for groundwater protection. A three-phased approach is used to suggest specific actions that would help safeguard public health and future economic growth of the county. Phase 1 involves a technical committee to assist local governments on groundwater-related matters, investigation of specific measures for wellhead protection in McMinn County, and public education. Phase 2 focuses on gaining additional technical information through fracture/lineament tracing for the entire county using aerial photography and computerizing the groundwater data which resides in many paper files of the many federal, state, and local governments. Phase 3 suggests a dye tracer and/or aquifer testing for Ingleside Spring to refine the initially identified wellhead protection area.

  17. Effectiveness of an alluvial wetland on improving ground-water quality in a municipal well field, Cedar Rapids, Iowa, 1998-2006

    USGS Publications Warehouse

    Schnoebelen, Douglas J.

    2008-01-01

    An alluvial wetland proved useful in improving water quality. Samples from observation wells completed in the alluvial wetland near the municipal well field had nitrate concentrations that were four to six times lower when compared to river or upland sites; however, iron and manganese concentrations in samples from observation wells in the wetland areas were an order of magnitude higher when compared to the river or an upgradient well. Biological and chemical reduction processes were determined to mobilize inorganic constituents in accordance with physical chemistry principles. Generally, selected pesticides and two pesticide degradates of atrazine that were sampled for in alluvial wetland wells remained relatively unchanged, and indicated only a slight decrease in concentration compared to the Cedar River water samples. Pesticides were not detected above regulatory limits in any of the observation wells; however, one sample from the Cedar River had an atrazine detection at 4.5 micrograms per liter, which is above the maximum contaminant level of 3.0 micrograms per liter for drinking-water regulations for that compound. Results indicate that alluvial wetlands may provide substantial reductions of nitrate concentrations in ground water, and may be a useful strategy for the reduction of nitrate for municipal wells. Results for reducing pesticides were less dramatic than for nitrate, as pesticide concentrations were reduced slightly from the river to the wetland.

  18. Groundwater-surface water interactions: the behavior of a small lake connected to groundwater

    NASA Astrophysics Data System (ADS)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth

    2016-04-01

    Interactions between lakes and groundwater have been under concern in recent years and are still not well understood. Exchange rates are both spatially and temporally highly variable and are generally underestimated. However these interactions are of utmost importance for water resource management and need to be better understood since (i) the hydrogeological and geochemical equilibria within the lake drive the evolution of lakes' ecology and quality, and (ii) groundwater inflow, even in low rate, can be a key element in both the lake nutrient balance (and therefore in lake's eutrophication) and vulnerability to pollution. In many studies two main geochemical tracers, i.e. water stable isotopes and radon-222, are used to determine these interactions. However there are still many uncertainties on their time and space variations and their reliability to determine the lake budget. Therefore, a lake connected to groundwater on a small catchment was chosen to quantify groundwater fluxes change over time and the related influences on the lake's water geochemistry. Through analyse in time and space of both tracers and a precise instrumentation of the lake, their variations linked to groundwater inflows are determined. The results show that each tracer provides additional information for the lake budget with the interest to well determine the information given by each measurement: the radon-222 gives information on the groundwater inflows at a point in space and time while water stable isotopes highlight the dominant parameters of the yearly lake budget. The variation in groundwater inflows allow us to discuss lake's evolution regarding climate and environmental changes.

  19. Improving Groundwater Data Interoperability: Results of the Second OGC Groundwater Interoperability Experiment

    NASA Astrophysics Data System (ADS)

    Lucido, J. M.; Booth, N.

    2014-12-01

    Interoperable sharing of groundwater data across international boarders is essential for the proper management of global water resources. However storage and management of groundwater data is often times distributed across many agencies or organizations. Furthermore these data may be represented in disparate proprietary formats, posing a significant challenge for integration. For this reason standard data models are required to achieve interoperability across geographical and political boundaries. The GroundWater Markup Language 1.0 (GWML1) was developed in 2010 as an extension of the Geography Markup Language (GML) in order to support groundwater data exchange within Spatial Data Infrastructures (SDI). In 2013, development of GWML2 was initiated under the sponsorship of the Open Geospatial Consortium (OGC) for intended adoption by the international community as the authoritative standard for the transfer of groundwater feature data, including data about water wells, aquifers, and related entities. GWML2 harmonizes GWML1 and the EU's INSPIRE models related to geology and hydrogeology. Additionally, an interoperability experiment was initiated to test the model for commercial, technical, scientific, and policy use cases. The scientific use case focuses on the delivery of data required for input into computational flow modeling software used to determine the flow of groundwater within a particular aquifer system. It involves the delivery of properties associated with hydrogeologic units, observations related to those units, and information about the related aquifers. To test this use case web services are being implemented using GWML2 and WaterML2, which is the authoritative standard for water time series observations, in order to serve USGS water well and hydrogeologic data via standard OGC protocols. Furthermore, integration of these data into a computational groundwater flow model will be tested. This submission will present the GWML2 information model and results

  20. Groundwater quality and the relation between pH values and occurrence of trace elements and radionuclides in water samples collected from private wells in part of the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50

  1. Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants, and simulation of ground-water flow

    USGS Publications Warehouse

    Lindsey, Bruce D.; Koch, Michele L.

    2004-01-01

    Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a

  2. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Cordova, R.M.; Mower, R.W.

    1967-01-01

    An extensive aquifer test in southern Utah Valley, Utah County, Utah, was made during January-March 1967 by the U.S. Geological Survey in cooperation with the Utah State Engineer. The purpose of the test was to obtain data about the hydraulic characteristics of the aquifer in the valley and to determine whether pumping large-diameter wells decreased artesian pressures and resulting flow from the numerous small-diameter flowing wells in the valley (fig. 1).

  3. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2005

    SciTech Connect

    2004-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  4. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2004

    SciTech Connect

    Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee

    2003-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  5. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2002.

    SciTech Connect

    2001-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2002 will be in accordance with the following requirements of DOE Order 5400.1: to evaluate and maintain surveillance of existing and potential groundwater contamination sources; to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; to identify and characterize long-term trends in groundwater quality at Y-12; and to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2002 will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2002 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  6. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2003

    SciTech Connect

    2002-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2003 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2003 will be in accordance with the following requirements of DOE Order 5400.1: (1) to evaluate and maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2003 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2003 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  7. Water ages of 20 groundwater bodies and its relevance for the implementation of the European Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Brielmann, Heike; Humer, Franko; Grath, Johannes; Sültenfuß, Jürgen; Philippitsch, Rudolf

    2015-04-01

    The 'Mean Residence Time' (MRT) of groundwater is required to develop reliable hydrogeological concepts of groundwater bodies as a prerequisite for a qualified monitoring and risk assessment. MRTs from monitoring wells help to assess if groundwater bodies are 'at risk' or 'not at risk' failing to meet good groundwater quantitative and chemical status according to the Water Framework Directive and therefore not being able to use the groundwater as drinking water or industrial water resource. A combination of 18O/2H, 3H, 3H/3He and in some cases additional CFC, SF6, 85Kr and 35S measurements allow to calculate reliable MRTs in 20 groundwater bodies covering 13% (approx.10719 km2) of the Austrian territory. Altogether 401 groundwater wells and springs from the existing groundwater monitoring network were analysed for δ18O (n=1500), 3H (n=800) and 3He (n=327) since 2006. Considering both the fact that monitoring wells may have multiple or long well screens and the inherent uncertainties of groundwater age dating techniques, age estimations were classified into 5 categories of short ( 50years) mean residence times for each monitoring site. Subsequently, median values of the MRT categories were assigned to each investigated groundwater body. These are valuable information to fix extraction rates, to set measures to improve the land use and groundwater protection and to validate hydrogeological concepts. Generally, MRTs of groundwater bodies increase from shallow Alpine groundwater bodies over deeper Alpine valley-aquifers to longer MRTs in the Pannonian climate range in the east of Austria.

  8. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  9. An expert system supporting decision making process for sustainable groundwater use in main alluvial aquifers in Slovenia