Science.gov

Sample records for additional heat sink

  1. Microchannel heat sink assembly

    DOEpatents

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  2. Microchannel heat sink assembly

    DOEpatents

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  3. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  4. Heat sinking for printed circuitry

    DOEpatents

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  5. Heat sink effects in VPPA welding

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    The development of a model for prediction of heat sink effects associated with the Variable Polarity Plasma Arc (VPPA) Welding Process is discussed. The long term goal of this modeling is to provide means for assessing potential heat sink effects and, eventually, to provide indications as to changes in the welding process that could be used to compensate for these effects and maintain the desired weld quality. In addition to the development of a theoretical model, a brief experimental investigation was conducted to demonstrate heat sink effects and to provide an indication of the accuracy of the model.

  6. Honeycomb-Fin Heat Sink

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Improved finned heat sink for electronic components more lightweight, inexpensive, and efficient. Designed for use with forced air, easily scaled up to dissipate power up to few hundred watts. Fins are internal walls of aluminum honeycomb structure. Cell structure gives strength to thin aluminum foil. Length of channels chosen for thermodynamic efficency; columns of cells combined in any reasonable number because flowing air distributed to all. Heat sink cools nearly as effectively at ends as near its center, no matter how many columns of cells combined.

  7. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1984-07-03

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again. 4 figs.

  8. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  9. Multi-lead heat sink

    DOEpatents

    Roose, Lars D.

    1984-01-01

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  10. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  11. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  12. Fusible heat sink for EVA thermal control

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1975-01-01

    The preliminary design and analysis of a heat sink system utilizing a phase change slurry material to be used eventually for astronaut cooling during manned space missions is described. During normal use, excess heat in the liquid cooling garment coolant is transferred to a reusable/regenerable fusible heat sink. Recharge is accomplished by disconnecting the heat sink from the liquid cooling garment and placing it in an on board freezer for simultaneous slurry refreeze and power supply electrical rechange.

  13. Electrical assembly having heat sink protrusions

    SciTech Connect

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2009-04-21

    An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.

  14. Forced air heat sink apparatus

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  15. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  16. Electronic modules easily separated from heat sink

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.

  17. Mounting for diodes provides efficient heat sink

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Efficient heat sink is provided by soldering diodes to metal support bars which are brazed to a ceramic base. Electrical connections between diodes on adjacent bars are made flexible by metal strips which aid in heat dissipation.

  18. Copper foil provides uniform heat sink path

    NASA Technical Reports Server (NTRS)

    Phillips, I. E., Jr.; Schreihans, F. A.

    1966-01-01

    Thermal path prevents voids and discontinuities which make heat sinks in electronic equipment inefficient. The thermal path combines the high thermal conductivity of copper with the resiliency of silicone rubber.

  19. Design Considerations for Fusible Heat Sink

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.

    2011-01-01

    Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.

  20. Direct-Interface, Fusible Heat Sink

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, Bruce

    1992-01-01

    Nonventing, regenerable, and self-contained heat sink absorbs heat in melting of ice by direct contact with forced flow of warm water. Elastic bladder contains water and ice. Connectors designed to prevent leaks easily connectable and disconnectable. Female portions embedded in wall of heat sink. After water frozen, male portions inserted and flow of warm water initiated. Water melts ice in and around female connectors, then flow passes between ice and bladder from inlet to outlet. Component of low-power portable refrigerator to operate for short time in picnic or camp setting.

  1. Heat transfer coefficient of nanofluids in minichannel heat sink

    NASA Astrophysics Data System (ADS)

    Utomo, Adi T.; Zavareh, Ashkan I. T.; Poth, Heiko; Wahab, Mohd; Boonie, Mohammad; Robbins, Phillip T.; Pacek, Andrzej W.

    2012-09-01

    Convective heat transfer in a heat sink consisting of rectangular minichannels and cooled with alumina and titania nanofluids has been investigated experimentally and numerically. Numerical simulations were carried out in a three dimensional domain employing homogeneous mixture model with effective thermo-physical properties of nanofluids. The predictions of base temperature profiles of the heat sink cooled with both water and nanofluids agree well with the experimental data. Experimental and numerical results show that the investigated nanofluids neither exhibits unusual enhancement of heat transfer coefficient nor decreases the heat sink base temperature. Although both nanofluids showed marginal thermal conductivity enhancements, the presence of solid nanoparticles lowers the specific heat capacity of nanofluids offseting the advantage of thermal conductivity enhancement. For all investigated flow rates, the Nusselt number of both nanofluids overlaps with that of water indicating that both nanofluids behave like single-phase fluids.

  2. Water/Ice Heat Sink With Quick-Connect Couplings

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, Bruce

    1996-01-01

    Report presents additional detailed information on apparatus described in "Direct-Interface, Fusible Heat Sink" (ARC-11920). Describes entire apparatus, with special emphasis on features of quick-disconnect couplings governing flow of water under various operating conditions and plumbing configuration.

  3. Research on HOPE heat sink device

    NASA Astrophysics Data System (ADS)

    Itagaki, Haruaki; Yamamoto, Takanobu; Iida, Tooru; Ishii, Yasuo

    1992-08-01

    An overview of the research on H-2 Orbiting Plane (HOPE) Heat Sink Device (HSD) is presented. A spray nozzle was trial produced and tested to improve spray distribution, and data for assessing spray distribution under presumed heating surface temperature distribution were obtained. Fundamental tests on evaporation and cooling (cooled fluid was freon) were conducted simulating dome flushing evaporation system for high vacuum HSD with the spray nozzle and the dome configuration were conducted to assess its cooling characteristics and frosting phenomena. Sprayed water flow rate via spray cooling efficiency and sprayed water flow rate via freon inlet temperature at the frosting limit relationships were obtained. HSD systems for low-altitude use and oil cooling were traded off.

  4. Facile synthesis of graphene sheets for heat sink application

    NASA Astrophysics Data System (ADS)

    Lin, Yeou-Fu; Hsieh, Chien-Te; Wai, Rong-Jong

    2015-05-01

    A mechanical cleavage (MC) approach has been demonstrated to synthesize graphene nanosheets (GNs) as heat sink materials from artificial graphite paper (GP). The facile MC method is composed of three main steps: GP isolation, GP exfoliation, and GN collection. The method is capable of preparing few layers of GNs repeatedly without using chemical oxidizing agents and costly deposition apparatus. The as-prepared GN powders are well characterized by X-ray diffraction and Raman spectroscopy. On the basis of the experimental results, the MC method shows a great feasibility to synthesize high-quality GN products with high repeatability and environmental friendliness. We also report that the addition of GN onto Cu foil induces an improved capability for heat dissipation, as compared with original GP and Cu heat foil. According to the calculations of Fourier's law, the thermal conductivity of the GN/Cu composite heat sink can reach as high as 2142 W/m K, leading to 26% increase of thermal conductivity compared to the GP heat sink.

  5. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  6. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1989-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  7. Mounting improves heat-sink contact with beryllia washer

    NASA Technical Reports Server (NTRS)

    1966-01-01

    To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.

  8. Thermal Transport Model for Heat Sink Design

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.

    2009-01-01

    A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.

  9. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    SciTech Connect

    Wu, Bingjing; Zhao, Jianlin Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

  10. The planetary distribution of heat sources and sinks during FGGE

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Wei, M. Y.

    1985-01-01

    Heating distributions from analysis of the National Meteorological Center and European Center for Medium Range Weather Forecasts data sets; methods used and problems involved in the inference of diabatic heating; the relationship between differential heating and energy transport; and recommendations on the inference of heat soruces and heat sinks for the planetary show are discussed.

  11. BIOLOGICAL SINKS FOR N ADDITIONS TO A FORESTED CATCHMENT

    EPA Science Inventory

    The goal of our research is to identify and quantify sinks for experimental Nitrogen (N) additions to a forested catchment at the Bear Brooks Watershed in Maine (BBWM) where background N deposition rates are low (< 4 kg ha-1 yr1). itrogen is added bimonthly to an experimental cat...

  12. 11. View from heat sink, south oblique of missile site ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View from heat sink, south oblique of missile site control building - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND

  13. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  14. 6. View from heat sink (south to north), west oblique ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View from heat sink (south to north), west oblique of missile site control building - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND

  15. 7. View from heat sink (south to north), west oblique ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View from heat sink (south to north), west oblique of missile site control building, emphasizing southwest face - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND

  16. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  17. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  18. The effect of heat sinks in GTA microwelding

    SciTech Connect

    Knorovsky, G.A.; Burchett, S.N.

    1989-01-01

    When miniature devices containing glass-to-metal seals are closure welded it is accepted practice to incorporate thermal heat sinks into the fixturing. This is intended to assure that the heat from gas tungsten arc (GTA) welding will not cause thermal stress-induced cracking of the seals and loss of hermeticity. The design of these heat sinks has never been systematically studied; instead only ''engineering horse sense'' has been applied. This practice has been successful in the past; however, the component being GTA welded have become smaller and more complex (i.e., more pins) and glass cracking problems are being encountered. The technology of producing glass seal-containing lids (called ''headers'') has benefited from finite element analyses in deciding how to optimally dimension pin-to-glass seal diameter ratios and glass-to-metal thickness ratios in order to minimize thermal stresses locked in during manufacture. It appeared likely that an analysts of the stresses generated by welding would also be beneficial. Recently, computer speed and code capabilities have increased to the point where finite element analysis of a close simulation of real hardware can be made, including the effect of external heat sinks. The work reported here involves an analysis (with some supporting experimental data) of a miniature thermal battery which encountered glass cracking problems. In the course of the analysis various heat sink practices were examined. Among other findings, through-thickness thermal gradients in a header with a heat sink were found to equal in-plane thermal gradients in a header without any heat sinking at the glass seal positions. Also noted were significant variations due to relatively minor changes in the weld preparation geometry. A summary of good practice for heat sinking will be presented. 4 refs., 6 figs., 2 tabs.

  19. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  20. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  1. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  2. Enhancement of heat exchange by on-chip engineered heat sink structure

    NASA Astrophysics Data System (ADS)

    Chong, Yonuk; Dresselhaus, Paul D.; Benz, Samuel P.

    2007-03-01

    We report a method for improving heat exchange between cryo- cooled high power consuming devices and coolant. We fabricated a micro-machined monolithic heat sink structure on a high integration density superconducting Josephson device, and studied the effect of the heat sink on cooling of the device in detail. The monolithic heat sink structure showed a significant enhancement of cooling efficiency, which markedly improved the chip operation. The detailed mechanism of the enhancement still needs further modeling and study in order to optimize the design of the heat sink structure.

  3. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  4. Phase Change Material Heat Sink for an ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  5. Enhanced heat sink with geometry induced wall-jet

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mahamudul; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M.

    2016-07-01

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  6. Effects Of Heat Sinks On VPPA Welds

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  7. Reparable, high-density microelectronic module provides effective heat sink

    NASA Technical Reports Server (NTRS)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  8. Graphite Fluoride Fiber Composites For Heat Sinking

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  9. Assembly of opto-electronic module with improved heat sink

    DOEpatents

    Chan, Benson; Fortier, Paul Francis; Freitag, Ladd William; Galli, Gary T.; Guindon, Francois; Johnson, Glen Walden; Letourneau, Martial; Sherman, John H.; Tetreault, Real

    2004-11-23

    A heat sink for a transceiver optoelectronic module including dual direct heat paths and a structure which encloses a number of chips having a central web which electrically isolates transmitter and receiver chips from each other. A retainer for an optical coupler having a port into which epoxy is poured. An overmolded base for an optoelectronic module having epoxy flow controller members built thereon. Assembly methods for an optoelectronic module including gap setting and variation of a TAB bonding process.

  10. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry.

    PubMed

    Kumar, Varun; Shakher, Chandra

    2015-02-20

    This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated. PMID:25968185

  11. Ultimate Heat Sink Cooling Pond and Spray Pond Analysis Models.

    1999-05-02

    Version 00 Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function ofmore » windspeed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted.« less

  12. Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique

    NASA Astrophysics Data System (ADS)

    Xu, Tiejun; Huang, Shenghong; Xie, Han; Song, Yuntao; Zhan, Ping; Ji, Xiang; Gao, Daming

    2011-12-01

    Considering utilization of the original chromium-bronze material, two processing techniques including hydraulic expansion and high temperature vacuum welding were proposed for the optimization of heat-sink structure in EAST. The heat transfer performance of heat-sink with or without cooling tube was calculated and different types of connection between tube and heat-sink were compared by conducting a special test. It is shown from numerical analysis that the diameter of heat-sink channel can be reduced from 12 mm to 10 mm. Compared with the original sample, the thermal contact resistance between tube and heat-sink for welding sample can reduce the heat transfer performance by 10%, while by 20% for the hydraulic expansion sample. However, the welding technique is more complicated and expensive than hydraulic expansion technique. Both the processing technique and the heat transfer performance of heat-sink prototype should be further considered for the optimization of heat-sink structure in EAST.

  13. Evaluation of Heat Transfer Augmentation in a Nanofluid-Cooled Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Abbassi, Hessamoddin; Aghanajafi, Cyrus

    2006-12-01

    Present investigation deals with appraising heat transfer enhancement of single phase microchannel heat sink (MCHS) by ultra fine Cu particle incorporation in base coolant fluid. The particle diameter is of nanometer size and base fluid in combination of nanoparticles is called nanofluid. Governing equations for fluid flow and heat transfer are based on well established "porous medium model" and accordingly, modified Darcy equation and two-equation model are employed. Appropriate equations for both fluid flow and heat transfer are derived and cast into dimensionless form. Velocity profile is obtained analytically and in order to solve conjugate heat transfer problem a combined analytical-numerical approach is employed. For heat transfer analysis, thermal dispersion model is adopted and latest proposed model for effective thermal conductivity - which considers the salient effect of interfacial shells between particles and base fluid - is integrated into model. The effects of dispersed particles concentration, thermal dispersion coefficient and Reynolds number are investigated on thermal fields and on thermal performance of MCHS. Additionally, the impact of turbulent heat transfer on heat transfer enhancement is considered.

  14. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  15. Heat transfer performance of a novel double-layer mini-channel heat sink

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Zhou, Rui; Bai, Pengfei; Fu, Ting; Lu, Longsheng; Zhou, Guofu

    2016-07-01

    High pressure drop and significant non-uniformity in temperature distribution along the streamwise direction are still challenges to the design of mini-channel heat sink. High density mini-channel arrays with high liquid-wall contact area are usually pursued in a conventional single-layer design of heat sink, which also inevitably brings high pressure drop. A novel double-layer structured heat sink is proposed in this paper. Four heat sinks with various designs in mini-channel density and flow direction were fabricated and studied experimentally on the heat transfer performance. The single factor of heat load does not show obvious effect on the overall thermal resistance of the heat sinks. On the other hand, slight decrease in thermal resistance was found with the increase in heat load at high flow rates. Moreover, a computational fluid dynamics modeling work was conducted. The results indicate that the parallel cross-flow field regulated by the double-layer structure enhances the heat exchange in both horizontal and vertical directions and consequently gives an uniform temperature distribution and high heat transfer efficiency.

  16. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    NASA Astrophysics Data System (ADS)

    O'Flaherty, K.; Punch, J.

    2014-07-01

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m2), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  17. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  18. Liquid metal heat sink for high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  19. A direct-interface fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototpye with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.

  20. A direct-interface, fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some of the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototype with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.

  1. Heat sink structural design concepts for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.

    1977-01-01

    Hypersonic research aircraft design requires careful consideration of thermal stresses. This paper relates some of the problems in a heat sink structural design that can be avoided by appropriate selection of design options including material selection, design concepts, and load paths. Data on several thermal loading conditions are presented on various conventional designs including bulkheads, longerons, fittings, and frames. Results indicate that conventional designs are inadequate and that acceptable designs are possible by incorporating innovative design practices. These include nonintegral pressure compartments, ball-jointed links to distribute applied loads without restraining the thermal expansion, and material selections based on thermal compatibility.

  2. Heat-load simulator for heat sink design

    NASA Technical Reports Server (NTRS)

    Dunleavy, A. M.; Vaughn, T. J.

    1968-01-01

    Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.

  3. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    NASA Astrophysics Data System (ADS)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  4. A fusible heat sink concept for extravehicular activity /EVA/ thermal control

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1976-01-01

    This paper describes the preliminary design and analysis of a heat sink system, utilizing a phase change slurry material, to be used for astronaut and equipment cooling during manned space missions. During normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a regenerable fusible heat sink. Recharge is accomplished by disconnecting the heat sink from the liquid cooling garment and placing it in an onboard freezer for simultaneous slurry refreeze and power supply recharge.

  5. FEM simulation for cold press forging forming of the round-fin heat sink

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  6. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    NASA Astrophysics Data System (ADS)

    Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.

    2002-08-01

    Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.

  7. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. PMID:25146282

  8. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  9. Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board

    NASA Technical Reports Server (NTRS)

    Seaward, R. C.

    1967-01-01

    Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.

  10. Heat Transfer and Flow Structure Evaluation of a Synthetic Jet Emanating from a Planar Heat Sink

    NASA Astrophysics Data System (ADS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-07-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  11. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  12. Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Niemeyer, W. Lee

    1997-01-01

    In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.

  13. Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink

    NASA Astrophysics Data System (ADS)

    Chiba, Hiroshi; Ogushi, Tetsuro; Nakajima, Hideo; Ikeda, Teruyuki

    Lotus-type porous copper is a form of copper that includes many straight pores, which are produced by the precipitation of supersaturated gas dissolved in the molten metal during solidification. The lotus-type porous copper is attractive as a heat sink because a higher heat transfer capacity is obtained as the pore diameter decreases. We investigate a fin model for predicting the heat transfer capacity of the lotus-type porous copper. Its heat transfer capacity is verified to be predictable via the straight fin model, in which heat conduction in the porous metal and the heat transfer to the fluid in the pores are taken into consideration by comparison with a numerical analysis. We both experimentally and analytically determine the heat transfer capacities of three types of heat sink: with conventional groove fins, with groove fins that have a smaller fin gap (micro-channels) and with lotus-type porous copper fins. The conventional groove fins have a fin gap of 3mm and a fin thickness of 1mm, the micro-channels have a fin gap of 0.5mm and a fin thickness of 0.5mm, and the lotus-type porous copper fins have pores with a diameter of 0.3mm and a porosity of 0.39. The lotus-type porous copper fins were found to have a heat transfer capacity 4 times greater than the conventional groove fins and 1.3 times greater than the micro-channel heat sink under the same pumping power.

  14. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  15. Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks

    NASA Astrophysics Data System (ADS)

    Marron, Craig; Persoons, Tim

    2014-07-01

    Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.

  16. Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick

    2000-01-01

    Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.

  17. Mathematical model and computation of heat distribution for LED heat sink

    NASA Astrophysics Data System (ADS)

    Zhu, J. X.; Sun, L. X.

    2016-05-01

    The light-emitting diode (LED) has many advantages over conventional lighting including lower energy consumption, longer lifetime, improved physical robustness, smaller size, and faster switching. It is noted, however, that its efficiency and lifetime will be degraded severely when it is operated at high temperature. Both previous simulations and experimental results have already indicated that the heat transfer in vertical direction of the LED lamp by conduction is the critical component. In this paper, a simplified mathematical model of the heat source and the conduction distribution for the LED heat sink is developed to estimate the heat distribution in the spherical coordinate system, which can be used for the shape optimization design. Furthermore, the model of the heat conduction equation is solved numerically with the explicit finite-difference method (EFDM). Several numerical simulations show that the model performs well when considering the real situation, so our method is feasible and effective.

  18. Applications of multifunctional polymer-matrix composites in hybrid heat sinks

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent

    2012-04-01

    Designers of electronic devices and telecommunications equipment have used three-dimensional chip architecture, comprised of a vertically integrated stack of chips, to increase the number of transistors on integrated circuits. These latest chips generate excessive amount of heat, and thus can reach unacceptably high temperatures. In this context, this research aims to develop thermally conductive liquid crystal polymer (LCP)/hexagonal boron nitride (hBN) composite films to replace the traditionally-used Kapton films that satisfy the electrical insulation requirements for the attachment of heat sinks to the chips without compromising the heat dissipation performance. Parametric study was conducted to elucidate the effects of hBN contents on the heat dissipation ability of the composite. The performance of the hybrid heat sinks were experimentally simulated by measuring the temperature distribution of the hybrid heat sinks attached to a 10 W square-faced (i.e., 10 cm by 10 cm) heater. Experimental simulation show that the maximum temperature of the heater mounted with a hybrid heat sink reduced with increased hBN content. It is believed the fibrillation of LCP matrix leads to highly ordered structure, promoting heat dissipation ability of the electrically insulating pad of the hybrid heat sink.

  19. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  20. Theoretical determination of design parameters for an arrayed heat sink with vertical plate fins

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Jiun; Chen, Yi-Jin

    2016-05-01

    This paper employs theoretical approach to determine the adequate design parameters of an arrayed plate-fins heat sink based on maximizing heat flow. According to analyzed results, increasing the dimensions of configurative parameters does not always yield the significant increase in the heat flow. As the fin length and fin space increases until a critical value, the heat flow will significantly reduce the increment or decay, respectively.

  1. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  2. Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis

    NASA Astrophysics Data System (ADS)

    Rahimi-Gorji, M.; Pourmehran, O.; Hatami, M.; Ganji, D. D.

    2015-02-01

    In this work, an analytical investigation of the heat transfer for the microchannel heat sink (MCHS) cooled by different nanofluids (Cu, Al2O3, Ag, TiO2 in water and ethylene glycol as base fluids) is studied by the porous media approach and the Galerkin method and results are compared with numerical procedure. Response surface methodology (RSM) is applied to obtain the desirability of the optimum design of the channel geometry. The effective thermal conductivity and viscosity of the nanofluid are calculated by the Patel et al. and Khanafer et al. model, respectively, and MCHS is considered as a porous medium, as proposed by Kim and Kim. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The effects of the nanoparticles volume fraction, nanoparticle type and size, base fluid type, etc., on the temperature distribution, velocity and Nusselt number are considered. Results show that, by increasing the nanoparticles volume fraction, the Brownian movement of the particles, which carries the heat and distributes it to the surroundings, increases and, consequently, the difference between coolant and wall temperature becomes less.

  3. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    SciTech Connect

    Micheli, Leonardo Mallick, Tapas K.; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  4. Study of heat sink thermal protection systems for hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  5. Modeling of a heat sink and high heat flux vapor chamber

    NASA Astrophysics Data System (ADS)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  6. Light weight Heat-Sink, Based on Phase-Change-Material for a High powered - Time limited application

    NASA Astrophysics Data System (ADS)

    Leibovitz, Johnathan

    2002-01-01

    When designing components for an aerospace application, whether it is an aircraft, satellite, space station or a launcher - a major considered parameter is its weight . For a combat aircraft, an addition of such a lightweight Heat sink to a high power component, can extend significantly avionics performance at very high altitude - when cooling means are poor. When dealing with a satellite launcher, each pound saved from the launcher in favor of the satellite - may contribute, for instance, several months of satellite life. The solution presented in this paper deals with an electronic device producing high power, for limited time and requires relatively low temperature base plate. The requirements demand that a base plate temperature should not exceed 70°c while exposed to a heat- flux of about 1.5W/cm^2 from an electronic device, during approximately 14 minutes. The classical solution for this transient process requires an Aluminum block heat sink of about 1100 grams . The PCM based heat-sink gives the solution for this case with about 400 grams only with a compact package. It also includes an option for cooling the system by forced convection (and in principle by radiation), when those means of heat dissipation - are available. The work includes a thermal analysis for the Aluminum - PCM heat sink and a series of validation tests of a model. The paper presents results of the analysis and results of the tests, including comparison to the classical robust solution. A parametric performance envelope for customizing to other potential applications is presented as well.

  7. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2006-03-21

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  8. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  9. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2007-01-23

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  10. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2000-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  11. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2002-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  12. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2007-01-02

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  13. Preliminary Trade Study of Phase Change Heat Sinks

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Leimkeuhler, Thomas; Quinn, Gregory; Golliher, Eric

    2006-01-01

    For short durations, phase change based heat rejection systems are a very effective way of removing heat from spacecraft. Future NASA vehicles, such as the Crew Exploration Vehicle (CEV), will require non-radiative heat rejection systems during at least a portion of the planned mission, just as their predecessors have. While existing technologies are available to modify, such as Apollo era sublimators, or the Space Shuttle Flash Evaporator System (FES), several new technologies are under development or investigation to progress beyond these existing heat rejection systems. Examples include the Multi-Fluid Evaporator developed by Hamilton Sundstrand, improvements upon the Contaminant Insensitive Sublimator originally developed for the X-38 program, and a Compact Flash Evaporator System (CFES). Other possibilities evaluate new ways of operating existing designs. The new developments are targeted at increasing operating life, expanding the environments in which the system can operate, improving the mass and volume characteristics, or some combination of these or other improvements. This paper captures the process and results of a preliminary trade study performed at Johnson Space Center to compare the various existing and proposed phase change based heat rejection systems for the CEV. Because the new systems are still in development, and the information on existing systems is extrapolation, this trade study is not meant to suggest a final decision for future vehicles. The results of this early trade study are targeted to aid the development efforts for the new technologies by identifying issues that could reduce the chances of selection for the CEV.

  14. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-Sheng

    2015-11-01

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m-1 K-1 at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.

  15. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.

    PubMed

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng

    2015-11-28

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics. PMID:26498343

  16. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling.

    PubMed

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-01-01

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types. PMID:25912351

  17. Heat Transfer and Friction Characteristics of the Microfluidic Heat Sink with Variously-Shaped Ribs for Chip Cooling

    PubMed Central

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-01-01

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types. PMID:25912351

  18. The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect

    NASA Astrophysics Data System (ADS)

    Lelea, Dorin; Cioabla, Adrian Eugen

    2011-07-01

    The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.

  19. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and applicants may use to implement general design criteria (GDC) that are applicable to the ultimate......

  20. Evaluation of heat sink materials for thermal management of lithium batteries

    NASA Technical Reports Server (NTRS)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  1. Effects of heat sink compounds on contact resistance of porous media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High and low-conductivity heat sink compounds were applied in succession on a thermal probe, which was then used to determine the thermal conductivity and thermal diffusivity of some porous media at room temperature. The experiment was conducted separately under different packing densities and water...

  2. Experimental study on thermal performance of heat sinks: the effect of hydraulic diameter and geometric shape

    NASA Astrophysics Data System (ADS)

    Marzougui, M.; Hammami, M.; Maad, R. Ben

    2015-12-01

    The main purpose of this study is focused on experimental investigation of cooling performance of various minichannel designs. The hydraulic dimension of one of the heat sink is 3 mm while that of the other is 2 mm. Deionised water was used as the coolant for studies conducted in both the heat sinks. Tests were done for a wide range of flow rates (0.7 l-9 l h-1) and heat inputs (5-40 kW/m2). Irrespective of the hydraulic diameter and the geometric configuration, profits and boundaries of each channel shape are analyzed and discussed in the clarity of experimental data. The total thermal resistance and the average heat transfer coefficient are compared for the various channels inspected.

  3. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  4. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung

    2013-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  5. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung

    2012-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  6. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  7. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  8. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    PubMed

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture. PMID:24745228

  9. Multi-heat addition turbine engine

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C. (Inventor); Brabbs, Theodore A. (Inventor)

    1993-01-01

    A multi-heat addition turbine engine (MHATE) incorporates a plurality of heat addition devices to transfer energy to air and a plurality of turbines to extract energy from the air while converting it to work. The MHATE provides dry power and lower fuel consumption or lower combustor exit temperatures.

  10. Improving the efficiency of high-power diode lasers using diamond heat sinks

    SciTech Connect

    Parashchuk, Valentin V; Baranov, V V; Telesh, E V; Mien, Vu Doan; Luc, Vu Van; Truong, Pham Van; Belyaeva, A K

    2010-06-23

    Using multifunctional ion beam and magnetron sputtering systems, we have developed chemical and vacuum techniques for producing metallic coatings firmly adherent to various surfaces, with application to copper and diamond heat sinks for diode lasers. Conditions have been optimised for mounting diode lasers and bars using the proposed metallisation processes, and significant improvements in the output parameters of the devices have been achieved. The power output of cw laser diodes on diamond heat sinks increases by up to a factor of 2, the linear (working) portion of their power-current characteristic becomes markedly broader, and their slope efficiency increases by a factor of 1.5 - 2 relative to that of lasers on copper heat spreaders. The use of diamond heat sinks extends the drive current range of pulsed diode bars by a factor of 2 - 3 and enables them to operate at more than one order of magnitude longer pump pulse durations (up to milliseconds) when the pulse repetition rate is at least 10 Hz. (lasers)

  11. A substrate-free optical readout focal plane array with a heat sink structure

    NASA Astrophysics Data System (ADS)

    Rmwen, Liu; Yanmei, Kong; Binbin, Jiao; Zhigang, Li; Haiping, Shang; Dike, Lu; Chaoqun, Gao; Dapeng, Chen; Qingchuan, Zhang

    2013-02-01

    A substrate-free optical readout focal plane array (FPA) operating in 8-12 μm with a heat sink structure (HSS) was fabricated and its performance was tested. The temperature distribution of the FPA with an HSS investigated by using a commercial FLIR IR camera shows excellent uniformity. The thermal cross-talk effect existing in traditional substrate-free FPAs was eliminated effectively. The heat sink is fabricated successfully by electroplating copper, which provides high thermal capacity and high thermal conductivity, on the frame of substrate-free FPA. The FPA was tested in the optical-readout system, the results show that the response and NETD are 13.6 grey/K (F / # = 0.8) and 588 mK, respectively.

  12. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; Smith, Stephen

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  13. [Urban heat island effect based on urban heat island source and sink indices in Shenyang, Northeast China].

    PubMed

    Li, Li-Guang; Xu, Shen-Lai; Wang, Hong-Bo; Zhao, Zi-Qi; Cai, Fu; Wu, Jin-Wen; Chen, Peng-Shi; Zhang, Yu-Shu

    2013-12-01

    Based on the remote images in 2001 and 2010, the source and sink areas of urban heat island (UHI) in Shenyang City, Northeast China were determined by GIS technique. The effect of urban regional landscape pattern on UHI effect was assessed with land surface temperature (LST), area rate index (CI) of the source and sink areas and intensity index (LI) of heat island. The results indicated that the land use type changed significantly from 2001 to 2010, which significantly changed the source and sink areas of UHI, especially in the second and third circle regions. The source and sink areas were 94.3% and 5.7% in the first circle region, 64.0% and 36.0% in the third circle region in 2001, while they were 93.4% and 6.6%, 70.2% and 29.8% in 2010, respectively. It suggested that the land use pattern extended by a round shape in Shenyang led to the corresponding UHI pattern. The LST in the study area tended to decrease from the first circle region to the third. The UHI intensity was characterized with a single center in 2001 and with several centers in 2010, and the grade of UHI intensity was in a decreasing trend from 2001 to 2010. The absolute value of CI increased from the first circle region to the third, and the L1 was close to 1, suggesting the change in land use pattern had no significant influence on UHI in Shenyang. PMID:24697063

  14. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2016-06-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  15. Innovative hybrid heat sink materials with high thermal conductivities and tailored CTE

    NASA Astrophysics Data System (ADS)

    Kitzmantel, M.; Neubauer, E.

    2015-02-01

    This paper talks about high performance heat sinks and heat spreaders made by hybrid structures based on metaldiamond composites. Thermal conductivities can be tuned between 450 and 650 W/mK while maintaining customizable thermal expansion of 6-10 ppm/K (@30°C). Using different hybrid structures in combination with the metal-diamond core significant changes in thermal properties can be identified. Applications targeted are LED, disc laser and laser diode heatsinks with these high performance inserts without the need of CTE matched submounts.

  16. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  17. Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system

    SciTech Connect

    Mauro, A.W.; Toto, D.; Thome, J.R.; Vanoli, G.P.

    2010-01-15

    An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 {mu}m wide and 756 {mu}m deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m{sup 2} s, inlet subcoolings from -25 to -5 K and saturation temperatures from 20 to 50 C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet-two outlets) compared to the single inlet-single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow. (author)

  18. Hot spot mitigation in microprocessors by application of single phase microchannel heat sink and microprocessor floor planning

    NASA Astrophysics Data System (ADS)

    Chauhan, Anjali

    Poor thermal management in high frequency microprocessors results in thermal and mechanical stresses in the chip due to leakage losses, occurrence of hot spots and large temperature gradients. A micro-fluidics based cooling scheme of single phase microchannel heat sinks is found to be most promising cooling solution. Microchannel heat sinks have high cooling capability because of its high surface area to volume ratio and high heat transfer coefficient. Besides the fluid flow, heat transfer mechanism in microchannel heat sinks is affected by its installation on the microprocessor chip. Since microchannel heat sinks are capable of reducing only the average temperature rise of the microprocessor chip, technique of microprocessor floor planning can be applied to reduce hot spot temperature, mitigate multiple hot spots and reduce large temperature gradients on the surface of microprocessor chip. In this study, adequate installation of the microchannel heat sink on the processor chip has been proposed to extract maximum heat from the device. Microprocessor floor planning has also been explored to obtain an optimum chip floor plan on grounds of low performance penalty, low hot spot temperature and minimum number hot spots. The dependence of maximum hot spot temperature of the chip on pressure gradient across the microchannels has also been discussed.

  19. Study of structural active cooling and heat sink systems for space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.

  20. Optimal performance of heat engines with a finite source or sink and inequalities between means

    NASA Astrophysics Data System (ADS)

    Johal, Ramandeep S.

    2016-07-01

    Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T+ and T-(sink at T-, or, when the reservoir is an infinite sink at T- and the system acts as a source at T+? It is found that in order to compare the total extracted work, and the corresponding efficiency in the two cases, we need to consider three regimes as suggested by an inequality, the so-called arithmetic mean-geometric mean inequality, involving the arithmetic and the geometric means of the two temperature values T+ and T-. In each of these regimes, the efficiency at total work obeys certain universal bounds, given only in terms of the ratio of initial temperatures. The general theoretical results are exemplified for thermodynamic systems for which internal energy and temperature are power laws of the entropy. The conclusions may serve as benchmarks in the design of heat engines, where we can choose the nature of the finite system, so as to tune the total extractable work and/or the corresponding efficiency.

  1. Development and Processing of Novel Aluminum Powder Metallurgy Materials for Heat Sink Applications

    NASA Astrophysics Data System (ADS)

    Smith, L. J. B.; Corbin, S. F.; Hexemer, R. L.; Donaldson, I. W.; Bishop, Donald Paul

    2014-02-01

    The objective of this research was to design aluminum powder metallurgy (PM) alloys and processing strategies that yielded sintered products with thermal properties that rivaled those of the cast and wrought aluminum alloys traditionally employed in heat sink manufacturing. Research has emphasized PM alloys within the Al-Mg-Sn system. In one sub-theme of research, the general processing response of each PM alloy was investigated through a combination of sintering trials, sintered density measurements, and microstructural assessments. In the second, the thermal properties of sintered products were studied in detail. Thermal conductivity was first determined using a calculated approach through discrete measurements of specific heat capacity, thermal diffusivity, and density and subsequently verified using a transient plane source technique on larger specimens. Experimental PM alloys achieved >99 pct theoretical density and exhibited thermal conductivity that ranged from 179 to 225 W/m K. Thermal performance was largely dominated by the amount of magnesium present within the aluminum grains and, in turn, bulk alloy chemistry. Data confirmed that the novel PM alloys were highly competitive with even the most advanced heat sink materials such as wrought 6063 and 6061.

  2. Optimal performance of heat engines with a finite source or sink and inequalities between means.

    PubMed

    Johal, Ramandeep S

    2016-07-01

    Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(sink at T_{-}, or, when the reservoir is an infinite sink at T_{-} and the system acts as a source at T_{+}? It is found that in order to compare the total extracted work, and the corresponding efficiency in the two cases, we need to consider three regimes as suggested by an inequality, the so-called arithmetic mean-geometric mean inequality, involving the arithmetic and the geometric means of the two temperature values T_{+} and T_{-}. In each of these regimes, the efficiency at total work obeys certain universal bounds, given only in terms of the ratio of initial temperatures. The general theoretical results are exemplified for thermodynamic systems for which internal energy and temperature are power laws of the entropy. The conclusions may serve as benchmarks in the design of heat engines, where we can choose the nature of the finite system, so as to tune the total extractable work and/or the corresponding efficiency. PMID:27575093

  3. Aluminum reference plate, heat sink, and actuator design for an adaptive secondary mirror

    NASA Astrophysics Data System (ADS)

    del Vecchio, Ciro

    1998-09-01

    The design of an adaptive secondary mirror has to satisfy many requirements coming from different fields. The thin mirror must be actuated very precisely with a large bandwidth. The reference plate has to provide a high stability reference for the optical surfaces. The local seeing is not to be degraded by any significant thermal perturbation. In this article, the performances of a configuration with a single aluminum reference plate, that also provides the heat sink, are computed starting from the input power coming from the magnetic actuators, whose magnetic design has been revised.

  4. Analysis of a passive heat sink for temperature stabilization of high-power LED bulbs

    NASA Astrophysics Data System (ADS)

    Balvís, Eduardo; Bendaña, Ricardo; Michinel, Humberto; Fernández de Córdoba, Pedro; Paredes, Angel

    2015-04-01

    In this paper we present a numerical analysis and experimental measurements of the temperature stabilization of high-power LED chips that we have obtained by employing an aluminum passive heat sink, designed to be used in a compact light bulb configuration. We demonstrate that our system keeps the temperature of the LED chip well-below 70° C yielding long-term operation of the device. Our simulations have been performed for a low-cost device ready to install in public streetlights. The experimental measurements performed in different configurations show a nice agreement with the numerical calculations.

  5. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    SciTech Connect

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  6. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  7. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Hussain, S.; Sagheer, M.

    2016-06-01

    In this study, we explore the unsteady flow of viscous nanofluid driven by an inclined stretching sheet. The novelty of the present study is to account for the effect of a non-uniform heat source/sink in a thermally and solutally stratified magnetonanofluid. Governing system of nonlinear partial differential equations is converted into a system of nonlinear ordinary differential equations. Solution of the transformed system is obtained using RK4 method with shooting technique. It is observed that increase in the values of thermal and mass stratification parameter reduce the velocity profile and increase in the values of variable thermal conductivity parameter and non-uniform heat source/sink parameters enhance the temperature distribution. Moreover, skin friction coefficient, Nusselt number and Sherwood number are discussed. Obtained results are displayed both graphically and in tabular form to illustrate the effect of different parameters on the velocity, temperature and concentration profiles. Numerical results are compared with previous published results and found to be in good agreement for special cases of the emerging parameters.

  8. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  9. Ultimate Heat Sink Thermal Performance and Water Utilization: Measurements on Cooling and Spray Ponds

    SciTech Connect

    Athey, G. F.; Hadlock, R. K.; Abbey, O. B.

    1982-02-01

    A data acquisition research program, entitled "Ultimate Heat Sink Performance Field Experiments," has been brought to completion. The primary objective is to obtain the requisite data to characterize thermal performance and water utilization for cooling ponds and spray ponds at elevated temperature. Such data are useful for modeling purposes, but the work reported here does not contain modeling efforts within its scope. The water bodies which have been studied are indicative of nuclear reactor ultimate heat sinks, components of emergency core cooling systems. The data reflect thermal performance and water utilization for meteorological and solar influences which are representative of worst-case combinations of conditions. Constructed water retention ponds, provided with absolute seals against seepage, have been chosen as facilities for the measurement programs; the first pond was located at Raft River, Idaho, and the second at East Mesa, California. The data illustrate and describe, for both cooling ponds and spray ponds, thermal performance and water utilization as the ponds cool from an initially elevated temperature. To obtain the initial elevated temperature, it has been convenient to conduct the measurements at geothermal sites having large supplies and delivery rates of hot geothermal fluid. The data are described and discussed in the text, and presented in the form of data volumes as appendices.

  10. A CFD technique to investigate the chocked flow and heat transfer characteristic in a micro-channel heat sink

    NASA Astrophysics Data System (ADS)

    Azari, Ahmad; Bahraini, Abdorrasoul; Marhamati, Saeideh

    2015-04-01

    In this research, a Computational Fluid Dynamics (CFD) technique was used to investigate the effect of choking on the flow and heat transfer characteristics of a typical micro-channel heat sink. Numerical simulations have been carried out using Spalart-Allmaras model. Comparison of the numerical results for the heat transfer rate, mass flow rate and Stanton number with the experimental data were conducted. Relatively good agreement was achieved with maximum relative error 16%, and 8% for heat transfer and mass flow rate, respectively. Also, average relative error 9.2% was obtained for the Stanton number in comparison with the experimental values. Although, the results show that the majority of heat was transferred in the entrance region of the channel, but the heat transfer in micro-channels can also be affected by choking at channel exit. Moreover, the results clearly show that, the location where the flow is choked (at the vicinity of the channel exit) is especially important in determining the heat transfer phenomena. It was found that Spalart-Allmaras model is capable to capture the main features of the choked flow. Also, the effects of choking on the main characteristics of the flow was presented and discussed.

  11. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics

    NASA Astrophysics Data System (ADS)

    Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma

    2015-10-01

    A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).

  12. Fusible heat sink materials - Evaluation of alternate candidates. [for PLSS cooling systems

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.; Lomax, W. C.

    1992-01-01

    Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. Materials with greater thermal storage capability than water could enable both an extension of time between recharging and/or a reduction in size and/or mass. An extensive literature search identified 1,215 candidates with a solid-liquid transformation within the temperature range of -13 C to 5 C. Based on data available in the literature, several candidates with a cooling capacity significantly greater than water were identified. Measurements of the transformation temperature and enthalpy of transformation were then undertaken with a differential scanning calorimeter in order to confirm the accuracy of the literature. Laboratory measurements have thus far not been able to corroborate the extremely high values found from the literature. This paper presents the approach for materials selection utilized in this study, the experimental procedure, and the results of the measurements thus far undertaken.

  13. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Krokhin, O. N.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2015-12-01

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power of 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts.

  14. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  15. A fiber laser welding of plastics assisted by transparent solid heat sink to prevent the surface thermal damages

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yasuo; Satoh, Kimitoshi

    This paper deals with an innovative fiber laser welding method for engineering plastics assisted by a solid heat sink transparent to the laser beam for preventing any thermal damage on the surface. The features of this fiber laser welding procedure are (1) to place a solid heat sink transparent to the fiber laser beam in contact with an irradiated plastics to cool the surface during welding process, (2) to use no pigmentation or dye for radiation absorption enhancement, (3) to sustain thermal damage on the surface, and (4) to avoid the emission of harmful gas due to decomposition of plastics.

  16. Dicing of high-power white LEDs in heat sinks with the water jet-guided laser

    NASA Astrophysics Data System (ADS)

    Mai, Tuan Anh; Housh, Roy; Brulé, Arnaud; Richerzhagen, Bernold

    2007-02-01

    High-brightness LEDs are compound semiconductor devices and distinguish themselves from conventional LEDs by their exceptional luminosity. Today they are increasingly used as light sources, replacing conventional incandescent and fluorescent lamp technologies. HB LEDs are difficult to manufacture, as they must be grown by sophisticated epitaxial growth techniques such as MOCVD. They are packaged like power semiconductors, using surface mount technology and thermal pads. After having been successfully applied to GaN scribing for side-emitting LEDs, the Laser MicroJet (R) is used today for cutting heat sinks of HB white LEDs. Due to the high-emitted light power, the generated heat must be dissipated through a heat sink. Materials typically employed are metals with high heat conductivity, notably CuW and molybdenum. Applying the Laser MicroJet (R) the achieved cutting quality in these metals is outstanding - smooth edges, no contamination, no burrs, no heat damage, no warping - all this at high speed.

  17. Reexamination of METMAN, Recommendations on Enhancement of LCVG, and Development of New Concepts for EMU Heat Sink

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1990-01-01

    METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non

  18. Reexamination of METMAN, recommendations on enhancement of LCVG, and development of new concepts for EMU heat sink

    NASA Astrophysics Data System (ADS)

    Karimi, Amir

    1990-12-01

    METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non

  19. Heat Exchange, Additive Manufacturing, and Neutron Imaging

    SciTech Connect

    Geoghegan, Patrick

    2015-02-23

    Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.

  20. Numerical and Experimental Studies of Ultra Low Profile Three-dimensional Heat Sinks (3DHS) Made using a Novel Manufacturing Approach

    SciTech Connect

    Krishna Kota; Diana Sobers; Paul Kolodner; Nikhil Bajaj; Jen-Hau Cheng; Elina Simon; Todd Salamon

    2012-04-01

    The continued increase in electronic device packaging densities is placing ever more challenging performance requirements on air-cooled heat sinks. In cases where the state-of-the-art heat sink technology is unable of to meet these requirements, this often results in either a relaxation of design specifications, or the exploration of other thermal management technologies better able to handle high heat density applications, such as liquid cooling. Both of these approaches provide challenges to equipment designers, as relaxing requirements does not allow for a scale-able path to increased device densities and their associated functionality, while incorporating new thermal management technologies often requires major hardware redesigns, which has significant cost implications. In this work, we explore the use of air-cooled heat sinks incorporating three-dimensional features, so-called three-dimensional heat sinks (3DHS), that enhance heat transfer through a number of different physical mechanisms, as an approach to further extending the limits of air cooling. An ultra low profile (5.7 mm) heat sink application is targeted due to the significant thermal challenges associated with restrictions on heat sink height. We also present details on a novel manufacturing method that has significant cost advantages over other fabrication methods such as investment casting and direct metal printing. Experiments on 3DHS and conventional heat sink are conducted in a wind tunnel test apparatus as a function of inlet air mass flow rate and flow bypass above the heat sinks. The experimental results show a strong correlation between heat sink permeability and thermal performance, as measured by heat sink thermal resistance versus ideal pumping power. The results also illustrate the important effects of flow bypass on heat sink performance. The best performing 3DHS design is observed to have up to a 19% improvement in thermal performance relative to a conventional parallel fin heat sink

  1. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.

    PubMed

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-20

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails. PMID:26508524

  2. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM

    NASA Astrophysics Data System (ADS)

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-01

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al2O3/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier’s law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al2O3 fillers to be 1.16 × 10-8 m2K W-1, which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  3. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink

    NASA Astrophysics Data System (ADS)

    Ashjaee, Mehdi; Goharkhah, Mohammad; Khadem, Leila Azizi; Ahmadi, Reza

    2014-12-01

    The effect of an external magnetic field on the forced convection heat transfer and pressure drop of water based Fe3O4 nanofluid (ferrofluid) in a miniature heat sink is studied experimentally. The heat sink with the dimensions of 40 mm (L) × 40 mm (W) × 10 mm (H) consists of an array of five circular channels with diameter and length of 4 and 40 mm, respectively. It is heated from the bottom surface with a constant heat flux while the other surfaces are insulated. The heat sink is also influenced by an external magnetic field generated by an electromagnet. The local convective coefficients are measured at various flow rates (200 < Re < 900), magnetic field intensities (B < 1,400 G), and particle volume fractions (φ = 0.5, 1, 2 and 3 %). Results show that using ferrofluid results in a maximum of 14 % improvement in heat transfer compared to the pure water, in the absence of magnetic field. This value grows up to 38 % when a magnetic field with the strength of 1,200 G is applied to the ferrofluid. On the other hand, it is observed that the significant heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. The optimum operating condition is obtained based on the maximum heat transfer enhancement per pressure loss.

  4. Analysis of unscrammed loss of flow and heat sink for PRISM with GEM

    SciTech Connect

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J. )

    1991-01-01

    The US Department of Energy is sponsoring an advanced liquid-metal reactor design by General Electric Company (GE) called PRISM. The intent is to design a reactor with passively safe responses to many operational and severe accidents. PRISM is under review at the US Nuclear Regulatory Commission for licensability with Brookhaven National Laboratory providing technical assistance. Recently, the PRISM design has been modified to include three gas expansion modules (GEMs) on its core periphery. The GEMs were added to quickly reduce the power (by inserting negative reactivity) during loss-of-flow events to curtail peak fuel and clad temperatures predicted in the previous design. The GEM prototypes have been tested at the Fast Flux Test Facility. The significance of the GEMs in PRISM is discussed in this paper through the evaluation of the unprotected loss of flow (ULOF) and loss of heat sink using the SSC code. It has been demonstrated in the past that SSC predicts results similar to GE and other liquid-metal reactor codes.

  5. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Gleason, Brian; Beringer, Woody; Stephen, Ryan

    2010-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from 4 suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used nickel and active braze allows to prepare the carbon fibers for joining with aluminum. This approach was repeatable and scalable with improved strength and thermal conductance when compared with epoxy bonding.

  6. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  7. Lunar South Pole ice as heat sink for Lunar cryofuel production system

    SciTech Connect

    Zuppero, A.; Stanley, M.; Modro, S.M.; Whitman, P.

    1995-03-01

    Recent Clementine bistatic radar data suggest that water ice may be present in a {open_quotes}forever shaded{close_quotes} depression or crater at the South Pole of the Moon. The ice is a feedstock for the electrolysis production of cryogenic oxygen and hydrogen rocket fuels for a transportation system on the moon and for leaving and descending on to the moon. The ice also provides a convective heat sink critical to the practical implementation of high throughput electric power generators and refrigerators that liquefy and cool the oxygen and hydrogen into cryogenic rocket fuel. This brief analysis shows that about a hundred tonnes of hardware delivered to the lunar surface can produce tens of thousands of tonnes of rocket fuel per year, on the moon. And it makes the point that if convective cooling is used instead of radiative cooling, then power and processing systems can be used that exist and have been tested already. This shortens the time by an order of magnitude to develop lunar operations. Quick deployment of a chemical cryofuel energy source is a key factor in the economics of lunar development.

  8. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    NASA Astrophysics Data System (ADS)

    Tikadar, Amitav; Hossain, Md. Mahamudul; Morshed, A. K. M. M.

    2016-07-01

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advanced heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.

  9. Fusible heat sink materials - An identification of alternate candidates. [for astronaut thermoregulation in EVA portable life support systems

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Lomax, Curtis

    1991-01-01

    Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. An extensive database search was undertaken to identify candidate materials with liquid solid transformations over the temperature range of -18 C to 5 C; and 1215 candidates were identified. Based on available data, 59 candidate materials with thermal storage capability, DeltaH values higher than that of water were identified. This paper presents the methodology utilized in the study, including the decision process used for materials selection.

  10. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Potassium bifluoride/water solution investigations. [for portable life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1977-01-01

    A series of investigations was conducted to characterize the physical properties of potassium bifluoride and water solutions for use as the fusible heat sink material in a regenerable portable life support system.

  11. Simulation and Analysis of Temperature Distribution and Material Properties Change of a Thermal Heat sink Undergoing Thermal Loading in a Mobile Computer

    NASA Astrophysics Data System (ADS)

    Xavier, A.; Lim, C. S.

    2015-09-01

    This paper is aimed at studying the thermal distribution and its associated effects on a thermal heat sink of a mobile computer (laptop). Possible thermal effects are investigated using Finite-Element Method with the help of a FEM software (Ansys Workbench 14). Physical changes of the structure such as temperature change and deformation are measured and are used as the basis for comparison between models of heat sinks. This paper also attempts to study the effect of thermal loading on the materials found in a heat sink hardware in terms of stresses that may arise due to physical restraints in the hardware as well as provide an optimized solution to reduce its form factor in order to be comparable to an Ultrabook class heat-sink. An optimized solution is made based on a cylindrical fin concept.

  12. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square form

    NASA Astrophysics Data System (ADS)

    Bouchenafa, Rachid; Saim, Rachid; Abboudi, Said

    2015-09-01

    Forced convection is a phenomenon associated with the heat transfer fluid flows. The presence of convection affects simultaneously the thermal and hydrodynamic fields, the problem is thus coupled. This form of heat transfer inside ducts occurs in many practical applications such as solar collectors, heat exchangers, cooling of electronic components as well as chemical and nuclear. In this work, we are interested primarily for a numerical study of thermo-hydraulic performances of an incompressible turbulent flow of air through a heat sink composed of several rows of bars of square section. Profiles and the axial velocity fields, as well as profiles and the distribution of the Nusselt number are plotted for all the geometry considered and chosen for different sections. The effects of geometrical parameters of the model and the operating parameters on the dynamic and thermal behavior of the air are analyzed.

  13. Ecological Optimization and Parametric Study of an Irreversible Regenerative Modified Brayton Cycle with Isothermal Heat Addition

    NASA Astrophysics Data System (ADS)

    Tyagi, Sudhir K.; Kaushik, Subhash C.; Tiwari, Vivek

    2003-12-01

    An ecological optimization along with a detailed parametric study of an irreversible regenerative Brayton heat engine with isothermal heat addition have been carried out with external as well as internal irreversibilities. The ecological function is defined as the power output minus the power loss (irreversibility) which is ambient temperature times the entropy generation rate. The external irreversibility is due to finite temperature difference between the heat engine and the external reservoirs while the internal irreversibilities are due to nonisentropic compression and expansion processes in the compressor and the turbine respectively and the regenerative heat loss. The ecological function is found to be an increasing function of the isothermal-, sink- and regenerative-side effectiveness, isothermal-side inlet temperature, component efficiencies and sink-side temperature while it is found to be a decreasing function of the isobaric-side temperature and effectiveness and the working fluid heat capacitance rate. The effects of the isobaric-side effectiveness are found to be more than those of the other parameters and the effects of turbine efficiency are found to be more than those of the compressor efficiency on all the performance parameters of the cycle.

  14. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  15. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  16. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-08-01

    There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

  17. Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Adams, J. S.; Brekosky, R. P.; Chervenak, J. A.; Chiao, M. P.; Kelley, R. L.; Kelly, D. P.; Porter, F. S.

    2011-01-01

    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays.

  18. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  19. Unsteady Flow of Third Grade Fluid over an Oscillatory Stretching Sheet with Thermal Radiation and Heat Source/Sink

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Khan, Sami Ullah; Abbas, Zaheer

    2015-12-01

    The aim of this article is to investigate the unsteady boundary layer flow and heat transfer analysis in a third grade fluid over an oscillatory stretching sheet under the influences of thermal radiation and heat source/sink. The convective boundary condition at the sheet is imposed to determine the temperature distribution. Homotopy analysis method (HAM) is used to solve dimensionless nonlinear partial differential equations. The effects of involved parameters on both velocity and temperature fields are illustrated in detail through various plots. It is found that the amplitude of velocity decreases by increasing the ratio of the oscillation frequency of the sheet to its stretching rate and Hartmann number while it increases by increasing the third grade fluid parameter. On contrary, the temperature field is found to be a decreasing function of the third grade fluid parameter.

  20. Analysis and Evaluation of Supersonic Underwing Heat Addition

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W.; Flaherty, Richard J.

    1959-01-01

    The linearized theory for heat addition under a wing has been developed to optimize wing geometry, heat addition, and angle of attack. The optimum wing has all of the thickness on the underside of the airfoil, with maximum-thickness point well downstream, has a moderate thickness ratio, and operates at an optimum angle of attack. The heat addition is confined between the fore Mach waves from under the trailing surface of the wing. By linearized theory, a wing at optimum angle of attack may have a range efficiency about twice that of a wing at zero angle of attack. More rigorous calculations using the method of characteristics for particular flow models were made for heating under a flat-plate wing and for several wings with thickness, both with heat additions concentrated near the wing. The more rigorous calculations yield in practical cases efficiencies about half those estimated by linear theory. An analysis indicates that distributing the heat addition between the fore waves from the undertrailing portion of the wing is a way of improving the performance, and further calculations appear desirable. A comparison of the conventional ramjet-plus wing with underwing heat addition when the heat addition is concentrated near the wing shows the ramjet to be superior on a range basis up to Mach number of about B. The heat distribution under the wing and the assumed ramjet and airframe performance may have a marked effect on this conclusion. Underwing heat addition can be useful in providing high-altitude maneuver capability at high flight Mach numbers for an airplane powered by conventional ramjets during cruise.

  1. Inter-Ocean Exchanges and Regional Sinks of Heat during the Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Lee, S. K.; Park, W.; Baringer, M. O.; Gordon, A. L.; Huber, B. A.; Liu, Y.

    2015-12-01

    Global mean surface warming has stalled since the end of the twentieth century, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing. We analyze observations along with simulations from a global ocean-sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade.

  2. Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

    PubMed Central

    Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.

    2015-01-01

    Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  3. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model.

    PubMed

    Pillai, Krishna; Akhter, Javid; Chua, Terence C; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L

    2015-03-01

    Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices.With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored.With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres.Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected.Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5.MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  4. Simulating heat addition via mass addition in constant area compressible flows

    NASA Astrophysics Data System (ADS)

    Heiser, W. H.; McClure, W. B.; Wood, C. W.

    1995-01-01

    A study conducted demonstrated the striking similarity between the influence of heat addition and mass addition on compressible flows. These results encourage the belief that relatively modest laboratory experiments employing mass addition can be devised that will reproduce the leading phenomena of heat addition, such as the axial variation of properties, choking, and wall-boundary-layer separation. These suggest that some aspects of the complex behavior of dual-mode ramjet/scramjet combustors could be experimentally evaluated or demonstrated by replacing combustion with less expensive, more easily controlled, and safer mass addition.

  5. Hydrogen-isotope transport in an ELBRODUR G CuCrZr alloy for nuclear applications in heat sinks

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Byeon, W. J.; Shin, H. W.; Kim, H. S.; Kim, Jaeyong; Lee, S. K.; Kim, Jaewoo

    2016-05-01

    We present the first complete data set of the transport parameters (permeability, diffusivity, and solubility) of hydrogen and deuterium in an ELBRODUR G precipitation hardened CuCrZr alloy experimentally measured by using the time-dependent gas-phase technique in an elevated temperature range of 300-600 °C for nuclear applications in heat sinks. Using the measured values for hydrogen and deuterium and a quantum mechanical model based on a harmonic approximation, an extrapolation for tritium is also presented. The isotope effect ratios for the transport parameters were also estimated. Furthermore, our hydrogen results for ELBRODUR G were compared with the results for other copper alloys previously reported by other authors.

  6. A simplified finite element model for uncoupled thermal analysis in CPV heat sink design to reduce time-to-market

    NASA Astrophysics Data System (ADS)

    García, Alberto J.; Órpez, Antonio J.; Cruz-Peragón, Fernando

    2013-09-01

    A novel FEM thermal model for photovoltaic (PV) and concentrated photovoltaics (CPV) technologies is presented in order to improve fluid-mechanic studies for heat-sink design and thermal behavior of components in solar industry, reducing lead time from design to results. This is achieved by implementing the finite element software ABAQUS through a user defined subroutine and taking into account all the environmental requirements, and through the all known fluid-dynamics magnitude relations, as semi empirical equations. This new approach is completely novel and means that it is not necessary to make a complex CFD at early stages of design, but a simplified uncoupled non-linear thermal FEM simulation, reducing a great amount of time and costs, as it is only necessary few time to change design and to reanalyze. The results have been compared with a thermal imaging camera in real operating conditions.

  7. Experimental study on thermal performance of micro pin fin heat sinks with various shapes

    NASA Astrophysics Data System (ADS)

    Hua, Junye; Li, Gui; Zhao, Xiaobao; Li, Qihe

    2016-07-01

    This paper presents a visualization experimental study on the heat transfer characteristics of various shapes of micro pin fins, including the circular, ellipse, diamond, square and triangle shape micro pin fin arrays with various equivalent diameters and pin fin density. The influences study of different sizes and shapes of pin fin on Nusselt number and heat transfer coefficient have been conducted. The results show that with the increase of the flow rate, the temperature of the bottom of the experimental section decreases. And the Nusselt number of different shapes of micro pin fins increases with the increase of Re. In which, the heat transfer performance of the ellipse shape pin fin appears better among the other shapes of pin fins. However, the higher pin fin of the ellipse shape density leads to a weaker flow performance. Besides, the micro-scale heat transfer correlation between the Nusselt number and the Reynolds number is fitted based on the experimental data.

  8. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  9. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

    2014-12-01

    In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

  10. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

    2014-09-01

    In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

  11. Optimization of microchannel heat sink using genetic algorithm and Taguchi method

    NASA Astrophysics Data System (ADS)

    Singh, Bhanu Pratap; Garg, Harry; Lall, Arun K.

    2016-04-01

    Active cooling using microchannel is a challenging area. The optimization and miniaturization of the devices is increasing the heat loads and affecting the operating performance of the system. The microchannel based cooling systems are widely used and overcomes most of the limitations of the existing solutions. Microchannels help in reducing dimensions and therefore finding many important applications in the microfluidics domain. The microchannel performance is related to the geometry, material and flow conditions. Optimized selection of controllable parameters is a key issue while designing the microchannel based cooling system. The proposed work presents a simulation based study according to Taguchi design of experiment with Reynolds number, aspect ratio and plenum length as input parameters to determine SN ratio. The objective of this study is to maximize the heat transfer. Mathematical models based on these parameters were developed which helps in global optimization using Genetic Algorithm. Genetic algorithm further employed to optimize the input parameters and generates global solution points for the proposed work. It was concluded that the optimized value for heat transfer coefficient and Nusselt number was 2620.888 W/m2K and 3.4708 as compare to values obtained through SN ratio based parametric study i.e. 2601.3687 W/m2K and 3.447 respectively. Hence an error of 0.744% and 0.68% was detected in heat transfer coefficient and Nusselt number respectively.

  12. A Passive EMI Filter with Access to the Ungrounded Motor Neutral Line-Its Effect on Eliminating Leakage Current from the Inverter Heat Sink-

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.

  13. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    NASA Astrophysics Data System (ADS)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  14. A study of high-temperature heat pipes with multiple heat sources and sinks. I - Experimental methodology and frozen startup profiles. II - Analysis of continuum transient and steady-state experimental data with numerical predictions

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Cao, Y.; Buchko, M.

    1991-01-01

    Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.

  15. Three-dimensional MHD boundary layer flow due to an axisymmetric shrinking sheet with radiation, viscous dissipation and heat source/sink

    NASA Astrophysics Data System (ADS)

    Madhu, M.; Balaswamy, B.; Kishan, N.

    2016-05-01

    An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter Kp, heat source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.

  16. A mathematical model for 2D heat transfer dynamics in fluid systems with localized sink of magmatic fluid into local fractured zones above the top of crystallizing intrusions

    NASA Astrophysics Data System (ADS)

    Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.

    2012-11-01

    A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.

  17. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    USGS Publications Warehouse

    Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J.

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m-2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged -33 ??mol N2O m-2 day-1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 ??mol N2O m-2 day-1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical

  18. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N 2O

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-08-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N 2O, CH 4, and CO 2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N 2O, CH 4 and respiratory CO 2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO 3 equivalent to 1.4 g N m -2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N 2O and CH 4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N 2O in July 2009 averaged -33 μmol N 2O m -2 day -1. However, within 1 h of nutrient additions, N 2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH 4 fluxes were not significantly affected. N 2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N 2O m -2 day -1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N 2O and CH 4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N 2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N 2O and CH 4 fluxes observed, exceeded half

  19. Investigation of Vapour Chamber Performance with a Concentrated Heat Source

    NASA Astrophysics Data System (ADS)

    Ravache, E.; Siedel, S.; Kempers, R.; Robinson, A. J.

    2014-07-01

    This work aims to characterize the performance of a commercially available solid heat sink (SHS) and a vapour chamber heat sink (VCHS) with a small localized heat source. The heat sinks were tested under forced convection conditions in a dedicated wind tunnel. Heat transfer and temperature measurements facilitated the estimation of the source-to-sink thermal resistance whilst thermal imaging on the air side of the heat sink was used to gauge the level of heat spreading. The results indicate that the VCHS was capable of spreading the heat from the localized source over a greater surface area of the heat sink compared with the SHS. However, the improved spreading resistance of the VCHS was offset by the additional contact resistance and/or the thermal resistance of the internal wick structure resulting in a source-to-sink thermal resistance and heater temperature which was commensurate with the SHS. As a result there was no thermal benefit of the VCHS.

  20. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop. PMID:26353536

  1. Melting Phenomenon in MHD Stagnation Point Flow of Dusty Fluid over a Stretching Sheet in the Presence of Thermal Radiation and Non-Uniform Heat Source/Sink

    NASA Astrophysics Data System (ADS)

    Prasannakumara, B. C.; Gireesha, B. J.; Manjunatha, P. T.

    2015-09-01

    A comprehensive numerical study is conducted to investigate the effect of melting on flow and heat transfer of incompressible viscous dusty fluid near two-dimensional stagnation-point flow over a stretching surface, in the presence of thermal radiation, non-uniform heat source/sink and applied magnetic field. Using suitable transformations, the governing nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations and then they are solved numerically. The influence of the various interesting parameters on the flow and heat transfer is analyzed and discussed in detail through plotted graphs. Comparison of the present results with existing results is shown and a good agreement is observed. We found that the velocity and temperature fields increase with an increase in the melting process of the stretching sheet.

  2. Mixed convection boundary layer flow at the lower stagnation point of a sphere embedded in a porous medium in presence of heat source/sink: Constant heat flux case

    NASA Astrophysics Data System (ADS)

    Fauzi, Nur Fatihah; Ahmad, Syakila; Pop, Ioan

    2014-07-01

    The steady mixed convection flow of an incompressible viscous fluid over an isoflux sphere embedded in a porous medium with the existence of heat source/sink is theoretically considered for both the assisting and opposing flow cases with small Prandtl number. The transformed equations of the non-similar boundary layer at the lower stagnation point of the sphere are solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results are presented for the skin friction coefficient and the local wall temperature, as well as the velocity and temperature profiles for different values of the porosity parameter, the heat source/sink parameter and the mixed convection parameter for air. It is noticed that the solution has two branches in a certain range of the mixed convection parameter.

  3. Wink Sink

    SciTech Connect

    Baumgardner, R.W. Jr.

    1988-01-01

    The Wink Sink formed on June 3, l980. Inferred precursor of the sinkhole was a solution cavity in the Permian Salado Formation formed either by natural dissolution or by water flow in an abandoned oil well. Correlation of well logs in the area indicates that the Salado Formation contains several dissolution zones. Dissolution in the middle of the Salado evaporite sequence may have resulted from ground-water flow along fractured anhydrite interbeds. The Wink Sink lies directly above the Permian Capitan reef on the margin of a natural salt dissolution trough. Other natural collapse features overlie the reef to the north. Hydraulic head of water in the reef is higher than the elevation of the Salado Formation but lower than the head in the Triassic Santa Rosa Sandstone, a near-surface freshwater aquifer. Fracture or cavernous permeability occurs above, within, and below the Salado Formation. Consequently, a brine-density flow may be operating: relatively fresh water moves upward through fractures under artesian pressure and dissolves salt; the denser brine moves downward under gravity flow. Alternatively, downward flow of water from freshwater aquifers above the salt may have caused dissolution. An oil well drilled into the Permian Yates Formation (with the aid of nitroglycerine) in 1928 was located within the sinkhole. The well initially produced about 80% saline water from the Permian Tansill Formation, which directly underlies the Salado. About 600 ft of casing was removed from the well when it was plugged and abandoned in 1964.

  4. Radiation Effects on the Flow of Powell-Eyring Fluid Past an Unsteady Inclined Stretching Sheet with Non-Uniform Heat Source/Sink

    PubMed Central

    Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed

    2014-01-01

    This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed. PMID:25072515

  5. Nitrogen Flow in a Nanonozzle with Heat Addition

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey; Zhang, Zetian; Gatsonis, Nikolaos

    2012-11-01

    The nitrogen flow in conical nanonozzles at atmospheric pressures are investigated using a three-dimensional unstructured direct simulation Monte Carlo (U3DSMC) method. The DSMC simulations are performed in computational domains that feature the plenum, the nanonozzle region and the external plume expansion region. The inlet and outlet boundaries are modeled by the Kinetic-Moment (KM) boundary conditions method. This methodology is based on the local one dimensional inviscid (LODI) formulation used in compressible (continuous) flow computations. The cross section for elastic collisions is based on the variable hard sphere (VHS) model. The Larsen-Borgnakke (L-B) model is used to simulate the exchange of the internal energy in the collision pair. Solid surfaces are modeled as being either diffuse or specularly reflecting. The effects of Knudsen number, aspect ratio, and nanonozzle scale on the heat transfer are investigating by ranging the throat diameters from 100-500 nm, exit diameter from 100-1000 nm, stagnation pressure from 1-10atm, and wall temperature from 300K-500K. Finite backpressure and vacuum conditions are considered. Macroscopic flow variables are obtained and compared with continuum predictions in order to elucidate the impacts of nanoscale.

  6. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  7. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  8. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  9. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  10. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  11. Does Artificial Ascites Induce the Heat-Sink Phenomenon during Percutaneous Radiofrequency Ablation of the Hepatic Subcapsular Area?: an in vivo Experimental Study Using a Rabbit Model

    PubMed Central

    Kim, Young-sun; Choi, Dongil; Lim, Hyo K.

    2009-01-01

    Objective To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model. Materials and Methods A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05). Results One rabbit from the "W" group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups "W" and "R" throughout the procedures (39.2±0.4℃ in group W and 33.4±4.3℃ in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4±237.3 mL in group C, 1,172.0±468.9 mL in group R, and 1,030.6±665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group "C" rabbits (p = 0.030). Conclusion Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region. PMID:19182502

  12. Acidization of a Direct Heat Hydrothermal Well and its Potential in Developing Additional Direct Heat Projects

    SciTech Connect

    Dolenc, M.R.; Strawn, J. A.; Prestwich, S.M.

    1981-01-01

    A matrix acid treatment on a limestone formation in a low temperature hydrothermal production well in South Dakota has resulted in a 40% increase in heat (BTU) available for use in space heating a hospital. The results of this experimental treatment on the Madison Limestone suggest a significant potential may exist for similar applications, particularly throughout the western United States. This paper presents the results of the acid treatment, suggests other possible areas for similar application, and analyzes the economics for successful treatments.

  13. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  14. Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs

    NASA Astrophysics Data System (ADS)

    Nassar, Ahmed K.; Blackburn, G. Alan; Whyatt, J. Duncan

    2016-09-01

    This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST. Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.

  15. Nutrient Addition Leads to a Weaker CO2 Sink and Higher CH4 Emissions through Vegetation-Microclimate Feedbacks at Mer Bleue Bog, Canada

    NASA Astrophysics Data System (ADS)

    Bubier, J. L.; Arnkil, S.; Humphreys, E.; Juutinen, S.; Larmola, T.; Moore, T. R.

    2015-12-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands globally, affecting plant community composition, carbon (C) cycling, and microbial dynamics. Nutrient-limited boreal bogs are long-term sinks of carbon dioxide (CO2), but sources of methane (CH4), an important greenhouse gas. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, for 10-15 years with N as NO3 and NH4 at 5, 10 and 20 times ambient N deposition (0.6-0.8 g N m-2 y-1), with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured net ecosystem CO2 exchange (NEE), ecosystem photosynthesis and respiration, and CH4 flux with climate-controlled chambers; leaf-level CO2 exchange and biochemistry; substrate-induced respiration, CH4 production and consumption potentials with laboratory incubations; plant species composition and abundance; and microclimate (peat temperature, moisture, light interception). After 15 years, we have found that NEE has decreased, and CH4 emissions have increased, in the highest nutrient treatments owing to changes in vegetation, microtopography, and peat characteristics. Vegetation changes include a loss of Sphagnum moss and introduction of new deciduous species. Simulated atmospheric N deposition has not benefitted the photosynthetic apparatus of the dominant evergreen shrubs, but resulted in higher foliar respiration, contributing to a weaker ecosystem CO2 sink. Loss of moss has led to wetter near-surface substrate, higher rates of decomposition and CH4 emission, and a shift in microbial communities. Thus, elevated atmospheric deposition of nutrients may endanger C storage in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial communities.

  16. Comment on "Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with thermal radiation and non-uniform heat source/sink"

    NASA Astrophysics Data System (ADS)

    Mastroberardino, Antonio

    2014-05-01

    In this paper, we demonstrate that previously reported analytical solutions for the temperature field given in terms of Kummer's function by Nandeppanavar et al. (2011) [1], are incorrect. We then provide valid solutions of the governing ordinary differential equations for the fluid flow and temperature field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions, namely, prescribed surface temperature and prescribed heat flux. Our analysis is supported by a graphical and tabular demonstration of convergence of the HAM solutions.

  17. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  18. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output. PMID:21777052

  19. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  20. Proper use of sludge-control additives in residential heating oil systems

    SciTech Connect

    Tatnall, R.E.

    1995-04-01

    Discussed are various aspects of heating oil `sludge`: How it forms, typical problems it causes, how sludge-control additives work, what should be expected of them, and what happens in a contaminated system when such additives are used. Test results from laboratory and field experiments demonstrate that performance of commercially available additives varies greatly. The concept of `end-of-the-line` treatment is described and compared with bulk fuel treatment. A procedure is described whereby a retailer can test additives himself, and thus determine just what those additives will or will not do for his business. Finally, the economics of an effective treatment program are outlined.

  1. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  2. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  3. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  4. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  5. Improved superconducting properties of melt-textured Nd123 by additional heat treatment

    NASA Astrophysics Data System (ADS)

    Chikumoto, N.; Yoshioka, J.; Murakami, M.

    1997-02-01

    We have investigated the effect of additional heat-treatment on the superconducting transition and the flux pinning properties of NdBaCuO melt-textured in air. After the heat-treatment at high temperatures, >900°C, under low oxygen partial pressure, P(O 2) = 0.001 atm, the superconducting transition became sharper accompanied by an increase of Jc. However, the increase of Jc was very small and the secondary peak effect commonly observed in NdBaCuO melt textured in low P(O 2) could not be observed. Transmission electron microscopic observations and energy dispersive X-ray analyses show that the spatial variation of the Nd/Ba ratio is reduced after high-temperature heat-treatment, which indicates that an improvement in Tc and Jc is attributed to a suppression of Nd substitution on the Ba site.

  6. Sinking with the Titanic

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-03-01

    In the Titanic movie, when the rear part of the ship is about to sink, Jack Dawson (Leonardo DiCaprio) says to Rose DeWitt Bukater (Kate Winslet) to get ready to swim, because the sinking body will suck them into the abysses. Is this sucking phenomenon really happening? And, if so, why?

  7. What's Up with Sinking?

    ERIC Educational Resources Information Center

    Blintz, William

    2005-01-01

    In Hamlet, Shakespeare invites readers to ponder a famous philosophical question: To be or not to be? That is the question. In this issue, two trade books invite students to explore the question: To sink or not to sink? That is the experiment. Though both books are targeted for younger children, teachers can use these books with elementary…

  8. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  9. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  10. Model Scramjet Inlet Unstart Induced by Mass Addition and Heat Release

    NASA Astrophysics Data System (ADS)

    Im, Seong-Kyun; Baccarella, Damiano; McGann, Brendan; Liu, Qili; Wermer, Lydiy; Do, Hyungrok

    2015-11-01

    The inlet unstart phenomena in a model scramjet are investigated at an arc-heated hypersonic wind tunnel. The unstart induced by nitrogen or ethylene jets at low or high enthalpy Mach 4.5 freestream flow conditions are compared. The jet injection pressurizes the downstream flow by mass addition and flow blockage. In case of the ethylene jet injection, heat release from combustion increases the backpressure further. Time-resolved schlieren imaging is performed at the jet and the lip of the model inlet to visualize the flow features during unstart. High frequency pressure measurements are used to provide information on pressure fluctuation at the scramjet wall. In both of the mass and heat release driven unstart cases, it is observed that there are similar flow transient and quasi-steady behaviors of unstart shockwave system during the unstart processes. Combustion driven unstart induces severe oscillatory flow motions of the jet and the unstart shock at the lip of the scramjet inlet after the completion of the unstart process, while the unstarted flow induced by solely mass addition remains relatively steady. The discrepancies between the processes of mass and heat release driven unstart are explained by flow choking mechanism.

  11. One-dimensional analysis of thermal choking in case of heat addition in ducts

    NASA Astrophysics Data System (ADS)

    Miyazato, Yoshiaki; Masuda, Mitsuharu; Matsuo, Kazuyasu; Kashitani, Masashi; Yamaguchi, Yutaka

    2000-09-01

    The thermal choking phenomenon is of great importance in an inlet isolator in dual-mode ram jet/scramjet combustor. In some cases the choked flow creates a pseudo-shock wave including a shock train in it at the engine inlet and causes large amounts of drag and radically reduces the performance of the engine at high flight Mach numbers. The present paper describes a one-dimensional flow model taking account of the upstream boundary-layer as well as heat addition by using a mass-weighted averaging technique. The simple relationships for the flow field in a constant area duct in which the effect of the upstream boundary-layer is considered but the effect of the wall friction in the duct can be neglected are presented. The results of the calculation such as the maximum heat addition when the thermal choking occurs, the downstream Mach number and the static pressure ratio are presented and examined in detail.

  12. The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jamshidinia, Mahdi; Kovacevic, Radovan

    2015-03-01

    The influence of heat accumulation on surface roughness during powder-bed additive manufacturing was investigated. A series of Ti-6Al-4V thin plates were produced by using an identical heat input by electron beam melting® (EBM). Spacing distances of 5 mm, 10 mm, and 20 mm were used. The surface roughness of as-built thin plates was measured using a two-axis profilometer. A numerical model was developed to study the influence of spacing distance on heat accumulation. An inverse relationship between the spacing distance and surface roughness was revealed. The experimental and numerical results showed that the surface quality of buildups could be controlled not only by process parameters, but also by the arrangement of components in the buildup chamber. At a constant spacing distance, an increase in the number of powder layers resulted in the accumulation of more heat between the thin plates. An increase in the spacing distance resulted in an upward translation of the Bearing Area Curve (BAC) toward shallower depths, with a reduced core roughness depth (Rk) and peak height (Rpk). A logarithmic regression equation was established from the experimental data. This equation could be used to predict the surface roughness of parts fabricated by EBM® in the studied range of spacing distances.

  13. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  14. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-01

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  15. Sinking coastal cities

    NASA Astrophysics Data System (ADS)

    Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.

    2015-11-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.

  16. Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

    NASA Astrophysics Data System (ADS)

    Jubeh, Naser M.

    2005-09-01

    The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet temperature, ambient temperature, altitude, and altitude with variable ambient temperature on irreversibility "exergy destroyed" and second law efficiency was investigated and compared for all models. The results are given graphically with the appropriate discussion and conclusion.

  17. Effects of Si Addition and Heating Ar on the Electromigration Performance of Al-Alloy Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Dok Won; Lee, Byung-Zu; Jeong, Jong Yeul; Park, Hyun; Shim, Kyu Cheol; Kim, Jong Seok; Park, Young Bae; Woo, Sun-Woong; Lee, Jeong-gun

    2002-02-01

    The electromigration (EM) performance of Ti/Al-alloy multilayered metallization with one-step sputtered Al-alloy has been studied. The Al-alloys investigated included Al-1.0%Si-0.5%Cu and Al-0.5%Cu, and the Al-alloy films were prepared with and without heating Ar. The package-level EM test results indicate that the EM resistance of the Al-Si-Cu stack is nearly identical to that of the Al-Cu stack. Si addition was found to degrade the microstructure of the Al-alloy film, while it had the retarding effect on the Ti/Al reaction, which suggests that there exists a trade-off between the film microstructure and the formation of TiAl3 intermetallic compound. The EM performance of the one-step sputtered Al-alloy stack was enhanced by the use of heating Ar during the deposition of Al-alloy film, which has been attributed to the improved microstructure of the Al-alloy film by the use of heating Ar.

  18. An improved sink particle algorithm for SPH simulations

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Walch, S.; Whitworth, A. P.

    2013-04-01

    Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.

  19. Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Mahanthesh, B.; Gorla, Rama Subba Reddy; Manjunatha, P. T.

    2016-04-01

    Theoretical study on hydromagnetic heat transfer in dusty viscous fluid on continuously stretching non-isothermal surface, with linear variation of surface temperature or heat flux has been carried out. Effects of Hall current, Darcy porous medium, thermal radiation and non-uniform heat source/sink are taken into the account. The sheet is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a linear. Two cases of the temperature boundary conditions were considered at the surface namely, PST and PHF cases. The governing partial differential equations are transferred to a system of non-linear ordinary differential equations by employing suitable similarity transformations and then they are solved numerically. Effects of various pertinent parameters on flow and heat transfer for both phases is analyzed and discussed through graphs in detail. The values of skin friction and Nusselt number for different governing parameters are also tabulated. Comparison of the present results with known numerical results is presented and an excellent agreement is found.

  20. Planktonic foraminifera: factors controlling sinking speeds

    NASA Astrophysics Data System (ADS)

    Takahashi, Kozo; Be, Allan W. H.

    1984-12-01

    Sinking speeds of 330 specimens belonging to 10 extant species of planktonic foraminifera were determined in a sinking column device filled with 3°C seawater. The sinking speed is governed primarily by shell weight and presence/absence of spines. For example, preserved planktonic specimens of Orbulina universa, whose shell weight ranged from 2 to 21 μg, sank 122 to 583 m day -1, with a correlation coefficient of 0.92 on log-log scale. Progressive shell thickening during foraminiferal growth accounts for some of the higher sinking speeds. In addition, shells from sediment on the average sink about three times faster than shells (of equivalent size and species) of planktonic foraminifera collected in near-surface waters. These high values are in part due to the shells often being encrusted with clay and nannoplankton remains. In contrast, the sinking speeds of the spinose species are approximately 3-fold slower than those of the non-spinose species. Based on data from plankton tows, most planktonic foraminifera > 150 μm reach the mean ocean depth of 3800 m in 3 to 12 days depending upon shell weight and presence or absence of spines. Estimated Reynolds numbers range from 0.05 to 24.85 and most exceed a value of 0.5 which is an upper for limit Stokes' Law range, suggesting that foraminifera are out of Stokes' sinking range. The Reynolds number and drag coefficients are negatively well correlated, indicating that drag is one of the important controlling factors in the sinking regime. The presence of spines is significant in increasing drag, decreasing the Reynolds number, and hence reducing the sinking speed.

  1. Divergence in sink contributions to population persistence

    EPA Science Inventory

    Population sinks present unique conservation challenges. The loss of animals in sinks can compromise persistence. Conversely, sinks can bolster population sizes, improving viability. To assess the contribution of sinks to regional persistence, we simulated the removal of sink hab...

  2. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP/NCAR reanalysis: Part II variability associated with ENSO

    SciTech Connect

    Tomita, Tomohiko; Yanai, Michio

    1997-11-01

    The link between the Asian monsoon and the El Nino/Southern Oscillation (ENSO) has been demonstrated by a number of studies. This study examines two ENSO withdrawal periods and discusses if the Asian monsoon played a role in the differences between them. The 1986 event occurred in the later half of 1986 and retreated in 1988. The 1951 and 1991 events were similar to each other and seemed to continue to the second year after onset and not to have the clear La Nina phase after the events. In the central and eastern Pacific, three variables progress in phase as the ENSO cycle: sea surface temperature (SST), heat source (Q1), and divergence. Correlation coefficients were calculated and examined with the mean SST on the equator and with the standard deviation of the interannual components of SST. In the central and eastern Pacific, the standard deviation is large and three correlation coefficients are large (over 0.6). Strong air-sea interaction associated with ENSO cycle is deduced. In the Indian Ocean and the western Pacific, the correlation coefficients with SST become small rapidly, while the correlation coefficient between Q1 and the divergence is still large. The interannual variability of SSt may not be crucial for those of Q1 and of the divergence in this region because of the potential to generate well organized convection through the high mean SST. This suggests that various factors, such as effects from mid-latitudes, may modify the interannual variability in the region. To examine the effects of the Asian winter monsoon, the anomalous wind field at 850 hPa was investigated. The conditions of the Asian winter monsoon were quite different between the withdrawal periods in the 1986 and 1991 ENSO events. The Asian winter monsoon seems to be a factor to modify the ENSO cycle, especially in the retreat periods. In addition, the SST from the tropical Indian Ocean to western Pacific may be important for the modulation of the ENSO/monsoon system. 9 refs., 10 figs.

  3. Charge state of arginine as an additive on heat-induced protein aggregation.

    PubMed

    Miyatake, Takumi; Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-06-01

    Arginine (Arg) is one of the most versatile solvent additives, such as suppressing protein aggregation, increasing solubility of small aromatic compounds and peptides, and preventing protein binding on solid surfaces. In this study, we investigated the role of the charged state of α-amino group of Arg for the prevention of protein aggregation. As expected, Arg effectively suppressed thermal aggregation of hen egg-white lysozyme at neutral pH, whereas the suppression effect diminished at and above pH 9.0, which corresponds to the pK of Arg's α-amino group. The pH dependence of Arg as an aggregation suppressor was confirmed by additional experiments with neutral proteins, bovine hemoglobin and bovine γ-globulin. Interestingly, N-acetylated arginine, which lacks the α-amino group, showed a weaker suppressive effect on protein aggregation than Arg, even at neutral pH. These results indicate that both positively charged α-amino group and guanidinium group play important roles in suppressing heat-induced protein aggregation by Arg. The elucidated limitation of Arg at alkaline pH provides new insight in the application as well as the mechanism of Arg as a solvent additive. PMID:26987431

  4. Precipitation of sword bean proteins by heating and addition of magnesium chloride in a crude extract.

    PubMed

    Nishizawa, Kaho; Masuda, Tetsuya; Takenaka, Yasuyuki; Masui, Hironori; Tani, Fumito; Arii, Yasuhiro

    2016-08-01

    Sword bean (Canavalia gladiata) seeds are a traditional food in Asian countries. In this study, we aimed to determine the optimal methods for the precipitation of sword bean proteins useful for the food development. The soaking time for sword beans was determined by comparing it with that for soybeans. Sword bean proteins were extracted from dried seeds in distilled water using novel methods. We found that most proteins could be precipitated by heating the extract at more than 90 °C. Interestingly, adding magnesium chloride to the extract at lower temperatures induced specific precipitation of a single protein with a molecular weight of approximately 48 kDa. The molecular weight and N-terminal sequence of the precipitated protein was identical to that of canavalin. These data suggested that canavalin was precipitated by the addition of magnesium chloride to the extract. Our results provide important insights into the production of processed foods from sword bean. PMID:27022983

  5. Nonlinear feedback in a six-dimensional Lorenz Model: impact of an additional heating term

    NASA Astrophysics Data System (ADS)

    Shen, B.-W.

    2015-03-01

    In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the steamfunction is referred to as a secondary streamfunction mode, while the two additional modes, that appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74), but slightly smaller than the one in the 5DLM (rc ~ 42.9). A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1) negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2) the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3) overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the following statement by Lorenz (1972): If the flap of a butterfly's wings can be instrumental in generating a tornado, it can

  6. Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term

    NASA Astrophysics Data System (ADS)

    Shen, B.-W.

    2015-12-01

    In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the streamfunction is referred to as a secondary streamfunction mode, while the two additional modes, which appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74), but slightly smaller than the one in the 5DLM (rc ~ 42.9). A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1) negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2) the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3) overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the following statement by Lorenz (1972): "If the flap of a butterfly's wings can be instrumental in generating a tornado, it can

  7. Sinking coastal cities

    NASA Astrophysics Data System (ADS)

    Erkens, Gilles; Bucx, Tom; Dam, Rien; De Lange, Ger; Lambert, John

    2014-05-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs. This effects roads and transportation networks, hydraulic infrastructure - such as river embankments, sluice gates, flood barriers and pumping stations -, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. Excessive groundwater extraction after rapid urbanization and population growth is the main cause of severe land subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. Because of ongoing urbanization and population growth in delta areas, in particular in coastal megacities, there is, and will be, more economic development in subsidence-prone areas. The impacts of subsidence are further exacerbated by extreme weather events (short term) and rising sea levels (long term).Consequently, detrimental impacts will increase in the near future, making it necessary to address subsidence related problems now. Subsidence is an issue that involves many policy fields, complex technical aspects and governance embedment. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. A major rethink is needed to deal with the 'hidden' but urgent

  8. Additions to compact heat exchanger technology: Jet impingement cooling & flow & heat transfer in metal foam-fins

    NASA Astrophysics Data System (ADS)

    Onstad, Andrew J.

    Compact heat exchangers have been designed following the same basic methodology for over fifty years. However, with the present emphasis on energy efficiency and light weight of prime movers there is increasing demand for completely new heat exchangers. Moreover, new materials and mesoscale fabrication technologies offer the possibility of significantly improving heat exchanger performance over conventional designs. This work involves fundamental flow and heat transfer experimentation to explore two new heat exchange systems: in Part I, large arrays of impinging jets with local extraction and in Part II, metal foams used as fins. Jet impingement cooling is widely used in applications ranging from paper manufacturing to the cooling of gas turbine blades because of the very high local heat transfer coefficients that are possible. While the use of single jet impingement results in non-uniform cooling, increased and more uniform mean heat transfer coefficients may be attained by dividing the total cooling flow among an array of smaller jets. Unfortunately, when the spent fluid from the array's central jets interact with the outer jets, the overall mean heat transfer coefficient is reduced. This problem can be alleviated by locally extracting the spent fluid before it is able to interact with the surrounding jets. An experimental investigation was carried out on a compact impingement array (Xn/Djet = 2.34) utilizing local extraction of the spent fluid (Aspent/Ajet = 2.23) from the jet exit plane. Spatially resolved measurements of the mean velocity field within the array were carried out at jet Reynolds numbers of 2300 and 5300 by magnetic resonance velocimetry, MRV. The geometry provided for a smooth transition from the jet to the target surface and out through the extraction holes without obvious flow recirculation. Mean Nusselt number measurements were also carried out for a Reynolds number range of 2000 to 10,000. The Nusselt number was found to increase with the

  9. Additive impacts on particle emissions from heating low emitting cooking oils

    NASA Astrophysics Data System (ADS)

    Amouei Torkmahalleh, M.; Zhao, Y.; Hopke, P. K.; Rossner, A.; Ferro, A. R.

    2013-08-01

    The effect of five additives, including table salt, sea salt, black pepper, garlic powder, and turmeric, on the emission of PM2.5 and ultrafine particles (UFP) from heated cooking oil (200 °C) were studied. One hundred milligrams of the additives were added individually to either canola or soybean oil without stirring. Black pepper, table salt, and sea salt reduced the PM2.5 emission of canola oil by 86% (p < 0.001), 88% (p < 0.001), and 91% (p < 0.001), respectively. Black pepper, table salt, and sea salt also decreased the total particle number emissions of canola oil by 45% (p = 0.003), 52% (p = 0.001), and 53% (p < 0.001), respectively. Turmeric and garlic powder showed no changes in the PM2.5 and total number emissions of canola oil. Table salt and sea salt, decreased the level of PM2.5 emissions from soybean oil by 47% (p < 0.001) and 77% (p < 0.001), respectively. No differences in the PM2.5 emissions were observed when other additives were added to soybean oil. Black pepper, sea salt, and table salt reduced the total particle number emissions from the soybean oil by 51%, 61% and 68% (p < 0.001), respectively. Turmeric and garlic powder had no effect on soybean oil with respect to total particle number emissions. Our results indicate that table salt, sea salt, and black pepper can be used to reduce the particle total number and PM2.5 emissions when cooking with oil.

  10. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of...

  11. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of...

  12. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of...

  13. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of...

  14. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of...

  15. Sinking Coastal Cities

    NASA Astrophysics Data System (ADS)

    Erkens, G.; Stuurman, R.; De Lange, G.; Bucx, T.; Lambert, J.

    2014-12-01

    In many coastal cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will continue to sink, even below sea level. The ever increasing industrial and domestic demand for water in these cities results in excessive groundwater extraction, causing severe subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. The impacts of subsidence are further exacerbated by climate-induced sea level rise. Land subsidence results in two types damage: foremost it increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. Secondly, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs of roads and transportation networks, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. To survey the extent of groundwater associated subsidence, we conducted a quick-assessment of subsidence in a series of mega-cities (Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok). For each city research questions included: what are the main causes, how much is the current subsidence rate and what are predictions, where are the vulnerable areas, what are the impacts and risks, how can adverse impacts can be mitigated or compensated for, and what governmental bodies are involved and responsible to act? Using the assessment, this paper discusses subsidence modelling and measurement results from the selected cities. The focus is on the importance of delayed settlement after increases in hydraulic heads, the role of the subsurface composition for subsidence rates and best practice solutions for subsiding cities. For the latter, urban (ground)water management, adaptive flood risk management

  16. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    NASA Astrophysics Data System (ADS)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-02-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  17. One-dimensional analysis of unsteady flows due to supercritical heat addition in high speed condensing steam

    NASA Astrophysics Data System (ADS)

    Malek, N. A.; Hasini, H.; Yusoff, M. Z.

    2013-06-01

    Unsteadiness in supersonic flow in nozzles can be generated by the release of heat due to spontaneous condensation. The heat released is termed "supercritical" and may be responsible for turbine blades failure in turbine cascade as it causes a supersonic flow to decelerate. When the Mach number is reduced to unity, the flow can no longer sustain the additional heat and becomes unstable. This paper aims to numerically investigate the unsteadiness caused by supercritical heat addition in one-dimensional condensing flows. The governing equations for mass, momentum and energy, coupled with the equations describing the wetness fraction and droplet growth are integrated and solved iteratively to reveal the final solution. Comparison is made with well-established experimental and numerical solution done by previous researchers that shows similar phenomena.

  18. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  19. DNA Persistence in Sink Drain Environment

    SciTech Connect

    Winder, Eric M.; Bonheyo, George T.

    2015-07-31

    Biofilms are organized structures composed mainly of cells and extracellular polymeric substances produced by the constituent microorganisms. Ubiquitous in nature, biofilms have an innate ability to capture and retain passing material and may therefore act as natural collectors of contaminants or signatures of upstream activities. To determine the persistence and detectability of DNA passing through a sink drain environment, Bacillus anthracis strain Ames35 was cultured (6.35 x 107 CFU/mL), sterilized, and disposed of by addition to a sink drain apparatus with an established biofilm.

  20. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  1. Decrease in the acrylamide content in canned coffee by heat treatment with the addition of cysteine.

    PubMed

    Narita, Yusaku; Inouye, Kuniyo

    2014-12-17

    Acrylamide (AA) is classified as a Group 2A carcinogen according to the International Agency for Research on Cancer. Although coffee contains a small amount of AA, it is a popular beverage worldwide. Approximately 10 billion canned coffees are consumed each year in Japan. In this study, we investigated how to decrease AA contained in canned coffee by modifying the heat treatment used for sterilization during the manufacturing process. The AA content of both types of canned coffee (black and milk) was decreased by approximately 95% by heat treatment with adding cysteine at 121 °C for 6 min. The content was also decreased by heat treatment with dithiothreitol, although that with cystine had no effect. Therefore, it is shown that thiol groups in cysteine and dithiothreitol might play an important role in decreasing the AA content. PMID:25420187

  2. Effects of different additives with assistance of microwave heating for heavy metal stabilization in electronic industry sludge.

    PubMed

    Jothiramalingam, R; Lo, Shang-Lien; Chen, Ching-lung

    2010-01-01

    Electronic industrial wastewater sludge in Taiwan is normally passed through an acid-extraction process to reclaim most of the copper ions, the remaining residue may still need to be treated by various stabilization technologies using suitable additives. Cement solidification is used as the common method to stabilize the industrial wastewater sludge in Taiwan. However, this method has the disadvantage of an increase in waste volume. In the present study selective additives such as sodium sulfide, barium manganate and different phase of alumina were tested as a possible alternate additive to stabilize the heavy metal ion in the treated solid waste sludge via microwave heating treatment. The effects of additive amount, power of microwave irradiation and reaction time have been studied. Heavy metal leaching capacity is determined by using standard toxicity characteristic leaching procedure test and elemental content in the leachate is analyzed by inductively coupled plasma analysis. Sodium sulfide is effectively stabilizing the leaching copper ion with high selectivity in the presence of microwave irradiation and finally stabilized in the form of copper sulfide, which is a significant reaction to stabilize the copper ion leaching in the waste sludge. Complete stabilization of heavy metal ion and copper ion content (<5mgL(-1)) in industrial sludge is achieved by heating the microwave treated barium manganate and alumina additives by adopting suitable reaction conditions. Hybrid microwave and conventional heating process with minor amount of additive providing the efficient heavy metal stabilization for treated electronic industry waste sludge. PMID:19945139

  3. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  4. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS... a NOX Budget unit that monitors and reports NOX mass emissions using a NOX concentration system and a flow system shall also monitor and report heat input rate at the unit level using the...

  5. Electromagnetic energy sink

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Vehmas, J.; Simovski, C. R.; Tretyakov, S. A.; Maslovski, S. I.

    2015-12-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  6. Shaft sinking method

    SciTech Connect

    Sainsbury, G.M.

    1987-10-20

    A method is described of sinking shafts comprising excavating a series of lifts wherein each lift is excavated by drilling a pattern of blast holes for the full depth of the lift boring a large diameter hole for the full depth of the lift. Then creating a chamber only at the lower end of the large diameter hole, blasting a portion of the walls of the chamber to deposit rock material into the chamber, extracting at least a portion of the rock material created by the blast and repeating the blasting and extraction step throughout the length of the lift from the bottom to the top and when the volume of the lift is blasted extracting the remaining rock broken material.

  7. Forests as carbon sinks

    SciTech Connect

    Houghton, R.A.; Woodwell, R.M.

    1995-11-01

    When the nations of the world signed and later ratified the United Nations Framework Convention on Climate Change (FCCC), they accepted the difficult challenge of stabilizing the composition of the atmosphere with respect to the greenhouse gases (GHGs). Success will require a reduction in both use of fossil fuels and rates of deforestation. Forests have a large enough influence on the atmosphere that one of the options for stabilizing the concentrations of GHGs in the atmosphere includes the use of forests as a carbon sink through reforestation of large areas. We identify in this paper the potential and the limitations of such projects. We discuss the implications of four approaches in management of forests globally: (i) continued deforestation, (ii) halting deforestation, (iii) net reforestation including agroforestry, and (iv) substituting the use of wood fuels for fossil fuels.

  8. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers

    SciTech Connect

    Miller, W.A.

    1999-03-24

    Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected

  9. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. I. Hydrocarbon Compounds

    NASA Astrophysics Data System (ADS)

    Růžička, Vlastimil; Domalski, Eugene S.

    1993-05-01

    A second-order group additivity method has been developed for the estimation of the heat capacity of liquid hydrocarbons as a function of temperature in the range from the melting temperature to the normal boiling temperature. The temperature dependence of group contributions and structural corrections has been represented by a polynomial expression. The adjustable parameters in the polynomials have been calculated using a weighted least squares minimization procedure. Recommended heat capacities from a large compilation of critically evaluated data that contains over 1300 organic liquids served as a database both for the development and testing of the method.

  10. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. PMID

  11. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  12. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…

  13. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4176 Additional... mass emissions using a Hg concentration monitoring system and a flow monitoring system shall...

  14. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4176 Additional... mass emissions using a Hg concentration monitoring system and a flow monitoring system shall...

  15. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  16. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.

    PubMed

    Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2014-02-19

    The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied. PMID:24460091

  18. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  19. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity. An Amendment

    NASA Astrophysics Data System (ADS)

    Zábranský, Milan; Růžička, Vlastimil

    2004-12-01

    An amendment to a second-order group additivity method for the estimation of the heat capacity of pure organic liquids as a function of temperature in the range from the melting temperature to the normal boiling temperature is reported. The temperature dependence of various group contributions and structural corrections is represented by a series of second order polynomial expressions. The group contribution parameters have been developed from an extended database of more than 1800 recommended heat capacity values. The present method should be more versatile and more accurate than the previous one [Růžička and Domalski, J. Phys. Chem. Ref. Data 22, 597, 619 (1993)] due to the use of a larger database and an improved procedure for parameter calculation.

  20. DNA Persistence in a Sink Drain Environment

    PubMed Central

    Winder, Eric M.; Bonheyo, George T.

    2015-01-01

    Biofilms are organized structures composed mainly of cells and extracellular polymeric substances produced by the constituent microorganisms. Ubiquitous in nature, biofilms have an innate ability to capture and retain passing material and may therefore act as natural collectors of contaminants or signatures of upstream activities. To determine the persistence and detectability of DNA passing through a sink drain environment, Bacillus anthracis strain Ames35 was cultured (6.35 x 107 CFU/mL), sterilized, and disposed of by addition to a sink drain apparatus with an established biofilm. The sink drain apparatus was sampled before and for several days after the addition of the sterilized B. anthracis culture to detect the presence of B. anthracis DNA. Multiple PCR primer pairs were used to screen for chromosomal and plasmid DNA with primers targeting shorter sequences showing greater amplification efficiency and success. PCR amplification and detection of target sequences indicate persistence of chromosomal DNA and plasmid DNA in the biofilm for 5 or more and 14 or more days, respectively. PMID:26230525

  1. DNA Persistence in a Sink Drain Environment

    DOE PAGESBeta

    Winder, Eric M.; Bonheyo, George T.

    2015-07-31

    Biofilms are organized structures composed mainly of cells and extracellular polymeric substances produced by the constituent microorganisms. Ubiquitous in nature, biofilms have an innate ability to capture and retain passing material and may therefore act as natural collectors of contaminants or signatures of upstream activities. To determine the persistence and detectability of DNA passing through a sink drain environment, Bacillus anthracis strain Ames35 was cultured (6.35 x 107 CFU/mL), sterilized, and disposed of by addition to a sink drain apparatus with an established biofilm. The sink drain apparatus was sampled before and for several days after the addition of themore » sterilized B. anthracis culture to detect the presence of B. anthracis DNA. Multiple PCR primer pairs were used to screen for chromosomal and plasmid DNA with primers targeting shorter sequences showing greater amplification efficiency and success. PCR amplification and detection of target sequences indicate persistence of chromosomal DNA and plasmid DNA in the biofilm for 5 or more and 14 or more days, respectively.« less

  2. DNA Persistence in a Sink Drain Environment

    SciTech Connect

    Winder, Eric M.; Bonheyo, George T.

    2015-07-31

    Biofilms are organized structures composed mainly of cells and extracellular polymeric substances produced by the constituent microorganisms. Ubiquitous in nature, biofilms have an innate ability to capture and retain passing material and may therefore act as natural collectors of contaminants or signatures of upstream activities. To determine the persistence and detectability of DNA passing through a sink drain environment, Bacillus anthracis strain Ames35 was cultured (6.35 x 107 CFU/mL), sterilized, and disposed of by addition to a sink drain apparatus with an established biofilm. The sink drain apparatus was sampled before and for several days after the addition of the sterilized B. anthracis culture to detect the presence of B. anthracis DNA. Multiple PCR primer pairs were used to screen for chromosomal and plasmid DNA with primers targeting shorter sequences showing greater amplification efficiency and success. PCR amplification and detection of target sequences indicate persistence of chromosomal DNA and plasmid DNA in the biofilm for 5 or more and 14 or more days, respectively.

  3. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  4. Group additive values for the gas-phase standard enthalpy of formation, entropy and heat capacity of oxygenates.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2013-11-25

    A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS-QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α- and β-branched, mono- and bifunctional oxygenates. Internal rotations were accounted for by using one-dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS-QB3 standard enthalpies of formation. Furthermore, 14 corrections for non-nearest-neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol(-1) and 4 J mol(-1) K(-1) for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.- 1995, 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (Δ(f)H°, S°, C(p)°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide-ranging application. PMID:24123572

  5. On modeling weak sinks in MODPATH.

    PubMed

    Abrams, Daniel; Haitjema, H; Kauffman, L

    2013-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low-resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs. PMID:23025655

  6. Effects of Heat and Momentum Addition Inside and Outside the Compound Sonic Point of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Webb, G. M.; McKenzie, J. F.

    2014-12-01

    We consider the effect of heat and momentum addition to the solar wind for a model including the effects of Alfven waves and plasma pressure (proton plus electron pressure). The mass flux per unit area in 1D flow maximizes when the flow speed equals the compound sound speed, including the effects of the Alfven wave pressure. We discuss the analogue of the Laval nozzle for the solar wind flow, and the dependence of the effective nozzle area as a function of radial distance, and the relationship of the nozzle area to the momentum equation and the Mach number of the flow. An analysis is carried out of the effects of heat and momentum addition to the wind, using a thin slice approximation, which leads to Rankine Hugoniot relations for weak deflagrations and detonations (i.e. the combustion Hugoniot). The linearized Hugoniot is used to analyze the effects of small momentum and energy addition to the wind in the thin slice approximation. We obtain the fully nonlinear Rankine Hugoniot equation solutions. The analysis also holds in the presence of Alfven waves, in which the wave energy exchange equation yields the wave action flux conservation law when their contribution to the compound sound speed is taken into account. The effective polytropic index γgamma and flow speed relative to the compound flow speed ahead of the slice play crucial roles in determining whether local acceleration or deceleration results. Some results are at first sight unexpected since γgamma for Alfven waves ranges from -1/2 (in sub-Alfvenic flow) to 3/2 in super-Alfvenic flow.

  7. Carbapenemase-bearing Klebsiella spp. in sink drains: investigation into the potential advantage of copper pipes.

    PubMed

    Soothill, J S

    2016-06-01

    Sink drains have long been known to harbour pathogenic bacteria and efforts such as heated sink traps have been made to control them. Sink outlet pipes have been implicated in outbreaks of infection by multi-resistant Klebsiella pneumoniae. To investigate whether a change to copper pipes might prevent cross-infection, sections of standard sink outlet pipe were left in containers of water to which multi-resistant human strains of K. pneumoniae had been added. Bacterial counts from the water of containers to which copper pipe had been added were lower than those from containers to which PVC (polyvinyl chloride) pipe had been added. PMID:27112043

  8. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  9. Flinking: Neither Floating nor Sinking.

    ERIC Educational Resources Information Center

    Wilson, Roger B.

    1993-01-01

    Describes an activity that challenges students to make an object that, when released under water, does not float up or sink down. The main concept this activity investigates is the density of ordinary objects in comparison to the density of water. (PR)

  10. Cotton source/sink relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolite source/sink relationships govern assimilate partitioning, developmental rates and fruit abscission in cotton. This subject is, therefore, of primary importance in the improvement of cotton plant types and in cotton culture. Historically, cotton has been among the most valuable of agrono...

  11. First principles based group additive values for the gas phase standard entropy and heat capacity of hydrocarbons and hydrocarbon radicals.

    PubMed

    Sabbe, Maarten K; De Vleeschouwer, Freija; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2008-11-27

    In this work a complete and consistent set of 95 Benson group additive values (GAVs) for standard entropies S(o) and heat capacities C(p)(o) of hydrocarbons and hydrocarbon radicals is presented. These GAVs include 46 groups, among which 25 radical groups, which, to the best of our knowledge, have not been reported before. The GAVs have been determined from a set of B3LYP/6-311G(d,p) ideal gas statistical thermodynamics values for 265 species, consistently with previously reported GAVs for standard enthalpies of formation. One-dimensional hindered rotor corrections for all internal rotations are included. The computational methodology has been compared to experimental entropies (298 K) for 39 species, with a mean absolute deviation (MAD) between experiment and calculation of 1.2 J mol(-1) K(-1), and to 46 experimental heat capacities (298 K) with a resulting MAD = 1.8 J mol(-1) K(-1). The constructed database allowed evaluation of corrections on S(o) and C(p)(o) for non-nearest-neighbor effects, which have not been determined previously. The group additive model predicts the S(o) and C(p)(o) within approximately 5 J mol(-1) K(-1) of the ab initio values for 11 of the 14 molecules of the test set, corresponding to an acceptable maximal deviation of a factor of 1.6 on the equilibrium coefficient. The obtained GAVs can be applied for the prediction of S(o) and C(p)(o) for a wide range of hydrocarbons and hydrocarbon radicals. The constructed database also allowed determination of a large set of hydrogen bond increments, which can be useful for the prediction of radical thermochemistry. PMID:18980365

  12. Haze Formation is an Important Sink for HCN on Titan

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1996-01-01

    Titan's organic haze is potentially an important sink of photochemically produced carbon and nitrogen compounds. An assortment of microphysical haze models all suggest that the haze production rate is 10(exp -14) gm per square centimeter per second, within a factor of two. Spectral analysis of laboratory tholins compared to Titan's geometric albedo spectrum suggest that the laboratory material is a good analog to Titan's haze. The laboratory material has an elemental composition given approximately by C4H4N, with an uncertainty in the C/N ratio of a factor of two. Thus, the haze represents a sink for C of 4 x 10(exp 8) per square centimeter per second, and a sink for N of 1 x 10(exp 8) per square centimeter per second. The C sink is small compared to condensation of hydrocarbons but the sink for N is comparable to the total production rate of HCN. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere.

  13. Inactivation of Salmonella Enteriditis and Salmonella Senftenberg in liquid whole egg using generally recognized as safe additives, ionizing radiation and heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of combining irradiation followed by heat on Salmonella Enteriditis and Salmonella Senftenberg inoculated into liquid whole egg (LWE) with added nisin, EDTA, sorbic acid, carvacrol, or combinations of these GRAS additives was investigated. Synergistic reductions of Salmonella populations ...

  14. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. PMID:27387899

  15. A study of hear sink performance in air and soil for use in a thermoelectric energy harvesting device

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Lawrence, E. E.

    2002-01-01

    A suggested application of a thermoelectric generator is to exploit the natural temperature difference between the air and the soil to generate small amounts of electrical energy. Since the conversion efficiency of even the best thermoelectric generators available is very low, the performance of the heat sinks providing the heat flow is critical. By providing a constant heat input to various heat sinks, field tests of their thermal conductances in soil and in air were performed. Aprototype device without a thermoelectric generator was constructed, buried, and monitored to experimentally measure the heat flow achievable in such a system. Theoretical considerations for design and selection of improved heat sinks are also presented. In particular, the method of shape factoranalysis is used to give rough estimates and upper bounds for the thermal conductance of a passive heat sink buried in soil.

  16. Effect of Boron Addition and Initial Heat-Treatment Temperature on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steels Under Different Heat-Treatment Conditions

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murty, B. S.

    2013-05-01

    The effect of initial heat treatment on microstructure and mechanical properties of boron-free and boron-containing modified 9Cr-1Mo steel (P91 and P91B, respectively) has been studied under different heat-treatment conditions. The prior austenite grains evolved in P91 steel, having different prior austenite grain sizes, were found to be similar in size after heat treatment in the range of 1073 K to 1448 K (800 °C to 1175 °C) for 5 minutes. The microstructural evolution in P91B steel having different prior austenite grain sizes appeared to be uniform when subjected to different heat-treatment temperatures with the prior austenite grain size being similar to that of initial grain size. Lath martensite was observed in P91B steel after all heat treatments. On the other hand, lath martensite was observed in P91 steel only when subjected to high-temperature heat treatment, whereas subgrain/substructure as well as coarse precipitates were observed after a lower temperature heat treatment. Large differences in the hardness/strength values between different microstructures corresponding to coarse-grained heat-affected zone (CGHAZ) and intercritical HAZ (ICHAZ) of P91 steel weldment were due to the distinct difference in these microstructures. The difference in hardness/strength values between the CGHAZ and ICHAZ was found to be insignificant in P91B steel under similar heat-treatment conditions.

  17. Effect of additional heat treatment of 2024-T3 on the growth of fatigue crack in air and in vacuum

    NASA Technical Reports Server (NTRS)

    Louwaard, E. P.

    1986-01-01

    In order to determine the influence of ductility on the fatigue crack growth rate of aluminum alloys, fatigue tests were carried out on central notched specimens of 2024-T3 and 2024-T8 sheet material. The 2024-T8 material was obtained by an additional heat treatment applied on 2024-T3 (18 hours at 192 C), which increased the static yield strength from 43.6 to 48.9 kgf/sq mm. A change in the ultimate strength was not observed. Fatigue tests were carried out on both materials in humid air and in high vacuum. According to a new crack propagation model, crack extension is supported to be caused by a slip-related process and debonding triggered by the environment. This model predicts an effect of the ductility on the crack growth rate which should be smaller in vacuum than in humid air; however, this was not confirmed. In humid air the crack-growth rate in 2024-T8 was about 2 times faster than in 2024-T3, while in vacuum the ratio was about 2.5. Crack closure measurements gave no indications that crack closure played a significant role in both materials. Some speculative explanations are briefly discussed.

  18. Divergence in sink contributions to population persistence.

    PubMed

    Heinrichs, Julie A; Lawler, Joshua J; Schumaker, Nathan H; Wilsey, Chad B; Bender, Darren J

    2015-12-01

    Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source-sink dynamics for 3 very different endangered species: Black-capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual-based models. We then used the models to quantify population abundance and persistence with and without long-term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black-capped Vireos) when Brown-headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black-capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context-dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re-assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations. PMID:26032147

  19. Divergence in sink contributions to population persistence (journal article)

    EPA Science Inventory

    Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks t...

  20. The Effect of Sink Temperature on a Capillary Pumped Loop Employing a Flat Evaporator and Shell and Tube Condenser

    SciTech Connect

    M. Cerza; R.C. Herron; J.J. Harper

    2002-06-24

    An experimental facility for conducting research on capillary pumped loop (CPL) systems was developed. In order to simulate shipboard cooling water encountered at various locations of the ocean, the heat sink temperature of the facility could be varied. A flat plate, CPL evaporator was designed and tested under various heat sink temperatures. The sink temperature ranged from 274.3 to 305.2 K and the heat input varied from 250 to 800 W which corresponds to heat fluxes up to 1.8 W/cm{sup 2}. The CPL flat plate evaporator performed very well under this range of heat input and sink temperatures. The main result obtained showed that a large degree of subcooling developed between the evaporator vapor outlet line and liquid return line. This condensate depression increased with increasing heat input.

  1. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  2. Rangelands: a closing carbon sink?

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2016-04-01

    Two thirds of the world's agricultural land is suitable for grazing only. Much of this land has experienced severe erosion due to mismanagement, massive redistribution of soil and sediment, and significant degradation of vegetation. As a consequence, geochemical cycles have changed. Unlike croplands, the impact of degradation on nutrient fluxes is hardly compensated on rangelands, potentially disturbing the carbon cycle because of the declining biomass production and the subsequent conversion of litter into soil organic matter. Over time, the degradation leads to a decline in soil C stocks and, if associated with soil erosion, also to a decline in carbon transfer from soil into sediment sinks. A priory reasoning suggests that during the degradation process, with soil productivity not yet massively affected, the Carbon transfer initially increases because soil erosion rates are also greater than in the non-disturbed system. With most soil degradation in rangelands occurring during the past 200 years, this mechanism on a large part of the global land area could have generated an unintentional terrestrial carbon sink during a time period with increasing industrial CO2 emissions. Using global data on soil degradation, soil erosion, soil carbon stocks and dynamics to simulate their interaction and potential role for rangeland carbon cycles supports the assumption that rangelands may have functioned as a carbon sink, but reveals major uncertainties with regards to the size. This highlights the need to improve our knowledge and understanding of rangeland erosion, landscape change and soil formation, both with regards to the recent past, but also the impacts of their future use and climate.

  3. Parameterization of Aerosol Sinks in Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2012-01-01

    The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.

  4. The Arctic Ocean carbon sink

    NASA Astrophysics Data System (ADS)

    MacGilchrist, G. A.; Naveira Garabato, A. C.; Tsubouchi, T.; Bacon, S.; Torres-Valdés, S.; Azetsu-Scott, K.

    2014-04-01

    We present observation based estimates of the transport of dissolved inorganic carbon (DIC) across the four main Arctic Ocean gateways (Davis Strait, Fram Strait, Barents Sea Opening and Bering Strait). Combining a recently derived velocity field at these boundaries with measurements of DIC, we calculated a net summertime pan-Arctic export of 231±49 Tg C yr-1. On an annual basis, we estimate that at least 166±60 Tg C yr-1 of this is due to uptake of CO2 from the atmosphere, although time-dependent changes in carbon storage are not quantified. To further understand the region's role as a carbon sink, we calculated the volume-conserved net DIC transport from beneath a prescribed mixed layer depth of 50 m, referred to as ‘interior transport', revealing an export of 61±23 Tg C yr-1. Applying a carbon framework to infer the sources of interior transport implied that this export is primarily due to the sinking and remineralisation of organic matter, highlighting the importance of the biological pump. Furthermore, we qualitatively show that the present day Arctic Ocean is accumulating anthropogenic carbon beneath the mixed layer, imported in Atlantic Water.

  5. A heat flow calorimeter

    NASA Technical Reports Server (NTRS)

    Johnston, W. V.

    1973-01-01

    Reaction mechanism for nickel-cadmium cell is not known well enough to allow calculation of heat effects. Calorimeter can measure heat absorbed or evolved in cell, by determining amount of external heat that must be supplied to calorimeter to maintain constant flow isothermal heat sink.

  6. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Wang, H. W.; Chen, J. M.; Zhou, L. X.; Ju, W. M.; Ding, A. J.; Liu, L. X.; Peters, W.

    2013-08-01

    In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV) of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO). The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002-2008 are -3.20 ± 0.63 and -0.28 ± 0.18 PgC yr-1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs) and from the import of wood and food, we further estimate that China's land sink is about -0.31 PgC yr-1.

  7. Free convection in square cavity driven by discrete three source-sink pairs on one sidewall

    NASA Astrophysics Data System (ADS)

    Azmi, Mohd Irwan Mohd; Sidik, Nor Azwadi Che; Munir, Fudhail Abd.; Misha, Suhaimi; Daud, Nazri Md; Razali, Nadlene; Sahat, Idris Mat

    2012-06-01

    Lattice Boltzmann method (LBM) was applied to predict fluid flow and heat transfer characteristics of free convection in a two-dimensional square cavity driven by three discrete source-sink pairs on one vertical sidewall. The size of sources and sinks was L/6. The arrangement of the sources and sinks were alternately located. Simulations were conducted at Rayleigh number 103 to 105. The characteristics were represented by streamlines and isotherms. It was found that the solution is comparatively acceptable with other previous study applying conventional approach.

  8. Cryogenic flat-panel gas-gap heat switch

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; Keijzer, R.; Buitelaar, P.; ter Brake, H. J. M.

    2016-09-01

    A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100-180 K. The apparatus is cooled by a two-stage GM cooler and the temperature is controlled with a heater and a braided copper wire connection. A thermal guard is mounted on the hot side of the device to confine the heat flow axially through the sample. A gas handling system allows testing the device with different gas pressures in the heat switch. Experiments are performed at various heat sink temperatures, by varying gas pressure in the gas-gap and with helium, hydrogen and nitrogen gas. The measured off-conductance with a heat sink temperature of 115 K and the hot plate at 120 K is 0.134 W/K, the on-conductance with helium and hydrogen gases at the same temperatures is 4.80 W/K and 4.71 W/K, respectively. This results in an on/off conductance ratio of 37 ± 7 and 35 ± 6 for helium and hydrogen respectively. The experimental results matches fairly well with the predicted heat conductance at cryogenic temperatures.

  9. Effect of heat treatment, pH, sugar concentration, and metal addition on green color retention in homogenized puree of Thompson seedless grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homogenized puree of Thompson seedless (Vitis vinifera ‘Thompson Seedless’) grape was treated under different conditions, including heating time (5-30 min), temperature (20-80°C) and pH (2-10). Treatments with separate additions of glucose, fructose, and sucrose at concentrations of 100-600 g/L and ...

  10. Effect of cerium addition on casting/chill interfacial heat flux and casting surface profile during solidification of Al-14%Si alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Prabhu, K. N.

    2016-03-01

    In the present investigation, Al-14 wt. % Si alloy was solidified against copper, brass and cast iron chills, to study the effect of Ce melt treatment on casting/chill interfacial heat flux transients and casting surface profile. The heat flux across the casting/chill interface was estimated using inverse modelling technique. On addition of 1.5% Ce, the peak heat flux increased by about 38%, 42% and 43% for copper, brass and cast iron chills respectively. The effect of Ce addition on casting surface texture was analyzed using a surface profilometer. The surface profile of the casting and the chill surfaces clearly indicated the formation of an air gap at the periphery of the casting. The arithmetic average value of the profile departure from the mean line (Ra) and arithmetical mean of the absolute departures of the waviness profile from the centre line (Wa) were found to decrease on Ce addition. The interfacial gap width formed for the unmodified and Ce treated casting surfaces at the periphery were found to be about 35µm and 13µm respectively. The enhancement in heat transfer on addition of Ce addition was attributed to the lowering of the surface tension of the liquid melt. The gap width at the interface was used to determine the variation of heat transfer coefficient (HTC) across the chill surface after the formation of stable solid shell. It was found that the HTC decreased along the radial direction for copper and brass chills and increased along radial direction for cast iron chills.

  11. N-Sink: A Tool to Identify Nitrogen Sources and Sinks within aWatershed Framework

    EPA Science Inventory

    N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sources to the watershed outlet. The primary objective of N-Sink is to assist land use planners, watershed managers, and la...

  12. N-Sink: A Tool to Identify Nitrogen Sources and Sinks within aWatershed Framework

    EPA Science Inventory

    N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sources to the watershed outlet. The primary objective of N-Sink is to assist land use planners, watershed managers, a...

  13. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    NASA Astrophysics Data System (ADS)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  14. Sink property of metallic glass free surfaces

    SciTech Connect

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  15. Sink property of metallic glass free surfaces

    DOE PAGESBeta

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  16. Causes of sinks near Tucson, Arizona, USA

    USGS Publications Warehouse

    Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.

    1998-01-01

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.

  17. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  18. Measured effects of retrofits -- a refrigerant oil additive and a condenser spray device -- on the cooling performance of a heat pump

    SciTech Connect

    Levins, W.P.; Sand, J.R.; Baxter, V.D.; Linkous, R.L.

    1996-05-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard ARI cooling rating conditions (95 F outdoor dry bulb and 80/67 F indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity, and the unit was tested for several days at the same 95 F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. The short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of the unit. Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

  19. SOURCES AND SINKS OF NEUTRALS AND PLASMA IN THE SATURNIAN MAGNETOSPHERE (Invited)

    NASA Astrophysics Data System (ADS)

    Richardson, J. D.

    2009-12-01

    This talk will review current knowledge on the source and sinks of plasm and energy in Saturn's magnetosphere. Enceladus dominates the water group source, with most of the material escaping from the plume near the southern pole. The relatively low corotation energy in this region results in less energy being available to heat electrons. The electrons are too cold to ionize the neutrals and the inner magnetosphere is dominated by neutrals. In addition, Saturn's atmosphere is a large source of neutral H, the rings contribute O2, and Titan is a source whose magnitude is controversial. In the inner magnetosphere most particles and energy are removed as fast neutrals; transport is more important further out and may be dominated by fingers of inflow and outflow as at Jupiter.

  20. Process for sinking of shafts

    SciTech Connect

    Kissich, A.; Schetina, O.; Wrulich, H.; Zitz, A.

    1983-04-12

    For sinking of shafts, a cutting machine is provided having its cutting arm pivotable around a vertical axis and a horizontal axis. The cutting arm carries cutting heads which are rotatable around an axis horizontally arranged and extending perpendicularly relative to the axis of the cutting arm. The shaft is now sunk around its circumference in direction of its axis, for which purpose first the uppermost lead of a screw surface is prepared. On this uppermost lead of the screw surface the cutting machine is advanced until the cutting heads contact the shaft wall. In the following, a floor cut is made whereupon a further floor cut is made at a lower level. Starting from a corresponding position of the cutting machine surfaces are cut free starting from the shaft wall. This manner of operation is continued thereby repeating the previous process steps until the whole screw surface is cut free, the cutting machine thereby being moved in backward direction. Any area possibly remaining close to the axis of the shaft and being not within the operating range of the cutting arm can subsequently be broken away or be removed by cutting operating in another position of the cutting machine.

  1. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  2. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  3. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study.

    PubMed

    Bosmans, Geertrui M; Pareyt, Bram; Delcour, Jan A

    2016-02-01

    The impact of different hydration levels, on gelatinization of potato starch (PS), rice starch (RS) and a 1:1 blend thereof, was investigated by differential scanning calorimetry and related to nuclear magnetic resonance proton distributions of hydrated samples, before and after heating. At 20% or 30% hydration, the visual appearance of all samples was that of a wet powder, and limited, if any, gelatinization occurred upon heating. At 30% hydration, changes in proton distributions were observed and related to plasticization of amorphous regions in the granules. At 50% hydration, the PS-RS blend appeared more liquid-like than other hydrated samples and showed more pronounced gelatinization than expected based on additive behavior of pure starches. This was due to an additional mobile water fraction in the unheated PS-RS blend, originating from differences in water distribution due to altered stacking of granules and/or altered hydration of PS due to presence of cations in RS. PMID:26304387

  4. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  5. Turbulence structure of drag-reducing surfactant solution in two-dimensional channel with additional heat transfer enhancement method

    SciTech Connect

    Li, P.W.; Daisaka, H.; Kawaguchi, Y.; Yabe, A.; Hishida, K.; Maeda, M.

    1999-07-01

    The turbulent characteristics of a surfactant water solution in changing from drag-reducing flow to turbulent flow inside a two-dimensional smooth channel and in changing from turbulent flow to drag-reducing flow in the same channel with a mesh plug were investigated through LDV measurement in this study. The mesh plug was used to exert high shear stress to destroy micelle structures in the surfactant solution so that turbulence could be produced for better heat transfer. The two-component LDV system was installed on a movable platform, which could be moved streamwise of the flow to measure the two-dimensional velocity at different stations downstream from the mesh plug. The surfactant tested was Cetyltrimethyl ammonium chloride (C{sub 16}H{sub 33}N(CH{sub 3}){sub 3}Cl, abbreviated as CTAC). Local tap water was used as solvent and same weight concentration of sodium salicylate was used as the counter-ion material. The investigation of turbulent parameters for the drag-reducing flow with increasing Reynolds number showed that when the Reynolds number exceeded the drag-reducing region, the turbulent character was the same as that of water. The turbulent parameters of surfactant flow downstream the mesh plug showed that the high heat transfer region had the same turbulent intensity as that of water flow. As the critical Reynolds number was approached, it became easier to obtain such a turbulent region by mesh plug. In such cases, the mesh helped to create high wall shear stress and therefore to destroy the super-ordered structures of rod-like micelles for introducing turbulence. However, it was found that the turbulent intensities of the velocity gradually decreased to the same as those of drag-reducing flow downstream from the mesh because the mesh plug only produced a local high shear stress.

  6. Conducting the Heat

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  7. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    PubMed Central

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  8. Sonic limitations and startup problems of heat pipes

    NASA Technical Reports Server (NTRS)

    Deverall, J. E.; Kemme, J. E.; Florschuetz, L. W.

    1972-01-01

    Introduction of small amounts of inert, noncombustible gas aids startup in certain types of heat pipes. When the heat pipe is closely coupled to the heat sink, the startup system must be designed to bring the heat sink on-line slowly.

  9. Influence of additives on the increase of the heating value of Bayah's coal with upgrading brown coal (UBC) method

    NASA Astrophysics Data System (ADS)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-01

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  10. Offshore structure and method of sinking same

    SciTech Connect

    Fern, D. T.

    1985-02-05

    An offshore structure and a method of skinking it to the sea bed. In accordance with one aspect of this invention, the structure is sunk asymmetrically by first sinking a first end portion thereof and then sinking the other end portion. The first end portion is sunk by ballasting it while the other end portion is closed to ballast. The structure is provided with sufficient water plane area while sinking each end portion to maintain stability during the sinking process. In accordance with another aspect of this invention, at least two spaced-apart piles are provided at the end corresponding to the first end portion to absorb the force of impact with the sea bed and to maintain a skirt on the structure out of contact with the sea bed until both ends of the structure have been sunk to the sea bed.

  11. Optimization of microwave heating in an existing cubicle cavity by incorporating additional wave guide and control components

    SciTech Connect

    Erle, R.R.; Eschen, V.G.; Sprenger, G.S.

    1995-04-01

    The use of microwave energy to thermally treat Low Level (LLW), Transuranic (TRU), and mixed waste has been under development at the Rocky Flats Environmental Technology Site (Site) since 1986. During that time, the technology has progressed from bench-scale tests, through pilot-scale tests, and finally to a full-scale demonstration unit. Experimental operations have been conducted on a variety of non-radioactive surrogates and actual radioactive waste forms. Through these studies and development efforts, the Microwave Vitrification Engineering Team (MVET) at Rocky Flats has successfully proven the application of microwave energy for waste treatment operations. In the microwave solidification process, microwave energy is used to heat a mixture of waste and glass frit to produce a vitrified product that meets all the current acceptance criteria at the final disposal sites. All of the development to date has utilized a multi-mode microwave system to provide the energy to treat the materials. Currently, evaluations are underway on modifications to the full-scale demonstration system that provide a single-mode operation as a possible method to optimize the system. This poster presentation describes the modifications made to allow the single-mode operation.

  12. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin

    PubMed Central

    Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-01-01

    Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917

  13. Effects of Al Content and Addition of Third Element on Fabrication of Ti-Al Intermetallic Coatings by Heat Treatment of Warm-Sprayed Precursors

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Kuroda, S.; Minagawa, K.; Murakami, H.; Araki, H.; Kurzydłowski, K. J.

    2015-06-01

    Four powder mixtures of titanium and aluminum with 50:50, 40:60, 30:70, and 20:80 atomic ratios were used as feedstock for Warm Spray process to produce composite coatings. A two-stage heat treatment at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical, and phase composition of the as-deposited and heat-treated coatings were investigated using SEM, EDS, and XRD. It was found that the Al content affects on the thickness expansion of the heat-treated Ti-Al coatings significantly and also has a major influence on the porosity development, which is caused by the Kirkendall effect. The effects of adding a third element Si and heat treatment with pressure to produce denser Ti-Al intermetallic coating were also examined. The investigated hot-pressed coatings with addition of Si exhibited much denser microstructure and contained Ti-Al intermetallic phases with titanium silicide precipitates.

  14. On the one-dimensional theory of steady compressible fluid flow in ducts with friction and heat addition

    NASA Technical Reports Server (NTRS)

    Hicks, Bruce L; Montgomery, Donald; Wasserman, Robert H

    1947-01-01

    Steady, diabatic (nonadiabatic), frictional, variable-area flow of a compressible fluid is treated in differential form on the basis of the one-dimensional approximation. The basic equations are first stated in terms of pressure, temperature, density, and velocity of the fluid. Considerable simplification and unification of the equations are then achieved by choosing the square of the local Mach number as one of the variables to describe the flow. The transformed system of equations thus obtained is first examined with regard to the existence of a solution. It is shown that, in general, a solution exists whose calculation requires knowledge only of the variation with position of any three of the dependent variables of the system. The direction of change of the flow variables can be obtained directly from the transformed equations without integration. As examples of this application of the equations, the direction of change of the flow variables is determined for two special flows. In the particular case when the local Mach number m = 1, a special condition must be satisfied by the flow if a solution is to exist. This condition restricts the joint rate of variation of heating, friction, and area at m = 1. Further analysis indicates that when a solution exists at this point it is not necessarily unique. Finally it is shown that the physical phenomenon of choking, which is known to occur in certain simple flow situations, is related to restrictions imposed on the variables by the form of the transformed equations. The phenomenon of choking is thus given a more general significance in that the transformed equations apply to a more general type of flow than has hitherto been treated. (author)

  15. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  16. Electrically heated choke having improved control

    SciTech Connect

    De Petris, P.

    1987-10-13

    A device is described for heating the bimetallic coil spring of an automatic choke comprising an insulating housing, a heat sink adapted to be affixed at one end to the bimetallic spring, a positive temperature coefficient thermistor in engagement with the heat sink and in circuit therewith, a second heat sink in contact with another side of the positive temperature coefficient thermistor, a negative temperature coefficient thermistor carried by the cover and means for delivering electrical power to the negative temperature coefficient thermistor. The last name means being in circuit with an adjustable contact positioned in proximity to the second heat sink. A bimetallic snap disk is engaged at its outer periphery with the second heat sink and adapted to contact the adjustable contact for shunting the negative temperature coefficient thermistor.

  17. Additional ECR heating of a radially inhomogeneous plasma via the absorption of satellite harmonics of the surface flute modes in a rippled magnetic field

    SciTech Connect

    Girka, V. O.; Girka, I. O.

    2006-12-15

    A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, {epsilon}{sub 1} (r{sub 1}) = [2{pi}c/({omega}L)]{sup 2}, where {epsilon}{sub 1} is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r{sub 1} determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.

  18. Heat treatment and the use of additives to improve the stability of paralytic shellfish poisoning toxins in shellfish tissue reference materials for internal quality control and proficiency testing.

    PubMed

    Burrell, Stephen; Clion, Valentin; Auroy, Virginie; Foley, Barry; Turner, Andrew D

    2015-06-01

    The need for homogenous reference materials stable for paralytic shellfish toxins is vital for the monitoring and quality assurance of these potent neurotoxins in shellfish. Two stabilisation techniques were investigated, heat treatment through autoclaving and the addition of preserving additives into the tissue matrix. Short and long-term stability experiments as well as homogeneity determination were conducted on materials prepared by both techniques in comparison with an untreated control using two LC-FLD methods. Both techniques improved the stability of the matrix and the PSP toxins present compared to the controls. A material was prepared using the combined techniques of heat treatment followed by spiking with additives and data is presented from this optimised reference material as used over a two year period in the Irish national monitoring program and in a development exercise as part of a proficiency testing scheme operated by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe) since 2011. The results were indicative of the long-term stability of the material as evidenced through consistent assigned values in the case of the proficiency testing scheme and a low relative standard deviation of 10.5% for total toxicity data generated over 24 months. PMID:25816999

  19. 78 FR 21592 - Drawn Stainless Steel Sinks from the People's Republic of China: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ...Based on affirmative final determinations by the Department of Commerce (the ``Department'') and the International Trade Commission (``ITC''), the Department is issuing an antidumping duty order on drawn stainless steel sinks (``drawn sinks'') from the People's Republic of China (``PRC''). In addition, the Department is amending its final determination to correct a ministerial...

  20. 18. DETAIL OF COMBINATION HANDWASH SINK/KNIFE STERILIZER ON SPLITTERS' PLATFORM; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL OF COMBINATION HANDWASH SINK/KNIFE STERILIZER ON SPLITTERS' PLATFORM; KNIVES AND CLEAVERS WERE CLEANED FREQUENTLY BY DIPPING THEM INTO STEAM-HEATED WATER IN THE RECTANGULAR TANK; NOTE FOOT-OPERATED FAUCETS - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  1. Effectiveness: N(sub TU) relationships for the design and performance evaluation of additional shell-and-tube heat exchanger geometries

    NASA Astrophysics Data System (ADS)

    1988-11-01

    This Data Item 88021, an addition to the Sub-series on Heat Transfer, complements ESDU 86018 by extending the range of configurations covered there and in particular considering the effect of using small numbers of baffles for E- and J-shells and the use of J-shells in series. It also explores the limitations of the assumptions associated with the effectiveness - N(sub TU) method and shows where those assumptions break down. The curves presented for each exchanger geometry show the locus of designs for which a temperature cross may occur and the locus of 95 percent heat transfer effectiveness which indicates the region of uneconomic design. The method assumes a linear temperature/enthalpy relationship (constant specific heat capacity) for both streams. It applies to boiling or condensing flow of a single component with no temperature change, or boiling and condensing flow of a mixture that is always two-phase. It excludes conditions in which transition from single- to two-phase flow occurs. However, by use of average property values, it is possible to extend the method to apply to cases where there is some variation of physical and thermodynamic properties with temperature.

  2. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    PubMed

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. PMID:26025643

  3. Landfills as sinks for (hazardous) substances.

    PubMed

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed. PMID:23129607

  4. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland. PMID:23898678

  5. Distributed power allocation for sink-centric clusters in multiple sink wireless sensor networks.

    PubMed

    Cao, Lei; Xu, Chen; Shao, Wei; Zhang, Guoan; Zhou, Hui; Sun, Qiang; Guo, Yuehua

    2010-01-01

    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol. PMID:22294911

  6. Biological control of the terrestrial carbon sink

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity.

    Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover.

    Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed

  7. The atmospheric partial lifetime of carbon tetrachloride with respect to the global soil sink

    NASA Astrophysics Data System (ADS)

    Rhew, Robert C.; Happell, James D.

    2016-03-01

    The magnitude of the terrestrial soil sink for atmospheric carbon tetrachloride (CCl4) remains poorly constrained, with the estimated uncertainty range of CCl4 partial lifetimes between ~110 and 910 years. Field observations are sparse, and there are uncertainties in extrapolating these results to the global scale. Here we add to the published CCl4 fluxes with additional field measurements, and we employ a land cover classification scheme based on Advanced Very High Resolution Radiometer measurements that align more closely with the measurement sites to reevaluate the global CCl4 soil sink. We calculate an updated partial lifetime of CCl4 with respect to the soil sink to be 375 (288-536) years, which is 50 to 90% longer than the most recently published best estimates of the soil sink partial lifetime (195 and 245 years). This translates into a longer overall atmospheric lifetime estimate, which is more consistent with the observed atmospheric concentration trend and interhemispheric gradient.

  8. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  9. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    Space Weather is a complex web of sources propagators and sinks of energy mass and momentum A complete understanding of Space Weather would require specifying and an ability to predict each link in this web One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program One way to do this ranking is to identify the sources propagators and sinks and produce the simplest linked diagram of the components Such a diagram will be shown and used to discuss how longterm effects of Space Weather can be separated from the impulsive effects

  10. Late-stage sinking of plutons

    USGS Publications Warehouse

    Glazner, A.F.; Miller, D.M.

    1997-01-01

    Many granodiorite to diorite plutons in the Great Basin of western North America are surrounded by rim monoclines or anticlines that suggest relative downward movement of the plutons while wall rocks were hot and ductile. We propose that such plutons rise to a level of approximately neutral buoyancy and then founder as their densities increase ??? 40% during crystallization. Late-stage sinking of intermediate to mafic plutons should be common when wall rocks are rich in weak, low-density minerals such as quartz and calcite. Structures related to sinking will overprint those related to initial pluton emplacement and may be mistaken for regional tectonic structures.

  11. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  12. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Shiun; Hu, Chi-Chang; Li, Yuan-Yao

    In this work, the rate of heat generation in the overcharge period for 103450 prismatic lithium ion batteries (LIBs) of the LiCoO 2-graphite jellyroll type with a basic electrolyte consisting of 1 M LiPF 6-PC/EC/EMC (1/3/5 in weight ratio) has been found to be more important than the gas evolution which was traditionally considered as the main reason in the overcharge protection mechanism. The cell voltage, charge current, and skin temperature were monitored during the charge process. For a single battery or batteries in parallel, LIBs without any additives is an acceptable design if the cell voltage is not charged above 4.55 V under the common charge program. The rate of heat generation from the polymerization of 3 wt% cyclohexyl benzene (CHB) is high enough to cause the explosion or thermal runaway of a battery, which is not found for an LIB containing 2 wt% CHB + 1 wt% tert-amyl benzene (TAB). In the 12 V overcharge test at 1C, the thermal fuse was broken by the high skin temperature (ca. 80 °C) due to the polymerization of 3 wt% CHB, which was also the case for LIBs containing 2 wt% CHB + 1 wt% TAB. The disconnection of the thermal fuse, however, did not interrupt the thermal runaway of LIBs without any additives because the battery voltage was too high (ca. 4.9 V). The influence of specific surface area of active materials in the anode on the polymerization kinetics of additives has to be carefully considered in order to add correct amount of overcharge protection agents.

  13. Diffusion and reaction for a spherical source and sink

    NASA Astrophysics Data System (ADS)

    McDonald, Nyrée; Strieder, William

    2003-03-01

    Two chemically active spheres in an infinite medium, one a zeroth-order reactant source and the other a first-order sink, are considered for various sphere size ratios, center-to-center distances, and sink strengths from chemical to diffusion controlled conditions. This source-sink model simulates some aspects of biological mutualism interactions between different cells. Infinite series expansions in a single index n are obtained for the sink reaction rate and reactant concentration profiles using the bispherical expansion. Each of the coefficients, generated exactly by a matrix elimination method, is expressed in terms of nested, continued fractions easily evaluated for the given n. At intermediate and larger sink-source separation distances the sink reaction rate decays harmonically. For smaller sink-source separations with a highly reactive small sink, a local maximum in the sink reaction rate is found.

  14. TESTS OF INDOOR AIR QUALITY SINKS

    EPA Science Inventory

    Experiments were conducted in a room-size test chamber to determine the sink effects of selected materials on indoor air concentrations of p-dichlorobenzene (PDCB). hese effects might alter pollutant behavior from that predicted using similar indoor air quality models, by reducin...

  15. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  16. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGESBeta

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  17. Detecting black bear source-sink dynamics using individual-based genetic graphs.

    PubMed

    Draheim, Hope M; Moore, Jennifer A; Etter, Dwayne; Winterstein, Scott R; Scribner, Kim T

    2016-07-27

    Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source-sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source-sink dynamics and their implications on harvest management of game species. PMID:27440668

  18. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  19. Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.

  20. Non-Sink Dissolution Conditions for Predicting Product Quality and In Vivo Performance of Supersaturating Drug Delivery Systems.

    PubMed

    Sun, Dajun D; Wen, Hong; Taylor, Lynne S

    2016-09-01

    With recent advances in the development of supersaturating oral dosage forms for poorly water-soluble drugs, pharmaceutical scientists are increasingly applying in vitro dissolution testing under non-sink conditions for a direct evaluation of their ability to generate and maintain supersaturation as a predictive surrogate for ensuring product quality and in vivo performance. However, the scientific rationale for developing the appropriate non-sink dissolution methodologies has not been extensively debated. This calls for a comprehensive discussion of recent research efforts on theoretical and experimental considerations of amorphous solubility, liquid-liquid phase separation, and phase transitions of drugs in a supersaturated solution when dissolution testing is performed under supersaturated non-sink conditions. In addition, we outline the concept of "sink index" that quantifies the magnitude of deviations from perfect sink dissolution conditions in the sink/non-sink continuum and some considerations of non-sink dissolution testing for marketed drug products. These factors should be carefully considered in recommending an adequately discriminatory dissolution method in the performance assessment of supersaturating drug delivery systems. PMID:27174227

  1. Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector.

    PubMed

    Zhu, Yonghong; Li, Genrong; Duan, Yunpeng; Chen, Shiqi; Zhang, Chun; Li, Yanfei

    2008-08-15

    A gas chromatography electron capture detector (GC-ECD) using the standard addition method was developed for the determination of acrylamide in heat-processed foods. The method entails extraction of acrylamide with water, filtration, defatting with n-hexane, derivatization with hydrobromic acid and saturated bromine-water, and liquid-liquid extraction with ethyl acetate. The sample pretreatment required no SPE clean-up and concentration steps prior to injection. The final extract was analyzed by GC-ECD. The chromatographic analysis was performed on polar columns, e.g. Supelcowax-10 capillary column, and good retention and peak response of the analyte were achieved under the optimal conditions. The qualification of the analyte was by identifying the peak with same retention time as standard compound 2,3-DBPA and confirmed by GC-MS. GC-MS analysis confirmed that 2,3-DBPA was converted to 2-BPA nearly completely on the polar capillary column, whether or not treated with triethylamine. A four-point standard addition protocol was used to quantify acrylamide in food samples. The limit of detection (LOD) was estimated to be 0.6μg/kg on the basis of ECD technique. Validation and quantification results demonstrated that the method should be regarded as a low-cost, convenient, and reliable alternative for conventional investigation of acrylamide. PMID:26050006

  2. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating.

    PubMed

    Naghieh, S; Karamooz Ravari, M R; Badrossamay, M; Foroozmehr, E; Kadkhodaei, M

    2016-06-01

    In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layers penetration׳s effect on inter-layer adhesion, which is reflected on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-built samples. PMID:26874065

  3. When Do Bubbles Cause a Floating Body To Sink?

    ERIC Educational Resources Information Center

    Denardo, Bruce; Pringle, Leonard; DeGrace, Carl; McGuire, Michael

    2001-01-01

    Describes qualitative lecture demonstrations that show that bubbles can indeed sink a body, including the case of ice in water. Presents a quantitative experiment to determine the density of bubbly water required to sink a spherical body. (Author/YDS)

  4. Why do bubbles in Guinness sink?

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Cummins, C. P.; Lee, W. T.

    2013-02-01

    Stout beers show the counter-intuitive phenomena of sinking bubbles, while the beer is settling. Previous research suggests that this phenomenon is due to the small size of the bubbles in these beers and the presence of a circulatory current, directed downwards near the side of the wall and upwards in the interior of the glass. The mechanism by which such a circulation is established and the conditions under which it will occur has not been clarified. In this paper, we use simulations and experiments to demonstrate that the flow in a glass of stout beer depends on the shape of the glass. If it narrows downwards (as the traditional stout glass, the pint, does), the flow is directed downwards near the wall and upwards in the interior and sinking bubbles will be observed. If the container widens downwards, the flow is opposite to that described above and only rising bubbles will be seen.

  5. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential. PMID:15256665

  6. Sources, Propagators, and Sinks of Space Weather

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2006-01-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  7. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2006-12-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  8. Opportunities and Challenges for Geographically Expanding N-Sink

    EPA Science Inventory

    The N-Sink tool was created to provide a useful and accessible means for local land use managers to explore the relationship of land use in their towns and counties to nitrogen pollution of their waters. N-Sink focuses on three types of landscape N sinks: wetlands, lakes/ponds/re...

  9. Orifice Blocks Heat Pipe in Reverse Mode

    NASA Technical Reports Server (NTRS)

    Alario, J. P.

    1982-01-01

    High forward-mode conductance is combined with rapid reverse-mode shutoff in a heat pipe originally developed to cool spacecraft payloads. A narrow orifice within the pipe "chokes off" the evaporator if heat sink becomes warmer than source. During normal operation, with source warmer than sink, orifice has little effect. Design is simpler and more compact than other thermal-diode heat pipes and requires no special materials, forgings, or unusual construction techniques.

  10. Cryostat including heater to heat a target

    DOEpatents

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  11. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans

    PubMed Central

    Fang, Ziming; Yang, Weifeng; Chen, Min; Zheng, Minfang; Hu, Wangjiang

    2016-01-01

    The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L−1 were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and 234Th/238U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of 234Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on 234Th/238U disequilibria, the net sinking rate of PBC out of the surface water was −0.8 ± 2.5 μmol m−3 d−1 (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m−3 d−1. Thus, the western Arctic Shelf was probably an effective location for burying PBC. PMID:27417410

  12. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans.

    PubMed

    Fang, Ziming; Yang, Weifeng; Chen, Min; Zheng, Minfang; Hu, Wangjiang

    2016-01-01

    The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L(-1) were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and (234)Th/(238)U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of (234)Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on (234)Th/(238)U disequilibria, the net sinking rate of PBC out of the surface water was -0.8 ± 2.5 μmol m(-3) d(-1) (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m(-3) d(-1). Thus, the western Arctic Shelf was probably an effective location for burying PBC. PMID:27417410

  13. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans

    NASA Astrophysics Data System (ADS)

    Fang, Ziming; Yang, Weifeng; Chen, Min; Zheng, Minfang; Hu, Wangjiang

    2016-07-01

    The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L‑1 were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and 234Th/238U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of 234Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on 234Th/238U disequilibria, the net sinking rate of PBC out of the surface water was ‑0.8 ± 2.5 μmol m‑3 d‑1 (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m‑3 d‑1. Thus, the western Arctic Shelf was probably an effective location for burying PBC.

  14. Evaluation of nitrous acid sources and sinks in urban outflow

    NASA Astrophysics Data System (ADS)

    Gall, Elliott T.; Griffin, Robert J.; Steiner, Allison L.; Dibb, Jack; Scheuer, Eric; Gong, Longwen; Rutter, Andrew P.; Cevik, Basak K.; Kim, Saewung; Lefer, Barry; Flynn, James

    2016-02-01

    Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas-Fort Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A two-layer box model was developed to assess the ability of established and recently identified HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model scenario includes sources and sinks established in the literature and is compared to scenarios including three recently identified sources: volatile organic compound-mediated conversion of nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-limit values. Model outcomes for 'likely' estimates of sources and sinks generally show under-prediction of HONO observations, implying the need to evaluate additional sources and variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo simulation is applied to model scenarios constructed with sources S1-S3 added independently and in combination, generally showing improved model outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best replicate observed HONO, as determined by the model coefficient of determination and residual sum of squared errors (r2 = 0.55 ± 0.03, SSE = 4.6 × 106 ± 7.6 × 105 ppt2). In scenario S2/S3, source S2 is shown to account for 25% and 6.7% of the nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the nighttime and daytime budget, respectively. However, despite improved model fit, there remains significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into agreement with observation. Estimates of 'best fit' parameterizations across lower to upper-limit values results in a moderate reduction of the unknown

  15. A study on the carcinogenicity of human diets in rats: the influence of heating and the addition of vegetables and fruit.

    PubMed

    Alink, G M; Kuiper, H A; Beems, R B; Koeman, J H

    1989-07-01

    The influence of dietary factors such as total composition, thermal processing, and the addition of vegetables and fruit on the tumour rate in rats was studied in a long-term experiment. Groups of 50 male and 50 female Wistar rats were fed one of the following diets: a semi-synthetic animal diet (A, control); diet A to which vegetables and fruit were added (B); an uncooked human diet (meat, bread and eggs) supplemented with semi-synthetic compounds (C); diet C with fried or baked products (D); a complete human diet consisting of heated products, vegetables and fruit prepared according to mean consumption figures in The Netherlands (E). The animal diets (A and B) contained 26.0 energy (E)% protein, 21.6 E% fat, 52.4 E% carbohydrate and 10.7% (w/w) fibre. The human diets contained 13.2 E% protein, 40.6 E% fat, 46.2 E% carbohydrate and 5% (w/w) fibre. The rats were fed ad lib. for 142 wk. In males and females fed human diets (C, D or E) hepatocellular vacuolization was observed. Male rats (but not female) fed the human diet had a significantly (P less than 0.02) higher incidence of epithelial tumours than those fed the animal diet. This increase was mainly due to tumours of the pituitary and thyroid. Frying and baking of food products (diet D) and the addition of vegetables and fruit (diet E) induced minor differences in tumour rate, but they were not statistically significant. PMID:2777146

  16. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  17. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  18. Students' Views of Floating & Sinking. Learning in Science Project (Primary). Working Paper No. 116.

    ERIC Educational Resources Information Center

    Biddulph, Fred

    This study investigated the meanings and ideas held and questions asked by children (ages 7-14) about floating and sinking (in water). Data were collected from interviews using "interview-about-instances" (IAI) cards (included in an appendix) and 10 objects which either floated or sank. Additional data were collected from classroom surveys and…

  19. Effects of alpha-tocopherol addition to polymeric coatings on the UV and heat resistance of a fibrous collagen material--chrome-free leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV and heat resistance are very important qualities of leather because most leather products are constantly exposed to outdoor environments. In recent years, we have focused on using environmentally friendly antioxidants that will improve the UV and heat resistance of chrome-free leather. Tocopher...

  20. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; McManus, James; Mottl, Michael J.; Giambalvo, Emily

    2003-09-01

    We present a new estimate for the crustal phosphorous sink that results from reactions among seawater, basalt, and sediment blanketing low temperature mid-ocean ridge flank hydrothermal systems. New estimates for global hydrothermal power output, sediment thickness, and the dissolved phosphate concentrations in basement formation fluids indicate that fluid flow through ridge flanks removes 2.8 × 1010 mol P yr-1. This value is larger (130%) than the riverine dissolved flux of inorganic phosphate and is as much as 35% of the sedimentary P sink. The concordant seawater flux (2.1 × 1016 kg yr-1) is 65% of the riverine fluid flux and circulates a fluid volume equivalent to the entire ocean in about 70,000 yr. Additional sampling of seafloor springs is required to further constrain the range of calculated phosphate fluxes; nevertheless the modern phosphorus budget is clearly unbalanced with total sinks outpacing sources.

  1. The addition of heat shock protein HSPA8 to cryoprotective media improves the survival of brown bear (Ursus arctos) spermatozoa during chilling and after cryopreservation.

    PubMed

    Alvarez-Rodríguez, M; Alvarez, M; Borragan, S; Martinez-Pastor, F; Holt, W V; Fazeli, A; de Paz, P; Anel, L

    2013-02-01

    The Cantabrian brown bear survives as a small remnant population in northern Spain and semen cryopreservation for future artificial insemination is one of the measures being implemented for conservation of this species. As part of this program we investigated the value of adding heat shock protein A8 (HSPA8) to media (N-[Tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid-TRIS-fructose with 20% egg yolk) used for chilling and cryopreserving the spermatozoa. Semen samples from eight brown bears were obtained by electroejaculation during the breeding season. In experiment 1, we tested three concentrations of HSPA8 (0.5, 1, and 5 μg/mL) to determine whether sperm motility (computer assisted sperm analysis system) and sperm survival could be improved during refrigeration (5 °C) up to 48 hours. Results showed that sperm viability (test with propidium iodide) was improved by the addition of 0.5 and 5 μg/mL HSPA8. In experiment 2, HSPA8 was added to the cryopreservation media (6% final glycerol concentration) before the freezing process. Though there were no differences in sperm viability immediately after thawing (analyses to 0 hours), plasma membrane permeability (test with YO-PRO-1) was significantly lower by the presence of HSPA8 (1 μg/mL) and acrosomal damage (test with peanut agglutinin-fluorescein isothiocyanate conjugate) was reduced by higher concentrations of HSPA8 (1 and 5 μg/mL) (analyses after thermal stress test incubating over 2 hours to 37 °C). In experiment 3, results of a simple progression test carried out through artificial mucus (hyaluronic acid 4 mg/mL) showed a significant decrease in the total number of sperm able to swim a distance of 0.5 to 2 cm through a capillary tube for all HSPA8-based extenders. Nevertheless, the distance traveled by the vanguard spermatozoa, which represent a highly motile subpopulation, was restored by the inclusion of 1 and 5 μg/mL HSPA8 in the cryopreservation media. Thus, the HSPA8 addition to extender improves

  2. The overlooked tropical oceanic CO2 sink

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Araujo, Moacyr; Lefèvre, Nathalie

    2016-04-01

    The intense rainfall in the tropical Atlantic spatially overlaps with the spread of the Amazon plume. Based on remote-sensed sea surface salinity and rainfall, we removed the contribution of rainfall to the apparent Amazon plume area, thus refining the quantification of its extension (0.84 ± 0.06 × 106 km2 to 0.89 ± 0.06 × 106 km2). Despite the previous overestimation of the Amazon plume area due to the influence of rainfall (>16%), our calculated annual CO2 flux based on rainfall-corrected sea surface CO2 fugacity confirms that the Amazon River plume is an atmospheric CO2 sink of global importance (-7.61 ± 1.01 to -7.85 ± 1.02 Tg C yr-1). Yet we show that current sea-air CO2 flux assessments for the tropical Atlantic could be overestimated in about 10% by neglecting the CO2 sink associated to the Amazon plume. Thus, including the Amazon plume, the sea-air CO2 exchange for the tropical Atlantic is estimated to be 81.1 ± 1.1 to 81.5 ± 1.1 Tg C yr-1.

  3. Geological characterization of the Prestige sinking area.

    PubMed

    Ercilla, Gemma; Córdoba, Diego; Gallart, Josep; Gràcia, Eulalia; Muñoz, Josep A; Somoza, Luis; Vázquez, Juan T; Vilas, Federico

    2006-01-01

    The tanker Prestige sank off NW Iberia on the 19th November 2002. The stern and bow of the Prestige wreck are located on the southwestern edge of the Galicia Bank, at 3565 m and 3830 m water depths, respectively. This bank is a structural high controlled by major faults with predominant N-S, NNE-SSW, and NNW-SEE trends. It is characterized by moderate to low seismic activity. The faults have controlled the local depositional architecture, deforming, fracturing, relocating and distributing sediments since the Valangian (early Cretaceous). The Prestige sinking area corresponds to an asymmetric half-graben structure with a N-S trend, which conditions the present-day morphology. The faulted flank outcrops and its activity and erosion have favoured the occurrence of mass-movements (slumps, slump debris, mass-flows and turbidity currents), building valleys and depositional lobes. Nearsurface sediments comprise mostly terrigenous and biogenous turbiditic muds and sands with a minor presence of hemipelagic muds, except on the fault scarp where pelagites predominate. Potential geological hazards resulting from tectonic and sedimentary processes affect almost the entire Prestige sinking area. PMID:16769414

  4. Causes of sinks near Tucson, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Hoffmann, John P.; Pool, Donald R.; Konieczki, A. D.; Carpenter, Michael C.

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods. Résumé Des effondrements en forme d'entonnoir se sont produits sur et près d'exploitations agricoles de Pima (Arizona). Ces entonnoirs apparaissent dans les alluvions le long de la plaine d'inondation de la rivière Santa Cruz ; ils ont rendu ces terrains dangereux et inexploitables pour l'agriculture. Plus de 1700 entonnoirs existent dans la plaine d'inondation de la rivière Santa Cruz et sont groupés en deux bandes orientées nord-nord-ouest, approximativement parallèles à la rivière et aux autres chenaux de la plaine d'inondation. Un volume de sédiments estim

  5. Methyl bromide: Ocean sources, ocean sinks, and climate sensitivity

    SciTech Connect

    Anbar, A.D.; Yung, Y.L.; Chavez, F.P.

    1996-03-01

    This study was performed to examine conflicting conclusions of two previously published studies which estimated the size of oceanic sources of methyl bromide. In addition, the sensitivity of atmospheric methyl bromide to climatic variations was examined. A steady state mass balance model was used to reexamine data from the previous studies. Linear scaling of methyl bromide production rates to chlorophyll content provided agreement between the two models. The results suggest that the open ocean is a small net sink for atmospheric methyl bromide, rather than a large net source. A high rate of biological production of methyl bromide in seawater is also strongly indicated. A coupled ocean-atmosphere model indicated that methyl bromide variations induced by climatic change can be larger than those resulting from 25% variations in anthropogenic sources. Quantifying marine production rates of methyl bromide is suggested as a necessary step in assessing stratospheric ozone loss. 63 refs., 10 figs., 2 tabs.

  6. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    PubMed

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources. PMID:22573964

  7. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  8. Do grasslands act as a perpetual sink for carbon?

    PubMed

    Smith, Pete

    2014-09-01

    It is increasingly commonly suggested that grasslands are a perpetual sink for carbon, and that just maintaining grasslands will yield a net carbon sink. I examine the evidence for this from repeated soil surveys, long term grassland experiments and simple mass balance calculations. I conclude that it is untenable that grasslands act as a perpetual carbon sink, and the most likely explanation for observed grassland carbon sinks over short periods is legacy effects of land use and land management prior to the beginning of flux measurement periods. Simply having grassland does not result is a carbon sink, but judicious management or previously poorly managed grasslands can increase the sink capacity. Given that grasslands are a large store of carbon, and that it is easier and faster for soils to lose carbon that it is for them to gain carbon, it is an important management target to maintain these stocks. PMID:24604749

  9. Age-dependent forest carbon sink: Estimation via inverse modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Shi, Peijun; Jia, Gensuo; Dai, Yongjiu; Zhao, Xiang; Shangguan, Wei; Du, Ling; Wu, Hao; Luo, Yiqi

    2015-12-01

    Forests have been recognized to sequester a substantial amount of carbon (C) from the atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to combine a process-based Terrestrial ECOsystem Regional model, observations from multiple sources, and stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest ages for evergreen needle-leaved forests in China. The new approach is effective to estimate age-dependent parameter of maximal light-use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks at 0.451 kg C m-2 yr-1 at age 22 years (ranging from 0.421 to 0.465 kg C m-2 yr-1), and gradually decreases thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age; it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen needle-leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately 60%, with age between 11 and 43 years. Overall, the inverse estimation of carbon cycle parameters can make reasonable estimates of age-dependent C sequestration in forests.

  10. Heating effects in a chain of quantum dots.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Chtchelkatchev, N. M.; Vinokur, V. M.; Materials Science Division; California State Univ. at Northridge; Russian Academy of Science

    2010-08-13

    We study heating effects in a chain of weakly coupled grains due to electron-hole pair creation. The main mechanism for the latter at low temperatures is due to inelastic electron cotunneling processes in the array. We develop a quantitative kinetic theory for these systems and calculate the array temperature profile as a function of grain parameters, bias voltage or current, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments. In the low- and high-voltage limits we solve the stationary heat-flux equation analytically. We demonstrate the overheating hysteresis in the large-current or voltage regimes. In addition we consider the influence of a substrate on the system which acts as a heat sink. We show that nanodot chains can be used as highly sensitive thermometers over a broad range of temperatures.

  11. Everglades restoration could decrease carbon sink potential

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-01-01

    Starting more than a century ago and ramping up to a massive scale in the 1950s, canal building and drainage projects in the Florida Everglades steadily degraded the sprawling wetland ecosystem. In the coming years, a massive 30-year multibillion-dollar restoration program is set to naturalize the Florida Everglades, returning the drained land to a closer approximation of its original structure. Restoring the Everglades, however, will have consequent effects on wetland dynamics, as plants and soil processes adjust to the changing water levels. Using eddy covariance measurements of surface-atmosphere gas exchange, Jimenez et al. tracked the roles of two different types of Everglades wetlands in the regional carbon cycle. Based on their findings, the authors suggest that, contrary to previous research, restoring the Everglades will likely diminish the potential of the region to serve as a carbon sink.

  12. Omnivory in birds is a macroevolutionary sink.

    PubMed

    Burin, Gustavo; Kissling, W Daniel; Guimarães, Paulo R; Şekercioğlu, Çağan H; Quental, Tiago B

    2016-01-01

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750

  13. Omnivory in birds is a macroevolutionary sink

    PubMed Central

    Burin, Gustavo; Kissling, W. Daniel; Guimarães, Paulo R.; Şekercioğlu, Çağan H.; Quental, Tiago B.

    2016-01-01

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750

  14. Water-filled heat pipe useful at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Mc Kinney, B. G.

    1970-01-01

    Heat pipe is used in the primary heat exchanger for nuclear power plants, as a heat sink for high-power electronic devices, and in a closed-cycle heat rejection mechanism for cryogenic storage tanks. It serves simultaneously as a heat transfer device and as a structural member.

  15. Diagnosing Soil Moisture Anomalies and Neglected Soil Moisture Source/Sink Processes via a Thermal Infrared-based Two-Source Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Hain, C.; Crow, W. T.; Anderson, M. C.; Yilmaz, M. T.

    2014-12-01

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focused on microwave methods, observations of thermal infrared land surface temperature (LST) also provides a means of providing SM information. One particular TIR SM method exploits surface flux predictions retrieved from the Atmosphere Land Exchange Inverse (ALEXI) model. ALEXI uses a time-differential measurement of morning LST rise to diagnose the partitioning of net radiation into surface energy fluxes. Here an analysis will be presented to study relationships between three SM products during a multi-year period (2000-2013) from an active/passive microwave dataset (ECV), a TIR-based model (ALEXI), and a land surface model (Noah) over the CONUS. Additionally, all three will be compared against in-situ SM observations from the North American Soil Moisture Database. The second analysis will focus on the use of ALEXI towards diagnosing SM source/sink processes. Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, free drainage at the bottom of the soil column, and neglecting ancillary inputs due to processes such as irrigation. However, recent work has highlighted the importance of secondary water source (e.g., irrigation, groundwater extraction, inland wetlands, lateral flows) and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and sensible heat fluxes. ALEXI offers a top-down approach for mapping areas where SM source/sink processes have a significant impact on the surface energy balance. Here we present an index, ASSET, that is based on comparisons between ALEXI latent heat flux (LE) estimates and LE predicted by a free-drainage prognostic LSM lacking irrigation, groundwater and tile

  16. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  17. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., Washington, DC, and by publishing the notice in the Federal Register on October 22, 2012 (77 FR 64545). The... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized...

  18. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... the notice in the Federal Register of March 7, 2012 (77 FR 13631). The conference was held in... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... (April 2012), entitled Drawn Stainless Steel Sinks from China: Investigation Nos. 701-TA-489 and...

  19. Sinking in Quicksand: An Applied Approach to the Archimedes Principle

    ERIC Educational Resources Information Center

    Evans, G. M.; Evans, S. C.; Moreno-Atanasio, R.

    2015-01-01

    The objective of this paper is to present a laboratory experiment that explains the phenomenon of sinking in quicksand simulated as a fluidized bed. The paper demonstrates experimentally and theoretically that the proportion of a body that sinks in quicksand depends on the volume fraction of solids and the density of the body relative to the…

  20. Passive heat transfer means for nuclear reactors

    DOEpatents

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  1. Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis).

    PubMed

    Reichard, Jonathan D; Fellows, Spenser R; Frank, Alexander J; Kunz, Thomas H

    2010-01-01

    Bat wings are important for thermoregulation, but their role in heat balance during flight is largely unknown. More than 80% of the energy consumed during flight generates heat as a by-product, and thus it is expected that bat wings should dissipate large amounts of heat to prevent hyperthermia. We measured rectal (T(r)) and surface (T(s)) temperatures of Brazilian free-tailed bats (Tadarida brasiliensis) as they emerged from and returned to their daytime roosts and calculated sensible heat transfer for different body regions (head, body, wings, and tail membrane). Bats' T(r) decreased from 36.8°C during emergence flights to 34.4°C during returns, and T(s) scaled positively with ambient temperature (T(a)). Total radiative heat loss from bats was significantly greater for a radiative sink to the night sky than for a sink with temperature equal to T(a). We found that free-ranging Brazilian free-tailed bats, on average, do not dissipate heat from their wings by convection but instead dissipate radiative heat (L) to the cloudless night sky during flight ([Formula: see text] W). However, within the range of T(a) measured in this study, T. brasiliensis experienced net heat loss between evening emergence and return flights. Regional hypothermia reduces heat loss from wings that are exposed to potentially high convective fluxes. Additional research is needed to establish the role of wings in evaporative cooling during flight in bats. PMID:21034204

  2. Vibration suppression of composite laminated plate with nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Zhang, Ye-Wei; Zhang, Hao; Hou, Shuai; Xu, Ke-Fan; Chen, Li-Qun

    2016-06-01

    The composite laminated plate is widely used in supersonic aircraft. So, there are many researches about the vibration suppression of composite laminated plate. In this paper, nonlinear energy sink (NES) as an effective method to suppress vibration is studied. The coupled partial differential governing equations of the composite laminated plate with the nonlinear energy sink (NES) are established by using the Hamilton principle. The fourth-order Galerkin discrete method is used to truncate the partial differential equations, which are solved by numerical integration method. Meanwhile study about the precise effectiveness of the nonlinear energy sink (NES) by discussing the different installation location of the nonlinear energy sink (NES) at the same speed. The results indicate that the nonlinear energy sink (NES) can significantly suppress the severe vibration of the composite laminated plate with speed wind loadings in to protect the composite laminated plate from excessive vibration.

  3. Sinks as integrative elements of the anthropogenic metabolism

    NASA Astrophysics Data System (ADS)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  4. Carbon cycle and climate change, a tale of increasing emissions and uncertain future sinks

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Sabine, C. L.

    2013-12-01

    CO2 has increased by 40% in the atmosphere above pre-industrial levels, and is reaching close to 400 ppm. It's a fact that the increase of CO2 is due to human-caused emissions from land use change and fossil fuel use. Yet, an average of 54% of these human emissions was removed from the atmosphere by CO2 sinks in the ocean and the land biosphere. In the IPCC AR5 report, an update of the global carbon budget is provided, together with CH4 sources and sinks, over the last 3 decades. The first finding is the recent acceleration of fossil fuel CO2 emissions during the last decade, and the fact that sinks have increased proportionally with emissions. Future projections of the coupled climate-carbon cycle system using CMIP5 models, translated into compatible emissions for each RCP pathway radiative forcing trajectory will be presented. When the carbon cycle is coupled to simulations of climate change, the sinks weaken, causing a positive feedback on warming, but uncertainties on the magnitude of this feedback and on the role of each regions, remain very high, as shown by the large spread between models. The second finding concerns additional feedbacks, most likely of positive sign, such as CO2 and CH4 emissions from thawed permafrost and nutrient limitations on land carbon storage. These feedbacks were not included in the CMIP5 models and represent a large (but uncertain) source of extra warming for any given economic scenario of anthropogenic emissions

  5. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thaliana. Final report, April 1, 1995--March 31, 1998

    SciTech Connect

    Gibson, S.I.

    1998-11-01

    The ultimate goal of this research is to elucidate the molecular mechanisms by which the complex interactions between sources and sinks of fixed carbon are controlled in plants. As soluble sugar levels have been shown to play a vital role in a variety of source-sink interactions, a key aspect of the authors research is to determine the role of sugar-regulated gene expression in mediating source-sink interactions. In addition, as a critical aspect of source-sink interactions is the channeling of fixed carbon into different storage forms, they have pursued the findings that fumaric acid represents a significant form of storage carbon in Arabidopsis thaliana and other plant species. In the future, a better understanding of the mechanisms by which interactions between sources and sinks of fixed carbon are coordinated will be a pre-requisite to developing more rationale approaches to improving harvest indices in crop species.

  6. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal

    PubMed Central

    Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua

    2016-01-01

    Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (−fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica. PMID:27446115

  7. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal.

    PubMed

    Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua

    2016-01-01

    Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (-fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica. PMID:27446115

  8. Effects of dietary addition of heat-killed Mycobacterium phlei on growth performance, immune status and anti-oxidative capacity in early weaned piglets.

    PubMed

    Zhong, Jin-Feng; Wu, Wei-Gao; Zhang, Xiao-Qing; Tu, Wei; Liu, Zhen-Xiang; Fang, Re-Jun

    2016-08-01

    The contradiction between high susceptibility of early weaned piglets to enteric pathogens and rigid restriction of antibiotic use in the diet is still prominent in the livestock production industry. To address this issue, the study was designed to replace dietary antibiotics partly or completely by an immunostimulant, namely heat-killed Mycobacterium phlei (M. phlei). Piglets (n = 192) were randomly assigned to one of the four groups: (1) basal diet (Group A), (2) basal diet + a mixture of antibiotics (80 mg/kg diet, Group B), (3) basal diet + a mixture of antibiotics (same as in Group B, but 40 mg/kg diet) + heat-killed M. phlei (1.5 g/kg diet) (Group C) and (4) basal diet + heat-killed M. phlei (3 g/kg diet) (Group D). All piglets received the respective diets from days 21 to 51 of age and were weaned at the age of 28 d. Compared with the Control (Group A), in all other groups the average daily gain, average daily feed intake, small intestinal villus height:crypt depth ratio and protein levels of occludin and ZO-1 in the jejunal mucosa were increased. A decreased incidence of diarrhoea in conjunction with an increased sIgA concentration in the intestinal mucosa and serum IL-12 and IFN-γ concentrations was found in groups supplemented with heat-killed M. phlei (Groups C and D), but not in Group B. Groups C and D also showed decreased IL-2 concentrations in the intestinal mucosa with lower TLR4 and phosphor-IκB protein levels. The antioxidant capacity was reinforced in Groups C and D, as evidenced by the reduction in malondialdehyde and enhanced activities of antioxidant enzymes in serum. These data indicate that heat-killed M. phlei is a promising alternative to antibiotic use for early weaned piglets via induction of protective immune responses. PMID:27216553

  9. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  10. The Kitchen Sink and the Professors Drawer

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2005-12-01

    Many of the demonstrations that have been most effective in teaching an introductory Earth science class at Rice have been developed on the spot before lectures as I realized that some hands on, visual material would help make a point more clear. This lead me to rifle through my own desk drawer and use whatever was available (e.g., rulers, rubber bands, etc.). Such demos went over very well in the first years I taught. Students liked the fact they could go home and redo them, without having to run to the hardware store. This increased the hands on value and made the demos all the more tangible. In turn, the greater direct contact provided a memory hook to lock the main point of the demo into long term memory. I have continued to use "out of the drawer" demos and I will present a few of the successful ones based on student responses. Enjoying cooking, I have also had demo ideas come to me the night before lecture during dinner prep. Although some of the kitchen sink demos are not as easy to redo by students themselves, they do maintain a high "direct contact' factor to them. I will present one or two of these kitchen demos as well.

  11. A Nonlinear Energy Sink with Energy Harvester

    NASA Astrophysics Data System (ADS)

    Kremer, Daniel

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or unwanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy transfer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical energy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively localizes vibrational energy, removing mechanical energy from a primary system. Consisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

  12. Stirling engine heating system

    SciTech Connect

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  13. Conjugate Heat Transfer in a Closed Volume with the Local Heat Sources and Non-Uniform Heat Dissipation on the Boundaries of Heat Conducting Walls

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.

    2016-02-01

    Is solved the problem of heat transfer in the closed volume, limited by heat-conducting walls, with the local source of heat emission and the heterogeneous conditions of heat sink on the outer boundaries of solution area. The problem of convective heat transfer is solved with using a system of differential Navier-Stokes equations in the Boussinesq approximation. The simulation of turbulent flow conditions of heated air is carried out within the framework to k-ɛ model. On the basis the analysis of the obtained temperature field and the contour lines of stream functions is made conclusion about the essential transiency of the process in question. The obtained values of temperatures and speeds in different sections of region illustrate turbulence of the process. Are investigated laws governing the formation of temperature fields in closed areas with a local heat emission source under the conditions of intensive local heat sink into environment and accumulation of heat in the enclosing constructions.

  14. A large and persistent carbon sink in the world's forests

    USGS Publications Warehouse

    Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Pacala, S.W.; McGuire, A.D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D.

    2011-01-01

    The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ?? 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ?? 0.7 Pg C year-1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ?? 0.5 Pg C year-1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ?? 0.5 Pg C year-1. Together, the fluxes comprise a net global forest sink of 1.1 ?? 0.8 Pg C year-1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

  15. Intrinsic and extrinsic drivers of source-sink dynamics.

    PubMed

    Heinrichs, Julie A; Lawler, Joshua J; Schumaker, Nathan H

    2016-02-01

    Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations. Yet their relative contributions remain largely unexplored. To help identify the characteristics of empirical systems that are likely to exhibit strong versus weak source-sink dynamics and inform their differential management, we compared the relative roles of influential factors in strengthening source-sink dynamics. In a series of controlled experiments within a spatially explicit individual-based model framework, we varied patch quality, patch size, the dispersion of high- and low-quality patches, population growth rates, dispersal distances, and environmental stochasticity in a factorial design. We then recorded source-sink dynamics that emerged from the simulated habitat and population factors. Long-term differences in births and deaths were quantified for sources and sinks in each system and used in a statistical model to rank the influences of key factors. Our results suggest that systems with species capable of rapid growth, occupying habitat patches with more disparate qualities, with interspersed higher- and lower-quality habitats, and that experience relatively stable environments (i.e., fewer negative perturbations) are more likely to exhibit strong source-sink dynamics. Strong source-sink dynamics emerged under diverse combinations of factors, suggesting that simple inferences of process from pattern will likely be inadequate to predict and assess the strength of source-sink dynamics. Our results also suggest that it may be more difficult to detect and accurately measure source-sink dynamics in slow-growing populations, highly variable environments, and where a subtle gradient of habitat quality exists. PMID:26941935

  16. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    SciTech Connect

    Ahmed, Jawad; Shahzad, Azeem; Khan, Masood; Ali, Ramzan

    2015-11-15

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  17. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmed, Jawad; Shahzad, Azeem; Khan, Masood; Ali, Ramzan

    2015-11-01

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  18. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    PubMed Central

    Stief, Peter; Kamp, Anja; Thamdrup, Bo; Glud, Ronnie N.

    2016-01-01

    In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient oxygen levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (∼100 μmol O2 L-1) and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient oxygen levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate), N2 (up to 7.1 nmol N h-1), NH4+ (up to 2.0 nmol N h-1), and N2O (up to 0.2 nmol N h-1). Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for dinitrogen production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean. PMID:26903977

  19. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels. PMID:21367744

  20. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids.

    PubMed

    Santiago, James P; Tegeder, Mechthild

    2016-05-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  1. Investigation of heat pump efficiencies using groundwater and/or ground coil in the Gulf Coast region. Final report

    SciTech Connect

    Mei, H.T.

    1982-08-01

    This project examines the energy efficiencies of five different water source heat pump systems. This is further supported by an experimental effort in which an existing residence is retrofitted with a heat pump and other energy sources: well water as a heat source/sink, vertical geothermal well as heat source/heat sink/storage, horizontal buried metal and plastic ground coils to use as heat source/heat sink, and a solar assist system. The energy elements are operated individually and in combination configurations to determine performance, and cost effectiveness of the energy alternatives are explored.

  2. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  3. Aircraft-based measurements for the identification and quantification of sources and sinks in the carbon cycle

    NASA Astrophysics Data System (ADS)

    Caulton, Dana R.

    Improved quantification of carbon-cycle sources and sinks is an important requirement for determining mitigation strategies and modeling future climate interactions. Analytically robust measurements require high-precision instrumentation and thoughtful experimental design to produce rigorous and reproducible results despite complex and quickly changing meteorological and environmental conditions. Here, an aircraft platform equipped with a high-precision cavity ring-down spectrometer for CO2, CH4 and H2O quantification was used to acquire data from previously un-sampled sources. The aircraft mass-balance technique was used to quantify CH4 emissions from natural gas well pads in the drilling stage, which were 2-3 orders of magnitude higher than previous estimates of emissions from this stage. In addition, the first in-situ flare emission data was collected for natural gas flares in North Dakota, Pennsylvania and Texas. Flare efficiency was high for most flares, higher than assumed efficiency. However, a few flares sampled with lower efficiencies closer to the assumed flare efficiency suggest the need for characterization of operational conditions specific to operators and basins. Finally, eddy-covariance O2 and heat fluxes were measured over three east-coast forests at sites close to and far from surface eddy-covariance towers. Tower data is often used in models to represent a larger heterogeneous region. Aircraft and tower O2 and sensible heat flux agreed well, indicating that for these sites, tower data is a good approximation of the larger region, though significant variability was observed. Aircraft latent heat fluxes were routinely much larger that tower fluxes, most likely due to the influence of advection which is measured by the aircraft eddy-covariance technique, but not by towers.

  4. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground

  5. Effect of working fluid on the performance of a miniature heat pipe system for cooling desktop processor

    NASA Astrophysics Data System (ADS)

    Uddin, Ahmed Imtiaz; Feroz, Chowdhury Md.

    2009-11-01

    The heat transfer performance of a miniature heat pipe system (MHPS) used for cooling a desktop computer processor is presented in this paper. The MHPS consists of 6 parallel cylindrical miniature heat pipes (MHPs) which are connected to a copper block at the evaporator section and which are provided with 15 parallel perpendicular copper sheets at the condenser section, used as external cooling fins. Acetone and ethanol are used as working fluids. As heat source a processor is employed which is attached to the copper block. Heat transfer characteristics of the individual MHPs and the complete MHPS using the two working fluids are experimentally determined. The results show that the maximum and steady state temperature of the processor has been significantly reduced by using MHPs with acetone, more than with ethanol, instead of a conventional finned aluminum heat sink with cooling fan. Additional use of a fan results in a much lower processor temperature for both working fluids.

  6. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  7. Influence of self heating and Li{sub 2}SO{sub 4} addition on the microstructural development of calcium aluminate cement

    SciTech Connect

    Gosselin, Christophe Gallucci, Emmanuel; Scrivener, Karen

    2010-10-15

    Hydrated Calcium Aluminate Cement (CAC) is known to have a complex microstructure involving different phase assemblages strongly dependant on the temperature. This work presents an experimental approach to study the microstructure of CAC pastes from the first minute of hydration with controlled time-temperature histories up to several months of curing. The self heating usually occurring in the CAC concrete is considered and its influence on the growth and assemblage of the hydration products and subsequent space filling is shown. Quantification of the degree of CA hydration by BSE image analysis is used to understand the evolution of phases throughout the hydration process. Lithium sulphate is commonly used to control the setting time of CAC based materials. It is shown that this promotes the formation of more stable hydrates, but slightly reduces the extent of CA hydration.

  8. Characteristics of the Sinking Branch of the Atlantic Meridional Overturning Circulation in a Global Ocean Model - the Impacts of Model Resolution

    NASA Astrophysics Data System (ADS)

    Katsman, C. A.; Burrillon, E.; Drijfhout, S. S.; Dijkstra, H. A.; Spall, M. A.

    2014-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate. The classical view of an ocean conveyor belt with northward surface currents and southward return currents transporting convectively-formed waters from the subpolar North Atlantic Ocean to other ocean basins suggests a tight relation between convection and sinking. However, convection regions feature a large vertical heat and salt transport, but very little vertical mass transport. Instead, it has been argued that the net sinking of dense waters that constitute the sinking branch of the AMOC must take place near boundaries and steep topography rather than in the ocean interior. So far, this theoretical result has been confirmed in highly idealized regional model studies and in laboratory experiments. It is, however, unclear how well the sinking of dense waters is represented in the current generation of ocean models and climate models, and whether the factors driving and controlling the sinking are in accordance with the developed theory. The latter is of crucial importance for the reliability of the projected future behavior of the AMOC and its impacts on climate. In this study, we address this issue by analyzing the outcomes of two global ocean models that differ only in their horizontal resolution (an eddy-permitting version, and a climate-model like version). We analyze the characteristics of the sinking, like the amount and spatial pattern. Moreover, the partition between sinking in the boundary current region and sinking in the interior is quantified. It appears that model resolution (and applied numerical diffusion) have a strong impact on the characteristics of the modeled sinking. These impacts are discussed in light of differences in the characteristics of the subpolar gyre circulation.

  9. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  10. Heat Transfer in a Two-Phase Closed-Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji

    A two-phase closed-loop thermosyphon is a device which transports heat energy from a heat source to a sink under the body force field and has many practical applications. The critical heat flux of this thermosyphon is larger than that of a non-loop thermosyphon, because the flooding phenomenon occurring in the no-loop one does not occur. In addition, there is another merit that the evaporator and the condencer can be installed in comparatively arbitrary position because these are interconnected by piping. In most previous investigations of the two-phase closed-loop thermosyphons, overall heat resistances were measured. The overall heat resistance, however, consists of three heat resistances; the heat resistances in the evaporator and the condenser, and the transport resistance in the interconnecting pipe. Therefore, we should consider these heat resistances separately. In the present study, we took note of the heat resistances (or heat transfer coefficients) of the evaporator and the condenser. The experiment was performed using two experimental setups and three kinds of test liquid. And, the effects of rotation angle, heat flux, inside temperature (or inside pressure) and liquid charge on the heat transfer coefficients were investigated.

  11. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  12. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  13. Graphite Foam Heat Exchangers for Thermal Management

    SciTech Connect

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S-bond{reg_sign}, but still

  14. 19. INTERIOR OF PANTRY SHOWING SHELVES, PLUMBING FOR A SINK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF PANTRY SHOWING SHELVES, PLUMBING FOR A SINK, AND 1-LIGHT OVER 1-LIGHT SASH WINDOW ON SOUTH WALL. VIEW TO SOUTHWEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  15. Interior of niche with small sink and cabinets behind original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of niche with small sink and cabinets behind original nurses' station - U.S. Naval Base, Pearl Harbor, Type "B" Casualty Dressing & Decontamination Station, Intersection of Eighth Street, Avenue E & Central Avenue, Pearl City, Honolulu County, HI

  16. 6. NORTHWEST INTERIOR VIEW IN SOUTHEAST ROOM WITH SINK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NORTHWEST INTERIOR VIEW IN SOUTHEAST ROOM WITH SINK AND WORK STATION - Juniata Mill Complex, Camp Bunk House, 22.5 miles Southwest of Hawthorne, between Aurora Crater & Aurora Peak, Hawthorne, Mineral County, NV

  17. INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY

    EPA Science Inventory

    Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.

  18. Sources and sinks of carbon dioxide in the Arctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  19. Aggregation and sinking behaviour of resuspended fluffy layer material

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Forster, Stefan

    2005-09-01

    The influence of pelagic diatom addition ( Skeletonema costatum) on aggregation dynamics of resuspended fluffy layer material containing natural microorganism assemblages (bacteria and pennate diatoms) was studied during two roller table experiments. Sediment samples were taken at a fine sand site (16 m water depth) located in Mecklenburg Bight, south-western Baltic Sea. Fluff was experimentally resuspended from sediment cores and aggregation processes with and without S. costatum were studied in rotating tanks. Total particulate matter was incorporated into artificial aggregates in equal shares after both roller table experiments. However, biogenic parameters (particulate organic carbon, particulate organic nitrogen, and carbohydrate equivalents), as well as cell numbers of bacteria and pennate diatoms were found in higher percentages in S. costatum aggregates compared to aggregates without S. costatum. Transparent exopolymer particles were apparently irrelevant in the aggregation process during both experiments. Settling velocities of S. costatum aggregates exceeding 1000 μm in diameter showed a significantly higher mean settling velocity compared to aggregates without S. costatum of the same size. The pronounced effect of pelagic diatoms on aggregation processes of fluff in terms of particle attributes, size, and therewith sinking velocities could be demonstrated and may lead to further insight into near bed particle transport in coastal waters.

  20. Great Basin NV Play Fairway Analysis - Carson Sink

    SciTech Connect

    Jim Faulds

    2015-10-28

    All datasets and products specific to the Carson Sink basin. Includes a packed ArcMap (.mpk), individually zipped shapefiles, and a file geodatabase for the Carson Sink area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  1. Hot balls splash and sink fast

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Vakarelski, Ivan; Thoroddsen, Sigurdur; Chan, Derek

    2011-11-01

    When a heated sphere is immersed in a liquid, we induce an inverted Leidenfrost effect whereby the sphere is wrapped in a vapour jacket which protects it from physical contact with the liquid and, when released to fall freely in the liquid, the sphere's terminal velocity can increase dramatically compared to a cold ball. This Leidenfrost-induced vapour layer can lead to significant drag reduction by up to 85% which appears to be the limiting case for drag reduction techniques based on gas layer injection. In a related experiment, when the heated sphere is released from above the surface, the dynamics of the entry are significantly different from the cold case, resulting in a prompt splash and cavity formation. We propose that this experiment is the ultimate non-wetting scenario during water-entry problems.

  2. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    SciTech Connect

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  3. Dynamics of forced system with vibro-impact energy sink

    NASA Astrophysics Data System (ADS)

    Gendelman, O. V.; Alloni, A.

    2015-12-01

    The paper treats forced response of primary linear oscillator with vibro-impact energy sink. This system exhibits some features of dynamics, which resemble forced systems with other types of nonlinear energy sinks, such as steady-state and strongly modulated responses. However, the differences are crucial: in the system with vibro-impact sink the strongly modulated response consists of randomly distributed periods of resonant and non-resonant motion. This salient feature allows us to identify this type of dynamic behavior as chaotic strongly modulated response (CSMR). It is demonstrated, that the CSMR exists due to special structure of a slow invariant manifold (SIM); the latter is derived in a course of a multiple-scale analysis of the system. In the considered system, this manifold has only one stable and one unstable branch. This feature defines new class of universality for the nonlinear energy sinks. Very different physical system with topologically similar SIM - the oscillator with rotational energy sink - also exhibits CSMRs. In the system with the vibro-impact sink, such responses are observed even for very low level of the external forcing. This feature makes such system viable for possible energy harvesting applications.

  4. Estimates of zonally averaged tropical diabatic heating in AMIP GCM simulations. PCMDI report No. 25

    SciTech Connect

    Boyle, J.S.

    1995-07-01

    An understanding of the processess that generate the atmospheric diabatic heating rates is basic to an understanding of the time averaged general circulation of the atmosphere and also circulation anomalies. Knowledge of the sources and sinks of atmospheric heating enables a fuller understanding of the nature of the atmospheric circulation. An actual assesment of the diabatic heating rates in the atmosphere is a difficult problem that has been approached in a number of ways. One way is to estimate the total diabatic heating by estimating individual components associated with the radiative fluxes, the latent heat release, and sensible heat fluxes. An example of this approach is provided by Newell. Another approach is to estimate the net heating rates from consideration of the balance required of the mass and wind variables as routinely observed and analyzed. This budget computation has been done using the thermodynamic equation and more recently done by using the vorticity and thermodynamic equations. Schaak and Johnson compute the heating rates through the integration of the isentropic mass continuity equation. The estimates of heating arrived at all these methods are severely handicapped by the uncertainties in the observational data and analyses. In addition the estimates of the individual heating components suffer an additional source of error from the parameterizations used to approximate these quantities.

  5. Wide-angle sensor measures radiant heat energy in corrosive atmospheres

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Ellipsoidal cavity device measures radiant heat energy over wide incident angles in corrosive atmospheres. The instrument consists of a cavity in copper heat sink sealed with sapphire window to protect thermocouple.

  6. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  7. Interannual variation of 13C in tropospheric methane: Implications for a possible atomic chlorine sink in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Allan, W.; Lowe, D. C.; Gomez, A. J.; Struthers, H.; Brailsford, G. W.

    2005-06-01

    We present methane mixing ratio and δ13C time series measured at Baring Head, New Zealand, and Scott Base, Antarctica, over the years 1991-2003. These data demonstrate that the apparent kinetic isotope effect (KIE) of the methane atmospheric sink (derived from the amplitudes of the mixing ratio and δ13C seasonal cycles) is generally much larger than would be expected if the sink were the hydroxyl radical alone and has changed significantly during the observation period on a timescale of ˜3 years. We show using a global transport model that this technique for deriving the KIE should be quite accurate for a single atmospheric sink and that the change with time is unlikely to arise from El Niño-Southern Oscillation transport effects. We infer that a sink in addition to hydroxyl is required. A strong candidate for this extra sink is atomic chlorine in the marine boundary layer (MBL). We derive the amplitude of the chlorine concentration seasonal cycle that would fully account for the apparent KIE. This amplitude ranges from ˜104 atom cm-3 in 1994-1996 to about 3 × 103 atom cm-3 in 1998-2000. If the KIE is enhanced throughout the free troposphere, the seasonal mean concentrations of atomic chlorine required in the MBL would be about 3 × 104 atom cm-3 in 1994-1996 and ˜104 atom cm-3 in 1998-2000.

  8. Sink-source interactions between a galling aphid and its narrowleaf cottonwood host: Within and between plant variation

    SciTech Connect

    Larson, K.C.

    1989-01-01

    The authors examined within and between plant variation in the capacity of the leaf gallin aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). Within a plant, a series of {sup 14}C-labeling experiments showed that P. betae actively manipulated host translocation patterns by acting as a strong sink and fed on assimilates produced in surrounding plant tissues serving as sources. Food resources drawn into the galled leaf from storage tissues in the stem and from surrounding leaves were a major resource for this herbivore in addition to resources from the galled leaf blade. Aphids compete for resources with natural plant sinks, such as developing fruits. In common gardens containing aphid resistant and aphid susceptible clones, I tested the hypothesis that aphid gall success on resistant trees is limited by competition between aphid-induced sinks and the plant's natural sinks, and that the intensity of intraplant competition was determined by the genetically determined architecture of the tree. Through bud removal, a resistant clone could be given the architecture of a susceptible clone. Aphid survival was increased two fold on architecturally modified resistant clones.

  9. Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay

    SciTech Connect

    Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.; Saikku, Laura

    2009-01-01

    Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purpose of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.

  10. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions

    NASA Astrophysics Data System (ADS)

    Sakuma, Yasuharu; Matsumura, Osamu; Takechi, Hiroshi

    1991-02-01

    Processing peculiarities and functions of alloying elements, such as Si and Mn, were studied for improving formability of steel sheets with mixed microstructures. Annealing a sheet steel with 0.2 pct C in the intercritical range produced very fine particles of retained austenite which were moderately stabilized due to C enrichment by subsequent holding in the bainite transformation range. Its strength-ductility balance is greatly superior to that of other dual-phase steels due to transformation-induced plasticity ( TRIP). The holding time in the bainite transformation range varies with temperature, depending on the activation energy of C diffusion in austenite, and shifts to longer times with an increase of Si or Mn additions. The optimum cooling rate from the intercritical region is reduced with an increase of Mn content but is not influenced by Si content. Additional Mn makes the retained austenite content larger, although uniform elongation remains the same. In this case, the product of tensile strength and total elongation is increased due to an increase in the tensile strength. Contrary to Mn, Si does not affect retained austenite content but improves the uniform elongation by increasing its stability.

  11. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  12. A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing

    SciTech Connect

    Chinthavali, Madhu Sudhan; Ayers, Curtis William; Campbell, Steven L; Wiles, Randy H; Ozpineci, Burak

    2014-01-01

    With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

  13. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  14. An alternative hypothesis for sink development above salt cavities in the Detroit area

    USGS Publications Warehouse

    Stump, Daniel; Nieto, A.S.; Ege, J.R.

    1982-01-01

    uniaxial and triaxial testing, the Sylvania Sandstone in the Detroit area has been shown to have low compressive strength. In addition, it exhibits an explosive type failure whereby over 50 percent of the sample is reduced to loose granular sand. As a result of these characteristics, the Sylvania Sandstone can loose its cohesion when subjected to high horizontal stresses. Efforts at mechanically modeling the Sylvania were made to account for the measurements and observations. Linear arch theory was used for an elastic analysis. Linear arch theory predicts two modes of failure: (1) arch crushing, a compressive failure of the upper portion of the arch due to compressive stresses exceeding the compressive strength of the material, and (2) arch collapse, a sagging of the beds due to compressive strains which reduce the arch line to a length less than the original arch length. The arch crushing mode of failure would then yield the loose granular sand as observed in laboratory testing. Arch collapse would simply result in bed sagging without granulation of the sandstone. Arch collapse is favored by thin-bedded material while arch crushing is favored by thick-bedded material. Arch crushing seems to be a likely mode of failure for the Windsor-Detroit sinks. It is believed that after a crushing failure the sand-water slurry (specific gravity 1.2) which exceeds the density of the cavity brine will migrate downward through cracks and open joints eventually reaching the practically limitless open spaces of the rubble column and salt cavity. As the extent of the cavity within the Sylvania increases in depth and width because of sand migration, a critical span will be reached where the immediately overlying upper Sylvania and the overlying Detroit River Dolomite will fail. The collapse will allow a path for the approximately 100 ft of clay to collapse, resulting in a sink as the surface manifestation.

  15. Raptor Electrocution: A Case Study on Ecological Traps, Sinks, and Additive Mortality

    ERIC Educational Resources Information Center

    Dwyer, James F.

    2009-01-01

    The recovery from human persecution of some upper trophic level wildlife species coupled with ongoing expansion of human-dominated landscapes is leading to increased human-wildlife interactions in urban environments. Raptors in particular are drawn to high resource concentrations of potential nest sites and prey, and are colonizing cities across…

  16. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  17. Heat flow in variable polarity plasma arc welds

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1992-01-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  18. Heat flow in variable polarity plasma arc welds

    NASA Astrophysics Data System (ADS)

    Abdelmessih, Amanie N.

    1992-12-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  19. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  20. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    PubMed

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of

  1. Long-term decline of the Amazon carbon sink.

    PubMed

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models. PMID:25788097

  2. Temperate Forest Methane Sink Diminished by Tree Emissions

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Pitz, S.

    2015-12-01

    Global budgets ascribe 4-10% of atmospheric CH4 sinks to upland soils and assume that soils are the sole surface for CH4 exchange between upland forests and the atmosphere. The prevailing dogma that upland forests are sinks of atmospheric CH4 was challenged a decade ago by large discrepancies in bottom-up versus top-down models of CH4 concentrations over upland forests that are still unexplained. Evidence of a novel abiotic mechanism for CH4 production from plant tissue is too small to explain the discrepancy. Alternative hypotheses for this observation have been proposed, but not tested. Here we demonstrate that CH4 is emitted from the stems of dominant tree species in an upland forest. Tree emissions occur throughout the growing season while soils adjacent to the trees are consuming CH4, challenging the concept that forests are uniform sinks of CH4. Scaling by stem surface area showed the forest to be a net CH4 source during a wet sample in June and a reduced CH4 sink by 5% annually. High frequency measurements revealed diurnal cycling in the rate of CH4 emissions, pointing to soils as the CH4 source and transpiration as the most likely pathway for CH4 transport. We propose the forests are smaller CH4 sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements.

  3. Long-term decline of the Amazon carbon sink

    NASA Astrophysics Data System (ADS)

    Brienen, R. J. W.; Phillips, O. L.; Feldpausch, T. R.; Gloor, E.; Baker, T. R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S. L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragão, L. E. O. C.; Araujo-Murakami, A.; Arets, E. J. M. M.; Arroyo, L.; Aymard C., G. A.; Bánki, O. S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R. G. A.; Camargo, J. L. C.; Castilho, C. V.; Chama, V.; Chao, K. J.; Chave, J.; Comiskey, J. A.; Cornejo Valverde, F.; da Costa, L.; de Oliveira, E. A.; di Fiore, A.; Erwin, T. L.; Fauset, S.; Forsthofer, M.; Galbraith, D. R.; Grahame, E. S.; Groot, N.; Hérault, B.; Higuchi, N.; Honorio Coronado, E. N.; Keeling, H.; Killeen, T. J.; Laurance, W. F.; Laurance, S.; Licona, J.; Magnussen, W. E.; Marimon, B. S.; Marimon-Junior, B. H.; Mendoza, C.; Neill, D. A.; Nogueira, E. M.; Núñez, P.; Pallqui Camacho, N. C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Peña-Claros, M.; Pickavance, G. C.; Pitman, N. C. A.; Poorter, L.; Prieto, A.; Quesada, C. A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomão, R. P.; Schwarz, M.; Silva, N.; Silva-Espejo, J. E.; Silveira, M.; Stropp, J.; Talbot, J.; Ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, R. K.; van der Heijden, G. M. F.; van der Hout, P.; Guimarães Vieira, I. C.; Vieira, S. A.; Vilanova, E.; Vos, V. A.; Zagt, R. J.

    2015-03-01

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  4. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.

    PubMed

    Griffiths, Cara A; Paul, Matthew J; Foyer, Christine H

    2016-10-01

    Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement. PMID:27487250

  5. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  6. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.

    PubMed

    Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T

    2014-05-13

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239

  7. Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves.

    PubMed

    Huang, Meng-Yuan; Huang, Wen-Dar; Chou, Hsueh-Mei; Lin, Kuan-Hung; Chen, Chang-Chang; Chen, Pei-Ju; Chang, Yung-Ta; Yang, Chi-Ming

    2014-11-01

    Three relevant hypotheses - nutrition, environment and the enemies hypothesis - often invoked to explore source and sink relationships between galls and their host plants are still under dispute. In this research, chlorophyll fluorescence, gas exchange capacity, stomatal conductance, total carbon and nitrogen, total soluble sugars and starches, and scanning and transmission electron microscopy of two types of galls were used to investigate source-sink relationships. Compared with host leaves, these galls demonstrated slightly lower chlorophyll fluorescence; however, gas exchange capacity and stomatal conductance were not detected at all. Scanning electron micrographs demonstrated that the abaxial epidermis of host leaves contain normal amounts of stomata, whereas no stomata were observed on the exterior and interior surfaces of both types of galls. In addition, gall inner surfaces were covered with many kinds of fungal hyphae. Gall total carbon (C) and nitrogen (N) levels were lower but the C/N ratio was higher in galls than host leaves. Both types of galls accumulated higher total soluble sugars and starches than host leaves. Transmission electron micrographs also revealed that both types of galls contain plastoglobuli and giant starch granules during gall development. Results strongly indicate that leaf-derived cecidomyiid galls are sinks in Machilus thunbergii leaves. However, it is perplexing how larvae cycle and balance CO(2) and O(2) in gall growth chambers without stomata. PMID:24621096

  8. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  9. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  10. Sources/sinks analysis with satellite sensing for exploring global atmospheric CO2 distributions

    NASA Astrophysics Data System (ADS)

    Shim, C.; Nassar, R.; Kim, J.

    2010-12-01

    There is growing interest in CO2 budget analysis since space-borne measurements of global CO2 distribution have been conducted (e.g, GOSAT project). Here we simulated the global CO2 distribution to estimate individual source/sink contributions. The chemical transport model (GEOS-Chem) was used in order to simulate the global CO2 distribution with updated global sources/sinks with 2°x2.5° horizontal resolution. In addition, 3-D emissions from aviation and chemical oxidation of CO are implemented. The model simulated CO2 amounts were compared with the GOSAT column averaged CO2 column (SWIR L2 data) from April 2009 to May 2010. The seasonal cycles of CO2 concentration were compared and the regional patterns of CO2 distribution are explained by the model with a systemic difference by 1 ~ 2% in the CO2 concentration. In other work, the GEOS-Chem CO2 concentrations show reasonable agreement with GLOBALVIEW-CO2. We further estimated the sources/sinks contributions to the global CO2 budget through 9 tagged CO2 tracers (fossil fuels, ocean exchanges, biomass burning, biofuel burning, balanced biosphere, net terrestrial exchange, ship emissions, aviation emissions, and oxidation from carbon precursors) over the years 2005-2009. Global CO2 concentration shows an increase of 2.1 ppbv/year in which the human fossil fuel and cement emissions are the main driving force (5.0 ppbv/year) for the trend. Net terrestrial and oceanic exchange of CO2 are main sinks (-2.1 ppbv/year and -0.7 ppbv/year, respectively). Our model results will help to suggest the level of reduction in global human CO2 emissions which could control the global CO2 trends in 21th century.

  11. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  12. The reinvigoration of the Southern Ocean carbon sink.

    PubMed

    Landschützer, Peter; Gruber, Nicolas; Haumann, F Alexander; Rödenbeck, Christian; Bakker, Dorothee C E; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik

    2015-09-11

    Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized. PMID:26359401

  13. Subterranean atmospheres may act as daily methane sinks

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, Angel; Cuezva, Soledad; Alvarez-Gallego, Miriam; Garcia-Anton, Elena; Pla, Concepcion; Benavente, David; Jurado, Valme; Saiz-Jimenez, Cesareo; Sanchez-Moral, Sergio

    2015-04-01

    In recent years, methane (CH4) has received increasing scientific attention because it is the most abundant non-CO2 atmospheric greenhouse gas (GHG) and controls numerous chemical reactions in the troposphere and stratosphere. However, there is much that is unknown about CH4 sources and sinks and their evolution over time. Here we show that near-surface cavities in the uppermost vadose zone are now actively removing atmospheric CH4. Through seasonal geochemical tracing of air in the atmosphere, soil and underground at diverse geographic and climatic locations in Spain, our results show that complete consumption of CH4 is favoured in the subsurface atmosphere under near vapour-saturation conditions and without significant intervention of methanotrophic bacteria. Overall, our results indicate that subterranean atmospheres may be acting as sinks for atmospheric CH4 on a daily scale. However, this terrestrial sink has not yet been considered in CH4 budget balances.

  14. Review of tribological sinks in six major industries

    SciTech Connect

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  15. The reinvigoration of the Southern Ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Landschützer, Peter; Gruber, Nicolas; Haumann, F. Alexander; Rödenbeck, Christian; Bakker, Dorothee C. E.; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik

    2015-09-01

    Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.

  16. Timescales for detection of trends in the ocean carbon sink.

    PubMed

    McKinley, Galen A; Pilcher, Darren J; Fay, Amanda R; Lindsay, Keith; Long, Matthew C; Lovenduski, Nicole S

    2016-02-25

    The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture. The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades. In contrast, temporal changes in the oceanic carbon sink remain poorly understood. It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability. Here we use a modelling approach that allows for this separation, revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions. PMID:26911782

  17. Subterranean atmospheres may act as daily methane sinks.

    PubMed

    Fernandez-Cortes, Angel; Cuezva, Soledad; Alvarez-Gallego, Miriam; Garcia-Anton, Elena; Pla, Concepcion; Benavente, David; Jurado, Valme; Saiz-Jimenez, Cesareo; Sanchez-Moral, Sergio

    2015-01-01

    In recent years, methane (CH4) has received increasing scientific attention because it is the most abundant non-CO2 atmospheric greenhouse gas (GHG) and controls numerous chemical reactions in the troposphere and stratosphere. However, there is much that is unknown about CH4 sources and sinks and their evolution over time. Here we show that near-surface cavities in the uppermost vadose zone are now actively removing atmospheric CH4. Through seasonal geochemical tracing of air in the atmosphere, soil and underground at diverse geographic and climatic locations in Spain, our results show that complete consumption of CH4 is favoured in the subsurface atmosphere under near vapour-saturation conditions and without significant intervention of methanotrophic bacteria. Overall, our results indicate that subterranean atmospheres may be acting as sinks for atmospheric CH4 on a daily scale. However, this terrestrial sink has not yet been considered in CH4 budget balances. PMID:25912519

  18. Uptake of COS by growing vegetation - A major tropospheric sink

    NASA Astrophysics Data System (ADS)

    Goldan, Paul D.; Kuster, William C.; Fehsenfeld, Fred C.; Fall, Ray

    1988-11-01

    Laboratory measurements of the uptake of COS by soybeans, corn, wheat, and alfalfa under conditions of controlled illumination, temperature, and CO2 concentration, and at COS concentrations spanning those typically found in the troposphere (about 500 parts per trillion by volume), indicate that the major uptake pathway is through open stomata. Similarities between the uptake resistances observed for COS and CO2 provide a means of estimating global COS uptake from estimates of global terrestrial primary plant productivity. With an estimated annual plant uptake of 0.2-0.6 Tg COS (Tg = 10 to the 12th g), this appears to be the largest global sink for this major tropospheric sulfur reservoir species. With this vegetative sink included, estimated known sources and sinks appear to be in approxiamte balance.

  19. Timescales for detection of trends in the ocean carbon sink

    NASA Astrophysics Data System (ADS)

    McKinley, Galen A.; Pilcher, Darren J.; Fay, Amanda R.; Lindsay, Keith; Long, Matthew C.; Lovenduski, Nicole S.

    2016-02-01

    The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture. The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades. In contrast, temporal changes in the oceanic carbon sink remain poorly understood. It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability. Here we use a modelling approach that allows for this separation, revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions.

  20. Sinking Satellites and Tilting Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Huang, Siqin

    I perform fully self-consistent disk+halo+satellite N-body simulations to investigate the dynamical interaction between a disk galaxy and an infalling satellite. In particular, I study the following three different dynamical responses of the disk to the infalling satellite: tilting, warping, and thickening, as well as the dynamical effects of the parent galaxy on the infalling satellite: orbital decay and tidal disruption. The model in this thesis is characterized with two cosmologically significant improvements. First, the satellite starts at a distance more than three times of the radius of the optical disk. This ensures a realistic interaction among the satellite, the disk, and the halo in the course of the satellite infall. Secondly, evolution of the structure and velocity ellipsoid of the disk due to internal heating is allowed. I study the commonly arising case of satellites having density profiles comparable to that of the parent galaxy in contrast to that of compact satellites considered in previous work. I find that a disk is mainly tilted rather than heated by infalling satellites. Satellites of 10%, 20%, and 30% of the disk mass tilt the disk by angles of (2.9 ± 0.3)o,/ (6.3 ± 0.1)o, and (10.6 ± 0.2)o, respectively. However, only 3.4%, 6.9%, and 11.1% of the orbital angular momentum is transferred to the parent galaxy. The kinetic energy associated with the vertical motion in the initial coordinate frame of the disk is increased by (6 ± 3)%, (26 ± 3)%, and (51 ± 5)%, respectively, whereas the corresponding thermal energy associated with the vertical random motion in the tilted coordinate frame is only increased by (4 ± 3)%, (6 ± 2)%, and (10 ± 2)%, respectively. I find that satellites are mainly accreted onto the parent halo. Satellites having up to 20% of the disk mass produce no observable thickening, whereas a satellite with 30% of the disk mass produces little observable thickening inside the half-mass radius of the disk but significant

  1. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  2. Degraded Land Restoration in Reinstating CH4 Sink.

    PubMed

    Singh, Jay Shankar; Gupta, Vijai K

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems. PMID:27379053

  3. Pediatric sink-bathing: a risk for scald burns.

    PubMed

    Baggott, Kaitlin; Rabbitts, Angela; Leahy, Nicole E; Bourke, Patrick; Yurt, Roger W

    2013-01-01

    Our burn center previously reported a significant incidence of scald burns from tap water among patients treated at the center. However, mechanism of these scalds was not investigated in detail. A recent series of pediatric patients who sustained scalds while bathing in the sink was noted. To evaluate the extent of these injuries and create an effective prevention program for this population, a retrospective study of bathing-related sink burns among pediatric patients was performed. Patients between the ages of 0 and 5.0 years who sustained scald burns while being bathed in the sink were included in this study. Sex, race, age, burn size, length of stay, and surgical procedures were reviewed. During the study period of January 2003 through August 2008, 56 patients who were scalded in the sink were admitted, accounting for 54% of all bathing-related scalds. Among these, 56% were boys and 45% were Hispanic. Mean age was 0.8 ± 0.1 years. Burn size and hospital length of stay averaged 5 ± 0.7% and 11 ± 1 days, respectively. Of this group, 10.7% required skin grafting. The overwhelming majority (94% of patients) were discharged home. The remaining patients were discharged to inpatient rehabilitation, foster care, and others. Pediatric scald burns sustained while bathing in a sink continue to be prevalent at our burn center. Because of limited space and the child's proximity to faucet handles and water flow, sinks are an unsafe location to bathe a child. While such practice may be necessary for some families, comprehensive burn prevention education must address this hazard. PMID:23412329

  4. Degraded Land Restoration in Reinstating CH4 Sink

    PubMed Central

    Singh, Jay Shankar; Gupta, Vijai K.

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems. PMID:27379053

  5. Dynamics of sinking particles in northern Japan trench in the western North Pacific: biogenic chemical components and fatty acids biomarkers

    NASA Astrophysics Data System (ADS)

    Shin, K. H.; Noriki, S.; Itou, M.; Tsunogai, S.

    Biogenic opal was predominant component, and had strongly positive correlation with organic carbon in both traps. The average atomic ratios of biogenic opal and calcium carbonate (CaCO 3) were also large (7.1 and 11 in the shallow and deep trap, respectively) and the highest ratio was found in May 1995, when the biogenic opal proportion (%) to the total particle flux and C org/C inorg ratio increased concomitantly. However, transient switching of the biogenic opal and CaCO 3 ratios (0.6 and 0.8) was observed in winter 1995, which seems to be related to a warm-core ring developed in the northwestern Pacific. Downward fluxes of fatty acids as molecular markers were determined and compared with major biogenic chemical components in sinking particles. As a diatom index of fatty acids, the 16:1(n-7)/16:0 ratio is positively related to biogenic opal contribution (%) to the sinking particles in the shallow and deep traps. 20:5(n-3) proportion (%) was also correlated with opal content (%) in sinking particles in the 1-km trap. In addition, a major source of sinking fatty acids in the western North Pacific might be characterized by algal fatty acids as a diatom marker (16:1(n-7)), comparing to a zooplankton fatty acid (18:1(n-9)) in the central North Pacific and fecal pellets and coccolithophores in the eastern North Pacific, respectively. Also, PUFA index (a measure of polyunsaturated fatty acids contribution to the total fatty acids) correlated well with Chl a inventory in surface 0-50 m water. These results suggest that undegraded diatomaceous fatty acids are present in sinking particles, and the composition of fatty acids is useful to understand the origin of sinking organic particles.

  6. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    SciTech Connect

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  7. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  8. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  9. 14. View of interior, north and east walls featuring sink, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of interior, north and east walls featuring sink, facing east (Note: B/W scale on wall in foreground is in 1/2 ft increments) - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  10. MASTER BATH SHOWING SINK WITH VANITY AND THE MEDICINE CABINET. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MASTER BATH SHOWING SINK WITH VANITY AND THE MEDICINE CABINET. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Single-Family Type 6, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  11. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... respect to electronic filing have been amended. The amendments took effect on November 7, 2011. See 76 FR... COMMISSION Drawn Stainless Steel Sinks From China Scheduling of the final phase of countervailing duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of drawn stainless...

  12. Biomineralization in plants as a long-term carbon sink

    NASA Astrophysics Data System (ADS)

    Cailleau, Guillaume; Braissant, Olivier; Verrecchia, Eric P.

    Carbon sequestration in the global carbon cycle is almost always attributed to organic carbon storage alone, while soil mineral carbon is generally neglected. However, due to the longer residence time of mineral carbon in soils (102-106 years), if stored in large quantities it represents a potentially more efficient sink. The aim of this study is to estimate the mineral carbon accumulation due to the tropical iroko tree (Milicia excelsa) in Ivory Coast. The iroko tree has the ability to accumulate mineral carbon as calcium carbonate (CaCO3) in ferralitic soils, where CaCO3 is not expected to precipitate. An estimate of this accumulation was made by titrating carbonate from two characteristic soil profiles in the iroko environment and by identifying calcium (Ca) sources. The system is considered as a net carbon sink because carbonate accumulation involves only atmospheric CO2 and Ca from Ca-carbonate-free sources. Around one ton of mineral carbon was found in and around an 80-year-old iroko stump, proving the existence of a mineral carbon sink related to the iroko ecosystem. Conservation of iroko trees and the many other biomineralizing plant species is crucial to the maintenance of this mineral carbon sink.

  13. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    EPA Science Inventory

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  14. DIFFERENTIAL PHYTOPLANKTON SINKING- AND GROWTH-RATES: AN EIGENVALUE ANALYSIS

    EPA Science Inventory

    An eigenvalue analysis of the vertical phytoplankton biomass equation is applied to calculate the differential sinking- and loss-rates of phytoplankton for different taxonomic groups in Lake Lyndon B. Johnson (Texas) and in Lake Erie. The analysis includes factors determining the...

  15. Can climate variability contribute to the ``missing'' CO2 sink?

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Fung, Inez Y.

    1993-09-01

    The contemporary carbon budget for the atmosphere requires a large "missing" carbon sink to balance anthropogenic carbon inputs. We investigated climatic effects on carbon exchanges between the atmosphere and the undisturbed biosphere and assessed the possible contribution of climate variability to the carbon sink. Empirical models and global temperature and precipitation data sets were used in the study. It was found that climate perturbations during 1940-1988 caused considerable variations in plant productivity and soil respiration. The different sensitivities of the fluxes to climate perturbations led to a significant carbon accumulation in the biosphere. The cumulative carbon sink for the period 1950-1984 (˜20±5 GtC or 1012 kg C) was predominantly located in mid-latitudes in the northern hemisphere (30°-60°N) and could amount to half of the missing CO2 sink as derived from deconvolution analyses. Our results indicate that climate variations have unequal impacts on biospheric carbon fluxes from different ecosystems and imply that caution must be exercised in generalizing in situ observations to the globe.

  16. Intrinsic and extrinsic drivers of source-sink dynamics

    EPA Science Inventory

    1. Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations, yet their relative contributions remain largely unexplored. 2. To help identify the...

  17. THE INTERACTION OF VAPOUR PHASE ORGANIC COMPOUNDS WITH INDOOR SINKS

    EPA Science Inventory

    The interaction of indoor air pollutants with interior surfaces (i.e., sinks) is a well known, but poorly understood, phenomenon. Studies have shown that re-emissions of adsorbed organic vapours can contribute to elevated concentrations of organics in indoor environments. Researc...

  18. Problematic Issue for Students: Does It Sink or Float?

    ERIC Educational Resources Information Center

    Ünal, Suat; Costu, Bayram

    2005-01-01

    The aim of this study is to investigate grade-eight students' conceptions of sinking and floating. Firstly, semi-structured interviews were conducted with 12 students to determine students' difficulties and to develop a multiple-choice diagnostic test. In designing the content of the interview questions, grade-eight science curriculum, research on…

  19. Children's Typically-Perceived-Situations of Floating and Sinking

    ERIC Educational Resources Information Center

    Joung, Yong Jae

    2009-01-01

    The purpose of this study is to explore children's typically-perceived-situations (TPS) of "floating" and "sinking". TPS refers to the situation rising spontaneously in an individual's mind when they first think of a phenomenon or concept. Data were collected from 148 Year 5 Korean children. As a result of analysing the data according to three…

  20. Sinking Maps: A Conceptual Tool for Visual Metaphor

    ERIC Educational Resources Information Center

    Giampa, Joan Marie

    2012-01-01

    Sinking maps, created by Northern Virginia Community College professor Joan Marie Giampa, are tools that teach fine art students how to construct visual metaphor by conceptually mapping sensory perceptions. Her dissertation answers the question, "Can visual metaphor be conceptually mapped in the art classroom?" In the Prologue, Giampa…

  1. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  2. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  3. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  4. Heat pipe thermal switch

    NASA Technical Reports Server (NTRS)

    Wolf, D. A. (Inventor)

    1983-01-01

    A thermal switch for controlling the dissipation of heat between a body is described. The thermal switch is comprised of a flexible bellows defining an expansible vapor chamber for a working fluid located between an evaporation and condensation chamber. Inside the bellows is located a coiled retaining spring and four axial metal mesh wicks, two of which have their central portions located inside of the spring while the other two have their central portions located between the spring and the side wall of the bellows. The wicks are terminated and are attached to the inner surfaces of the outer end walls of evaporation and condensation chambers respectively located adjacent to the heat source and heat sink. The inner surfaces of the end walls furthermore include grooves to provide flow channels of the working fluid to and from the wick ends. The evaporation and condensation chambers are connected by turnbuckles and tension springs to provide a set point adjustment for setting the gap between an interface plate on the condensation chamber and the heat sink.

  5. Carbon sink activity and GHG budget of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Klumpp, Katja; Herfurth, Damien; Soussana, Jean-Francois; Fluxnet Grassland Pi's, European

    2013-04-01

    In agriculture, a large proportion (89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities of European ecosystemes, however, often questioned the existence of C storing grasslands, as though a net sink of C was observed, uncertainty surrounding this estimate was larger than the sink itself (Janssens et al., 2003, Schulze et al., 2009. Then again, some of these estimates were based on a small number of measurements, and on models. Not surprising, there is still, a paucity of studies demonstrating the existence of grassland systems, where C sequestration would exceed (in CO2 equivalents) methane emissions from the enteric fermentation of ruminants and nitrous oxide emissions from managed soils. Grasslands are heavily relied upon for food and forage production. A key component of the carbon sink activity in grasslands is thus the impact of changes in management practices or effects of past and recent management, such as intensification as well as climate (and -variation). We analysed data (i.e. flux, ecological, management and soil organic carbon) from a network of European grassland flux observation sites (36). These sites covered different types and intensities of management, and offered the opportunity to understand grassland carbon cycling and trade-offs between C sinks and CH4 and N2O emissions. For some sites, the assessment of carbon sink activities were compared using two methods; repeated soil inventory and determination of the ecosystem C budget by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports (net C storage, NCS). In general grassland, were a potential sink of C with 60±12 g C /m2.yr (median; min -456; max 645). Grazed sites had a higher NCS compared to cut sites (median 99 vs 67 g C /m2.yr), while permanent grassland sites tended to have a lower NCS compared to temporary sown grasslands (median 64 vs

  6. Photosynthetic characteristics of sinking microalgae under the sea ice

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinya; Michel, Christine; Gosselin, Michel; Demers, Serge; Fukuchi, Mitsuo; Taguchi, Satoru

    2014-12-01

    The photosynthetic characteristics of sinking a microalgal community were studied to compare with the ice algal community in the sea ice and the phytoplankton community in the water column under the sea ice at the beginning of the light season in the first-year sea ice ecosystem on the Mackenzie Shelf, in the western Canadian Arctic. The phytoplankton community was collected using a water bottle, whereas the sinking algal community was collected using particle collectors, and the ice algal community was obtained by using an ice-core sampler from the bottom portion of ice core. Photosynthesis versus irradiance (P-E) incubation experiments were conducted on deck to obtain the initial slope (αB) and the maximum photosynthetic rate (PmB) of the three algal communities. The αB and the PmB of the light saturation curve, and chlorophyll a (Chl a) specific absorption coefficient (āph*) between the sinking microalgal community and the ice algal community were similar and were distinctly different from the phytoplankton community. The significant linear relationship between αB and PmB, which was obtained among the three groups, may suggest that a photo-acclimation strategy is common for all algal communities under the low light regime of the early season. Although the sinking algal community could be held for the entire duration of deployment at maximum, this community remained photosynthetically active once exposed to light. This response suggests that sinking algal communities can be the seed population, which results in a subsequent phytoplankton bloom under the sea ice or in a surface layer, as well as representing food for the higher trophic level consumers in the Arctic Ocean even before the receding of the sea ice.

  7. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.

  8. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling.

    PubMed

    Bastos, Ana; Janssens, Ivan A; Gouveia, Célia M; Trigo, Ricardo M; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. PMID:26777730

  9. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    PubMed Central

    Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO–EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. PMID:26777730

  10. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  11. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  12. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  13. Experimental sink removal induces stress responses, including shifts in amino acid and phenylpropanoid metabolism, in soybean leaves

    PubMed Central

    Turner, Glenn W.; Cuthbertson, Daniel J.; Voo, Siau Sie; Settles, Matthew L.; Grimes, Howard D.

    2012-01-01

    The repeated removal of flower, fruit, or vegetative buds is a common treatment to simulate sink limitation. These experiments usually lead to the accumulation of specific proteins, which are degraded during later stages of seed development, and have thus been designated as vegetative storage proteins. We used oligonucleotide microarrays to assess global effects of sink removal on gene expression patterns in soybean leaves and found an induction of the transcript levels of hundreds of genes with putative roles in the responses to biotic and abiotic stresses. In addition, these data sets indicated potential changes in amino acid and phenylpropanoid metabolism. As a response to sink removal we detected an induced accumulation of γ-aminobutyric acid, while proteinogenic amino acid levels decreased. We also observed a shift in phenylpropanoid metabolism with an increase in isoflavone levels, concomitant with a decrease in flavones and flavonols. Taken together, we provide evidence that sink removal leads to an up-regulation of stress responses in distant leaves, which needs to be considered as an unintended consequence of this experimental treatment. PMID:22109846

  14. Earth-coupled heat pump

    NASA Astrophysics Data System (ADS)

    Edwards, J. A.

    1981-08-01

    The object of the research work was to demonstrate that a water source heat pump could be used with an earth-coupled heat exchanger which was buried in an absorption field of a domestic sewage disposal system to provide the heating and cooling requirements for residential use in an energy efficient fashion. The system consists of a 3 ton heat pump (nominal rating of 34,000 Btu/hr), a closed-loop heat exchanger which was fabricated from 200 feet of 2 inch diameter cast iron soil pipe, and a calorimeter house which had heat transmission characteristics similar to a 100 sq ft house. The earth-coupled heat exchanger was connected to the water side heat exchanger of the heat pump. Water was circulated through the heat exchanger coil in the earth and through the water side heat exchanger of the heat pump. The earth served as the energy source (for heating) or sink (for cooling) for the heat pump.

  15. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high‐temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG‐5 gravimeter and a LaCoste and Romberg (L&R) Model‐G gravimeter. The CG‐5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill‐hole intercept values. Preliminary Interpretation of Results: The Carson Sink

  16. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    SciTech Connect

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano; Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  17. Self-actuating heat switches for redundant refrigeration systems

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor)

    1988-01-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  18. Sinking velocity of particulate radiocesium in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Honda, Makio C.; Kawakami, Hajime

    2014-06-01

    Sinking particles (SP) were collected by time series sediment traps at two depths in the northwestern Pacific before and after the Fukushima Daiichi Nuclear Power Plant accident, and accident-derived particulate radiocesium was measured. Radiocesium (137Cs) was first detected at 500 m (4810 m) about 2 weeks (1 month) after the accident. 137Cs of SP collected over 1 year revealed that the time lag between two depths was larger than that for the first 137Cs detection (about 2 weeks). We estimated the transient sinking velocity (SV) from the cumulative temporal 137Cs flux and the time lags at the two depths. Although the SV of SP collected in very early period was large, the estimated SV of most particulate 137Cs (about 80%) was about 50 m d-1. Based on comparison of 137Cs concentration in total SP with that in SP without organic materials, we suspect that most of the 137Cs was likely incorporated into aluminosilicates.

  19. Scale effects of nitrate sinks and sources in stream networks

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Weiler, Markus; Gascuel-Odoux, Chantal

    2014-05-01

    Increasing N-fertilizer applications in agricultural catchments are considered as one of the major sources for dissolved nitrate-nitrogen (NO3-N) in surface water. While NO3-N mobilization pathways depend on catchment's pedological and hydrogeological characteristics and its runoff generation processes, in-stream retention and removal processes depend on local/reach-scale conditions such as weather, discharge, channel morphology, vegetation, shading or hyporheic exchange and others. However, knowledge is still limited to scale up locally observable retention and removal processes to larger stream networks to understand the spatial and temporal dynamics of in-stream NO3-N concentrations. Relevant processes to consider explicitly are the effects of 'hot spots', dominant NO3-N sources (e.g. sub-catchments, 'critical source areas') or specific NO3-N sinks (e.g. riparian wetlands and stream reaches with high biogeochemical activity). We studied these processes in a 1.7 km2 agricultural headwater catchment, where distinct locations of groundwater inflow (a dense artificial drainage network) and a predominantly impervious streambed allowed separating mixing and dilution processes as well as in-stream retention and removal processes. During two summer seasons we conducted a set (25) of stream network wide (stream water and drainage water) synoptic sampling campaigns including climate parameters, discharge, channel geomorphology, vegetation, stream water chemistry and physical water parameters (dissolved oxygen concentration, water temperatures, electrical conductivity, pH). Analyzing these data sets we were able to determine a) time variant NO3-N concentrations and loads for all sub-catchments (sources), b) time variant in-stream removal rates for all stream reaches (sinks) and c) the hierarchical order of all contributing NO3-N sinks and sources and their time variant influence on total NO3-N export. Climate parameters, discharge, channel geomorphology, vegetation, stream

  20. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    PubMed Central

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446