Science.gov

Sample records for additional heat wave

  1. Heat Wave Safety Checklist

    MedlinePlus

    ... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...

  2. Observational Estimates of Wave Heating and Momentum Addition in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Kortenkamp, P. S.

    2004-05-01

    Theoretical models of the outer solar corona and inner solar wind require heating and acceleration by turbulence to achieve the observed flow speed and plasma temperature at 1 astronomical unit. Observational tests of these models require knowledge of the turbulent magnetic field amplitude as a function of heliocentric distance (r), but direct measurements are not available. In this paper, we present a new method of estimating the spatial power spectrum and fluctuation amplitude of magnetic field fluctuations in the solar wind acceleration region. We utilize a set of 38 measurements of density fluctuations in the slow solar wind, for heliocentric distances in the range 5 - 60 R⊙. These data result from VLBI phase scintillation measurements made between 1991 and 2002. These observations give the density fluctuation parameter CN2(r). We also utilize a recent result on the relative magnitude of density and magnetic field fluctuations in slow solar wind turbulence at 1 a.u. (Spangler and Spitler, Physics of Plasmas, May 2004). We can then estimate the magnetic field fluctuation parameter CB2 and the magnetic field fluctuation amplitude as a function of heliocentric distance. These estimates of turbulence amplitudes are compared with those required by slow solar wind models. For illustration, the estimated turbulent energy flux at a heliocentric distance of 16 R⊙ is 6 - 23 % of the kinetic energy flux. The higher portion of this range is consistent with a significant dynamical role for turbulence. Future improvements in this technique will utilize global MHD models of the solar wind at the times of observations. This work was supported by the National Science Foundation via grants ATM99-86887 and ATM-0311825.

  3. Coronal heating by waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1983-01-01

    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.

  4. Reconfigurable heat-induced spin wave lenses

    NASA Astrophysics Data System (ADS)

    Dzyapko, O.; Borisenko, I. V.; Demidov, V. E.; Pernice, W.; Demokritov, S. O.

    2016-12-01

    We study the control and manipulation of propagating spin waves in yttrium iron garnet films using a local laser-induced heating. We show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing lens for backward volume waves enabling collimation of spin-wave beams in the latter case. In addition to the focusing/defocusing functionality, the local heating allows one to manipulate the propagation direction of the spin-wave beams and to efficiently suppress their diffraction spreading by utilizing caustic effects.

  5. Ion Bernstein wave heating research

    SciTech Connect

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  6. Ion Bernstein wave heating research

    SciTech Connect

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  7. Effects of simulated heat waves on ApoE-/- mice.

    PubMed

    Wang, Chunling; Zhang, Shuyu; Tian, Ying; Wang, Baojian; Shen, Shuanghe

    2014-01-28

    The effects of simulated heat waves on body weight, body temperature, and biomarkers of cardiac function in ApoE-/- mice were investigated. Heat waves were simulated in a meteorological environment simulation chamber according to data from a heat wave that occurred in July 2001 in Nanjing, China. Eighteen ApoE-/- mice were divided into control group, heat wave group, and heat wave BH4 group. Mice in the heat wave and BH4 groups were exposed to simulated heat waves in the simulation chamber. Mice in BH4 group were treated with gastric lavage with BH4 2 h prior to heat wave exposure. Results showed that the heat waves did not significantly affect body weight or ET-1 levels. However, mice in the heat wave group had significantly higher rectal temperature and NO level and lower SOD activity compared with mice in the control group (p < 0.01), indicating that heat wave had negative effects on cardiac function in ApoE-/- mice. Gastric lavage with BH4 prior to heat wave exposure significantly reduced heat wave-induced increases in rectal temperature and decreases in SOD activity. Additionally, pretreatment with BH4 further increased NO level in plasma. Collectively, these beneficial effects demonstrate that BH4 may potentially mitigate the risk of coronary heart disease in mice under heat wave exposure. These results may be useful when studying the effects of heat waves on humans.

  8. Urban Heat Wave Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.

    2016-01-01

    Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

  9. Ion Bernstein wave heating research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1993-02-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and

  10. Northern Eurasian Heat Waves and Droughts

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max; Groisman, Pavel

    2013-01-01

    This article reviews our understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA GEOS-5 AGCM. Key new results are: 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave), 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST, and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in our understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.

  11. Multi-heat addition turbine engine

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C. (Inventor); Brabbs, Theodore A. (Inventor)

    1993-01-01

    A multi-heat addition turbine engine (MHATE) incorporates a plurality of heat addition devices to transfer energy to air and a plurality of turbines to extract energy from the air while converting it to work. The MHATE provides dry power and lower fuel consumption or lower combustor exit temperatures.

  12. Characterizing extreme and oppressive heat waves in Illinois

    NASA Astrophysics Data System (ADS)

    Ford, Trent W.; Schoof, Justin T.

    2017-01-01

    Heat waves are characteristic features of summertime climate in the Midwest United States and can have significant agricultural, hydrological, and societal impacts. Historically, heat waves in the Midwest state of Illinois have been either extreme (high temperature and low humidity) or oppressive (high temperature and high humidity) in nature, but our knowledge of the factors determining which heat wave type occurs is limited. We use self-organizing maps to classify synoptic-scale atmospheric circulation patterns associated with oppressive and extreme heat events and analysis of variance to evaluate the atmospheric and land surface features responsible for differences in humidity that characterize the two. We find that the majority of extreme and oppressive heat events are associated with similar synoptic-scale atmospheric conditions. Additionally, both locally evaporated moisture and advected moisture sources were important for determining which of the two heat wave types occurred. Specifically, oppressive heat waves were characterized by abundant antecedent precipitation, surplus soil moisture, and elevated evapotranspiration and related atmospheric humidity. Lower humidity levels during extreme heat wave events were driven by relative reductions in evapotranspiration due to limited soil water content. Overall, our results suggest that the onset of heat waves in Illinois is primarily driven by circulation features in the upper atmosphere; however, the distinction of extreme or oppressive heat wave is due to differences in boundary layer humidity, driven in part by land surface moisture availability for evapotranspiration.

  13. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China

    PubMed Central

    Dong, Wentan; Zeng, Qiang; Ma, Yue; Li, Guoxing; Pan, Xiaochuan

    2016-01-01

    Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs) on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs) compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C) and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI): 6%, 31%) in the overall population, 24% (95% CI: 10%, 39%) in an older group (ages ≥65 years), and 22% (95% CI: 3%, 44%) in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years). Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves. PMID:27657103

  14. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China.

    PubMed

    Dong, Wentan; Zeng, Qiang; Ma, Yue; Li, Guoxing; Pan, Xiaochuan

    2016-09-21

    Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs) on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs) compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C) and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI): 6%, 31%) in the overall population, 24% (95% CI: 10%, 39%) in an older group (ages ≥65 years), and 22% (95% CI: 3%, 44%) in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years). Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves.

  15. Macroscopic heat transport equations and heat waves in nonequilibrium states

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  16. Heat waves and urban heat islands in Europe: A review of relevant drivers.

    PubMed

    Ward, Kathrin; Lauf, Steffen; Kleinschmit, Birgit; Endlicher, Wilfried

    2016-11-01

    The climate change and the proceeding urbanization create future health challenges. Consequently, more people around the globe will be impaired by extreme weather events, such as heat waves. This study investigates the causes for the emergence of surface urban heat islands and its change during heat waves in 70 European cities. A newly created climate class indicator, a set of meaningful landscape metrics, and two population-related parameters were applied to describe the Surface Urban Heat Island Magnitude (SUHIM) - the mean temperature increase within the urban heat island compared to its surrounding, as well as the Heat Magnitude (HM) - the extra heat load added to the average summer SUHIM during heat waves. We evaluated the relevance of varying urban parameters within linear models. The exemplary European-wide heat wave in July 2006 was chosen and compared to the average summer conditions using MODIS land surface temperature with an improved spatial resolution of 250m. The results revealed that the initial size of the urban heat island had significant influence on SUHIM. For the explanation of HM the size of the heat island, the regional climate and the share of central urban green spaces showed to be critical. Interestingly, cities of cooler climates and cities with higher shares of urban green spaces were more affected by additional heat during heat waves. Accordingly, cooler northern European cities seem to be more vulnerable to heat waves, whereas southern European cities appear to be better adapted. Within the ascertained population and climate clusters more detailed explanations were found. Our findings improve the understanding of the urban heat island effect across European cities and its behavior under heat waves. Also, they provide some indications for urban planners on case-specific adaptation strategies to adverse urban heat caused by heat waves.

  17. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  18. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-11-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  19. Closing the Gap on Measuring Heat Waves

    NASA Astrophysics Data System (ADS)

    Perkins, S. E.; Alexander, L.

    2012-12-01

    Since the 4th IPCC assessment report, the scientific literature has established that anthropogenic climate change encompasses adverse changes in both mean climate conditions and extreme events, such as heat waves. Indeed, the affects of heat waves are felt across many different sectors, and have high economic, human, and physical impacts over many global regions. The spatial and monetary scale of heat wave impacts emphasizes the necessity of measuring and studying such events in an informative manner, which gives justice to the geographical region affected, the communities impacted, and the climatic fields involved. However, due to such wide interest in heat waves, their definition remains broad in describing a period of consecutive days where conditions are excessively hotter than normal. This has allowed for the employment of a plethora of metrics, which are usually unique to a given sector, or do not appropriately describe some of the important features of heat wave events. As such, it is difficult to ascertain a clear message regarding changes in heat waves, both in the observed record and in projections of future climate. This study addresses this issue by developing a multi-index, multi-aspect framework in which to measure heat waves. The methodology was constructed by assessing a wide range of heat wave and heat wave-related indices, both proposed and employed in the scientific literature. The broad implications of the occurrences, frequency and duration of heat waves and respective changes were also highly considered. The resulting indices measure three or more consecutive days where 1) maximum temperature exceeds the 90th percentile (TX90pct); 2) minimum temperature exceeds the 90th percentile (TN90pct); and 3) daily average temperature has a positive excess heat factor (EHF). The 90th percentiles from which TX90pct and TN90pct are calculated are based on 15-day windows for each calendar day, whereas the EHF is based upon two pre-calculated indices that

  20. Wave motions and wave heating in the upper solar atmosphere

    NASA Astrophysics Data System (ADS)

    Poletto, G.

    The experimental and theoretical evidence favoring the wave heating mechanism in the low chromosphere is briefly reviewed, and the possibility of maintaining this mechanism, with proper modifications, in the higher layer is studied. Wave mode candidates for heating at high levels are analyzed, including gravity waves and Alfven waves. Waves in the upper chromosphere and the transition region are considered, showing power spectra of oscillations in lines forming at increasing heights in the solar atmosphere, fluctuations in UV line intensity, the predicted relationship between velocity and intensity modulation for acoustic waves, and sample results from UV spectrometer and polarimeter observations. It is concluded that in the upper chromosphere and transition regions, observations fail to reveal an acoustic flux adequate to compensate for the energy losses in these layers. Alfven waves, observed in the solar wind, could supply the required energy flux, but their presence cannot either be confirmed or ruled out.

  1. Heat waves in urban heat islands: interactions, impacts, and mitigation

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.

    2013-12-01

    Urbanization rates and the intensity of anthropogenic global warming are both on the rise. By the middle of this century, climate change impacts on humans will be largely manifested in urban regions and will result from a combination of global to regional impacts related to greenhouse gas emissions, as well as regional to local impacts related to land-cover changes associated with urbanization. Alarmingly, our understanding of how these two distinct impacts will interact remains very poor. One example, which is the focus of this study, is the interaction of urban heat islands and heat waves. Urban heat islands (UHIs) are spatial anomalies consisting of higher temperatures over built terrain; while their intensity varies with many factors, it consistently increases with city size. UHIs will hence intensify in the future as cities expand. Heat waves are temporal anomalies in the regional temperatures that affect both urban and rural areas; there is high certainty that the frequency and intensity of such waves will increase as a result global warming. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses of a heat wave event over the Baltimore-Washington urban corridor reveals synergistic interactions between urban heat islands and heat waves. Not only do heat waves increase the regional temperatures, but they also intensify the difference between urban and rural temperatures. That is, their impact is stronger in cities and the urban heat stress during such waves is larger than the sum of the background urban heat island effect and the heat wave effect. We also develop a simple analytical model of this interaction that suggests that this exacerbated impact in urban areas is primarily to the lack of surface moisture, with low wind speeds also playing a smaller role. Finally, the effectiveness of cool and green roofs as UHI mitigation

  2. Heat Exchange, Additive Manufacturing, and Neutron Imaging

    SciTech Connect

    Geoghegan, Patrick

    2015-02-23

    Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.

  3. Heat Exchange, Additive Manufacturing, and Neutron Imaging

    ScienceCinema

    Geoghegan, Patrick

    2016-07-12

    Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.

  4. Identifying Heat Waves in Florida: Considerations of Missing Weather Data

    PubMed Central

    Leary, Emily; Young, Linda J.; DuClos, Chris; Jordan, Melissa M.

    2015-01-01

    Background Using current climate models, regional-scale changes for Florida over the next 100 years are predicted to include warming over terrestrial areas and very likely increases in the number of high temperature extremes. No uniform definition of a heat wave exists. Most past research on heat waves has focused on evaluating the aftermath of known heat waves, with minimal consideration of missing exposure information. Objectives To identify and discuss methods of handling and imputing missing weather data and how those methods can affect identified periods of extreme heat in Florida. Methods In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are described and utilized to impute missing historical weather data from 1973 to 2012 from 43 Florida weather monitors. Calculated thresholds are used to define periods of extreme heat across Florida. Results Modeling of missing data and imputing missing values can affect the identified periods of extreme heat, through the missing data itself or through the computed thresholds. The differences observed are related to the amount of missingness during June, July, and August, the warmest months of the warm season (April through September). Conclusions Missing data considerations are important when defining periods of extreme heat. Spatio-temporal methods are recommended for data imputation. A heat wave definition that incorporates information from all monitors is advised. PMID:26619198

  5. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  6. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of

  7. Heat waves, aging, and human cardiovascular health.

    PubMed

    Kenney, W Larry; Craighead, Daniel H; Alexander, Lacy M

    2014-10-01

    This brief review is based on a President's Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review was to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth's average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress resulting from prolonged elevations in ambient temperature and prolonged physical activity in hot environments creates a high demand on the left ventricle to pump blood to the skin to dissipate heat. Even healthy aging is accompanied by altered cardiovascular function, which limits the extent to which older individuals can maintain stroke volume, increase cardiac output, and increase skin blood flow when exposed to environmental extremes. In the elderly, the increased cardiovascular demand during heat waves is often fatal because of increased strain on an already compromised left ventricle. Not surprisingly, excess deaths during heat waves 1) occur predominantly in older individuals and 2) are overwhelmingly cardiovascular in origin. Increasing frequency and severity of heat waves coupled with a rapidly growing at-risk population dramatically increase the extent of future untoward health outcomes.

  8. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  9. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  10. Extreme heat changes post-heat wave community reassembly.

    PubMed

    Seifert, Linda I; Weithoff, Guntram; Vos, Matthijs

    2015-06-01

    Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29°C and 39°C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39°C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29°C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial

  11. Ionospheric heating with oblique HF waves

    NASA Astrophysics Data System (ADS)

    Field, Edward C., Jr.; Bloom, Ron M.

    1990-10-01

    Calculations of ionospheric electron density perturbations and ground-level signal changes produce by intense oblique high frequency (HF) transmitters are presented. This analysis considers radio field focusing at caustics, the consequent joule-heating of the surrounding plasma, heat conduction, diffusion, and recombination processes: these being the effects of a powerful oblique 'modifying' wave. It neglects whatever plasma instabilities might occur. Then effects on a secondary 'test' wave that is propagated along the same path as the first are investigated. Calculations predict ground-level field-strength reductions of several dB in the test wave for modifying waves having ERP in the 85 to 90 dBW range. These field-strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The results are sensitive to the model ionosphere assumed, so future experiments should employ the widest possible range of frequencies and propagation conditions. An effective power of 90 dBW seems to be a sort of threshold that, if exceeded, results in substantial rather than small signal changes. The conclusions are based solely on joule-heating and subsequent defocusing of waves passing through caustic regions.

  12. The urban heat island and its impact on heat waves and human health in Shanghai.

    PubMed

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  13. Compact antennas for lower hybrid wave heating

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Takamura, S.; Okuda, T.

    1981-01-01

    A T-shaped antenna loaded with alumina was designed and constructed for lower hybrid wave heating of toroidal plasmas. The theoretical power spectra showed that a T-shaped antenna can be used for both ion and electron heating, and the accuracy of the calculation was verified by measuring the antenna's impedance. The dependence of the impedance on the power fed to the antenna was also investigated, and it was found that the RF pressure affected the coupling between the antenna and the plasma.

  14. Summer heat waves over western Turkey between 1965 and 2006

    NASA Astrophysics Data System (ADS)

    Unal, Yurdanur Sezginer; Tan, Elcin; Mentes, S. Sibel

    2013-04-01

    Global warming is one of the greatest environmental, economic, and social threats in the world. There are many assessments to estimate climate variability over many regions. A change in the Earth's surface temperature leads to increase in extreme temperature events, which are harmful to the ecosystem, and moreover, they create danger on human health. In this study, we have selected the western part of Turkey as the study area, since climate change projections for Turkey point out that the highest temperature change can be expected on this region during summer, and the Turkish population is very dense here to be affected by extreme events. We have used apparent temperatures to define the heat waves which we have determined their frequencies for the summer months (June-August) of 1965-2006. Since the regional comparisons of station results are intended, we selected the 90th percentile value for each station as a threshold value to be used in the delineation of heat waves. Then, the number of heat waves is determined by imposing the constraint that apparent temperatures stay above the threshold value at least for three consecutive days. Then, the changes in the number of hot days and heat waves and also their durations are analyzed by using the linear least square method. We have found that the number of hot days, heat waves, and heat wave durations is increased between 1965 and 2006 on the western part of Turkey. Additionally, their rate of change is larger within the last decade and extremes are frequently observed after 1998. Regional distributions show that the tendency of the number of heat wave events increases towards the southern latitudes of the domain. Moreover, we investigated the relationship between the number of hot days and the sea surface temperatures of the Mediterranean Sea and Black Sea. Correlation analyses are carried out by the number of hot days and averaged sea surface temperatures on the regions of the western, central, and eastern

  15. Progressive wave tube facility with additional capabilities

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Bocksruker, Ron; Pilgram, Mark; Vallance, Charles

    1993-01-01

    The design and development of a new acoustic progressive wave tube facility was required to test the Titan IV rocket engine. Because of the large 6 feet diameter of the nozzle closure, circular shape, high over-all sound pressure level (OASPL), and high sound pressure levels (SPLs) above 1000 Hz, the acoustic environmental tests required consideration of a custom built facility. This paper describes a new oscillating supersonic shock generator (OSSG) for developing the high OASPL, for developing the high SPLs at above 1000 Hz, and for use with a conventional acoustic modulator. Also, the new OSSG permits impedance matching to the test volume annulus via the special geometry of the annular space between the elliptical containment domes upstream of the test volume annulus. A test annulus gap that is too small causes the test article to vibrate with a severe damping imposed by the pumping of trapped air in the annulus, and too large a gap reduces the OASPL. Consideration is given to tuning the axial and circumferential resonance frequencies of the annulus test space so that there is no coincidence with the principal resonant modes of the test structure. Also consideration is given to establishing the reverberant versus propagating modes of the test annulus.

  16. Heat waves in Argentina: how unusual was the 2008 heat wave in Buenos Aires?

    NASA Astrophysics Data System (ADS)

    Rusticucci, Matilde; Almeira, Gustavo; Kyselý, Jan; Lhotka, Ondřej

    2014-05-01

    We examine temporal variability of heat waves over Argentina, and estimate recurrence probability of the most severe heat wave in Buenos Aires that occurred in November 2008. The number of days in heat waves per decade was analysed, considering spells of days with maximum temperature above the 90th percentile (MaxTHW), minimum temperature above the 90th percentile (MinTHW), and both maximum and minimum temperatures above the corresponding 90th percentiles (EHW) for the October-March period. Decadal values in Buenos Aires experienced increases in all definitions of heat waves, but at other stations, combinations of different trends or decadal variability resulted in some cases in a decrease of extreme heat waves, as shown in Córdoba (central Argentina) and Las Lomitas (northern Argentina). In the northwestern part of the country, La Quiaca and Tinogasta showed a strong change in the last decade, mainly due to the increment in the persistence of extreme MinTHW but also accompanied by increases in MaxTHW. In general, other stations showed a clear positive trend in MinTHW and decadal variability in MaxTHW, with the largest EHW cases in the last decade. Using simulations with a stochastic first-order autoregressive model (AR1), which reproduces the structure of time series of daily maximum temperatures, we estimated recurrence probability of the longest and most severe heat wave in Buenos Aires (over 1909-2010, according to intensity measured by cumulative excess of daily maximum temperatures above the 90th percentile) that occurred from 3 to 14 November 2008. The results showed that the recurrence probability of such long and severe heat wave is small in the present climate but increases substantially even under a moderate warming trend. The return period of such heat wave is estimated to be in the order of several hundreds years in the present climate while in a climate warmer by 1 °C, the return period declines by an order of magnitude, and in a climate warmer by 4

  17. On the construction of heat wave in symmetric case

    NASA Astrophysics Data System (ADS)

    Kazakov, A. L.; Lempert, A. A.

    2016-06-01

    A nonlinear second-order parabolic equation with two variables is considered. Under additional conditions, this equation can be interpreted as the porous medium equation in case of dependence of the unknown function on two variables: time and distance from the origin. The equation has a wide variety of applications in continuum mechanics, for example, it is applicable for mathematical modeling of filtration of ideal polytropic gas in porous media or heat conduction. The authors deal with a special solutions which are usually called heat waves. A special feature of such solution is that it consists of two continuously joined solutions. The first of them is trivial and the second one is nonnegative. The heat wave solution can have discontinuous derivatives on the line of joint which is called the front of heat wave, i.e. smoothness of the solution, generally speaking, is broken. The most natural problem which has such solutions is the so-called “the Sakharov problem of the initiation of a heat wave”. New solutions of the problem in the form of multiple power series for physical variables are constructed. The coefficients of the series are obtained from tridiagonal systems of linear algebraic equations. Herewith, the elements of matrices of this systems depend on the matrix order and the condition of the diagonal dominance is not fulfilled. The recurrent formulas for the coefficients are suggested.

  18. Development of a spinning wave heat engine

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Powell, E. A.; Hubbartt, J. E.

    1982-01-01

    A theoretical analysis and an experimental investigation were conducted to assess the feasibility of developing a spinning wave heat engine. Such as engine would utilize a large amplitude traveling acoustic wave rotating around a cylindrica chamber, and it should not suffer from the inefficiency, noise, and intermittent thrust which characterizes pulse jet engines. The objective of this investigation was to determine whether an artificially driven large amplitude spinning transverse wave could induce a steady flow of air through the combustion chamber under cold flow conditions. In the theoretical analysis the Maslen and Moore perturbation technique was extended to study flat cylinders (pancake geometry) with completely open side walls and a central opening. In the parallel experimental study, a test moel was used to determine resonant frequencies and radial pressure distributions, as well as oscillatory and steady flow velocities at the inner and outer peripheries. The experimental frequency was nearly the same as the theoretical acoustic value for a model of the same outer diameter but without a central hole. Although the theoretical analysis did not predict a steady velocity component, simulaneous measurements of hotwire and microphone responses have shown that the spinning wave pumps a mean flow radially outward through the cavity.

  19. Fast wave direct electron heating in TFTR

    SciTech Connect

    Murakami, M.; Jaeger, E.F.; Rimini, F.G.; Rasmussen, D.A.; Stevens, J.E.; Wilson, J.R.; Batchelor, D.B.; Bell, M.; Budny, R.; Fredrickson, E.; Goldfinger, R.C.; Hammett, G.; Hoffman, D.J.; Hosea, J.C.; Janos, A.; Majeski, R.; Mansfield, D.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Taylor, G.; Zarnstorff, M.C.

    1993-05-01

    Direct electron heating experiments were carried out in two regimes: B{sub T} = 4.6 T with D{sup +} supershots; and B{sub T} = 2.3 T with {sup 3}He majority. The electron power deposition profiles measured with modulation of RF power are found to be strongly peaked in the core with the total volume-integrated power of up to 80% of the modulated power. The magnitude and profile shape agree well with those predicted by a full-wave code.

  20. Heat waves in the United States: definitions, patterns and trends.

    PubMed

    Smith, Tiffany T; Zaitchik, Benjamin F; Gohlke, Julia M

    2013-06-01

    High temperatures and heat waves are related but not synonymous concepts. Heat waves, generally understood to be acute periods of extreme warmth, are relevant to a wide range of stakeholders because of the impacts that these events have on human health and activities and on natural environments. Perhaps because of the diversity of communities engaged in heat wave monitoring and research, there is no single, standard definition of a heat wave. Experts differ in which threshold values (absolute versus relative), duration and ancillary variables to incorporate into heat wave definitions. While there is value in this diversity of perspectives, the lack of a unified index can cause confusion when discussing patterns, trends, and impacts. Here, we use data from the North American Land Data Assimilation System to examine patterns and trends in 15 previously published heat wave indices for the period 1979-2011 across the Continental United States. Over this period the Southeast region saw the highest number of heat wave days for the majority of indices considered. Positive trends (increases in number of heat wave days per year) were greatest in the Southeast and Great Plains regions, where more than 12 % of the land area experienced significant increases in the number of heat wave days per year for the majority of heat wave indices. Significant negative trends were relatively rare, but were found in portions of the Southwest, Northwest, and Great Plains.

  1. Heat waves in the United States: definitions, patterns and trends

    PubMed Central

    Zaitchik, Benjamin F.; Gohlke, Julia M.

    2012-01-01

    High temperatures and heat waves are related but not synonymous concepts. Heat waves, generally understood to be acute periods of extreme warmth, are relevant to a wide range of stakeholders because of the impacts that these events have on human health and activities and on natural environments. Perhaps because of the diversity of communities engaged in heat wave monitoring and research, there is no single, standard definition of a heat wave. Experts differ in which threshold values (absolute versus relative), duration and ancillary variables to incorporate into heat wave definitions. While there is value in this diversity of perspectives, the lack of a unified index can cause confusion when discussing patterns, trends, and impacts. Here, we use data from the North American Land Data Assimilation System to examine patterns and trends in 15 previously published heat wave indices for the period 1979–2011 across the Continental United States. Over this period the Southeast region saw the highest number of heat wave days for the majority of indices considered. Positive trends (increases in number of heat wave days per year) were greatest in the Southeast and Great Plains regions, where more than 12 % of the land area experienced significant increases in the number of heat wave days per year for the majority of heat wave indices. Significant negative trends were relatively rare, but were found in portions of the Southwest, Northwest, and Great Plains. PMID:23869115

  2. Determining Heat Waves from Observations and COSMO-CLM Simulations in Istanbul

    NASA Astrophysics Data System (ADS)

    Yuruk, Cemre; Unal, Yurdanur; Irem Bilgen, Simge; Topcu, Sema; Mentes, Sibel

    2016-04-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model coupled with MPI-ESM-LR in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2013 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 °C from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. An example of this situation is observed in a Kilyos station located northern part of the city. Kilyos experiences only one heat wave in the beginning of 1970s whereas the number of heat waves increases in years and reaches to the maximum value of 5 in 2000. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. In addition to station data analyses, the local climate of Istanbul and its vicinity is simulated by CCLM model with approximately 3

  3. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  4. Cold and heat waves in the United States.

    PubMed

    Barnett, A G; Hajat, S; Gasparrini, A; Rocklöv, J

    2012-01-01

    Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures.

  5. Dynamical effects of vegetation on the 2003 summer heat waves

    NASA Astrophysics Data System (ADS)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  6. Phenomenology and Thermodynamical Characteristics of West African Heat Waves

    NASA Astrophysics Data System (ADS)

    Barbier, J.; Guichard, F.; Couvreux, F.; Bouniol, D.; Roehrig, R.; Mougin, E.; Leauthaud, C.

    2015-12-01

    Most of the studies on heat waves focus on their occurrences in the USA, Europe, China and Australia. Only a few articles deal with heat waves over the Sahel, even though monthly maximum temperatures in this region can rise to up to 40°C before the arrival of the summer monsoon. The focus here is on identifying and comprehending the physical mechanisms involved in the occurrence and phenomenology of springtime heat waves over the Sahel. In order to analyse those physical mechanisms, a heat index based on synoptic and intra-seasonal changes was defined. This new detection method was applied separately to daily maximum and minimum temperatures, leading to heat indexes respectively called HWmax and HWmin. This separation matters because physical processes linked to these two temperatures are expected to differ: maximum temperature fluctuations may be connected to cloud-aerosol-induced changes in surface shortwave radiation, whereas the influence of atmospheric humidity may be predominant for the minimum temperature, via its impact on surface longwave fluxes during nightime. Using the ERA-Interim reanalysis over the period 1979-2014, a hundred heat waves per heat index have been detected, that is roughly three heat waves per year, of mean length 5 to 6 days. HWmax perceived heat waves from March to July whereas HWmin recorded heat waves from March to May only. The temperature and other dynamic and thermodynamic variables, as well as severity, were further analysed in order to provide the major heat wave properties, and to assess whether archetypes can be identified.Finally, the detected heat waves have been compared to those picked up by classical heat indexes like the NOAA index and quantile-based indexes. The differences between the heat waves identified with the ERA-Interim, ERA-40, MERRA and NCEP2 reanalyses, the observationally-based BEST data and those obtained with local data will also be discussed, in particular their fluctuations over the past decades.

  7. Lagrangian-Eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves.

    PubMed

    Liao, Chen-Ting; Teng, Lee-Wen; Tsai, Chen-Yu; Io, Chong-Wai; I, Lin

    2008-05-09

    We investigate particle-wave microdynamics in the large amplitude self-excited dust acoustic wave at the discrete level through direct visualization. The wave field induces dust oscillations which in turn sustain wave propagation. In the regular wave with increasing wave amplitude, dust-wave interaction with uncertain temporary crest trapping and dust-dust interaction lead to the transition from cyclic to disordered dust motion associated with the liquid to the gas transition, and anisotropic non-Gaussian heating. In the irregular wave, particle trough-trapping is also observed, and the heating is nearly Gaussian and less anisotropic.

  8. Changes of heat waves characteristics over the territory of Slovakia

    NASA Astrophysics Data System (ADS)

    Kollarikova, Patricia; Szolgay, Jan; Pecho, Jozef

    2014-05-01

    The study is focused on the analysis of long-term changes and trends of heat waves occurrence in selected meteorological stations in Slovakia. Changes of the temperature regime of the hydro-climatic system may have serious consequences on population health. It is expected that climate change could, in the next decades, also lead to a higher frequency and greater spatial extent of extreme heat waves in Central Europe. Heat waves can cause severe thermal environmental stress, health complications, higher hospital admission rates, and increased mortality. A larger number of consecutive warm days and nights can also lead to increased solar overheating of buildings, inhibited ventilation, etc. Detection of possible ongoing changes of the regime of heat ways is therefore of particular interest. Since heat waves can be quantitatively evaluated through their temperature range (extremity) and also according to their duration, a set of such characteristics using statistical methods were analysed using maximum and average daily air temperature time series from the 1951-2010 period in 8 meteorological stations over the territory of Slovakia. Results indicate an overall consistent (both in time and space) increase of selected heat wave characteristics in Slovakia mostly due to their occurrence in the last two decades (1991 to 2010). This period was characterised by the occurrence of the most extreme heat waves ever recorded in history of meteorological observations in Slovakia (years 1992, 1994, 1998, 2003, 2007, 2010). The absolutely longest and most extreme heat wave occurred in southern Slovakia (station Hurbanovo) in 1992, when one heat wave lasted 47 days, while the cumulative amount of the deviation from 30 °C reached over 106 ° C. Change of the heat waves character in the last two decades was also indicated. Compared with the previous decade (1991-2000), during the decade of 2001-2010, the heat waves had shorter durations, but their total extremity and the quantity

  9. Analysis of meteorological parameters of different extreme heat waves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat waves have caused severe losses in beef cattle feedlots and dairies in different areas of the cattle producing areas of the world. A comparison of climatic conditions that have resulted in cattle deaths has been completed. Analyses of lethal heat waves in northeast Nebraska in 1999 and north ...

  10. Heat Wave Changes in the Eastern Mediterranean since 1960

    NASA Astrophysics Data System (ADS)

    Kuglitsch, Franz G.; Toreti, Andrea; Xoplaki, Elena; Della-Marta, Paul M.; Zerefos, Christos S.; Türkes, Murat; Luterbacher, Jürg

    2010-05-01

    Heat waves have discernible impacts on mortality and morbidity, infrastructure, agricultural resources, the retail industry, ecosystem and tourism and consequently affect human societies. A new definition of socially relevant heat waves is presented and applied to new data sets of high-quality homogenized daily maximum and minimum summer air temperature series from 246 stations in the eastern Mediterranean region (including Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Romania, Serbia, Slovenia, Turkey). Changes in heat wave number, length and intensity between 1960 and 2006 are quantified. Daily temperature homogeneity analysis suggest that many instrumental measurements in the 1960s are warm-biased, correcting for these biases regionally averaged heat wave trends are up to 8% higher. We find significant changes across the western Balkans, southwestern and western Turkey, and along the southern Black Sea coastline. Since the 1960s, the mean heat wave intensity, heat wave length and heat wave number across the eastern Mediterranean region have increased by a factor 7.6 ±1.3, 7.5 ±1.3 and 6.2 ±1.1, respectively. These findings suggest that the heat wave increase in this region is higher than previously reported.

  11. Stochastic Ion Heating by the Lower-Hybrid Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G.; Tel'nikhin, A.; Krotov, A.

    2011-01-01

    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.

  12. Seasonal mean temperature changes control future heat waves

    NASA Astrophysics Data System (ADS)

    Argüeso, Daniel; Di Luca, Alejandro; Perkins-Kirkpatrick, Sarah E.; Evans, Jason P.

    2016-07-01

    Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes.

  13. Heating of ionospheric O(+) ions by shear Alfven waves

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.

    1987-01-01

    Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.

  14. Modifying Effect of Heat Waves on the Relationship between Temperature and Mortality.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Park, Hyesook

    2016-05-01

    Studies conducted to evaluate temporal trends of heat-related mortality have not considered the effects of heat waves; although it is known they can affect mortality and act as a modifying factor. After adjusting for long-term trends and seasonality, the effects of temperature on non-accidental deaths in Seoul and Busan (inland and coastal cities, respectively) were analyzed using a generalized additive model of Poisson distribution. We evaluated temporal trends of heat-related mortalities in four periods (1991-1995, 1996-2000, 2001-2005, and 2006-2012). The effects of temperature on mortality were evaluated according to the occurrence of a heat wave and results were compared in the two cities. The effect of temperature on mortality was the greatest in 1991-1995 in Seoul; no significant change was observed in Busan. When we stratified the study period by heat wave status, the risk increase in mortality was 15.9% per 1℃ during years with a heat wave in Seoul, which was much higher than 0.31% increase observed during years without a heat wave. On the other hand, Busan showed a linear relationship between temperature and mortality and no significant difference between years with or without a heat wave. Variations in the relationship between temperature and mortality could be misunderstood if heat waves are not considered. Furthermore, heterogeneity was found in the modifying effect of heat waves on heat-related mortality in inland and coastal cities. The findings of this study help understand relations between temperature and mortality.

  15. Modifying Effect of Heat Waves on the Relationship between Temperature and Mortality

    PubMed Central

    2016-01-01

    Studies conducted to evaluate temporal trends of heat-related mortality have not considered the effects of heat waves; although it is known they can affect mortality and act as a modifying factor. After adjusting for long-term trends and seasonality, the effects of temperature on non-accidental deaths in Seoul and Busan (inland and coastal cities, respectively) were analyzed using a generalized additive model of Poisson distribution. We evaluated temporal trends of heat-related mortalities in four periods (1991-1995, 1996-2000, 2001-2005, and 2006-2012). The effects of temperature on mortality were evaluated according to the occurrence of a heat wave and results were compared in the two cities. The effect of temperature on mortality was the greatest in 1991-1995 in Seoul; no significant change was observed in Busan. When we stratified the study period by heat wave status, the risk increase in mortality was 15.9% per 1℃ during years with a heat wave in Seoul, which was much higher than 0.31% increase observed during years without a heat wave. On the other hand, Busan showed a linear relationship between temperature and mortality and no significant difference between years with or without a heat wave. Variations in the relationship between temperature and mortality could be misunderstood if heat waves are not considered. Furthermore, heterogeneity was found in the modifying effect of heat waves on heat-related mortality in inland and coastal cities. The findings of this study help understand relations between temperature and mortality. PMID:27134490

  16. Added effect of heat wave on mortality in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  17. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  18. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  19. Heating and current drive in NSTX with electron berstein waves and high harmonic fast waves

    SciTech Connect

    Ram, Abhay K.

    2010-03-14

    A suitable theoretical and computational framework for studying heating and current drive by electron Bernstein waves in the National Spherical Torus Experiment has been developed. This framework can also be used to study heating and current drive by electron Bernstein waves in spherical tori and other magnetic confinement devices. It is also useful in studying the propagation and damping of electron cyclotron waves in the International Thermonuclear Experimental Reactor

  20. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  1. Theory of Alfven wave heating in general toroidal geometry

    SciTech Connect

    Tataronis, J.A.; Salat, A.

    1981-09-01

    A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.

  2. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.

    PubMed

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  3. Non-additive model for specific heat of electrons

    NASA Astrophysics Data System (ADS)

    Anselmo, D. H. A. L.; Vasconcelos, M. S.; Silva, R.; Mello, V. D.

    2016-10-01

    By using non-additive Tsallis entropy we demonstrate numerically that one-dimensional quasicrystals, whose energy spectra are multifractal Cantor sets, are characterized by an entropic parameter, and calculate the electronic specific heat, where we consider a non-additive entropy Sq. In our method we consider an energy spectra calculated using the one-dimensional tight binding Schrödinger equation, and their bands (or levels) are scaled onto the [ 0 , 1 ] interval. The Tsallis' formalism is applied to the energy spectra of Fibonacci and double-period one-dimensional quasiperiodic lattices. We analytically obtain an expression for the specific heat that we consider to be more appropriate to calculate this quantity in those quasiperiodic structures.

  4. Heat protection behaviors and positive affect about heat during the 2013 heat wave in the United Kingdom.

    PubMed

    Lefevre, Carmen E; Bruine de Bruin, Wändi; Taylor, Andrea L; Dessai, Suraje; Kovats, Sari; Fischhoff, Baruch

    2015-03-01

    Heat waves pose serious health risks, and are expected to become more frequent, longer lasting, and more intense in the future under a changing climate. Yet, people in the UK seem to feel positive when thinking about hot weather. According to research on the affect heuristic, any positive or negative emotions evoked by potentially risky experiences may be used as cues to inform concerns about risk protection. If so, then their positive feelings toward hot weather might lead UK residents to lower intentions to adopt heat protection behaviors. Here, we examine the relationships between heat protection behaviors during the July 2013 UK heat wave and self-reports of having heard heat protection recommendations, feeling positive affect about heat, seeing heat protection measures as effective, and trusting the organizations making those recommendations. Responses to a national survey revealed that 55.1% of participants had heard heat protection recommendations during the 2013 UK heat wave. Those who reported having heard recommendations also indicated having implemented more heat protection behaviors, perceiving heat protection behaviors as more effective, feeling more positive about heat, and intending to implement more protection behaviors in future hot summers. Mediation analyses suggested that heat protection recommendations may motivate heat protection behaviors by increasing their perceived effectiveness, but undermine their implementation by evoking positive affect about hot weather. We discuss our findings in the context of the affect heuristic and its implications for heat protection communications.

  5. Stochastic threshold for ion heating with beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-06-14

    The stochastic threshold for the heating of ions in a magnetized plasma with two electrostatic waves is experimentally characterized. Two obliquely propagating electrostatic modes are launched in a magnetized plasma with frequencies that differ by the ion cyclotron frequency. The values of the wave amplitudes where a rapid increase in the local ion temperature occurs is then parametrically investigated. It is found that the two threshold wave amplitudes are linearly related and that this dependence translates to a lower required energy density for the onset of heating when compared to the case of a single electrostatic wave. Agreement also is demonstrated between the experimentally observed threshold for stochastic heating and an analytical prediction [B. Jorns and E. Y. Choueiri, Phys. Rev. E 87, 013107 (2013)] for this threshold.

  6. An "H-index" for summer heat waves

    NASA Astrophysics Data System (ADS)

    Teuling, Ryan; Vautard, Robert

    2013-04-01

    Heat waves are among the most severely impacting natural disasters with which we contend. Recent summer "mega-heatwave" extremes in France (2003) and Russia (2010) lead to impacts on ecosystems and economic sectors, as well as increased mortality rates. Appropriate adaptation measures and improved early warning systems are necessary to cope with more frequent phenomena such as those that occurred in the last decade. A simple scale, that allows both identification, definition and ranking of individual heat wave events based on environmental conditions and potential for societal impact, is lacking. Such magnitude scale could also help to evaluate the evolution of heat waves in multi-model climate projections as compared to current climate. A simple index, easy to calculate and communicate, is designed to capture both the intensity and duration of summer heat waves. The index, analogous to the Hirsch index for citations, expresses the magnitude of a heat wave event (H) by the number of subsequent days H over which the daily average apparent temperature anomaly exceeds H K. It accounts for the magnitude of the day- and night-time temperature anomalies, humidity and wind, as well as for the duration of the heat wave episode. As a preliminary application, we calculated H over a 36 year-long global set of meteorological station data, after a careful quality check procedure. We show that these events, as characterised by H, have doubled in number over the past few decades. We also show that large magnitude heat waves (say H≥8) occur essentially in mid to high latitudes and over continental areas.

  7. Heat Waves Identification in Galicia from 1986 to 2006.

    NASA Astrophysics Data System (ADS)

    Decastro, M.; Gómez-Gesteira, M.; Ramos, A. M.; Álvarez, I.; Iglesias, I.

    2010-09-01

    Two heat waves were characterized in Galicia (NW Iberian Peninsula) from 1980 to 2006. The first one was detected in July 1990 and the second one in August 2003. Galicia is a region characterized by an aged population which is more sensitive to extreme heat wave episodes. The impact of heat waves on excessive mortality was carried out by means of the temperature exceedence of a 95th percentile of the maximum temperature (Texc) and by means of the number of days with daily maximum temperature above the threshold (Nd). ). Both heat waves were similar in Galicia although Spain was not affected by the first one. This fact can be explained by the orientation and the center location of the low- tropospheric air temperature and geopotential height anomaly fields recorded for each date. Both heat waves had a remarkable impact on population health increasing the number of deaths. In July 1990 and in August 2003 Galicia showed two episodes of remarkable anomaly in mortality with a value close to 1.2 (which represents a 20% increase in mortality). The increase in the exceeded mortality is mostly attributed to population older than 65 with a female mortality higher than male one due to the important asymmetry of this age group. Finally, these heat waves were put in the context of changes observed in heat waves intensity and length in Galicia since 1970s showing an increase per decade of 2.3 ± 1.2 °C and 0.4 ± 0.3 days, respectively.

  8. Social media responses to heat waves.

    PubMed

    Jung, Jihoon; Uejio, Christopher K

    2017-01-11

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  9. Social media responses to heat waves

    NASA Astrophysics Data System (ADS)

    Jung, Jihoon; Uejio, Christopher K.

    2017-01-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  10. Indirect Effects of Climate Change on Heat Waves in the Great Plains

    NASA Astrophysics Data System (ADS)

    Branstator, G.; Teng, H.

    2015-12-01

    When we analyze a large ensemble RCP8.5 climate change experiment we find that heat waves have become more common and intense in the Great Plains during 2070-2100 compared to 1980-2010. Much of this can be attributed to the simple direct additive effect of a 5.8°C increase in Jun-Aug surface mean temperatures in that region. But there is also a non-additive effect in that daily temperature departures from the new mean during heat waves are about 0.6°C warmer in the future epoch. Here we consider two often-proposed mechanisms by which this change in the variability of surface temperature could result from indirect influences of changes in the mean state. One mechanism involves changes in the variability of upper tropospheric planetary waves, which we are especially interested in because we have found planetary wave structures that both affect the likelihood of heat waves and have unusually high predictability on subseasonal time scales. Our analysis does show that the amplitude of planetary wave variability has been modified in the future modeled climate. And calculations with a mechanistic model show this is indeed a consequence of the change in the mean circulation. But further analysis indicates this modification of planetary wave fluctuations is probably not responsible for the increase in Great Plains heat waves. By contrast we find changes in the magnitude of surface fluxes during heat wave events could be responsible for their strengthening and these can be attributed to the decrease in soil moisture that occurs during the future period. Hence it is changes in zonally asymmetric mean land surface quantities rather than changes in upper tropospheric fluctuations brought on by changes to the mean circulation that are of primary importance in producing the enhanced variability of surface temperature in the future climate.

  11. Evidence for wave heating in the solar corona.

    PubMed

    Hahn, Michael

    2013-07-01

    The temperature of the Sun increases over a short distance from a few thousand degrees in the photosphere to over a million degrees in the corona. To understand coronal heating is one of the major problems in astrophysics. There is general agreement that the energy source is convective motion in and below the photosphere. It remains to determine how this mechanical energy is transported outward into the corona and then deposited as heat. Two classes of models have been proposed, namely those that rely on magnetic reconnection and those that rely on waves, particularly Alfvén waves. There is increasing evidence that waves are ubiquitous in the corona. However, a difficulty for wave-driven models has been that most theories predict Alfvén waves to be undamped in the corona, and therefore they cannot dissipate their energy into heat. Our research has shown unambiguous observational evidence that the waves do damp at sufficiently low heights in the corona to be important for coronal heating.

  12. Spectral Effects on Fast Wave Core Heating and Current Drive

    SciTech Connect

    C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

    2009-05-11

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

  13. [Effect of August 2003 heat wave in France on a hospital biochemistry laboratory activity in Paris].

    PubMed

    Mario, N; Pernet, P; Lasnier, E; Hermand, C; Vaubourdolle, M

    2004-01-01

    In August 2003, France sustained an exceptional heat wave. Heat-generated pathologies (dehydratation, heat stroke, cardio-vascular diseases) were responsible for additional biological analysis orders at the Saint-Antoine Hospital biochemistry laboratory in Paris from 4 to 18 august, compared to the same period in 2002. Variations were: + 17.6% for analysis orders, + 30.1% for ionograms, + 28.9% for plasma troponins I and + 58.6% for blood gazes analysis. Women and patients older than 75 years ratios were higher in august 2003. Biochemistry results analysis showed higher frequency of elevated plasma sodium, creatinine and troponin in 2003, confirming that most of patients admitted during heat wave were affected by heat-related diseases. Finally, laboratory excess activity was performed and quality was maintained, in spite of reduced staff and unusual climatic conditions.

  14. Surface Waves and Landau Resonant Heating in Unmagnetized Bounded Plasmas

    NASA Astrophysics Data System (ADS)

    Bowers, Kevin

    2001-10-01

    Owing to the large areas and high plasma densities found in some recently developed devices [1], electrostatic theories of plasma resonances and surface wave [2-3] propagation in such devices are suspect as the size of the device is much larger than the free space wavelength associated with the peak plasma frequency. Accordingly, an electromagnetic model of surface wave propagation has been developed appropriate for large area plasmas. The predicted wave dispersion of the two models differs for extremely long wavelengths but is degenerate in devices small compared with wavelength. First principles particle-in-cell simulations using new techniques developed for the demanding simulation regime have been conducted which support these results. Given the slow wave character and boundary localized fields of surface waves, a periodic electrode may be used to resonantly excite a strong wave-particle interaction between surface waves and electrons. At saturation, the electron velocity distribution is enhanced above the phase velocity of the applied wave and suppressed below. The use of this technique (``Landau resonant heating'') to selectively heat the electron high energy tail to enhance electron-impact ionization is demonstrated using particle-in-cell simulation. [1] Matsumoto (Sumitomo Metal Industries). Private Communication. July 1999. [2] Nickel, Parker, Gould. Phys. Fluids. 7:1489. 1964. [3] Cooperberg. Phys. Plasmas. Vol. 5, No. 4, April 1998.

  15. Wave speed propagation measurements on highly attenuative heated materials

    SciTech Connect

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; Nelson, Ciji L.

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.

  16. Steady Detonation Wave Solutions Under the Reaction Heat Effect

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipe; Soares, Ana Jacinta

    2010-04-01

    The dynamics of the steady detonation wave is studied in the frame of the kinetic theory for a binary reacting mixture undergoing a chemical reaction of type A + A ⇌ B + B. The influence of the reaction heat on the detonation wave structure is investigated for the first time. Some numerical results are provided for a generic symmetric chemical reaction of exothermic and endothermic type.

  17. Ionospheric heating with oblique high-frequency waves

    SciTech Connect

    Field, E.C. Jr.; Bloom, R.M. ); Kossey, P.A. )

    1990-12-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions.

  18. Should electric fans be used during a heat wave?

    PubMed

    Jay, Ollie; Cramer, Matthew N; Ravanelli, Nicholas M; Hodder, Simon G

    2015-01-01

    Heat waves continue to claim lives, with the elderly and poor at greatest risk. A simple and cost-effective intervention is an electric fan, but public health agencies warn against their use despite no evidence refuting their efficacy in heat waves. A conceptual human heat balance model can be used to estimate the evaporative requirement for heat balance, the potential for evaporative heat loss from the skin, and the predicted sweat rate, with and without an electrical fan during heat wave conditions. Using criteria defined by the literature, it is clear that fans increase the predicted critical environmental limits for both the physiological compensation of endogenous/exogenous heat, and the onset of cardiovascular strain by an air temperature of ∼3-4 °C, irrespective of relative humidity (RH) for the young and elderly. Even above these critical limits, fans would apparently still provide marginal benefits at air temperatures as high as 51.1 °C at 10%RH for young adults and 48.1 °C at 10%RH for the elderly. Previous concerns that dehydration would be exacerbated with fan use do not seem likely, except under very hot (>40 °C) and dry (<10%RH) conditions, when predicted sweat losses are only greater with fans by a minor amount (∼20-30 mL/h). Relative to the peak outdoor environmental conditions reported during ten of the most severe heat waves in recent history, fan use would be advisable in all of these situations, even when reducing the predicted maximum sweat output for the elderly. The protective benefit of fans appears to be underestimated by current guidelines.

  19. Preliminary Results from Numerical Experiments on the Summer 1980 Heat Wave and Drought

    NASA Technical Reports Server (NTRS)

    Wolfson, N.; Atlas, R.; Sud, Y. C.

    1985-01-01

    During the summer of 1980, a prolonged heat wave and drought affected the United States. A preliminary set of experiments has been conducted to study the effect of varying boundary conditions on the GLA model simulation of the heat wave. Five 10-day numerical integrations with three different specifications of boundary conditions were carried out: a control experiment which utilized climatological boundary conditions, an SST experiment which utilized summer 1980 sea-surface temperatures in the North Pacific, but climatological values elsewhere, and a Soil Moisture experiment which utilized the values of Mintz-Serafini for the summer, 1980. The starting dates for the five forecasts were 11 June, 7 July, 21 July, 22 August, and 6 September of 1980. These dates were specifically chosen as days when a heat wave was already established in order to investigate the effect of soil moistures or North Pacific sea-surface temperatures on the model's ability to maintain the heat wave pattern. The experiments were evaluated in terms of the heat wave index for the South Plains, North Plains, Great Plains and the entire U.S. In addition a subjective comparison of map patterns has been performed.

  20. Temperature and heat wave trends in northwest Mexico

    NASA Astrophysics Data System (ADS)

    Martínez-Austria, Polioptro F.; Bandala, Erick R.; Patiño-Gómez, Carlos

    2016-02-01

    Increase in temperature extremes is one of the main expected impacts of climate change, as well as one of the first signs of its occurrence. Nevertheless, results emerging from General Circulation Models, while sufficient for large scales, are not enough for forecasting local trends and, hence, the IPCC has called for local studies based on on-site data. Indeed, it is expected that climate extremes will be detected much earlier than changes in climate averages. Heat waves are among the most important and least studied climate extremes, however its occurrence has been only barely studied and even its very definition remains controversial. This paper discusses the observed changes in temperature trends and heat waves in Northwestern Mexico, one of the most vulnerable regions of the country. The climate records in two locations of the region are analyzed, including one of the cities with extreme climate in Mexico, Mexicali City in the state of Baja California and the Yaqui River basin at Sonora State using three different methodologies. Results showed clear trends on temperature increase and occurrence of heat waves in both of the study zones using the three methodologies proposed. As result, some policy making suggestion are included in order to increase the adaptability of the studied regions to climate change, particularly related with heat wave occurrence.

  1. Impact of simulated heat waves on soybean physiology and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...

  2. Heat Waves, Droughts, and Preferences for Environmental Policy

    ERIC Educational Resources Information Center

    Owen, Ann L.; Conover, Emily; Videras, Julio; Wu, Stephen

    2012-01-01

    Using data from a new household survey on environmental attitudes, behaviors, and policy preferences, we find that current weather conditions affect preferences for environmental regulation. Individuals who have recently experienced extreme weather (heat waves or droughts) are more likely to support laws to protect the environment. We find…

  3. The impact of heat waves on children's health: a systematic review.

    PubMed

    Xu, Zhiwei; Sheffield, Perry E; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  4. The impact of heat waves on children's health: a systematic review

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  5. Ion Bernstein wave heating on the Compact Ignition Tokamak (CIT)

    SciTech Connect

    Ignat, D.W.; Ono, M.

    1989-02-01

    In the present plan, CIT is to be heated by power in the ion cyclotron range of frequencies (ICRF), and electron cyclotron heating (ECH) may be used if suitable rf sources can be developed. We consider the option of ion Bernstein wave heating (IBWH). The key points are that a simple vacuum waveguide launcher can be well- removed from high fluxes of heat and particles and that the development of a suitable source is straightforward. A practical point is that an IBWH waveguide launcher, including transition from coaxial power feeds, fits inside the shield wall surrounding CIT. To confirm IBWH as an option for CIT, experiments are needed on a shaped, H-mode plasma at high power. Successful experiments should be followed by a tube development program to allow CIT heating at 200 - 275 MHz. 2 refs., 3 figs.

  6. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  7. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  8. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    NASA Technical Reports Server (NTRS)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  9. Do Heat Waves have an Impact on Terrestrial Water Storage?

    NASA Astrophysics Data System (ADS)

    Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.

    2014-12-01

    Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.

  10. High Harmonic Fast Wave Heating and Current Drive for NSTX

    NASA Astrophysics Data System (ADS)

    Robinson, J. A.; Majeski, R.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Smithe, D.

    1996-11-01

    Heating and noninductive current drive in NSTX will initially be accomplished with 6 MW of radio-frequency (rf) power applied in the high harmonic fast wave (HHFW) regime. HHFW heating and current drive differs from conventional fast wave current drive in that, although the frequency of operation (30-40 MHz) is in the range of conventional tokamak experiments, ω_rf ~ 10-20 Ω_ci due to the low magnetic field (0.35 T). Strong absorption (100% per pass) is ensured by the high plasma beta. Here we present numerical modelling of HHFW heating and current drive in NSTX using the PICES, FISIC, and METS95 codes. Preliminary designs for the NSTX HHFW antenna and matching system are also presented, along with analysis of the launched antenna wavenumber spectrum using the RANT3D code.

  11. Two-Dimensional, Supersonic, Linearized Flow with Heat Addition

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1959-01-01

    Calculations are presented for the forces on a thin supersonic wing underneath which the air is heated. The analysis is limited principally to linearized theory but nonlinear effects are considered. It is shown that significant advantages to external heating would exist if the heat were added well below and ahead of the wing.

  12. A New Perspective on Heat Waves in the United States

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.

    2015-12-01

    Investigations of changes in the nature of heat waves have traditionally focused exclusively on temperature, despite substantive evidence that moisture is a key determinant of impacts associated with extreme heat. Isobaric equivalent temperature, the temperature that an air parcel would have if all associated water vapor were condensed and the resulting latent heat used to increase the temperature of the parcel, is used here to investigate historical changes in extreme heat events in the United States. Unlike apparent temperature, which given sufficiently high air temperature, can be elevated in the absence of high humidity, apparent temperature only attains extreme high values when both temperature and humidity are high. Heat waves are identified using the excess heat factor (EHF), which includes terms for both acclimatization and departure from climatology. Analysis of EHF is conducted using both temperature and equivalent temperature derived from multiple reanalysis datasets including recent reanalysis that assimilate data from multiple platforms (e.g., North American Regional Reanalysis, NCEP-DOE Reanalysis) as well as long-term reanalyses that assimilate only sea-level pressure (e.g., NCEP and ECMWF 20th Century Reanalysis products). The results will be discussed in the context of similarities and differences among the reanalysis products and time periods considered. Results based on equivalent temperature are also contrasted with those based on temperature alone.

  13. Heating and Current Drive by Electron Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  14. Heating of the Diffuse Interstellar Medium via Turbulent Wave Dissipation

    NASA Astrophysics Data System (ADS)

    Minter, A.; Spangler, S.

    1995-12-01

    We consider the heating of the interstellar medium (ISM) due to obliquely propagating fast magnetosonic waves which have been postulated to comprise a portion of the observed turbulence in the ISM. Recent papers have reported measurements of the outer scale of the turbulence in the ISM and the strength of the turbulent magnetic field (Minter and Spangler 1996 ApJ, in press), the inner scale of the turbulence (Molnar et al. 1995 ApJ, 438, 708) and the plasma density in the scattering regions from H_α measurements (Reynolds 1991, ApJ Letters, 372, L21). We can now completely specify the characteristics of the turbulence in the diffuse ISM. These new measurements allow us to apply theoretical expressions for the heating rates for various magnetohydrodynamical wave damping mechanisms presented by Spangler (1991, ApJ, 376, 540). These calculates show that heating of the ISM by wave damping would exceed its radiative cooling capability. We are therefore able to rule out the possibility that the turbulence in the diffuse ISM is composed entirely of obliquely propagating fast magnetosonic waves

  15. Ion Heating by Alfven Waves and Reconnection in NSTX

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. D.

    2006-04-01

    The evolution of laboratory and astrophysical plasmas depends on the flow of energy between the ``equilibrium'' configuration, waves in the plasma and the thermal plasma. We explore two examples of this energy flow. In the first example, data from NSTX is examined for evidence that CAE in the frequency range from ˜ 0.2 fci to ˜ 1.2 fci excited by super-thermal ions might heat the thermal ions. Theory indicates that only a relatively small portion of the beam power would go into exciting the CAE on NSTX, and observations indicate that the amplitude of these waves, deduced from density fluctuations, is below the stochastic threshold for heating. Another example examines how internal magnetic reconnections can lead to heating of the thermal ions. One model postulates the excitation of a high frequency wave, which then damps on the ions. High frequency waves are indeed seen to follow some NSTX reconnection events. The second invokes direct acceleration of the thermal ions by the induced electric field [P. Helander, L.-G. Eriksson, R.J. Akers, et al.,Phys. Rev. Lett. 89 (2002) 235002-1]. In collaboration with S.S. Medley, Princeton Plasma Physics Laboratory.

  16. Evidence for wave heating of the quiet-sun corona

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2014-11-10

    We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.

  17. Simulated heat waves affected alpine grassland only in combination with drought

    NASA Astrophysics Data System (ADS)

    De Boeck, Hans J.; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika

    2016-04-01

    The Alpine region is warming fast, leading to an increase in the frequency and intensity of climate extremes. Currently, it is unclear whether alpine ecosystems are sensitive or resistant to such extremes. In an experiment carried out in the Swiss Alps, we subjected Swiss alpine grassland communities to heat waves with varying intensity (5-10 °C warming) by transplanting monoliths to four different elevations (2440-660 m a.s.l.) for 17 days. Half of the monoliths were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. We found that heat waves had no significant short-term impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Climate extreme impacts may differ in the longer run, however, because the short growing season in alpine environments likely constrains recovery.

  18. Simulated heat waves affected alpine grassland only in combination with drought.

    PubMed

    De Boeck, Hans J; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika

    2016-01-01

    The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440-660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv /Fm , a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.

  19. The effect of heat waves on dairy cow mortality.

    PubMed

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW.

  20. Wave Driven Exothermic Heating in the Mesopause Region

    NASA Technical Reports Server (NTRS)

    Hickey, Michael P.

    1997-01-01

    A full-wave propagation model was developed that describes the propagation of gravity waves from the Earth's surface to the upper boundary, which can be placed anywhere between 150 and 500 km altitude. The model includes a realistic background atmosphere, and includes the effects of mean horizontal winds and their vertical shears, mean vertical temperature gradients, the eddy and molecular diffusion of heat and momentum, and the effects of ion-drag. This model solves five coupled second-order differential equations (continuity, momentum, and energy) in the vertical coordinate to derive the perturbation variables u', v', w' (horizontal and vertical velocity components), T' (temperature) and p' (pressure). The upper boundary can be automatically selected based on tests using the radiation condition at the upper boundary, wherein the height is increased until the wave is experiencing severe dissipation at the upper boundary, ensuring that substantial absorption occurs for any waves reflected from the upper boundary. The determination of wave amplitude is a key requirement of wave energetics. Therefore, the fullwave model has been applied to airglow observations in order to determine wave amplitudes as a function of altitude. This was accomplished by using the full-wave model output to drive a chemistry perturbation module that describes minor species perturbations and the resulting airglow perturbations. The full-wave output was multiplied by an altitude-independent factor such that the modeled and observed relative airglow intensity perturbations were equal. The effects of mean winds were included in these studies, and found to be the most important model input affecting the calculations (being more important than the choice of eddy diffusion profiles and chemical kinetic coefficients). In one study (Hickey et al., 1997a) these winds could not be well estimated from the measurements, whereas in the second study (Hickey et al.,1997b) the mean were well defined with a

  1. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  2. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  3. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  4. Multivariate Statistical Modelling of Drought and Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  5. On the Variability and Increasing Trends of Heat Waves over India

    PubMed Central

    Rohini, P.; Rajeevan, M.; Srivastava, A. K.

    2016-01-01

    Over India, heat waves occur during the summer months of April to June. A gridded daily temperature data set for the period, 1961–2013 has been analyzed to examine the variability and trends in heat waves over India. For identifying heat waves, the Excess Heat Factor (EHF) and 90th percentile of maximum temperatures were used. Over central and northwestern parts of the country, frequency, total duration and maximum duration of heat waves are increasing. Anomalous persistent high with anti-cyclonic flow, supplemented with clear skies and depleted soil moisture are primarily responsible for the occurrence of heat waves over India. Variability of heat waves over India is influenced by both the tropical Indian Ocean and central Pacific SST anomalies. The warming of the tropical Indian Ocean and more frequent El Nino events in future may further lead to more frequent and longer lasting heat waves over India. PMID:27194567

  6. On the Variability and Increasing Trends of Heat Waves over India.

    PubMed

    Rohini, P; Rajeevan, M; Srivastava, A K

    2016-05-19

    Over India, heat waves occur during the summer months of April to June. A gridded daily temperature data set for the period, 1961-2013 has been analyzed to examine the variability and trends in heat waves over India. For identifying heat waves, the Excess Heat Factor (EHF) and 90(th) percentile of maximum temperatures were used. Over central and northwestern parts of the country, frequency, total duration and maximum duration of heat waves are increasing. Anomalous persistent high with anti-cyclonic flow, supplemented with clear skies and depleted soil moisture are primarily responsible for the occurrence of heat waves over India. Variability of heat waves over India is influenced by both the tropical Indian Ocean and central Pacific SST anomalies. The warming of the tropical Indian Ocean and more frequent El Nino events in future may further lead to more frequent and longer lasting heat waves over India.

  7. Rayleigh wave inversion using heat-bath simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng

    2016-11-01

    The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.

  8. Tritium Minority Heating by Ion Bernstein Waves in Ignitor

    NASA Astrophysics Data System (ADS)

    Castaldo, C.; Cardinali, A.

    2010-11-01

    A promising scenario of minority heating of Tritium ions by Ion Bernstein Waves (IBW) coupled by mode conversion of fast waves in D(H) plasmas has been recently proposed.ootnotetextC. Castaldo and A. Cardinali, Phys. of Plasmas, in press (2010) The tritium ions are accelerated at energies high enough to increase significantly the DT fusion reactivity at relatively low temperature. It has been shown that breakeven can be reached considering a specific heating scenario for the JET machine. A similar heating scheme is analyzed for the Ignitor machine at reduced parameters. It is shown that 10 MW of ICRF power at f = 91.6 MHz, N||=3.6 that are coupled as fast waves to plasmas at BT=9 T, Ip=6 MA, ne0= 2 x10^20 m-3, Te0=Ti0=8 keV, with 25% T, 40% D, 35% H concentration, are mode converted to IBW near the D-H hybrid resonant layer and are efficiently absorbed by tritium ions via cyclotron damping at φ=2φT. The tritium ions are accelerated at energies of the order of 100 keV, where the the DT fusion reactivity peaks. As a result about 50 MW/m^3 of peak fusion power are obtained, and the expected fusion power is about 30 MW, with Q =2. The detailed comparison between equivalent scenarios in 50-50 D-T plasma is underway by means of the JETTO transport code.

  9. Heat Waves: The Intersection of Climate and Public Health

    NASA Astrophysics Data System (ADS)

    Schindler, J. V.; Grant, F.

    2011-12-01

    Heat waves are deadly weather-related exposures in the U.S. and account for more deaths annually than hurricanes, tornadoes, floods, and earthquakes combined. From a public health perspective, all morbidity and mortality associated with extreme heat events are completely preventable. Related environmental events that can impact health-poor air quality, concentrations of greenhouse gases, and the inability to cool at night-are all expected to increase in severity and frequency over this next century. Northrop Grumman's active program of climate science combines inputs from public health, population health analytics, advanced agent-based modeling and simulation, and high performance computing to assist the characterization of how climate change impacts human health in specific geographies. In this study, we defined heat waves as 3+ consecutive days when the high temperature is 10+ degrees (Fahrenheit) higher than the mean summer high temperature. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. WRF was run in nested mode at spatial resolution of 108 km, 36 km and 12 km and 28 vertical levels. We used WRF simulated temperatures at 2 meters above the surface to calculate the annual average number of days spent in heat waves. Our results indicated a significant increase in heat wave episodes-a direct consequence of steadily increasing maximum temperatures in the future. Our discussion continues with clarification of how public health must become integral to future community, civic, healthcare, and emergency preparedness planning. While continued growth in the number of persons living in urban areas will result in increased exposure to heat-related health risks

  10. Metallic nanoparticles in a standing wave: Optical force and heating

    NASA Astrophysics Data System (ADS)

    Šiler, Martin; Chvátal, Lukáš; Zemánek, Pavel

    2013-09-01

    We have investigated the absorbed power in a single gold or silver metallic nanoparticle together with the optical force acting upon it if the particle is illuminated by two counter-propagating plane waves forming a standing wave. We have used the Generalized Lorenz-Mie theory (GLMT) and considered the incident wavelengths 250nm≤λvac≤1250nm and particles size parameter 0.1≤d/λvac≤4. Similarly as in the case of dielectric particle we have found that the optical force is equal to zero for all particle positions in the standing wave for certain wavelengths and particle sizes. However, in the case of a metallic object this phenomenon occurs for considerably smaller particles and the conditions change considerably with the illuminating wavelength especially near the localized surface plasmon resonances. Similarly, we have found that the absorbed heat does not change with the position of the particle in the standing wave for certain wavelengths and particle sizes. These sizes generally differ from those giving zero optical force and, therefore, the particle can be trapped at the intensity maximum or minimum and in both cases its heating is maximal or minimal depending on the particle size.

  11. Wave speed propagation measurements on highly attenuative heated materials

    DOE PAGES

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; ...

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) wasmore » also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.« less

  12. Kinetic Model of Coronal Hole Protons Undergoing Turbulent Stochastic Heating and Quasilinear Wave Generation

    NASA Astrophysics Data System (ADS)

    Isenberg, P. A.; Vasquez, B. J.

    2015-12-01

    We have constructed a kinetic model of coronal hole protons heated in the directions perpendicular to the magnetic field according to the turbulent stochastic heating mechanism of Chandran et al. The kinetic heating is modeled by a proton diffusion in v_perp. The protons additionally respond to the coronal hole forces of gravity, charge-separation electric field, and the mirror force as described in our previous kinetic guiding-center models. We have further extended this kinetic model to include wave growth and damping by the anisotropic protons through the quasilinear cyclotron-resonant interaction. We solve the coupled equations for the kinetic proton behavior and for the self-consistent development of ion-cyclotron wave spectra propagating within 60˚ of the magnetic field direction. We seek to obtain a steady-state solution, showing the evolution of the proton distribution and the wave spectra with increasing heliocentric radial position due to the combined effects of heating, resonant scattering coupled to the wave generation, and the kinetic response to the large-scale forces of the inhomogeneous coronal hole. We will report on our results and the implications for the measurements to be made by the Solar Probe Plus mission.

  13. High Harmonic Fast Wave heating and current drive for NSTX

    NASA Astrophysics Data System (ADS)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  14. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  15. Protoplanetary Disk Heating and Evolution Driven by Spiral Density Waves

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-11-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  16. ALFVÉNIC WAVE HEATING OF THE UPPER CHROMOSPHERE IN FLARES

    SciTech Connect

    Reep, J. W.; Russell, A. J. B. E-mail: arussell@maths.dundee.ac.uk

    2016-02-10

    We have developed a numerical model of flare heating due to the dissipation of Alfvénic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfvénic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfvénic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.

  17. Millimeter waves as a source of selective heating of skin.

    PubMed

    Zhadobov, Maxim; Alekseev, Stanislav I; Le Dréan, Yves; Sauleau, Ronan; Fesenko, Evgeny E

    2015-09-01

    This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution.

  18. A Review of the July 2006 Heat Wave in California

    NASA Astrophysics Data System (ADS)

    Edwards, L. M.; Kozlowski, D.; Bair, A.; Juskie, J.; Blier, W.; O'Hara, B.

    2006-12-01

    A record-breaking heat wave affected much of the state of California during the period from Sunday, July 16 through Wednesday, July 26, 2006. Although numerous daily maximum temperature records were set, the aspect that made this event unique was the elevated overnight minimum temperatures that easily surpassed previous daily, or even all-time, high minimum temperatures at several reporting stations. This was especially true in the southern Sacramento Valley and much of the San Joaquin Valley. Along with the intensity of this heat wave, the duration of abnormally high maximum and minimum temperatures was particularly noteworthy. This event impacted California's economy, energy supply and health. An all-time record for statewide energy consumption was reached on July 24, 2006 with 50,270 Megawatts. 131 heat-related deaths were reported. Given these impacts and the numerous temperature records set across the state, this is a significant historical event when put in perspective with other summertime heat waves. This case study entailed an analysis of the synoptic meteorological factors of the heat wave, and a comparison to climatology for the period. Particular interest was given to the peak of the event, which spanned Friday, July 21 to Monday, July 24. Also, a comparison was made to a recent heat wave event that took place August 8-16, 1996. In general, an expansion to the west and north of the 500mb semi-permanent 4- corners high brought above normal heights to the state of California. This abnormally strong upper high was only part of a northern hemispheric amplified pattern, which was slow to transition. Associated with this upper high expansion was an unseasonably warm airmass settling over the region through the duration of the event, with an influx of monsoonal moisture from lower latitudes near the Gulf of California and Baja California. Typical mid-level winds from the southwest to west shifted to the southeast to south. This allowed for maximum transport of

  19. Mortality in Spain during the heat waves of summer 2003.

    PubMed

    Simón, F; Lopez-Abente, G; Ballester, E; Martínez, F

    2005-07-01

    The effect of the elevated temperatures on mortality experienced in Europe during the summer of 2003 was observed in several countries. This study, carried out in Spain, describes mortality between 1 June and 31 August and evaluates the effect of the heat wave on mortality. Observed deaths were obtained from official death registers from 50 provincial capitals. Observed deaths were compared with the expected number, estimated by applying a Poisson regression model to historical mortality series and adjusting for the upward trend and seasonality observed. Meteorological information was provided by the Instituto Nacional de Meteorologia (National Institute of Meteorology). Spain experienced three heat waves in 2003. The total associated excess deaths were 8% (43 212 observed deaths compared with 40 046 expected deaths). Excess deaths were only observed in those aged 75 years and over (15% more deaths than expected for the age group 75 to 84 and 29% for those aged 85 or over). This phenomenon (heat-associated excess mortality) is an emerging public health problem because of its increasing attributable risk, the aging of the Spanish population and its forecasted increasing frequency due to global warming. The implementation of alert and response systems based on monitoring of climate-related risks, emergency room activity and mortality, and strengthening the response capacity of the social and health services should be considered.

  20. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    NASA Astrophysics Data System (ADS)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  1. Modular system for studying tonal sound excitation in resonators with heat addition and mean flow.

    PubMed

    Matveev, Konstantin I; Hernandez, Rafael

    2012-03-01

    An educational experimental system has been developed for studying tonal sound generation in acoustic resonators. Tones are excited by either heat addition or vortex shedding in the presence of mean flow. The system construction is straightforward and inexpensive. Several test arrangements and experimental data are described in this paper. The experimental setups include a modified Rijke tube, a standing-wave thermoacoustic engine, a baffled tube with mean flow, and an acoustic energy harvester with a piezoelement. Simplified mathematical models for interpreting data are discussed, and references are provided to literature with more advanced analyses. The developed system can assist both graduate and undergraduate students in understanding acoustic instabilities via conducting and analyzing interesting experiments.

  2. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps.

    PubMed

    Zampieri, Matteo; Russo, Simone; di Sabatino, Silvana; Michetti, Melania; Scoccimarro, Enrico; Gualdi, Silvio

    2016-11-15

    Heat waves represent one of the most significant climatic stressors for ecosystems, economies and societies. A main topic of debate is whether they have increased or not in intensity and/or their duration due to the observed climate change. Firstly, this is because of the lack of reliable long-term daily temperature data at the global scale; secondly, because of the intermittent nature of such phenomena. Long datasets are required to produce a reliable and meaningful assessment. In this study, we provide a global estimate of heat wave magnitudes based on the three most appropriate datasets currently available, derived from models and observations (i.e. the 20th Century Reanalyses from NOAA and ECMWF), spanning the last century and before. The magnitude of the heat waves is calculated by means of the Heat Wave Magnitude Index daily (HWMId), taking into account both duration and amplitude. We compare the magnitude of the most severe heat waves occurred across different regions of the world and we discuss the decadal variability of the larger events since the 1850s. We concentrate our analysis from 1901 onwards, where all datasets overlap. Our results agree with other studies focusing on heat waves that have occurred in the recent decades, but using different data. In addition, we found that the percentage of global area covered by heat wave exceeding a given magnitude has increased almost three times, in the last decades, with respect to that measured in the early 20th century. Finally, we discuss the specific implications of the heat waves on the river runoff generated in the Alps, for which comparatively long datasets exist, affecting the water quality and availability in a significant portion of the European region in summer.

  3. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  4. Impacts of urban growth and heat waves events on the urban heat island in Bucharest city

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Dida, Adrian I.

    2016-10-01

    This study investigated the influences of urban growth and heat waves events on Urban Heat Island in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- temperature interactions over period between 2000 and 2016 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters (surface albedo, precipitations, wind intensity and direction) have been analyzed. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  5. A biophysical basis for patchy mortality during heat waves.

    PubMed

    Mislan, K A S; Wethey, David S

    2015-04-01

    Extreme heat events cause patchy mortality in many habitats. We examine biophysical mechanisms responsible for patchy mortality in beds of the competitively dominant ecosystem engineer, the marine mussel Mytilus californianus, on the west coast of the United States. We used a biophysical model to predict daily fluctuations in body temperature at sites from southern California to Washington and used results of laboratory experiments on thermal tolerance to determine mortality rates from body temperature. In our model, we varied the rate of thermal conduction within mussel beds and found that this factor can account for large differences in body temperature and consequent mortality during heat waves. Mussel beds provide structural habitat for other species and increase local biodiversity, but, as sessile organisms, they are particularly vulnerable to extreme weather conditions. Identifying critical biophysical mechanisms related to mortality and ecological performance will improve our ability to predict the effects of climate change on these vulnerable ecosystems.

  6. High Harmonic Fast Wave Heating Experiments on NSTX

    SciTech Connect

    Wilson, J. R.; Bell, R. E.; Bitter, M.; Bonoli, P.; Carter, Mark Dwain; Gates, D.; Hosea, Joel; LeBlanc, B; Majeski, R.; Mau, T. K.; Menard, J.; Mueller, D.; Paul, S.; Phillips, Cynthia; Pinsker, R.; Rosenberg, A.; Ryan, Philip Michael; Sabbagh, S. A.; Stutman, D.; Swain, David W; Takase, Y.; Wilgen, John B

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, βT , =10% and a normalized beta, βn = 2.7.

  7. Heating of the plasma sheet by broadband electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Chaston, C. C.; Bonnell, J. W.; Salem, C.

    2014-12-01

    We demonstrate that broadband low-frequency electromagnetic field fluctuations embedded within fast flows throughout the Earth's plasma sheet may drive significant ion heating. This heating is nearly entirely in the direction perpendicular to the background magnetic field and is estimated to occur at an average rate of ~1 eV/s with rates in excess of 10 eV/s within one standard deviation of the average value over all observed events. For an Earthward flow the total change in temperature along a flow path may exceed one keV and for "wave-rich" flows can be comparable to that expected due to conservation of the first adiabatic invariant. The consequent increase in plasma pressure and flux tube entropy may lead to braking of inward motion and the suppression of plasma interchange.

  8. High Harmonic Fast Wave Heating Experiments on NSTX

    SciTech Connect

    J.R. Wilson; R. Bell; M. Bitter; P. Bonoli; et al

    2000-11-16

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ and a toroidal beta, bT , =10% and bn = 2.7.

  9. Impact of heat waves on mortality in Croatia.

    PubMed

    Zaninović, Ksenija; Matzarakis, Andreas

    2014-08-01

    The aim of this work was to determine the criteria for heat loads associated with an increase in mortality in different climatic regions of Croatia. The relationship between heat stress and mortality was analysed for the period 1983-2008. The input series is excess mortality defined as the deviations of mortality from expected values determined by means of a Gaussian filter of 183 days. The assessment of the thermal environment was performed by means of physiologically equivalent temperature (PET). The curve depicting the relationship between mortality and temperature has a U shape, with increased mortality in both the cold and warm parts of the scale but more pronounced in the warm part. The threshold temperature for increased mortality was determined using a scatter plot and fitting data by means of moving average of mortality; the latter is defined as the temperature at which excess mortality becomes significant. The values are higher in the continental part of Croatia than at the coast due to the refreshing influence of the sea during the day. The same analysis on a monthly basis shows that at the beginning of the warm season increased mortality occurs at a lower temperature compared with later on in the summer, and the difference is up to 15 °C between August and April. The increase in mortality is highest during the first 3-5 days and after that it decreases and falls below the expected value. Long-lasting heat waves present an increased risk, but in very long heat waves the increase in mortality is reduced due to mortality displacement.

  10. The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave

    PubMed Central

    Zeghnoun, Abdelkrim; Dousset, Bénédicte; Bretin, Philippe; Vandentorren, Stéphanie; Giraudet, Emmanuel; Beaudeau, Pascal

    2011-01-01

    Background: Heat waves have a drastic impact on urban populations, which could increase with climate change. Objectives: We evaluated new indicators of elderly people’s exposure to heat in Paris, from a public health prevention perspective, using satellite thermal images. Methods: We used a time series of 61 images from the satellites of the National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) taken from 1 to 13 August 2003 to produce thermal indicators of minimum, maximum, and mean surface temperatures and diurnal temperature amplitude, with different lags between the meteorological data and the health impact. Health data came from a case–control study involving 241 people ≥ 65 years of age who died in the city of Paris or the nearby suburban area of Val-de-Marne during the August 2003 heat wave, and 241 controls who were matched to cases on age, sex, and residential zone. For each person, we integrated the thermal indicators in a conditional logistic regression model, adjusted for age and other potential confounders. We computed odds ratios (ORs) comparing the 90th and 50th percentiles of the temperature differences between cases and controls for various indicators. Results: Mortality risk was significantly associated with exposure for two indicators: minimum temperatures averaged for 1–13 August [for a 0.41°C increase, OR = 2.17; 95% confidence interval (CI): 1.14, 4.16] and minimum temperature averaged on the day of death and the 6 preceding days (for a 0.51°C increase: OR = 2.24; 95% CI: 1.03, 4.87). Conclusions: Our results support the influence of night temperatures on the health impact of heat waves in urban areas. Urban heat exposure indicators based on satellite imagery have the potential to identify areas with higher risk of death, which could inform intervention decisions by key stakeholders. PMID:21885383

  11. Quantifying impacts of heat waves on power grid operation

    SciTech Connect

    Ke, Xinda; Wu, Di; Rice, Jennie S.; Kintner-Meyer, Michael CW; Lu, Ning

    2016-12-01

    Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the impacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reduce the output capacity and efficiency of gas fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature dependent load model. The coupled system has the ability to represent the impacts of hourly temperatures on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reliability and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation.

  12. Heat waves and climate change: applying the health belief model to identify predictors of risk perception and adaptive behaviours in adelaide, australia.

    PubMed

    Akompab, Derick A; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A; Augoustinos, Martha

    2013-05-29

    Heat waves are considered a health risk and they are likely to increase in frequency, intensity and duration as a consequence of climate change. The effects of heat waves on human health could be reduced if individuals recognise the risks and adopt healthy behaviours during a heat wave. The purpose of this study was to determine the predictors of risk perception using a heat wave scenario and identify the constructs of the health belief model that could predict adaptive behaviours during a heat wave. A cross-sectional study was conducted during the summer of 2012 among a sample of persons aged between 30 to 69 years in Adelaide. Participants' perceptions were assessed using the health belief model as a conceptual frame. Their knowledge about heat waves and adaptive behaviours during heat waves was also assessed. Logistic regression analyses were performed to determine the predictors of risk perception to a heat wave scenario and adaptive behaviours during a heat wave. Of the 267 participants, about half (50.9%) had a high risk perception to heat waves while 82.8% had good adaptive behaviours during a heat wave. Multivariate models found that age was a significant predictor of risk perception. In addition, participants who were married (OR = 0.21; 95% CI, 0.07-0.62), who earned a gross annual household income of ≥$60,000 (OR = 0.41; 95% CI, 0.17-0.94) and without a fan (OR = 0.29; 95% CI, 0.11-0.79) were less likely to have a high risk perception to heat waves. Those who were living with others (OR = 2.87; 95% CI, 1.19-6.90) were more likely to have a high risk perception to heat waves. On the other hand, participants with a high perceived benefit (OR = 2.14; 95% CI, 1.00-4.58), a high "cues to action" (OR = 3.71; 95% CI, 1.63-8.43), who had additional training or education after high school (OR = 2.65; 95% CI, 1.25-5.58) and who earned a gross annual household income of ≥$60,000 (OR = 2.66; 95% CI, 1.07-6.56) were more likely to have good adaptive behaviours

  13. Effects of Heat and Momentum Addition Inside and Outside the Compound Sonic Point of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Webb, G. M.; McKenzie, J. F.

    2014-12-01

    We consider the effect of heat and momentum addition to the solar wind for a model including the effects of Alfven waves and plasma pressure (proton plus electron pressure). The mass flux per unit area in 1D flow maximizes when the flow speed equals the compound sound speed, including the effects of the Alfven wave pressure. We discuss the analogue of the Laval nozzle for the solar wind flow, and the dependence of the effective nozzle area as a function of radial distance, and the relationship of the nozzle area to the momentum equation and the Mach number of the flow. An analysis is carried out of the effects of heat and momentum addition to the wind, using a thin slice approximation, which leads to Rankine Hugoniot relations for weak deflagrations and detonations (i.e. the combustion Hugoniot). The linearized Hugoniot is used to analyze the effects of small momentum and energy addition to the wind in the thin slice approximation. We obtain the fully nonlinear Rankine Hugoniot equation solutions. The analysis also holds in the presence of Alfven waves, in which the wave energy exchange equation yields the wave action flux conservation law when their contribution to the compound sound speed is taken into account. The effective polytropic index γgamma and flow speed relative to the compound flow speed ahead of the slice play crucial roles in determining whether local acceleration or deceleration results. Some results are at first sight unexpected since γgamma for Alfven waves ranges from -1/2 (in sub-Alfvenic flow) to 3/2 in super-Alfvenic flow.

  14. Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2012-09-01

    The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven-Mach number on the flow field behind the shock are investigated.

  15. Baroclinic waves and gravity waves in a finite-volume model of the differentially heated rotating annulus

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Achatz, Ulrich; Fruman, Mark D.; Harlander, Uwe; Vincze, Miklos

    2014-05-01

    The differentially heated rotating annulus is a classical experiment for the investigation of baroclinic flows and can be regarded as a strongly simplified laboratory model of the atmosphere in mid-latitudes. Data measured at the BTU Cottbus-Senftenberg (Harlander et al, 2011) are used to validate a new numerical finite-volume model (cylFloit). The model employs the Adaptive Local Deconvolution Method (ALDM) (Hickel et al, 2006) to parameterize unresolved subgrid-scale turbulence. The validation compares the azimuthal mode numbers of the dominant baroclinic waves and does a principal component analysis of time series of the temperature field observed in the experiment and the model simulation. One part of the laboratory procedure that is commonly neglected in simulations is the annulus spin-up, during which the annulus is accelerated from a state of rest to a desired angular velocity. We investigate whether including the spin-up phase in the simulation improves the agreement with the experiment. In addition we use the model to investigate gravity waves (GWs) in the rotating annulus. These waves play an important role in atmospheric dynamics by transporting momentum over large distances, affecting daily weather as well as the climate. Our focus is on GWs spontaneously emitted by the baroclinic waves. By simulating a wide and shallow annulus with relatively large temperature difference between inner and outer cylinder walls, we are able to explore a more atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency. Various analyses suggest there is distinct GW activity in these simulations, as well as indications of spontaneous GW emission. Harlander, U., von Larcher, T., Wang, Y., Egbers, C., 2011: PIV- and LDV- measurements of baroclinic wave interactions in a thermally driven rotating annulus. Exp. Fluids, 51(1), 37-49. Hickel, S., Adams, N. A., Domaradzki, J. A., 2006: An adaptive local deconvolution method for implicit LES. J

  16. Higher Order Mode Coupler Heating in Continuous Wave Operation

    NASA Astrophysics Data System (ADS)

    Solyak, N.; Awida, M.; Hocker, A.; Khabibobulline, T.; Lunin, A.

    Electromagnetic heating due to higher order modes (HOM) propagation is particularly a concern for continuous wave (CW) particle accelerator machines. Power on the order of several watts could flow out of the cavity's HOM ports in CW operations. The upgrade of the Linac Coherent Light Source (LCLS-II) at SLAC requires a major modification of the design of the higher order mode (HOM) antenna and feed through of the conventional ILC elliptical 9-cell cavity in order to utilize it for LCLS-II. The HOM antenna is required to bear higher RF losses, while relatively maintaining the coupling level of the higher order modes. In this paper, we present a detailed analysis of the heating expected in the HOM coupler with a thorough thermal quench study in comparison with the conventional ILC design. We discuss also how the heat will be removed from the cavity through RF cables with specially designed cooling straps. Finally, we report on the latest experimental results of cavity testing in vertical and horizontal cryostats.

  17. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Additional requirements to provide heat... requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg... monitor and report heat input rate at the unit level using the procedures set forth in part 75 of...

  18. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  19. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  20. The impact of heat, cold, and heat waves on hospital admissions in eight cities in Korea.

    PubMed

    Son, Ji-Young; Bell, Michelle L; Lee, Jong-Tae

    2014-11-01

    Although the impact of temperature on mortality is well documented, relatively fewer studies have evaluated the associations of temperature with morbidity outcomes such as hospital admissions, and most studies were conducted in North America or Europe. We evaluated weather and hospital admissions including specific causes (allergic disease, asthma, selected respiratory disease, and cardiovascular disease) in eight major cities in Korea from 2003 to 2008. We also explored potential effect modification by individual characteristics such as sex and age. We used hierarchical modeling to first estimate city-specific associations between heat, cold, or heat waves and hospitalizations, and then estimated overall effects. Stratified analyses were performed by cause of hospitalization, sex, and age (0-14, 15-64, 65-74, and ≥75 years). Cardiovascular hospitalizations were significantly associated with high temperature, whereas hospitalizations for allergic disease, asthma, and selected respiratory disease were significantly associated with low temperature. The overall heat effect for cardiovascular hospitalization was a 4.5% (95% confidence interval 0.7, 8.5%) increase in risk comparing hospitalizations at 25 to 15 °C. For cold effect, the overall increase in risk of hospitalizations comparing 2 with 15 °C was 50.5 (13.7, 99.2%), 43.6 (8.9, 89.5%), and 53.6% (9.8, 114.9%) for allergic disease, asthma, and selected respiratory disease, respectively. We did not find statistically significant effects of heat waves compared with nonheat wave days. Our results suggest susceptible populations such as women and younger persons. Our findings provide suggestive evidence that both high and low ambient temperatures are associated with the risk of hospital admissions, particularly in women or younger person, in Korea.

  1. Climate change scenarios of heat waves in Central Europe and their uncertainties

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš

    2017-01-01

    The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

  2. Thermal bioclimate in Strasbourg - the 2003 heat wave

    NASA Astrophysics Data System (ADS)

    Matzarakis, Andreas; de Rocco, Manuela; Najjar, Georges

    2009-10-01

    This case study highlights the implications of the 2003 heat wave for the city of Strasbourg, France. The urban centers of France and other European countries were particularly affected by the heat wave. In some urban areas, the mortality rate was 60% above the expected value (Institute de Veille Sanitaire, 2003). The 2003 heat wave demonstrated once again that populations in urban centers are much more affected by extreme meteorological events than people living in rural areas. The aim of this analysis is to explore differences in thermal comfort conditions of (a) the city center of Strasbourg, and (b) its hinterland. The differences in thermal conditions existing between rural and urban areas are quantified by using a bio-climatological index termed physiologically equivalent temperature (PET). This index is based on the human energy balance and builds a relevant index for the quantification of the thermal environment of humans. We calculate the PET for the years 2003 and 2004 to highlight the temporal changes in the severity of climate extremes. The spatial scope of this study is improved compared to previous works in the field through the inclusion of PET calculations for five different sites on a central place in Strasbourg (Place Kléber). The calculations are characterized by different sky view factors and are compared to the reference site, which is located in a rural area. In the rural hinterland (Entzheim), the analysis of PET indicates a strong cold thermal stress during the winter months but no significant stress in summer. In 2003, summer temperatures were sensed as warmer compared to other years, but did not reach the extreme temperatures that may cause severe heat stress. For both the rural and the urban study sites PET was higher in the summer of 2003 than in 2004, which reflects the inferior thermal conditions in the urban area during the heat wave in 2003. For the entire study period, urban and rural day-time PET reached similar maximal values

  3. X-ray analysis of electron Bernstein wave heating in MST.

    PubMed

    Seltzman, A H; Anderson, J K; DuBois, A M; Almagri, A; Forest, C B

    2016-11-01

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  4. X-ray analysis of electron Bernstein wave heating in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, A. H.; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B.

    2016-11-01

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  5. The heat wave of June 2007 in Athens, Greece - Part 2: Modeling study and sensitivity experiments

    NASA Astrophysics Data System (ADS)

    Kotroni, V.; Lagouvardos, K.; Retalis, A.

    2011-04-01

    In the frame of this paper a heat wave that resulted in record high temperatures in Athens Greece is analysed. Namely the analysis focuses in the ability of three widely used planetary boundary layer parameterisations to reproduce the heat wave temperatures. The simulations were performed with the Pennsylvania State University - National Center for Atmospheric Research MM5 model that is also used for operational weather forecasting at the National Observatory of Athens since 2002. The 2-m temperature at a grid increment of 1-km over the highly complex terrain of the Athens Area is statistically verified against the available surface station observations. The results of the analysis showed that the two nonlocal schemes, namely Blackadar and MRF succeeded much better than the local scheme ETA to reproduce the heat wave 2-m temperature although they considerably underestimated the maximum observed temperatures. In addition, it was found that the model grid points characterised by "urban" land-use provided better statistical verification results, with reduced cold bias. Further, in order to study the role of the initial skin temperature conditions on the 2-m temperature forecasts, satellite observed skin temperatures have been used to initialise the high resolution simulations. This sensitivity test showed that when using the satellite observed skin temperature in the model initial conditions, the simulation of the 2-m temperature is positively affected during the early stages of the simulation while later on the model physical parameterisations are decisive for the time evolution of temperature.

  6. Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review

    PubMed Central

    Li, Mengmeng; Gu, Shaohua; Bi, Peng; Yang, Jun; Liu, Qiyong

    2015-01-01

    In the past few decades, several devastating heat wave events have significantly challenged public health. As these events are projected to increase in both severity and frequency in the future, it is important to assess the relationship between heat waves and the health indicators that can be used in the early warning systems to guide the public health response. Yet there is a knowledge gap in the impact of heat waves on morbidity. In this study, a comprehensive review was conducted to assess the relationship between heat waves and different morbidity indicators, and to identify the vulnerable populations. The PubMed and ScienceDirect database were used to retrieve published literature in English from 1985 to 2014 on the relationship between heat waves and morbidity, and the following MeSH terms and keywords were used: heat wave, heat wave, morbidity, hospital admission, hospitalization, emergency call, emergency medical services, and outpatient visit. Thirty-three studies were included in the final analysis. Most studies found a short-term negative health impact of heat waves on morbidity. The elderly, children, and males were more vulnerable during heat waves, and the medical care demand increased for those with existing chronic diseases. Some social factors, such as lower socioeconomic status, can contribute to heat-susceptibility. In terms of study methods and heat wave definitions, there remain inconsistencies and uncertainties. Relevant policies and guidelines need to be developed to protect vulnerable populations. Morbidity indicators should be adopted in heat wave early warning systems in order to guide the effective implementation of public health actions. PMID:25993103

  7. Heat waves and morbidity: current knowledge and further direction-a comprehensive literature review.

    PubMed

    Li, Mengmeng; Gu, Shaohua; Bi, Peng; Yang, Jun; Liu, Qiyong

    2015-05-18

    In the past few decades, several devastating heat wave events have significantly challenged public health. As these events are projected to increase in both severity and frequency in the future, it is important to assess the relationship between heat waves and the health indicators that can be used in the early warning systems to guide the public health response. Yet there is a knowledge gap in the impact of heat waves on morbidity. In this study, a comprehensive review was conducted to assess the relationship between heat waves and different morbidity indicators, and to identify the vulnerable populations. The PubMed and ScienceDirect database were used to retrieve published literature in English from 1985 to 2014 on the relationship between heat waves and morbidity, and the following MeSH terms and keywords were used: heat wave, heat wave, morbidity, hospital admission, hospitalization, emergency call, emergency medical services, and outpatient visit. Thirty-three studies were included in the final analysis. Most studies found a short-term negative health impact of heat waves on morbidity. The elderly, children, and males were more vulnerable during heat waves, and the medical care demand increased for those with existing chronic diseases. Some social factors, such as lower socioeconomic status, can contribute to heat-susceptibility. In terms of study methods and heat wave definitions, there remain inconsistencies and uncertainties. Relevant policies and guidelines need to be developed to protect vulnerable populations. Morbidity indicators should be adopted in heat wave early warning systems in order to guide the effective implementation of public health actions.

  8. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  9. Severe summer heat waves over Georgia: trends, patterns and driving forces

    NASA Astrophysics Data System (ADS)

    Keggenhoff, I.; Elizbarashvili, M.; King, L.

    2015-11-01

    During the last 50 years Georgia experienced a rising number of severe summer heat waves causing increasing heat-health impacts. In this study, the 10 most severe heat waves between 1961 and 2010 and recent changes in heat wave characteristics have been detected from 22 homogenized temperature minimum and maximum series using the Excess Heat Factor (EHF). A composite and Canonical Correlation Analysis (CCA) have been performed to study summer heat wave patterns and their relationships to the selected predictors: mean Sea Level Pressure (SLP), Geopotential Height at 500 mb (Z500), Sea Surface Temperature (SST), Zonal (u-wind500) and Meridional Wind at 500 mb (v-wind500), Vertical Velocity at 500 mb (O500), Outgoing Longwave Radiation (OLR), Relative Humidity (RH500), Precipitation (RR) and Soil Moisture (SM). Most severe heat events during the last 50 years are identified in 2007, 2006 and 1998. Largest significant trend magnitudes for the number, intensity and duration of low and high-impact heat waves have been found during the last 30 years. Significant changes in the heat wave predictors reveal that all relevant surface and atmospheric patterns contributing to heat waves have been intensified between 1961 and 2010. Composite anomalies and CCA patterns provide evidence of a large anticyclonic blocking pattern over the southern Ural Mountains, which attracts warm air masses from the Southwest, enhances subsidence and surface heating, shifts the African Intertropical Convergence Zone (ITCZ) northwards, and causes a northward shift of the subtropical jet. Moreover, pronounced precipitation and soil moisture deficiency throughout Georgia contribute to the heat wave formation and persistence over Georgia. Due to different large- to mesoscale circulation patterns and the local terrain, heat wave effects over Eastern Georgia are dominated by subsidence and surface heating, while convective rainfall and cooling are observed in the West.

  10. Impacts and Responses to the 1995 Heat Wave: A Call to Action.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Kunkel, Kenneth E.; Reinke, Beth C.

    1996-07-01

    The short but intense heat wave in mid-July 1995 caused 830 deaths nationally, with 525 of these deaths in Chicago. Many of the dead were elderly. and the event raised great concern over why it happened. Assessment of causes for the heat wave-related deaths in Chicago revealed many factors were at fault, including an inadequate local heat wave warning system, power failures, questionable death assessments, inadequate ambulance service and hospital facilities, the heat island, an aging population, and the inability of many persons to properly ventilate their residences due to fear of crime or a lack of resources for fans or air conditioning. Heat-related deaths appear to be on the increase in the United States. Heat-related deaths greatly exceed those caused by other life-threatening weather conditions. Analysis of the impacts and responses to this heat wave reveals a need to 1) define the heat island conditions during heat waves for all major cities is a means to improve forecasts of threatening conditions, 2) develop a nationally uniform means for classifying heat-related deaths, 3) improve warning systems that are designed around local conditions of large cities, and 4) increase research on the meteorological and climatological aspects of heat stress and heat waves.

  11. Heat Wave-Associated Vibriosis, Sweden and Finland, 2014.

    PubMed

    Baker-Austin, Craig; Trinanes, Joaquin A; Salmenlinna, Saara; Löfdahl, Margareta; Siitonen, Anja; Taylor, Nick G H; Martinez-Urtaza, Jaime

    2016-07-01

    During summer 2014, a total of 89 Vibrio infections were reported in Sweden and Finland, substantially more yearly infections than previously have been reported in northern Europe. Infections were spread across most coastal counties of Sweden and Finland, but unusually, numerous infections were reported in subarctic regions; cases were reported as far north as 65°N, ≈100 miles (160 km) from the Arctic Circle. Most infections were caused by non-O1/O139 V. cholerae (70 cases, corresponding to 77% of the total, all strains were negative for the cholera toxin gene). An extreme heat wave in northern Scandinavia during summer 2014 led to unprecedented high sea surface temperatures, which appear to have been responsible for the emergence of Vibrio bacteria at these latitudes. The emergence of vibriosis in high-latitude regions requires improved diagnostic detection and clinical awareness of these emerging pathogens.

  12. Climate change induced heat wave hazard in eastern Africa: Dar Es Salaam (Tanzania) and Addis Ababa (Ethiopia) case study

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Sellerino, Mariangela; Di Ruocco, Angela; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    Last decades, new records were set in the world for tornadoes, drought, wind, floods, wildfires and hot temperatures, testifying unusual weather and climate patterns with increasing frequency and intensity of extreme weather events. Extreme heat events are natural hazards affecting many regions in the world, nevertheless limited work has been done on the analysis and effects of extreme heat events in Africa, that is considered a continent particularly vulnerable to the effects of climate change. In fact, the increase of temperature expected in the African continent during the 21st century is larger than the global mean warming, being about 3° to 4° C, about 1.5 times the global temperature increase (Christensen et al., 2007; Gualdi et al., 2012), with the subtropical regions projected to warm more than the tropical regions. Observations and downscaled model simulations (RCP4.5 and RCP8.5 IPCC scenarios) are analyzed to describe heat wave characteristics in Dar es Salaam (Tanzania) and Addis Ababa (Ethiopia), spanning the last five decades as well as that projected for the 21st century. Observed data are daily maximum and minimum temperature collected in the period 1961-2011; downscaled model simulations span up to 2050. Heat waves are defined following a peak over threshold approach by statistical comparison to historical meteorological baselines (site dependent), using a fixed absolute threshold. Projected future warming in the Dar es Salaam and Addis Ababa shows a further increase in the heat waves parameters. Heat wave duration and hot days number are strictly correlated showing that the temperature rise could generate not only an increase of heat waves number but mainly a longer average duration, that can strongly affect the resilience capacity of the population, particularly the elder people. In fact, the impacts of heat waves on the society are determined also by temporal duration (Stephenson, 2008), in addition to their frequency, in fact the capacity of

  13. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-05-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies.

  14. Urban warming in the 2013 summer heat wave in eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yan, Zhongwei; Quan, Xiao-Wei; Feng, Jinming

    2016-06-01

    The impact of urban warming during the 2013 July-August extreme heat wave event across the Yangtze River Delta (YRD) in China was assessed. Using a newly developed high-resolution, land-use dataset, urban stations were identified from a total of 101 stations in the YRD. The difference between urban and non-urban/rural stations indicates that urban warming reached 1.22 °C in the 2013 summer heat wave. The new land-use dataset was then input to the Weather Research and Forecasting model to further understand the dynamical/physical processes of the urban warming during the heat wave. The model-simulated urban warming is ~1.5 °C. Impacts of urbanization on near-surface temperature had strong diurnal variation, reaching a peak at 19:00 LST, around sunset. In the daytime, urban warming was mainly caused by enhanced sensible heat fluxes and longwave radiation from the surface. Because of reduced latent heat flux and increased heat capacity, urban ground stored much more heat than rural ground during the daytime, which is later released as sensible heat flux from the surface at night, leading to the nocturnal urban warming. The simulation results also suggest a positive feedback between urban warming and heat wave intensity, which makes the heat wave more intense in urban than rural areas and the urban warming during the extreme heat wave stronger than its climatological mean.

  15. Recent severe heat waves: how to view them in a 'global warming' perspective?

    NASA Astrophysics Data System (ADS)

    Kysely, J.

    2010-03-01

    The area of western and central Europe has recently been affected by several long-lasting and severe heat waves, particularly in July-August 2003, June-July 2006, and July 2007. The heat waves influenced various sectors of human activities, with enormous socio-economic impacts. With an estimated death toll exceeding 50000 over Europe, the August 2003 heat wave was the worst natural disaster in Europe during the last 50 years, yielding an example of how seriously may also high-income countries be affected by climate change. The aims of the study are to assess whether recent occurrences of severe heat waves in central Europe were exceptional in the context of past fluctuations, and to estimate their recurrence probabilities under future climate change scenarios. We focus on analogs of the 2006 heat wave which lasted 33 consecutive days in Prague and was the longest and most severe heat wave since the beginning of air temperature measurements in 1775. Probabilities of long and severe heat waves are estimated from daily temperature series generated by a first-order autoregressive model with a deterministic component, incorporating the seasonal cycle and the long-term trend. The model is validated with respect to the simulation of heat waves in present climate (1961-2006) and subsequently run under several assumptions reflecting various rates of summer warming over the 21st century, based on climate model projections. The return period of a heat wave reaching or exceeding the length of the 2006 heat wave is estimated to be around 120 years in 2006. Due to an increase in mean summer temperatures, probabilities of very long heat waves have already risen by an order of magnitude over the recent 25 years, and they are likely to increase by another order of magnitude by around 2040 under the summer warming rate assumed by the mid-scenario. Even the lower-bound scenario yields a considerable decline of return periods associated with intense heat waves. Although positive socio

  16. Hot bats: extreme thermal tolerance in a desert heat wave

    NASA Astrophysics Data System (ADS)

    Bondarenco, Artiom; Körtner, Gerhard; Geiser, Fritz

    2014-08-01

    Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures ( T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record T as at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed ( Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats ( Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum T a was ˜45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when T a exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures ( T skin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0 to 45.8 °C in Mormopterus, and these are the highest T skin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme T skin range known for mammals (3.3 to 45.8 °C) and delay regulation of T skin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.

  17. Hot bats: extreme thermal tolerance in a desert heat wave.

    PubMed

    Bondarenco, Artiom; Körtner, Gerhard; Geiser, Fritz

    2014-08-01

    Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures (T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record T as at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed (Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats (Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum T a was ∼45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when T a exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures (T skin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0 to 45.8 °C in Mormopterus, and these are the highest T skin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme T skin range known for mammals (3.3 to 45.8 °C) and delay regulation of T skin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.

  18. How to use near real-time health indicators to support decision-making during a heat wave: the example of the French heat wave warning system.

    PubMed

    Pascal, Mathilde; Laaidi, Karine; Wagner, Vérène; Ung, Aymeric Bun; Smaili, Sabira; Fouillet, Anne; Caserio-Schönemann, Céline; Beaudeau, Pascal

    2012-07-16

    Introduction The French warning system for heat waves is based on meteorological forecasts. Near real-time health indicators are used to support decision-making, e.g. to extend the warning period, or to choose the most appropriate preventive measures. They must be analysed rapidly to provide decision-makers useful and in-time information. The objective of the study was to evaluate such health indicators. Methods A literature review identified a range of possible mortality and morbidity indicators. A reduced number were selected, based on several criteria including sensitivity to heat, reactivity, representativity and data quality. Two methods were proposed to identify indicator-based statistical alarms: historical limits or control charts, depending on data availability. The use of the indicators was examined using the 2006 and 2009 heat waves. Results Out of 25 possible indicators, 5 were selected: total mortality, total emergency calls, total emergency visits, emergency visits for people aged 75 and over and emergency visits for causes linked to heat. In 2006 and 2009, no clear increases were observed during the heat waves. The analyses of real-time health indicators showed there was no need to modify warning proposals based on meteorological parameters. Discussion These findings suggest that forecasted temperatures can be used to anticipate heat waves and promote preventive actions. Health indicators may not be needed to issue a heat wave alert, but daily surveillance of health indicators may be useful for decision-makers to adapt prevention measures.

  19. Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.

    PubMed

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc

    2013-10-01

    The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.

  20. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    USGS Publications Warehouse

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  1. Enzyme Activity Dynamics in Response to Climate Change: 2011 Drought-Heat Wave

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...

  2. Risk factors for deaths during the 2009 heat wave in Adelaide, Australia: a matched case-control study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Nitschke, Monika; Krackowizer, Antoinette; Dear, Keith; Pisaniello, Dino; Weinstein, Philip; Tucker, Graeme; Shakib, Sepehr; Bi, Peng

    2017-01-01

    The extreme heat wave in Australia in 2009 resulted in significantly increased number of daily deaths. The circumstances that lead to deaths during extreme heat have not been explored before in Australia. This study aims to identify the individual and community risk factors for deaths during this extreme heat wave in Adelaide. A matched case-control study was conducted. Cases were those who died in the Adelaide metropolitan area during the heat wave period. For each case, two community controls were randomly selected, matched by age and gender. Face-to-face or telephone interviews were conducted to collect data of demographic information, living environment, social support, health status and behavioural changes during the heat wave. Descriptive analysis, as well as simple and multiple conditional logistic regressions were performed. In total, 82 deaths and 164 matched community controls were included in the analysis, with a median age of 77.5 (range 26.6-100.7). The multiple logistic regression model indicated that, compared with controls, the risk of death during the heat wave was significantly increased for people living alone (AOR = 42.31, 95 % CI 2.3, 792.8) or having existing chronic heart disease (AOR = 22.4, 95 % CI 1.7, 303.0). In addition, having air conditioning in bedrooms (AOR = 0.004, 95 % CI 0.00006, 0.28) and participating in social activities more than once a week (AOR = 0.011, 95 % CI 0.0004, 0.29) indicated significant protective effects. We have identified factors that could significantly impact on the likelihood of deaths during heat waves. Our findings could assist in the development of future intervention programs and policies to reduce mortality associated with a warmer climate.

  3. Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr

    2015-04-01

    The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  4. Decreased impacts of the 2003 heat waves on mortality in the Czech Republic: an improved response?

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Kříž, Bohumír

    2008-11-01

    The paper examines impacts on mortality of heat waves in 2003, the hottest summer on record in the Czech Republic, and compares them with previous similar events. While most summer heat waves over the period since 1986 were associated with significantly elevated mortality, this was not the case for three out of the four heat waves in 2003. The relatively weak mortality response was particularly noteworthy for the most severe heat wave which occurred in the first 10 days of August 2003 and resulted in enormous excess mortality in some western European countries. A mortality displacement effect and short-term adaptation to heat contributed to the reduced mortality impacts of the heat waves that followed after previous relatively warm periods. However, the decreased mortality response of the 2003 heat waves compared to previous heat waves in the 1990s is also likely to have arisen from positive health-care and other socio-economic changes in the post-communist central European region over the past decade, as well as a better public awareness of heat-related risks due to enhanced media coverage and regular biometeorological forecast and warnings.

  5. [Selective Heating of Membrane-forming Holes in Teflon Film Exposed to Decimeter Waves].

    PubMed

    Alekseev, S I; Fesenko, E E; Fesenko, E E

    2015-01-01

    Calculations of heating of membrane-forming holes in Teflon film exposed to decimeter waves were performed. The dependence of the temperature increment in holes on the geometry of holes, electrolyte concentration, and decimeter wave frequency was studied. The kinetics of heating depending on the hole diameter was also obtained. It was concluded that the observed in the experiment effects of the decimeter wave on bilayer lipid membranes resulted from the elevated concentration of decimeter electromagnetic waves in membrane-forming hole that led to selective heating of electrolyte in hole and bilayer lipid membranes.

  6. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    NASA Astrophysics Data System (ADS)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  7. Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma

    SciTech Connect

    Tanabe, M; Nishimura, H; Ohnishi, N; Fournier, K B; Fujioka, S; Iwamae, A; Hansen, S B; Nagai, K; Girard, F; Primout, M; Villette, B; Brebion, D; Mima, K

    2009-02-23

    The propagation of a laser-driven heat-wave into a Ti-doped aerogel target was investigated. The temporal evolution of the electron temperature was derived by means of Ti K-shell x-ray spectroscopy, and compared with two-dimensional radiation hydrodynamic simulations. Reasonable agreement was obtained in the early stage of the heat-wave propagation. In the later phase, laser absorption, the propagation of the heat wave, and hydrodynamic motion interact in a complex manner, and the plasma is mostly re-heated by collision and stagnation at the target central axis.

  8. Urban heat island effects human heat-stress values in Portland (OR) during the July 2006 heat wave

    NASA Astrophysics Data System (ADS)

    Bornstein, R. D.; Melford, A.

    2009-12-01

    The Heat Index (HI), a measure of the effective temperature felt by the human body, is based on both 2-m air temperature and relative humidity (RH) values. This NWS index, however, is generally calculated by use of only airport data. It thus cannot account for urban heat island (UHI) effects, which would raise the temperature values used in its calculation, create greater HI values, and thus more accurate estimates of the danger to human populations. The current study thus uses 12 mesoscale sites around Portland, Oregon to map the UHI and resulting HI fields during the heat wave of 20-24 July 2006. Past studies have observed UHIs in the area, but temperatures during this heat wave were unusually high due to a combination of synoptic influences, i.e., high temperatures aloft, nocturnal cloud cover, and a surface high pressure area. The associated surface southerly flow of moist air also produced high RH values during both daytime (which raised HI values) and nighttime (which kept min temperatures high). Results showed two separate Portland midday UHI centers (of up to 16 F), divided by the Willamette River that flows through the city. The UHI produced significant differences in the HI values across the city, with the highest variability during the 22nd of July. HI values from the airport NWS site were much lower (up to 20 F) than those from the center of the UHI. An urbanized HI needs to thus be considered (either from mesoscale observations, statistical extrapolation, or mesoscale modeling) when forecasting HI values in urban areas.

  9. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  10. Changes of western European heat wave characteristics projected by the CMIP5 ensemble

    NASA Astrophysics Data System (ADS)

    Schoetter, Robert; Cattiaux, Julien; Douville, Hervé

    2015-09-01

    We investigate heat waves defined as periods of at least 3 consecutive days of extremely high daily maximum temperature affecting at least 30 % of western Europe. This definition has been chosen to select heat waves that might impact western European electricity supply. Even though not all such heat waves threaten it, the definition allows to identify a sufficient number of events, the strongest being potentially harmful. The heat waves are characterised by their duration, spatial extent, intensity and severity. The heat wave characteristics are calculated for historical and future climate based on results of climate model simulations conducted during the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The uncertainty of future anthropogenic forcing is taken into account by analysing results for the Representative Concentration Pathway scenarios RCP2.6, RCP4.5 and RCP8.5. The historical simulations are evaluated against the EOBS gridded station data. The CMIP5 ensemble median captures well the observed mean heat wave characteristics. However, no model simulates a heat wave as severe as observed during August 2003. Under future climate conditions, the heat waves become more frequent and have higher mean duration, extent and intensity. The ensemble spread is larger than the scenario uncertainty. The shift of the temperature distribution is more important for the increase of the cumulative heat wave severity than the broadening of the temperature distribution. However, the broadening leads to an amplification of the cumulative heat wave severity by a factor of 1.7 for RCP4.5 and 1.5 for RCP8.5.

  11. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants.

    PubMed

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  12. Generation of shear Alfvén waves by repetitive electron heating

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W.; Pribyl, P.; Van Compernolle, B.; Papadopoulos, K.

    2016-01-01

    ELF/ULF waves are powerful tools for submarine communication, geophysical mapping, and radiation belt remediation. However, due to their large wavelength (on the order of 102-104 km or 0.1-10 RE) it is difficult to launch them using ground-based antennas. Alternatively, these waves can be generated by modulating the temperature of the ionosphere using ground-based HF transmitters. The paper reports a detailed laboratory study on the generation of shear Alfvén waves by repetitive electron heating. The experiments were conducted on the large plasma device at University of California, Los Angeles. In the experiment, 10 pulses of high-power microwaves (250 kW, 1 µs each) near the plasma frequency modulated at a variable fraction between 0.1 and 1.0 of fci are launched transverse to the background field. In addition to bulk electron heating the interaction generates a population of fast electrons in the tail of the distribution function. The field-aligned current carried by the fast electrons acts as an antenna that radiates shear Alfvén waves. It is demonstrated that a shear Alfvén wave at a controllable, arbitrary frequency (f < fci) can be coherently driven by the repetitive microwave pulses. The radiation pattern and power dependence of the virtual antenna are also presented. The experiments provide a novel virtual antenna concept relevant to the equatorial region where the Earth's magnetic field is horizontal and the field-aligned plasma density gradient is small. The results are important to design of new mobile ionospheric heaters for equatorial and middle latitude locations.

  13. Projections of heat waves with high impact on human health in Europe

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Homar, V.; Romero, R.; Brooks, H. E.; Ramis, C.; Gordaliza, M.; Alonso, S.

    2014-08-01

    Climate change will result in more intense, more frequent and longer lasting heat waves. The most hazardous conditions emerge when extreme daytime temperatures combine with warm night-time temperatures, high humidities and light winds for several consecutive days. Here, we assess present and future heat wave impacts on human health in Europe. Present daily physiologically equivalent temperatures (PET) are derived from the ERA-Interim reanalysis. PET allows to specifically focus on heat-related risks on humans. Regarding projections, a suite of high-resolution regional climate models - run under SRES A1B scenario - has been used. A quantile-quantile adjustment is applied to the daily simulated PET to correct biases in individual model climatologies and a multimodel ensemble strategy is adopted to encompass model errors. Two types of heat waves differently impacting human health - strong and extreme stress - are defined according to specified thresholds of thermal stress and duration. Heat wave number, frequency, duration and amplitude are derived for each type. Results reveal relatively strong correlations between the spatial distribution of strong and extreme heat wave amplitudes and mortality excess for the 2003 European summer. Projections suggest a steady increase and a northward extent of heat wave attributes in Europe. Strong stress heat wave frequencies could increase more than 40 days, lasting over 20 days more by 2075-2094. Amplitudes might augment up to 7 °C per heat wave day. Important increases in extreme stress heat wave attributes are also expected: up to 40 days in frequency, 30 days in duration and 4 °C in amplitude. We believe that with this information at hand policy makers and stakeholders on vulnerable populations to heat stress can respond more effectively to the future challenges imposed by climate warming.

  14. F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams

    NASA Astrophysics Data System (ADS)

    Mishin, E.; Sutton, E.; Milikh, G.; Galkin, I.; Roth, C.; Förster, M.

    2012-06-01

    We report the first evidence of atmospheric gravity waves (AGWs) generated in the F2 region by high-power HF heating and subauroral polarization streams. Data come from the CHAMP and GRACE spacecraft overflying the High-frequency Active Auroral Research Program (HAARP) heating facility. These observations facilitate a new method of studying the ionosphere-thermosphere coupling in a controlled fashion by using various HF-heating regimes. They also reveal the subauroral F2 region to be a significant source of substorm AGWs, in addition to the well-known auroral E region.

  15. ULF Wave Electromagnetic Energy Flux into the Ionosphere: Joule Heating Implications

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.

    2014-12-01

    Ultra Low Frequency (ULF) waves - such as standing Alfven waves - are one mechanism for coupling the inner magnetosphere to the Earth's ionosphere. For example, they transfer energy from the solar wind or ring current into the Earth's ionosphere via Joule heating. In this study, we use NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates. We compare these rates to empirical models of Joule heating associated with large scale, static (on ULF wave timescales) current systems, finding that ULF waves usually contribute little to the global, integrated Joule heating rate. However, there are extreme cases when ULF waves make significant contributions to global Joule heating. Finally, we find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.

  16. Heating of solar and stellar chromospheres and coronae by MHD waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.

  17. Characterization of Heat Waves in the Sahel and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra

    2016-04-01

    Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher

  18. Definition of temperature thresholds: the example of the French heat wave warning system.

    PubMed

    Pascal, Mathilde; Wagner, Vérène; Le Tertre, Alain; Laaidi, Karine; Honoré, Cyrille; Bénichou, Françoise; Beaudeau, Pascal

    2013-01-01

    Heat-related deaths should be somewhat preventable. In France, some prevention measures are activated when minimum and maximum temperatures averaged over three days reach city-specific thresholds. The current thresholds were computed based on a descriptive analysis of past heat waves and on local expert judgement. We tested whether a different method would confirm these thresholds. The study was set in the six cities of Paris, Lyon, Marseille, Nantes, Strasbourg and Limoges between 1973 and 2003. For each city, we estimated the excess in mortality associated with different temperature thresholds, using a generalised additive model, controlling for long-time trends, seasons and days of the week. These models were used to compute the mortality predicted by different percentiles of temperatures. The thresholds were chosen as the percentiles associated with a significant excess mortality. In all cities, there was a good correlation between current thresholds and the thresholds derived from the models, with 0°C to 3°C differences for averaged maximum temperatures. Both set of thresholds were able to anticipate the main periods of excess mortality during the summers of 1973 to 2003. A simple method relying on descriptive analysis and expert judgement is sufficient to define protective temperature thresholds and to prevent heat wave mortality. As temperatures are increasing along with the climate change and adaptation is ongoing, more research is required to understand if and when thresholds should be modified.

  19. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Additional requirements to provide heat... requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg mass emissions using a Hg concentration monitoring system and a flow monitoring system shall...

  20. Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, Ana; Carvalho, Vânia; Oliveira, Teresa; Sousa, Carlos

    2013-01-01

    The purpose of this study was to understand the effects of the July 2006 heat wave through the use of the heat index, in mortality (all causes) and morbidity (all causes, respiratory and circulatory diseases) in general, and in people over 74 years and by gender, in Porto. In this paper, the Poisson generalized additive regression model was used to estimate the impact of apparent temperature (heat index) and daily mortality and morbidity during the July 2006 heat wave. Daily mortality, morbidity and heat index were correlated with lags of apparent temperature up to 7 days using Pearson correlation. For a 1°C increase in mean apparent temperature we observed a 2.7 % (95 % CI: 1.7-3.6 %) increase in mortality (all cause), a 1.7 % (95 % CI: 0.6-2.9 %) increase in respiratory morbidity, a 2.2 % (95 % CI: 0.4-4.1 %) increase in respiratory morbidity in women, a 5.4 % (95%CI: 1.1-6.6 %) increase in chronic obstructive pulmonary morbidity, and a 7.5 % (95 % CI: 1.3-14.1 %) increase in chronic obstructive pulmonary morbidity in women, for the entire population. For people ≥ 75 years, our results showed a 3.3 % increase (95 % CI: 1.7-5.0 %) in respiratory morbidity, a 2.7 % (95 % CI: 0.4-5.1 %) increase in respiratory morbidity in men, a 3.9 % (95 %CI: 1.6-6.3 %) increase in respiratory morbidity in women, a 7.0 % (95 % CI: 1.1-13.2 %) in chronic obstructive pulmonary disease, and a 9.0 % (95 % CI: 0.3-18.5 %) in chronic obstructive pulmonary disease in women. The use of heat index in a Mediterranean tempered climate enabled the identification of the effects of the July 2006 heat wave in mortality due to all causes and in respiratory morbidity of the general population, as well as in respiratory morbidity of individuals with more than 74 years of age.

  1. Indexes to anticipate negative impacts of heat waves in urban Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Monteiro, A. M.; Carvalho, C. V.; Velho, S. V.; Sousa, C. S.

    2012-04-01

    This study intention is to understand what might be the better indexes to anticipate health deterioration during temperature extreme events in a urban Mediterranean environment like Porto. To do this we look to the effects of the July 2006 Heat Wave using the Heat Index on the Mortality (All Causes) and Morbidity (All Causes, Respiratory and Circulatory diseases) in general, and in people over 74 years and by Gender, in Porto. The Poisson Generalized Additive Regression model was used in order to estimate the impact of Apparent Temperature (Heat Index) and Daily Mortality and Morbidity during the July 2006 Heat Wave. Daily Mortality, Morbidity and Heat Index was correlated with lags of Apparent Temperature up to 7 days using Pearson correlation. For a 1°C increase in mean Apparent Temperature we observed a 2.7% (95%CI:1.7-3.6%) increase in Mortality (for All Causes), 1.7% (95%CI:0.6-2.9%) in Respiratory Morbidity, 2,2% (95%CI:0.4-4.1%) in Women Respiratory Morbidity, 5,4% (95%CI:1.1-6.6%) in Chronic Obstructive Pulmonary Morbidity and 7,5% (95%CI:1.3-14.1%) in Women Chronic Obstructive Pulmonary Morbidity, for the entire population. For people ≥ 75 years, our work showed a 3,3% increase (95%CI:1.7-5.0%) in Respiratory Morbidity, 2,7% (95%CI:0.4-5.1%) in Men Respiratory Morbidity, 3,9% (95%CI:1.6-6.3%) in Women Respiratory Morbidity, 7.0% (95%CI:1.1-13.2%) in Chronic Obstructive Pulmonary Disease and 9.0% (95%CI:0.3-18.5%) in Women Chronic Obstructive Pulmonary Disease. We conclude that the use of Heat Index in a Mediterranean Tempered Climate enabled the identification of the effects of the July 2006 Heat Wave in Mortality due to All Causes and in Respiratory Morbidity of the General Population, as well as in Respiratory Morbidity of individuals with more than 74 years of age.

  2. Impact of heat waves on nonaccidental deaths in Jinan, China, and associated risk factors

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Shouqin; Han, Jing; Zhou, Lin; Liu, Yueling; Yang, Liu; Zhang, Ji; Zhang, Ying

    2016-09-01

    An ecological study and a case-crossover analysis were conducted to evaluate the impact of heat waves on nonaccidental deaths, and to identify contributing factors of population vulnerability to heat-related deaths in Jinan, China. Daily death data and meteorological data were collected for summer months (June to August) of 2012-2013. Excess mortality was calculated and multivariate linear regression models were used to assess the increased risk of heat waves on deaths. Univariate and multivariate logistic regression models were performed to estimate the odd ratios (ORs) of risk factors and their 95 % confidence intervals (CIs). Overall, heat waves were related to 24.88 % excess deaths of total nonaccidental deaths and 31.33 % excess deaths of circulatory diseases, with an OR of 16.07 (95 % CI 8.80-23.33) for total nonaccidental deaths and 12.46 (95 % CI 7.39-17.53) for deaths of circulatory diseases. The case-crossover analysis indicated that older people were more likely to die during heat waves (OR = 1.233, 95 % CI 1.076-1.413) and more deaths occurred outside a hospital during heat waves (OR = 1.142, 95 % CI 1.006-1.296). In conclusion, heat waves have caused excess deaths and significantly increased the risk of circulatory deaths. The risk factors identified in our study have implications for public health interventions to reduce heat-related mortality during extreme heat events.

  3. Ionospheric Ion Upflows Associated with the Alfven Wave Heating

    NASA Astrophysics Data System (ADS)

    Song, P.; Tu, J.

    2014-12-01

    In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.

  4. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Rusticucci, Matilde; Kyselý, Jan; Almeira, Gustavo; Lhotka, Ondřej

    2016-05-01

    Heat waves are one of the main concerns related to the impacts of climate change, because their frequency and severity are projected to increase in a future climate. The objectives of this work are to study the long-term variability of heat waves over Argentina and to estimate recurrence probability of the most severe 2008 heat wave in Buenos Aires. We used three definitions of heat waves that were based on (1) daily maximum temperature above the 90th percentile (MaxTHW), (2) daily minimum temperature above the 90th percentile (MinTHW) and (3) both maximum and minimum temperatures above the corresponding 90th percentiles (EHW). The minimum length of a heat wave was 3 days, and the analysis was performed over the October-March period. Decadal values in Buenos Aires experienced clear increases in heat waves according to MinTHW and EHW, with the highest frequency for both in the 2001-2010 decade, but at other stations, combinations of different trends and decadal variability resulted in some cases in a decrease of extreme heat waves. In the north-western part of the country, a strong positive change in the last decade was found, mainly due to the increment in the persistence of MinTHW but also accompanied by increases in MaxTHW. In general, other stations show a clear positive trend in MinTHW and decadal variability in MaxTHW, with the largest EHW cases in the last decade. We also estimated recurrence probability of the longest and most severe heat wave in Buenos Aires (over 1909-2010, according to intensity measured by the cumulative excess of maximum daily temperature above the 90th percentile) that occurred from 3 to 14 November 2008, by means of simulations with a stochastic first-order autoregressive model. The recurrence probability of such long and severe heat wave is small in the present climate but it is likely to increase substantially in the near future even under a moderate warming trend.

  5. Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work

  6. Influence of supplemental heat addition on performance of pilot-scale bioreactor landfills.

    PubMed

    Abdallah, Mohamed; Kennedy, Kevin; Narbaitz, Roberto; Warith, Mostafa; Sartaj, Majid

    2014-02-01

    Implementation of supplemental heat addition as a means of improving bioreactor landfill performance was investigated. The experimental work was conducted with two pilot-scale bioreactor setups (control cell and heated cell) operated for 280 days. Supplemental heat was introduced by recirculating leachate heated up to 35 °C compared to the control which used similar quantities of leachate at room temperature (21 ± 1 °C). The temporal and spatial effects of recirculating heated leachate on the landfill internal temperature were determined, and performance was assessed in terms of leachate parameters and biogas production. Recirculation of heated leachate helped establish balanced anaerobic microbial consortia that led to earlier (70 days) and greater (1.4-fold) organic matter degradation rates, as well as threefold higher methane production compared to the non-heated control. Despite the significant enhancements in performance resulting from supplemental heat addition, heated leachate recirculation did not significantly impact waste temperatures, and the effects were mainly restricted to short periods after recirculation and mostly at the upper layers of the waste. These findings suggest that improvements in bioreactor landfill performance may be achieved without increasing the temperature of the whole in-place waste, but rather more economically by raising the temperature at the leachate/waste interface which is also exposed to the maximum moisture levels within the waste matrix.

  7. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    NASA Astrophysics Data System (ADS)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  8. Techniques that Link Extreme Events to the Large Scale, Applied to California Heat Waves

    NASA Astrophysics Data System (ADS)

    Grotjahn, R.

    2015-12-01

    Understanding the mechanisms how Californian Central Valley (CCV) summer extreme hot spells develop is very important since the events have major impacts on the economy and human safety. Results from a series of CCV heat wave studies will be presented, emphasizing the techniques used. Key larger scale elements are identified statistically that are also consistent with synoptic and dynamic understanding of what must be present during extreme heat. Beyond providing a clear synoptic explanation, these key elements have high predictability, in part because soil moisture has little annual variation in the heavily-irrigated CCV. In turn, the predictability naturally leads to an effective tool to assess climate model simulation of these heat waves in historical and future climate scenarios. (Does the model develop extreme heat for the correct reasons?) Further work identified that these large scale elements arise in two quite different ways: one from expansion southwestward of a pre-existing heat wave in southwest Canada, the other formed in place from parcels traversing the North Pacific. The pre-existing heat wave explains an early result showing correlation between heat waves in Sacramento California, and other locations along the US west coast, including distant Seattle Washington. CCV heat waves can be preceded by unusually strong tropical Indian Ocean and Indonesian convection, this partial link may occur through an Asian subtropical jet wave guide. Another link revealed by diagnostics is a middle and higher latitude source of wave activity in Siberia and East Asia that also leads to the development of the CCV heat wave. This talk will address as many of these results and the tools used to obtain them as is reasonable within the available time.

  9. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  10. Heating of ions by high frequency electromagnetic waves in magnetized plasmas

    SciTech Connect

    Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2013-07-15

    The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be

  11. HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES

    SciTech Connect

    Dumin, Yurii V. E-mail: dumin@izmiran.ru

    2012-05-20

    We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

  12. Design optimization of heat transfer and fluidic devices by using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil

    After the development of additive manufacturing technology in the 1980s, it has found use in many applications like aerospace, automotive, marine, machinery, consumer and electronic applications. In recent time, few researchers have worked on the applications of additive manufacturing for heat transfer and fluidic devices. As the world has seen a drastic increase in population in last decades which have put stress on already scarce energy resources, optimization of energy devices which include energy storing devices, heat transfer devices, energy capturing devices etc. is need for the hour. Design of energy devices is often constrained by manufacturing constraints thus current design of energy devices is not an optimized one. In this research we want to conceptualize, design and manufacture optimized heat transfer and fluidic devices by exploiting the advantages provided by additive manufacturing. We want to benefit from the fact that very intricate geometry and desired surface finish can be obtained by using additive manufacturing. Additionally, we want to compare the efficacy of our designed device with conventional devices. Work on usage of Additive manufacturing for increasing efficiency of heat transfer devices can be found in the literature. We want to extend this approach to other heat transfer devices especially tubes with internal flow. By optimizing the design of energy systems we hope to solve current energy shortage and help conserve energy for future generation. We will also extend the application of additive manufacturing technology to fabricate "device for uniform flow distribution".

  13. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  14. Heating of ions by Alfvén waves via nonresonant interactions.

    PubMed

    Wang, C B; Wu, C S; Yoon, P H

    2006-03-31

    Finite-amplitude intrinsic Alfvén waves exist pervasively in astrophysical and solar-terrestrial environment. It is generally believed that linear wave-particle resonant interaction between thermal protons and Alfvén waves is ineffective when the proton beta is low. However, this Letter demonstrates that the ions can be heated by Alfvén waves via nonresonant nonlinear interaction. Contrary to the customary expectation, it is found that the lower the plasma beta value, the more effective is the heating process. It is also shown that the ion temperature increase is more prominent along perpendicular direction.

  15. Temperature, comfort and pollution levels during heat waves and the role of sea breeze.

    PubMed

    Papanastasiou, Dimitris K; Melas, Dimitris; Bartzanas, Thomas; Kittas, Constantinos

    2010-05-01

    During the summer of 2007 several Greek regions suffered periods of extreme heat, with midday temperatures of over 40 degrees C on several consecutive days. High temperatures were also recorded on the east coast of central Greece, where a complex sea breeze circulation system frequently develops. The more intense events occurred at the end of June and July. The highest temperatures were observed on 26 June and 25 July, while the sea breeze developed only on 25 July. Meteorological data collected at two sites-a coastal urban location and an inland suburban site that is not reached by the sea breeze flow-as well as pollution data collected at the urban site, were analysed in order to investigate the relationship between sea breeze development and the prevailing environmental conditions during these two heat wave events. The analysis revealed that sea breeze development affects temperature and pollution levels at the shoreline significantly, causing a decrease of approximately 4 degrees C from the maximum temperature value and an increase of approximately 30% in peak PM10 levels. Additionally, several stress indices were calculated in order to assess heat comfort conditions at the two sites. It was found that nocturnal comfort levels are determined mainly by the urban heat island effect, the intensity of which reaches up to 8 degrees C, while the applied indices do not demonstrate any significant daytime thermal stress relief due to sea breeze development.

  16. Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary

    2016-10-01

    We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.

  17. Review of tokamak experiments on direct electron heating and current drive with fast waves

    SciTech Connect

    Pinsker, R.I.

    1993-12-01

    Results from tokamak experiments on direct electron interaction with the compressional Alfven wave ({open_quote}fast wave{close_quote}) are reviewed. Experiments aimed at electron heating as well as those in which fast wave electron current drive was investigated are discussed. A distinction is drawn between experiments employing the lower hybrid range of frequencies, where both the lower hybrid wave ({open_quote}slow wave{close_quote}) and the fast wave can propagate in much of the plasma, and those experiments using the fast wave in the range of moderate to high ion cyclotron harmonics, where only the fast wave can penetrate to the plasma core. Most of the early tokamak experiments were in the lower hybrid frequency regime, and the observed electron interaction appeared to be very similar to that obtained with the slow wave at the same frequency. In particular, electron interaction with the fast wave was observed only below a density limit nearly the same as the well known slow wave density limit. In the more recent lower frequency fast wave experiments, electron interaction (heating and current drive) is observed at the center of the discharge, where slow waves are not present.

  18. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  19. Forest response to heat waves at the dry timberline

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (<300 mm annual rainfall) we observe adjustments that improve carbon-, nitrogen- and water- use efficiencies. An important aspect in the ecosystem sustainability is its ability to rapidly recover from extreme conditions, both at the short-term and the seasonal scale. A remarkable example is provided by the episodes (usually 2-4 days) of Easterly dry and hot air that are common in spring (so-called "Hamsin" events). During these events air temperature increases and relative humidity decreases within hours by 10˚C and 40%, respectively. Net ecosystem CO2 exchange (NEE) and photosynthesis (GPP) sharply decline, predominantly in response to the drastic increase in vapor pressure deficit (up to 6kPa), but then show full recovery to the pre-stress values within 24 h past the event. Similarly, following 5-6 months of seasonal drought, the forest resumes high photosynthetic activity within ~5 days following the first rain episode of about 10 mm in the fall. We show that these transient responses are useful in partitioning between the ecosystem responses to short-term atmosphere-driven stress and longer-term soil moisture stress. An ecosystem model (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  20. Generation of Acoustic-Gravity Waves in Ionospheric HF Heating Experiments: Simulating Large-Scale Natural Heat Sources

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave

  1. [Frequency dependence of heating of human skin exposed to millimeter waves].

    PubMed

    Alekseev, S I; Ziskin, M S; Fesenko, E E

    2012-01-01

    In this paper we studied experimentally the frequency dependence of heating of human skin exposed to millimeter waves. Theoretical modeling of obtained data was performed using the hybrid bio-heat equation. It was found that the skin heating and SAR increased with increasing the exposure frequency. The frequency dependence of heating was entirely resulted from that of reflection from the skin. Unlike temperature, the frequency dependence of the SAR was due to the increased absorption of millimeter wave energy within the thin surface layer of the skin.

  2. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    SciTech Connect

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; Taylor, G.; Wilson, J. R.

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is driving these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.

  3. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is drivingmore » these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.« less

  4. Alfvén Wave Heating of the Solar Chromosphere: 1.5D Models

    NASA Astrophysics Data System (ADS)

    Arber, T. D.; Brady, C. S.; Shelyag, S.

    2016-02-01

    Physical processes that may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modeling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Alfvén waves through Pedersen resistivity. However, this is unlikely to be sufficient to balance radiative and conductive losses unless unrealistic field strengths or photospheric velocities are used. The precise heating profile is determined by the input driving spectrum, since in 1.5D there is no possibility of Alfvén wave turbulence. The inclusion of the Hall term does not affect the heating rates. If plasma compressibility is taken into account, shocks are produced through the ponderomotive coupling of Alfvén waves to slow modes and shock heating dominates the resistive dissipation. In 1.5D shock coalescence amplifies the effects of shocks, and for compressible simulations with realistic driver spectra, the heating rate exceeds that required to match radiative and conductive losses. Thus, while the heating rates for these 1.5D simulations are an overestimate, they do show that ponderomotive coupling of Alfvén waves to sound waves is more important in chromospheric heating than Pedersen dissipation through ion-neutral collisions.

  5. ALFVÉN WAVE HEATING OF THE SOLAR CHROMOSPHERE: 1.5D MODELS

    SciTech Connect

    Arber, T. D.; Brady, C. S.; Shelyag, S.

    2016-02-01

    Physical processes that may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modeling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Alfvén waves through Pedersen resistivity. However, this is unlikely to be sufficient to balance radiative and conductive losses unless unrealistic field strengths or photospheric velocities are used. The precise heating profile is determined by the input driving spectrum, since in 1.5D there is no possibility of Alfvén wave turbulence. The inclusion of the Hall term does not affect the heating rates. If plasma compressibility is taken into account, shocks are produced through the ponderomotive coupling of Alfvén waves to slow modes and shock heating dominates the resistive dissipation. In 1.5D shock coalescence amplifies the effects of shocks, and for compressible simulations with realistic driver spectra, the heating rate exceeds that required to match radiative and conductive losses. Thus, while the heating rates for these 1.5D simulations are an overestimate, they do show that ponderomotive coupling of Alfvén waves to sound waves is more important in chromospheric heating than Pedersen dissipation through ion–neutral collisions.

  6. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    SciTech Connect

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.

  7. Advances in High Harmonic Fast Wave Heating of NSTX H-mode Plasmas

    SciTech Connect

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.; Bonoli, P.; Chen, Guangye; Green, David L; Harvey, R. W.; Hosea, J.; Jaeger, Erwin Frederick; Kaye, S.; LeBlanc, B; Maingi, Rajesh; Phillips, Cynthia; Podesta, M.; Taylor, G.; Wilgen, John B; Wilson, J. R.

    2010-01-01

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths and during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal

  8. Effects of mass addition on blunt-body boundary-layer transition and heat transfer

    NASA Technical Reports Server (NTRS)

    Kaattari, G. E.

    1978-01-01

    The model bodies tested at Mach number 7.32 were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental data consisted of heat transfer measurements from which boundary layer transitions were deduced. The data verified various applicable boundary layer codes in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes.

  9. Temperature minimum heating in solar flares by resistive dissipation of Alfven waves

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Sturrock, P. A.

    1981-01-01

    The possibility that the strong heating produced at temperature-minimum levels during solar flares is due to resistive dissipation of Alfven waves generated by the primary energy release process in the corona is studied. It is shown how, for suitable parameters, these waves can carry their energy essentially undamped into the temperature-minimum layers and can then produce a degree of heating consistent with observations.

  10. Long-term statistical analysis on hot days and heat wave in Mongolia

    NASA Astrophysics Data System (ADS)

    Erdenebat, E.; Sato, T.

    2014-12-01

    In this study, 40 years of hot day and heat wave in Mongolia is investigated. Hot days carry difficulties and losses for Mongolian economy and daily life, such as people and livestock fell unfavorable (ill affected), agriculture losses, drying small rivers and lakes, causing steppe fires and etc. The hot day is one of the severe weather extreme in Mongolia, and their frequency and intensity have been increasing and becoming more severe. Intensive and longer-lasted hot days break out a heat wave event. Therefore, a monitoring of hot day and heat wave's occurrence and its long-term change are in nationwide scale. Longer prolonged heat wave may one of the causes for drought initiation while occurrence of drought has noticeably increased since last decade, which it is consistent with the heat wave occurrence. We analyzed maximum air temperature and precipitation data at 12 stations obtained from National Agency for Meteorology and Environment Monitoring (NAMEM) of Mongolia. Definition of the hot day is calculated by each station from reference period (1971-2000) and the heat wave is defined by when the daily maximum air temperature is 5K higher than the daily climatology of the reference period and lasted more than 4 consecutive days. Spatial distribution of long-term mean heat wave occurrence suggests that two areas, in Siberia and Mongolia, show high frequency. Those two areas are separated each other. Time series analysis indicates that the frequency kept similar level in 1970s and 1980s. In last two decade, however, heat wave was increased in central Mongolia in 1990s and northern half of Mongolia in 2000s as well as Western and Eastern Siberia.

  11. Mapping heat wave risk in the UK: Proactive planning for the 2050s

    NASA Astrophysics Data System (ADS)

    Oven, Katie; Reaney, Sim; Ohlemüller, Ralf; Nodwell, Sarah; Curtis, Sarah; Riva, Mylène; Dunn, Christine; Val, Dimitri; Burkhard, Roland

    2010-05-01

    Climate change projections suggest an increased frequency of heat waves in the UK over the coming decades. Such extreme events pose a serious threat to human health and are likely to impact upon health and social care systems and the infrastructures supporting them. This stress will result from both increased demands upon healthcare services and the ability of the infrastructure to cope, such as sufficient climate control in hospitals. Certain sectors of the population, such as older people, have an increased susceptibility to heat waves and hence are the focus of this research. There is no universal definition of a heat wave, reflecting the acclimatisation of a population. Based on a review of the literature, this research therefore sets out a series of working definitions of a heat wave in the UK context from a human health perspective. Drawing on these definitions, the UK heat wave hazard was mapped for the 2050s (2040-2069) using daily minimum and maximum temperature data derived from the UKCP09 Weather Generator at 50 km resolution. The analysis was undertaken for the three different greenhouse gas emissions scenarios within UKCP09 (low, medium and high). Hot spots of increased heat wave risk were identified and comparisons made between the various model outputs. These data were then combined with demographic forecasts for the 2050s enabling the identification of areas with an ageing population. Results are presented showing the scale of the projected change in heat wave risk across the UK and the location of older people. These results will be used in proactive planning to help policymakers and practitioners respond more appropriately to the needs of vulnerable populations in the coming decades. Key words: climate change; heat wave; risk mapping; vulnerability; risk reduction.

  12. A Protocol to Assess Insect Resistance to Heat Waves, Applied to Bumblebees (Bombus Latreille, 1802)

    PubMed Central

    Martinet, Baptiste; Lecocq, Thomas; Smet, Jérémy; Rasmont, Pierre

    2015-01-01

    Insect decline results from numerous interacting factors including climate change. One of the major phenomena related to climate change is the increase of the frequency of extreme events such as heat waves. Since heat waves are suspected to dramatically increase insect mortality, there is an urgent need to assess their potential impact. Here, we determined and compared the resistance to heat waves of insects under hyperthermic stress through their time before heat stupor (THS) when they are exposed to an extreme temperature (40°C). For this, we used a new experimental standardised device available in the field or in locations close to the field collecting sites. We applied this approach on different Arctic, Boreo-Alpine and Widespread bumblebee species in order to predict consequences of heat waves. Our results show a heat resistance gradient: the heat stress resistance of species with a centred arctic distribution is weaker than the heat resistance of the Boreo-Alpine species with a larger distribution which is itself lower than the heat stress resistance of the ubiquitous species. PMID:25738862

  13. Whistler Mode Waves and the Electron Heat Flux in the Solar Wind: Cluster Observations

    NASA Astrophysics Data System (ADS)

    Lacombe, C.; Alexandrova, O.; Matteini, L.; Santolík, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; de Conchy, Y.; Maksimovic, M.

    2014-11-01

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ~10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β e∥ is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β e∥ >= 3, in slow wind at 1 AU.

  14. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere.

  15. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray On Foam Insulation (SOFI) and the Acreage Heat Tiles

    NASA Astrophysics Data System (ADS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2006-03-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external fuel tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  16. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  17. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  18. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  19. Proper use of sludge-control additives in residential heating oil systems

    SciTech Connect

    Tatnall, R.E.

    1995-04-01

    Discussed are various aspects of heating oil `sludge`: How it forms, typical problems it causes, how sludge-control additives work, what should be expected of them, and what happens in a contaminated system when such additives are used. Test results from laboratory and field experiments demonstrate that performance of commercially available additives varies greatly. The concept of `end-of-the-line` treatment is described and compared with bulk fuel treatment. A procedure is described whereby a retailer can test additives himself, and thus determine just what those additives will or will not do for his business. Finally, the economics of an effective treatment program are outlined.

  20. Anomalous heating of the polar E region by unstable plasma waves. II - Theory

    NASA Technical Reports Server (NTRS)

    St.-Maurice, J. P.; Schlegel, K.; Banks, P. M.

    1981-01-01

    It is found that anomalous electron temperatures in the disturbed high-latitude E region can be quantitatively explained in terms of heating by unstable plasma waves. The electron temperatures at 110 km have been measured to be as high as 1500 K instead of the expected value of about 300 K. It is shown that by using quasi-linear theory there is an ample source of heat in the unstable waves and that the measured electron temperature profiles have a shape very similar to what is expected from plasma wave heating by the modified two-stream instability. It is found that there is even more heating going to the ion gas, but that the resulting effect on the ion temperature may be difficult to measure. The best estimate of the wave heating rates leads to the conclusion that wave heating can be as much as 50% of the Joule heating for dc electric field strengths of the order of 45 mV/m or greater.

  1. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  2. The 1994 heat wave in South Korea: mortality impacts and recurrence probability in a changing climate

    NASA Astrophysics Data System (ADS)

    Kysely, J.; Kim, J.

    2010-03-01

    The study deals with mortality impacts of the July-August 1994 heat wave in the population of South Korea, including the megacity of Seoul (with the population exceeding 10 million for the city and 20 million for the metropolitan area), and estimates recurrence probability of the heat wave in a changing climate in terms of simulations of daily temperature series with a stochastic model. The 1994 heat wave is found exceptional with respect to both climatological characteristics and the mortality effects: significantly elevated mortality occurred in all population groups, including children up to 14 years of age, and the total death toll exceeded 3000 in the Korean population, which ranks the 1994 heat wave among the worst weather-related disasters in East Asia. The estimate represents net excess mortality as no mortality displacement effect appeared. A comparison with other documented natural disasters shows that the death toll of the heat wave was much higher than those of the most disastrous floodings and typhoons over Korean Peninsula in the 20th century. The mortality response was stronger in males than females although males are found to be less vulnerable during average heat waves. A climatological analysis reveals that the July-August 1994 heat wave might be considered an extremely rare event with a return period in the order of hundreds of years if stationarity of temperature time series is assumed. However, under a more realistic assumption of gradual warming related to climate change, recurrence probability of an event analogous to the 1994 heat wave sharply rises for near-future time horizons. If warming of 0.04°C/year is assumed over 2001-2060, the recurrence interval of a very long spell of days with temperature exceeding a high threshold (as in the 1994 heat wave) is estimated to decrease to around 40 (10) years in the 2021-2030 (2041-2050) decade. This emphasizes the need for setting up an efficient heat-watch-warning system in this area in order to

  3. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China

    PubMed Central

    2013-01-01

    Background In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. Methods A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. Results This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed <4, 4–7, and >7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing <4 adaptation behaviors during heat waves had the highest risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). Conclusions There is a large room for improving health

  4. Effects of Simulated Heat Waves with Strong Sudden Cooling Weather on ApoE Knockout Mice.

    PubMed

    Zhang, Shuyu; Kuang, Zhengzhong; Zhang, Xiakun

    2015-05-26

    This study analyzes the mechanism of influence of heat waves with strong sudden cooling on cardiovascular diseases (CVD) in ApoE-/- mice. The process of heat waves with strong sudden cooling was simulated with a TEM1880 meteorological-environment simulation chamber according to the data obtained at 5 a.m. of 19 June 2006 to 11 p.m. of 22 June 2006. Forty-eight ApoE-/- mice were divided into six blocks based on their weight. Two mice from each block were randomly assigned to control, heat wave, temperature drop, and rewarming temperature groups. The experimental groups were transferred into the climate simulator chamber for exposure to the simulated heat wave process with strong sudden temperature drop. After 55, 59, and 75 h of exposure, the experimental groups were successively removed from the chamber to monitor physiological indicators. Blood samples were collected by decollation, and the hearts were harvested in all groups. The levels of heat stress factors (HSP60, SOD, TNF, sICAM-1, HIF-1α), cold stress factors (NE, EPI), vasoconstrictor factors (ANGII, ET-1, NO), and four items of blood lipid (TC, TG, HDL-C, and LDL-C) were measured in each ApoE-/- mouse. Results showed that the heat waves increased the levels of heat stress factors except SOD decreased, and decreased the levels of vasoconstrictor factors and blood lipid factors except TC increased. The strong sudden temperature drop in the heat wave process increased the levels of cold stress factors, vasoconstrictor factors and four blood lipid items (except the level of HDL-C which decreased) and decreased the levels of heat stress factors (except the level of SOD which increased). The analysis showed that heat waves could enhance atherosclerosis of ApoE-/- mice. The strong sudden temperature drop during the heat wave process increased the plasma concentrations of NE and ANGII, which indicates SNS activation, and resulted in increased blood pressure. NE and ANGII are vasoconstrictors involved in systemic

  5. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    SciTech Connect

    Carter, William G.; Rios, Orlando; Akers, Ronald R.; Morrison, William A.

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  6. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  7. Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER

    SciTech Connect

    J.C. Hosea, R.E. Bell, E. Feibush, R.W. Harvey, E.F. Jaeger, B.P LeBlanc, R. Maingi, C.K. Phillips, L. Roquemore, P.M. Ryan, G. Taylor, K. Tritz, E.J. Valeo, J. Wilgen, J.R. Wilson, and the NSTX Team

    2009-07-21

    The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (nonset ∝ B*k|| 2/ω). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower kφ (- 8 m-1 relative to 13 m-1) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off layer (SOL) in the vicinity of the antenna and along the magnetic field lines to the lower outer divertor plate. Large type I ELMs, which are observed at both kφ values, appear after antenna arcs caused by precursor blobs, low level ELMs, or dust. For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms time scale, which indicates that the time derivative of the reflection coefficient can be used to discriminate between arcs and ELMs.

  8. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  9. Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers

    NASA Astrophysics Data System (ADS)

    Sellitto, A.; Tibullo, V.; Dong, Y.

    2017-03-01

    By means of a nonlinear generalization of the Maxwell-Cattaneo-Vernotte equation, on theoretical grounds we investigate how nonlinear effects may influence the propagation of heat waves in isotropic thin layers which are not laterally isolated from the external environment. A comparison with the approach of the Thermomass Theory is made as well.

  10. A new perspective on the 1930s mega-heat waves across central United States

    NASA Astrophysics Data System (ADS)

    Cowan, Tim; Hegerl, Gabi

    2016-04-01

    The unprecedented hot and dry conditions that plagued contiguous United States during the 1930s caused widespread devastation for many local communities and severely dented the emerging economy. The heat extremes experienced during the aptly named Dust Bowl decade were not isolated incidences, but part of a tendency towards warm summers over the central United States in the early 1930s, and peaked in the boreal summer 1936. Using high-quality daily maximum and minimum temperature observations from more than 880 Global Historical Climate Network stations across the United States and southern Canada, we assess the record breaking heat waves in the 1930s Dust Bowl decade. A comparison is made to more recent heat waves that have occurred during the latter half of the 20th century (i.e., in a warming world), both averaged over selected years and across decades. We further test the ability of coupled climate models to simulate mega-heat waves (i.e. most extreme events) across the United States in a pre-industrial climate without the impact of any long-term anthropogenic warming. Well-established heat wave metrics based on the temperature percentile threshold exceedances over three or more consecutive days are used to describe variations in the frequency, duration, amplitude and timing of the events. Casual factors such as drought severity/soil moisture deficits in the lead up to the heat waves (interannual), as well as the concurrent synoptic conditions (interdiurnal) and variability in Pacific and Atlantic sea surface temperatures (decadal) are also investigated. Results suggest that while each heat wave summer in the 1930s exhibited quite unique characteristics in terms of their timing, duration, amplitude, and regional clustering, a common factor in the Dust Bowl decade was the high number of consecutive dry seasons, as measured by drought indicators such as the Palmer Drought Severity and Standardised Precipitation indices, that preceded the mega-heat waves. This

  11. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  12. Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmasa)

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Ahern, S. D.; Barrett, R. F.; Batchelor, D. B.; Carter, M. D.; D'Azevedo, E. F.; Moore, R. D.; Harvey, R. W.; Myra, J. R.; D'Ippolito, D. A.; Dumont, R. J.; Phillips, C. K.; Okuda, H.; Smithe, D. N.; Bonoli, P. T.; Wright, J. C.; Choi, M.

    2006-05-01

    Magnetically confined plasmas can contain significant concentrations of nonthermal plasma particles arising from fusion reactions, neutral beam injection, and wave-driven diffusion in velocity space. Initial studies in one-dimensional and experimental results show that nonthermal energetic ions can significantly affect wave propagation and heating in the ion cyclotron range of frequencies. In addition, these ions can absorb power at high harmonics of the cyclotron frequency where conventional two-dimensional global-wave models are not valid. In this work, the all-orders global-wave solver AORSA [E. F. Jaeger et al., Phys. Rev. Lett. 90, 195001 (2003)] is generalized to treat non-Maxwellian velocity distributions. Quasilinear diffusion coefficients are derived directly from the wave fields and used to calculate energetic ion velocity distributions with the CQL3D Fokker-Planck code [R. W. Harvey and M. G. McCoy, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992 (USDOC NTIS Document No. DE93002962)]. For comparison, the quasilinear coefficients can be calculated numerically by integrating the Lorentz force equations along particle orbits. Self-consistency between the wave electric field and resonant ion distribution function is achieved by iterating between the global-wave and Fokker-Planck solutions.

  13. A Modeling Study of the On-Going Drought and Heat Wave over the United States

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Wang, H.; Koster, R.; Suarez, M.

    2012-01-01

    Ensembles of AGCM experiments have been conducted to examine the causes of the on-going drought and heat wave affecting much of the United States. The results show that the drought and hot temperatures that have been especially severe over Texas and parts of Mexico since late 2010 are the result of a combination of SST forcing from both the tropical Pacific and the tropical Atlantic, with the latter playing a particularly important role during later half of the summer of 2011, and the warm SSTs off the East Coast contributing to the warm conditions along the East Coast. An extension of the model simulations into the summer of 2012 suggests that the warm conditions are again primarily driven by SST forcing - despite the return of the tropical Pacific to neutral conditions. The results of additional experiments currently being conducted to separate the influences of the 2012 SST anomalies in the various ocean basins will be discussed.

  14. Acceleration and heating of two-fluid solar wind by Alfven waves

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1994-01-01

    Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.

  15. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  16. The influence of waves and turbulence on the heat flux at the surface of natural water bodies.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, W. Kendall

    2005-11-01

    The top few meters of the ocean play a key role in the in the surface fluxes of momentum, gas, heat and mass. The magnitude of these fluxes is strongly influenced by the dynamics of both air and water boundary layers. We present results of several field experiments on the kinematics of small-scale surface turbulence and surface waves, their influence on the surface skin layer, and the resulting transfers of heat across the diffusive layer at the surface of the ocean. A variety of optical and electro-mechanical instruments are used to measure the evolution of the surface velocity and temperature fields. These include visible and infrared imaging of the surface, thermal surface velocimetry, and fast-response thermometry. We show that at low wind speed, it is the small-scale turbulence at the surface of the ocean, rather than breaking waves that most influence and disrupt the surface skin layer. We find that at the low wind speed surface turbulence correlates with the surface heat flux. In addition, we find that and that the surface wave field modulates a component of the total air-sea heat flux.

  17. How hard they hit? Perception, adaptation and public health implications of heat waves in urban and peri-urban Pakistan.

    PubMed

    Rauf, Sara; Bakhsh, Khuda; Abbas, Azhar; Hassan, Sarfraz; Ali, Asghar; Kächele, Harald

    2017-03-10

    Heat waves threaten human health given the fast changing climatic scenarios in the recent past. Adaptation to heat waves would take place when people perceive their impacts based on their knowledge. The present study examines perception level and its determinants resulting in adaptation to heat waves in Pakistan. The study used cross-sectional data from urban and peri-urban respondents of Faisalabad District. The study employs a health belief model to assess risk perception among the respondents. Logistic model is used to determine factors affecting level of knowledge, perception and adaptation to heat waves. Around 30% of peri-urban respondents have a low level of knowledge about the fatal impacts of heat waves. Risk perception of heat waves is very low among urban (57%) and peri-urban (66%) respondents. Households' knowledge on heat waves is significantly related to age, gender, education, wealth and access to health services. Determinants of perception include knowledge of heat waves, age and joint effect of marital status and knowledge while income level, family size, urban/peri-urban background, perceived barriers, perceived benefits and cues to action significantly affect adaptation to heat waves. To reduce deadly health impacts, mass awareness campaigns are needed to build perception and improve adaptation to heat waves.

  18. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  19. Changes in heat waves indices in Romania over the period 1961-2015

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina

    2016-11-01

    In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.

  20. Long term climatology and trends of heat and cold waves over southern Bihar, India

    NASA Astrophysics Data System (ADS)

    Mahdi, S. Sheraz; Dhekale, B. S.

    2016-12-01

    The purpose of this paper is to analyse the trends and variability in extreme temperature indices. We examined climatological distribution of heat and cold waves of two important agro-climatic zones (South Bihar Alluvial Zone-IIIA and B), which is part of the middle Indo-Gangetic Basin and comprising 17 densely populated (1108 persons/km 2) districts of Bihar state. We used series of daily maximum and minimum temperature data from 1969 to 2013 of seven stations to calculate temperature indices, from which the trend, occurrence, duration and severity of heat and cold waves were estimated. Results revealed that, in a period of 45 years, zone-IIIA and B has experienced 251/182 and 337/140 average number of heat and cold events, respectively. Although the zone-IIIA on average is experiencing ≥8 heat and cold wave days per season, both these high frequency temperature extremes are decreasing at the rate 0.15 and 0.17 per year, respectively, with significance at 95% confidence level. Zone-IIIB on average is experiencing ≤5 heat and cold days per season, but heat waves have been found increasing at the rate 0.11 per year, whereas, a non-significant decreasing rate of 0.04/year was observed in cold waves. The study also inferred that heat waves of the month of May in zone-IIIA and of June in zone-IIIB are more frequent, hotter and longer than other months of hot weather period under study, whereas, the cold waves of month January are more frequent and longer, in both zones.

  1. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  2. Climate change and heat waves in Paris and London metropolitan areas

    NASA Astrophysics Data System (ADS)

    Dousset, B.

    2010-12-01

    Summer warming trends in Western and Central Europe and in Mediterranean regions are increasing the incidence, intensity, and duration of heat waves. Those extreme events are especially deadly in large cities, owing to high population densities, surface characteristics, heat island effects, anthropogenic heat and pollutants. In August 2003, a persistent anticyclone over Western Europe generated a heat wave of exceptional strength and duration with an estimated death toll of 70,000, including 4678 in the Paris region. A series of NOAA-AVHRR satellite thermal images over the Paris and London metropolitan areas, were used to analyze Land Surface Temperature (LST) and its related mortality. In the Paris region, LSTs were merged with land use and cover data to identify risk areas, and thermal indicators were produced at the addresses of ~ 500 elderly people to assess diurnal heat exposure. Results indicate: (i) contrasting night time and daytime heat island patterns related to land use and surface characteristics; (ii) the relation between night-time heat islands and heat waves intensity; (iii) the impact of elevated minimal temperatures on excess mortality, with a 0.5 °C increase doubling the risk of death, (in the temperature range of the heatwave); iv) the correlation between the spatial distribution of highest night-time LSTs and that of highest mortality ratios; and v) the significant impact of urban parks in the partitioning between latent and sensible surface heat fluxes, despite a prior warm and dry spring. Near-real time satellite monitoring of heat waves in urban areas improve our understanding of the LST processes and spatial variability, and of the related heat stress and mortality. These observations provide criteria for warning systems, contingency policies and planning, and climate adaptation and mitigation strategies.

  3. Coronal Heating by Surface Alfvén Wave Damping: Implementation in a Global Magnetohydrodynamics Model of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Evans, R. M.; Opher, M.; Oran, R.; van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vásquez, A.

    2012-09-01

    The heating and acceleration of the solar wind is an active area of research. Alfvén waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfvén wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfvén wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfvén speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfvén speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  4. Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies

    NASA Astrophysics Data System (ADS)

    Reynolds, R. J.; Haffner, L. M.; Tufte, S. L.

    1999-11-01

    Spatial variations of the [S II]/Hα and [N II]/Hα line intensity ratios observed in the gaseous halo of the Milky Way and other galaxies are inconsistent with pure photoionization models. They appear to require a supplemental heating mechanism that increases the electron temperature at low densities, ne. This would imply that in addition to photoionization, which has a heating rate per unit volume proportional to n2e, there is another source of heat with a rate per unit volume proportional to a lower power of ne. One possible mechanism is the dissipation of interstellar plasma turbulence, which, according to Minter & Spangler, heats the ionized interstellar medium in the Milky Way at a rate of ~1×10-25ne ergs cm-3 s-1. If such a source were present, it would dominate over photoionization heating in regions where ne<~0.1 cm-3, producing the observed increases in the [S II]/Hα and [N II]/Hα intensity ratios at large distances from the galactic midplane as well as accounting for the constancy of [S II]/[N II], which is not explained by pure photoionization. Other supplemental heating sources, such as magnetic reconnection, cosmic rays, or photoelectric emission from small grains, could also account for these observations, provided they supply ~10-5 ergs s-1 per square centimeter of the Galactic disk to the warm ionized medium.

  5. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. Solar assisted heat pumps: A possible wave of the future

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  8. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  9. Differences in the effects of solution additives on heat- and refolding-induced aggregation.

    PubMed

    Hamada, Hiroyuki; Takahashi, Ryouta; Noguchi, Takumi; Shiraki, Kentaro

    2008-01-01

    Although a number of low-molecular-weight additives have been developed to suppress protein aggregation, it is unclear whether these aggregation suppressors affect various aggregation processes in the same manner. In this study, we evaluated the differences in the effect of solution additives on heat- and refolding-induced aggregation in the presence of guanidine (Gdn), arginine (Arg), and spermidine (Spd), and the comparable analysis showed the following differences: (i) Gdn did not suppress thermal aggregation but increased the yield of oxidative refolding. (ii) Spd showed the highest effect for heat-induced aggregation suppression among tested compounds, although it promoted aggregation in oxidative refolding. (iii) Arg was effective for both aggregation processes. Lysozyme solubility assay and thermal unfolding experiment showed that Spd was preferentially excluded from native lysozyme and Arg and Gdn solubilized the model state of intermediates during oxidative refolding. This preference of additives to protein surfaces is the cause of the different effect on aggregation suppression.

  10. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave

    PubMed Central

    Azhar, Gulrez Shah; Mavalankar, Dileep; Nori-Sarma, Amruta; Rajiva, Ajit; Dutta, Priya; Jaiswal, Anjali; Sheffield, Perry; Knowlton, Kim; Hess, Jeremy J.; Azhar, Gulrez Shah; Deol, Bhaskar; Bhaskar, Priya Shekhar; Hess, Jeremy; Jaiswal, Anjali; Khosla, Radhika; Knowlton, Kim; Mavalankar, Mavalankar; Rajiva, Ajit; Sarma, Amruta; Sheffield, Perry

    2014-01-01

    Introduction In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8°C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality. Methods We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1–31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations. Results The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest “summer” months of April (r = 0.69, p<0.001), May (r = 0.77, p<0.001), and June (r = 0.39, p<0.05). During a period of more intense heat (May 19–25, 2010), mortality rate ratios were 1.76 [95% CI 1.67–1.83, p<0.001] and 2.12 [95% CI 2.03–2.21] applying reference periods (May 12–18, 2010) from various years. Conclusion The May 2010 heat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot

  11. Plans for Electron Bernstein Wave and Electron Cyclotron Heating in NSTX

    SciTech Connect

    Taylor, G.; Diem, S. J.; Ellis, R. A.; Fredd, E. H.; Greenough, N. L.; Hosea, J. C.; Bigelow, T. S.; Caughman, J. B.; Rasmussen, D. A.; Ryan, P. M.; Wilgen, J. B.; Ershov, N. M.; Harvey, R. W.; Smirnov, A. P.; Preinhaelter, J.; Urban, J.; Ram, A. K.

    2007-09-28

    A 200 kW, 28 GHz system for electron cyclotron heating (ECH) and electron Bernstein wave heating (EBWH) is being installed on NSTX to assist solenoid-free startup, high harmonic fast wave heated current ramp up, and to support initial EBW coupling and heating studies. This system will provide on-axis second harmonic ECH/EBWH in NSTX. Fundamental on-axis heating may also be possible at 15.3 GHz by operating the gyrotron in a lower order TE01 cavity mode. Sufficient power supply capability will be provided to provide up to 1 MW of gyrotron power for future proof-of-principle EBWH experiments on NSTX. Initial modeling of an NSTX startup discharge with 28 GHz ECH is presented.

  12. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  13. Was there a basis for anticipating the 2010 Russian heat wave?

    NASA Astrophysics Data System (ADS)

    Dole, Randall; Hoerling, Martin; Perlwitz, Judith; Eischeid, Jon; Pegion, Philip; Zhang, Tao; Quan, Xiao-Wei; Xu, Taiyi; Murray, Donald

    2011-03-01

    The 2010 summer heat wave in western Russia was extraordinary, with the region experiencing the warmest July since at least 1880 and numerous locations setting all-time maximum temperature records. This study explores whether early warning could have been provided through knowledge of natural and human-caused climate forcings. Model simulations and observational data are used to determine the impact of observed sea surface temperatures (SSTs), sea ice conditions and greenhouse gas concentrations. Analysis of forced model simulations indicates that neither human influences nor other slowly evolving ocean boundary conditions contributed substantially to the magnitude of this heat wave. They also provide evidence that such an intense event could be produced through natural variability alone. Analysis of observations indicate that this heat wave was mainly due to internal atmospheric dynamical processes that produced and maintained a strong and long-lived blocking event, and that similar atmospheric patterns have occurred with prior heat waves in this region. We conclude that the intense 2010 Russian heat wave was mainly due to natural internal atmospheric variability. Slowly varying boundary conditions that could have provided predictability and the potential for early warning did not appear to play an appreciable role in this event.

  14. Mapping Mortality and Geophysical Features During a Heat Wave in Los Angeles County, California

    NASA Astrophysics Data System (ADS)

    Joe, L.

    2011-12-01

    With climate change, heat waves are predicted to increase in intensity and duration, particularly in areas where they have occurred previously. Human mortality increases during heat waves, and that increase may vary by community due to a variety of factors including differing geophysical and built environment features. In July 2006, California experienced a statewide heat wave that was unprecedented in duration, lasting 10 days in much of the state, and longer in some areas. To explore heat wave health impacts by community, we focused on Los Angeles County, selected for its urban density and diverse social and geographic landscapes. We calculated the ratio of deaths during the heat wave period (July 15 - Aug 1) to deaths in reference days from the non-heat wave period in the same summer. The raw and empirical Bayes smoothed rate ratios were mapped by census tract (average population size approximately 5000). We then used spatial scanning procedures to identify census tract clusters of high and low mortality. Onto the heat mortality maps, we overlaid such geographic and built environment characteristics as elevation, recordings from temperature monitors, building climate zone boundaries, and air conditioning use. In this presentation, we will discuss the potential relationship between mortality and geophysical and built environment features. In the future, we will expand this analysis statewide and share our findings with local stakeholders to explore factors which may make their communities more resilient (low health impact) or vulnerable (high health impact). Ultimately, knowledge of vulnerability and resiliency factors may inform future applied research and climate change mitigation and adaptation strategies. Authors: Lauren Joe, Daniel Smith, Svetlana Smorodinksy, Sumi Hoshiko, Martha Harnly Environmental Health Investigations Branch, California Department of Public Health

  15. HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.

    2011-07-20

    A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.

  16. Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves

    PubMed Central

    Lindemann, Ulrich; Stotz, Anja; Beyer, Nina; Oksa, Juha; Skelton, Dawn A.; Becker, Clemens; Rapp, Kilian; Klenk, Jochen

    2017-01-01

    Indoor temperature is relevant with regard to mortality and heat-related self-perceived health problems. The aim of this study was to describe the association between indoor temperature and physical performance in older adults. Eighty-one older adults (84% women, mean age 80.9 years, standard deviation 6.53) were visited every four weeks from May to October 2015 and additionally during two heat waves in July and August 2015. Indoor temperature, habitual gait speed, chair-rise performance and balance were assessed. Baseline assessment of gait speed was used to create two subgroups (lower versus higher gait speed) based on frailty criteria. The strongest effect of increasing temperature on habitual gait speed was observed in the subgroup of adults with higher gait speed (−0.087 m/s per increase of 10 °C; 95% confidence interval (CI): −0.136; −0.038). The strongest effects on timed chair-rise and balance performance were observed in the subgroup of adults with lower gait speed (2.03 s per increase of 10 °C (95% CI: 0.79; 3.28) and −3.92 s per increase of 10 °C (95% CI: −7.31; −0.52), respectively). Comparing results of physical performance in absentia of a heat wave and during a heat wave, habitual gait speed was negatively affected by heat in the total group and subgroup of adults with higher gait speed, chair-rise performance was negatively affected in all groups and balance was not affected. The study provides arguments for exercise interventions in general for older adults, because a better physical fitness might alleviate impediments of physical capacity and might provide resources for adequate adaptation in older adults during heat stress. PMID:28216585

  17. Stability analysis of an interactive system of wave equation and heat equation with memory

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong

    2014-10-01

    This paper is devoted to the stability analysis of an interaction system comprised of a wave equation and a heat equation with memory, where the hereditary heat conduction is due to Gurtin-Pipkin law or Coleman-Gurtin law. First, we show the strong asymptotic stability of solutions to this system. Then, the exponential stability of the interaction system is obtained when the hereditary heat conduction is of Gurtin-Pipkin type. Further, we show the lack of uniform decay of the interaction system when the heat conduction law is of Coleman-Gurtin type.

  18. Role of Parallel and Oblique Ion-Cyclotron Waves in Heating Ions in an Inhomogeneous Expanding Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Ozak, N. O.; Vinas, A. F.

    2014-12-01

    In-situ observations of fast solar wind streams at distances of 0.29 AU and beyond by Helios and recently by MESSENGER, and at ~1 AU by STEREO, ACE, and Wind spacecraft provide direct evidence for the presence of turbulent Alfvén wave spectrum and of left-hand polarized ion-cyclotron waves as well as He++ - proton drift in the solar wind plasma. The waves and the super-Alfvénic drift can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Measurements indicate that proton velocity distributions are generally non-Maxwellian with evidence for beams, while remote sensing observations of coronal holes have shown that heavy ions are hotter than protons with a temperature anisotropy greater than one (Ti,perp> Ti,||). In addition to the anisotropy, it is expected that the solar wind will be inhomogeneous on decreasing scales approaching the Sun. Here we use a 2.5 D hybrid code and extend previous work to study the heating of solar wind ions (H+, He+) in an inhomogeneous plasma background. We explore the effects of an initial ion drift and of a turbulent wave spectrum on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background solar wind. Using the 2D hybrid model we find that inhomogeneities in the plasma generate significant power of oblique waves in the solar wind plasma, in addition to enhanced heating compared to the homogenous solar wind case. We find that the cooling effect due to the solar wind expansion is only significant when sub-Alfvénic drifts are explored. On the other hand, the cooling is not significant in the presence of a super-Alfvénic drift, and it is even less significant when we include an inhomogeneous background density. We are able to reproduce the ion temperature anisotropy seen in observations and previous models and find that small-scale inhomogeneities in the inner heliosphere can have a significant impact on resonant wave ion

  19. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  20. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  1. A STUDY OF ALFVÉN WAVE PROPAGATION AND HEATING THE CHROMOSPHERE

    SciTech Connect

    Tu, Jiannan; Song, Paul

    2013-11-01

    Alfvén wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell's equations with incorporation of the Hall effect and strong electron-neutral, electron-ion, and ion-neutral collisions. We have developed a numerical model based on an implicit backward difference formula of second-order accuracy both in time and space to solve stiff governing equations resulting from strong inter-species collisions. A non-reflecting boundary condition is applied to the top boundary so that the wave reflection within the simulation domain can be unambiguously determined. It is shown that due to the density gradient the Alfvén waves are partially reflected throughout the chromosphere and more strongly at higher altitudes with the strongest reflection at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation, producing heating strong enough to balance the radiative loss for the quiet chromosphere without invoking anomalous processes or turbulences. The heating rates are larger for weaker background magnetic fields below ∼500 km with higher-frequency waves subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the interaction of reflected waves with the upward propagating waves produces power at their double frequencies, which leads to more damping. The wave energy flux transmitted to the corona is one order of magnitude smaller than that of the driving source.

  2. Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves.

    PubMed

    Ganguly, Auroop R; Steinhaeuser, Karsten; Erickson, David J; Branstetter, Marcia; Parish, Esther S; Singh, Nagendra; Drake, John B; Buja, Lawrence

    2009-09-15

    Generating credible climate change and extremes projections remains a high-priority challenge, especially since recent observed emissions are above the worst-case scenario. Bias and uncertainty analyses of ensemble simulations from a global earth systems model show increased warming and more intense heat waves combined with greater uncertainty and large regional variability in the 21st century. Global warming trends are statistically validated across ensembles and investigated at regional scales. Observed heat wave intensities in the current decade are larger than worst-case projections. Model projections are relatively insensitive to initial conditions, while uncertainty bounds obtained by comparison with recent observations are wider than ensemble ranges. Increased trends in temperature and heat waves, concurrent with larger uncertainty and variability, suggest greater urgency and complexity of adaptation or mitigation decisions.

  3. [Epidemiology and heat waves: analysis of the 2003 episode in France].

    PubMed

    Valleron, Alain-Jacques; Boumendil, Ariane

    2004-12-01

    Epidemiology and heat waves: analysis of the 2003 episode in France. The heat wave that struck France in 2003 has been accompanied with an estimated 15,000 excess deaths. This paper stresses the difficulties of the epidemiology of such an event. The relevant clinical and biological information is incomplete or even inaccessible and many of the deaths are due to multiple factors. The data presently available indicate that the deaths occurred in persons already vulnerable, and that the heat wave caused a five- to eight-month loss of lifetime for the affected individuals. There is a noteworthy similarity between the profiles of this exceptional summer mortality surge, and those of many past winters when similar or larger excess mortalities ave occurred without as yet eliciting much public attention.

  4. Preferential Heating and Acceleration of {alpha} Particles by Alfven-Cyclotron Waves

    SciTech Connect

    Araneda, J. A.; Maneva, Y.; Marsch, E.

    2009-05-01

    Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. We show that fast and slow ion-acoustic waves (IAW) and transverse waves, driven by Alfven-cyclotron wave parametric instabilities can selectively destroy the coherent fluid motion of different ion species and, in this way lead to their differential heating and acceleration. Trapping of the more abundant protons by the fast IAW generates a proton beam with drift speed of about the Alfven speed. Because of their larger mass, {alpha} particles do not become significantly trapped and start, by conservation of total ion momentum, drifting relative to the receding bulk protons. Thus the resulting core protons and the {alpha} particles are differentially heated via pitch-angle scattering.

  5. Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves

    SciTech Connect

    Ganguly, Auroop R; Steinhaeuser, Karsten J K; Erickson III, David J; Branstetter, Marcia L; Parish, Esther S; Singh, Nagendra; Drake, John B; Buja, Lawrence

    2009-01-01

    Generating credible climate change and extremes projections remains a high-priority challenge, especially since recent observed emissions are above the worst-case scenario. Bias and uncertainty analyses of ensemble simulations from a global earth systems model show increased warming and more intense heat waves combined with greater uncertainty and large regional variability in the 21st century. Global warming trends are statistically validated across ensembles and investigated at regional scales. Observed heat wave intensities in the current decade are larger than worst-case projections. Model projections are relatively insensitive to initial conditions, while uncertainty bounds obtained by comparison with recent observations are wider than ensemble ranges. Increased trends in temperature and heat waves, concurrent with larger uncertainty and variability, suggest greater urgency and complexity of adaptation or mitigation decisions.

  6. On The Role of MHD Waves in Heating Localised Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Nelson, C. J.

    2016-04-01

    Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.

  7. Increasing thermomagnetic stability of composite superconductors with additives of extremely-large-heat-capacity substances

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lupanov, D. É.; Shcherbakov, V. I.

    2008-05-01

    We have studied the thermomagnetic stability (with respect to magnetic flux disturbances) of composite superconductors screened by additives of rare earth compounds possessing extremely high heat capacity at low temperatures. Three tubular composite structures have been manufactured and studied with respect to screening of the central region from variations of an external magnetic field. The effect of large-heat-capacity substances (LHCSs) was evaluated by measuring a jump in the magnetic flux in response to the rate of variation (ramp) of the external magnetic field. It is established that the adiabatic criterion of stability (magnetic-flux jump field) in the sample structures containing LHCSs significantly increases—by 20% for HoCu2 intermetallic compound and 31% for Gd2O2S ceramics—as compared to the control structure free of such additives.

  8. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed Central

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-01-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  9. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-09-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  10. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; Zhang, Peng; Chen, Hua; Li, Yun

    2016-06-01

    The Eurasian continent has experienced significant year-to-year variations of summer heat waves during the past decades. Several possible factors, such as ocean temperature, soil moisture, and changes in land use and greenhouse gases, have been identified in previous studies, but the mechanisms are still unclear. In this study, it is found that the Tibetan Plateau snow cover (TPSC) is closely linked to the interannual variations of summer heat waves over Eurasia. The TPSC variability explains more than 30 % of the total variances of heat wave variability in the southern Europe and northeastern Asia (SENA) region. A set of numerical experiments reveal that the reduced TPSC may induce a distinct teleconnection pattern across the Eurasian continent, with two anomalous high pressure centers in the upper troposphere over the SENA region, which may lead to a reduction of the cloud formation near the surface. The less cloud cover tends to increase the net shortwave radiation and favor a stronger surface sensible heat flux in the dry surface condition over the SENA region, resulting in a deeper, warmer and drier atmospheric boundary layer that would further inhibit the local cloud formation. Such a positive land-atmosphere feedback may dry the surface even further, heat the near-surface atmosphere and thereby intensify the local heat waves. The above dynamical processes also operate on interdecadal time scales. Given the reduction of the TPSC could become more pronounced with increasing levels of greenhouse gases in a warming climate, we infer that the TPSC may play an increasingly important role in shaping the summer heat waves over the SENA region in next decades.

  11. VFL-HF heating of the lower ionosphere and ELF wave generation

    SciTech Connect

    Taranenko, Y.N.; Inan, U.S.; Bell, T.F. )

    1992-01-03

    For incident wave power densities of 10{sup {minus}6} {minus} 10{sup {minus}2} W/m{sup 2} (at 30 km altitude), VLF heating of the D-region (< 90 km) is found to be 2-10 times more effective (depending on power) than HF heating, resulting in comparable perturbations of subionospheric VLF probe waves in spite of up to 10{sup 3} times larger power density utilized in HF heating and at least as efficient in ELF wave generation. In view of generally larger (100 {times} 100 km) area of the ionosphere illuminated by VLF transmitters, ELF wave generation by modulated VLF heating is estimated to produce ELF power levels of {approximately}100 mW, comparable with or larger than those produced in typical midlatitude ambient ionosphere occurs primarily via the modulation of Pedersen current whereas in a typical auroral ionosphere Hall current is dominant for pump wave frequencies up to {approximately}6 MHz. For 10-30 MHz and power densities > 10{sup {minus}4} W/m{sup 2}, Pedersen current modulation is again dominant, potentially providing up to 2-15 times higher ELF dipole moment than those found in recent experiments using 3-5 MHz heaters.

  12. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    SciTech Connect

    Cohen, B.I.

    1987-10-12

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs.

  13. Heating of the solar chromosphere and corona. I - Generalized inhomogeneous wave equation for magnetoacoustic motions

    NASA Technical Reports Server (NTRS)

    Anand, S. P. S.

    1976-01-01

    The generalized inhomogeneous wave equation that governs magnetoacoustic, vortical, and thermal motions in compressible fluids and that is applicable to the problem of heating of the solar chromosphere and corona is obtained. The effects of kinematic and bulk viscosity, heat conduction, Joule dissipation, and magnetic diffusivity are included. Under the usual assumptions, the generalized wave equation reduces to the well-known equations of Lighthill, Kulsrud, Phillips, and others. The major problems encountered in applying Lighthill's (1952) mechanism to sound generation in turbulent media are reviewed for both the subsonic and supersonic cases.

  14. Investigation of non-quarter wave design on multilayer optical thin film coatings from a heat transfer point of view

    NASA Astrophysics Data System (ADS)

    Ocak, Mustafa; Sert, Cüneyt; Okutucu, Tuba Ö.

    2013-11-01

    In this study multilayer thin film optical coatings, which are indispensable parts of optical systems are investigated from a heat transfer point of view. Laser irradiation induced temperature distribution on a multilayer coating stack is obtained by discretizing the heat diffusion equation using the finite volume method. In order to obtain mathematical representation of the energy flow and Electric Field Intensity (EFI) through the stack, Maxwell equations are solved by using the commercial software MacLeod®. Laser energy, which is absorbed by the multilayer stack in terms of heat, is calculated as a function of space and time by using the computed EFI, coating materials' optical properties and Gaussian laser beam parameters. Computed heat load is used in the finite volume solver ANSYS FLUENT® through a user defined function. Temperature distribution on a 19 layer HR multilayer coating stack irradiated by 1064 nm laser beam are obtained for both quarter wave and non-quarter wave designed configurations. Results of numerical simulations show that maximum temperature rise is seen in the first high index layer for quarter wave design (QWD). In addition to that, high temperatures are also seen in film/film interfaces, which is associated to both EFI distribution on the stack and wide differences in material properties between high and low index film layers. Non-quarter wave design (NQWD) is seen to be successful in decreasing temperatures at high index layers and at film/film interfaces. But it also changes the EFI distribution inside the multilayer stack, increasing absorbed laser energy and resulting in higher temperatures at modified low index layers.

  15. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  16. Dust heating by Alfvén waves using non-Maxwellian distribution function

    SciTech Connect

    Zubia, K.; Shah, H. A.; Yoon, P. H.

    2015-08-15

    Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvén waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvén waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.

  17. Experimental study of enhanced heat transfer by addition of CuO nanoparticle

    NASA Astrophysics Data System (ADS)

    Jesumathy, Stella; Udayakumar, M.; Suresh, S.

    2012-06-01

    An energy storage system has been designed to study the thermal characteristics of paraffin wax with an embedded nano size copper oxide (CuO) particle. This paper presents studies conducted on phase transition times, heat fraction as well as heat transfer characteristics of paraffin wax as phase change material (PCM) embedded with CuO nanoparticles. 40 nm mean size CuO particles of 2, 5 and 10% by weight were dispersed in PCM for this study. Experiments were performed on a heat exchanger with 1.5-10 l/min of heat transfer fluid (HTF) flow. Time-based variations of the temperature distributions are revealed from the results of observations of melting and solidification curves. The results strongly suggested that the thermal conductivity enhances 6, 6.7 and 7.8% in liquid state and in dynamic viscosity it enhances by 5, 14 and 30% with increasing mass fraction of the CNEPs. The thermal conductivity ratio of the composites can be augmented by a factor up to 1.3. The heat transfer coefficient during solidification increased about 78% for the maximum flow rate. The analysis of experimental results reveals that the addition of copper oxide nanoparticles to the paraffin wax enhances both the conduction and natural convection very effectively in composites and in paraffin wax. The paraffin wax-based composites have great potential for energy storage applications like industrial waste heat recovery, solar thermal applications and solar based dynamic space power generation with optimal fraction of copper oxide nanoparticles.

  18. Measuring the effects of heat wave episodes on the human body's thermal balance

    NASA Astrophysics Data System (ADS)

    Katavoutas, George; Theoharatos, George; Flocas, Helena A.; Asimakopoulos, Dimosthenis N.

    2009-03-01

    During the peak of an extensive heat wave episode on 23-25 July 2007, simultaneous thermophysiological measurements were made in two non-acclimated healthy adults of different sex in a suburban area of Greater Athens, Greece. Based on experimental measurements of mean skin temperature and metabolic heat production, heat fluxes to and from the human body were calculated, and the biometeorological index heat load (HL) produced was determined according to the heat balance equation. Comparing experimental values with those derived from theoretical estimates revealed a great heat stress for both individuals, especially the male, while theoretical values underestimated heat stress. The study also revealed that thermophysiological factors, such as mean skin temperature and metabolic heat production, play an important role in determining heat fluxes patterns in the heat balance equation. The theoretical values of mean skin temperature as derived from an empirical equation may not be appropriate to describe the changes that take place in a non-acclimated individual. Furthermore, the changes in metabolic heat production were significant even for standard activity.

  19. High-Harmonic Fast Wave (HHFW) Heating Results on NSTX

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Hosea, J. C.; Leblanc, B. P.; Phillips, C. K.; Podesta, M.; Valeo, E. J.; Wilson, J. R.; Bonoli, P. T.; Harvey, R. W.; Jaeger, E. F.; Ryan, P. M.

    2010-11-01

    This talk will present recent experimental and modeling results from NSTX HHFW research. HHFW heating of low current (200 - 400 kA) plasmas has resulted in a transition to a high bootstrap current fraction, H-mode regime needed for solenoid-free ramp-up. Coupling of HHFW power to NBI H-mode plasmas has been improved with lithium wall conditioning [1], although significant rf power is measured to flow to the divertor, particularly at longer launch wavelengths. Modeling results for H-mode discharges that use a combination of HHFW and NBI heating predict a strong competition between direct electron heating and fast-ion acceleration. A double-feed upgrade of the HHFW antenna in 2009 did not improve the stand off voltage by as much as predicted and appears to be limited by RF currents induced on the antenna surface. However, the stand off voltage limit can be increased with sufficient antenna conditioning. [1] G. Taylor, et al., Phys. Plasmas 17, 056114 (2010).

  20. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    PubMed Central

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-01-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions. PMID:22408596

  1. Temperature switching waves in a silicon wafer on lamp-based heating

    NASA Astrophysics Data System (ADS)

    Ovcharov, Vladimir V.; Kurenya, Alexey L.; Rudakov, Valery I.; Prigara, Valeriya P.

    2016-12-01

    The dynamic properties of a silicon wafer thermally heated up under a bistable regime in a lamp-based reactor are simulated with regard to an optical non-gomogeneity as a nucleus of a high-temperature phase. The optical non-gomogeneity is represented by a doped layer region on the surface of the wafer imposed by radiation. It is shown that under these conditions temperature switching waves are formed in the wafer. Experimental verification of propagating the switching waves of temperature is obtained at the silicon wafer transition derived from the lower-temperature state to its upper-temperature state and the velocity of the waves is evaluated.

  2. Two dimensional PIC simulations of plasma heating by the dissipation of Alfven waves

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Kruecken, T. J.; Ferraro, R. D.; Decyk, V. K.; Goldstein, B. E.

    1992-01-01

    Two dimensional plasma particle simulations of the evolution of large amplitude circularly polarized Alfven waves propagating parallel to the magnetic field show that the waves decay via both one- and two- dimensional parametric decay instabilities. For parameters studied, one-dimensional processes dominate the simulations, but two-dimensional decay processes, including the recently predicted filamentation instability are also observed. The daughter waves generated by the parametric decay are primarily damped by the ions, leading to ion heating. The parametric decay processes efficiently convert the ordered fluid ion motion in the Alfven wave into ion thermal energy. These processes may be important for the dissipation of Alfven waves in the solar wind, the corona and other space plasma environments. The computations were performed on the Intel Touchstone parallel supercomputer.

  3. Plasma heating and current drive by an obliquely propagating upper-hybrid cyclotron beat wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Cairns, R. A.

    1991-01-01

    Excitation of an obliquely propagating upper-hybrid cyclotron beat wave is considered for plasma heating and current drive in tokamaks. The beat wave is excited by the interaction of two intense free-electron laser (FEL) pulses at their difference frequency. The three-wave nonlinear interaction equations in a magnetized plasma are solved numerically in a steady-state two-dimensional (2-D) geometry for this purpose. The 2-D toroidal inhomogeneity effect and the effect of finite spatial width of the pump microwave pulses are taken into account for the beat wave excitation. To illustrate the principle, the microwave tokamak experiment (MTX) [Plasma Phys. Controlled Fusion 30, 57 (1988)] is considered. It has been found that the fraction of total input power of the pump microwaves deposited in the cyclotron beat wave is lower than the case of a Langmuir type beat wave considered by Amin and Cairns [Nucl. Fusion 30, 327 (1990)]. However, increasing the input powers of the pump microwaves, a substantial amount of input power can be deposited in the excited beat wave. The beat wave eventually transfers this power to the electrons by cyclotron damping. It has also been found that for the same input parameters, right-hand polarized pumps are more efficient than left-hand polarized pump microwaves for beat wave excitation.

  4. Wave propagation and noncollisional heating in neutral loop and helicon discharges

    SciTech Connect

    Celik, Y.; Crintea, D. L.; Luggenhoelscher, D.; Czarnetzki, U.; Ishijima, T.; Sugai, H.

    2011-02-15

    Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereas in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.

  5. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.

    2016-07-01

    Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.

  6. Drag reducing effects of polymer additives in a plate heat exchanger for the OTEC system

    SciTech Connect

    Kim, N.; Yoon, S.; Kim, C.; Seo, T.

    1999-07-01

    Experiments were undertaken for a 15kW Alfa-Laval plate heat exchanger utilizing polyethylene oxide as a polymer additive. Concentrations of polymer additives were 5, 10, 20, 30, 40, 50, 100, 200 and 400 wppm at 25 C and mass flow rates were 0.6kg/s, 0.7kg/s, 0.8kg/s and 0.9kg/s in normal operating ranges of the plate heat exchanger. The maximum effects of drag reductions were found at 20 wppm polymer concentration and at approximately 0.7kg/s of mass flow rate. The results show that there exist optimum polymer concentration and at approximately 0.7kg/s of mass flow rate. The results show that there exist optimum polymer concentration and mass flow rate for the plate heat exchanger for maximum drag reduction effects. In most cases, drag reduction of approximately 20% has been obtained. It means considerable savings in pumping power for a large size OTEC plant.

  7. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    NASA Astrophysics Data System (ADS)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  8. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    SciTech Connect

    Bertelli, N. Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Jaeger, E. F.; Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Pinsker, R. I.; Prater, R.; Qin, C. M.; and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  9. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    SciTech Connect

    Bertelli, Nicola; Jaeger, E. F.; Lau, Cornwall H; Blazevski, Dan; Green, David L; Berry, Lee Alan; Bonoli, P. T.; Gerhardt, S.P.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, Cynthia; Pinsker, R. I.; Prater, R.; Qin, C M; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, Randy; Wright, J.; Zhang, X J

    2015-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  10. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2015-09-10

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations.

  11. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro

    2016-09-01

    The most severe effects of global warning will be related to the frequency and severity of extreme events. We provide an analysis of projections of temperature and related extreme events for Africa based on a large ensemble of Regional Climate Models from the COordinated Regional climate Downscaling EXperiment (CORDEX). Results are presented not only by means of widely used indices but also with a recently developed Heat Wave Magnitude Index-daily (HWMId), which takes into account both heat wave duration and intensity. Results show that under RCP8.5, warming of more than 3.5 °C is projected in JFM over most of the continent, whereas in JAS temperatures over large part of Northern Africa, the Sahara and the Arabian peninsula are projected to increase up to 6 °C. Large increase in in the number of warm days (Tx90p) is found over sub equatorial Africa, with values up to more than 90 % in JAS, and more than 80 % in JFM over e.g., the gulf of Guinea, Central African Republic, South Sudan and Ethiopia. Changes in Tn90p (warm nights) are usually larger, with some models projecting Tn90p reaching 95 % starting from around 2060 even under RCP4.5 over the Gulf of Guinea and the Sahel. Results also show that the total length of heat spells projected to occur normally (i.e. once every 2 years) under RCP8.5 may be longer than those occurring once every 30 years under the lower emission scenario. By employing the recently developed HWMId index, it is possible to investigate the relationship between heat wave length ad intensity; in particular it is shown that very intense heat waves such as that occurring over the Horn of Africa may have values of HWMId larger than that of longer, but relatively weak, heat waves over West Africa.

  12. Projection of Heat Waves over China under Different Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Luo, Yong; Huang, Jianbin; Zhao, Zongci

    2015-04-01

    Global warming targets, which are determined in terms of global mean temperature increases relative to pre-industrial temperature levels, have been one of the heated issues recently. And the climate change (especially climate extremes) and its impacts under different targets have been paid extensive concerns. In this study, evaluation and projection of heat waves in China were carried out by five CMIP5 global climate models (GCMs) with a 0.5°×0.5° horizontal resolution which were derived from EU WATCH project. A new daily observed gridded dataset CN05.1 (0.5°×0.5°) was also used to evaluate the GCMs. And four indices (heat waves frequency, longest heat waves duration, heat waves days and high temperature days) were adopted to analyze the heat waves. Compared with the observations, the five GCMs and its Multi-Model Ensemble (MME) have a remarkable capacity of reproducing the spatial and temporal characteristic of heat waves. The time correlation coefficients between MME and the observation results can all reach 0.05 significant levels. Based on the projection data of five GCMs, both the median year of crossing 1.5°C, 2°C, 2.5°, 3°C, 3.5°C, 4°C, 4.5°C and 5°C global warming targets and the corresponding climate change over China were analyzed under RCP 4.5 and RCP 8.5 scenarios, respectively. The results show that when the global mean surface air temperature rise to different targets with respect to the pre-industrial times (1861-1880), the frequency and intensity of heat waves will increase dramatically. To take the high emission scenario RCP8.5 as an example, under the RCP8.5 scenario, the warming rate over China is stronger than that over the globe, the temperature rise(median year) over China projected by MME are 1.77°C(2025), 2.63°C(2039), 3.39°C(2050), 3.97°C(2060), 4.82°C(2070), 5.47°C(2079) and 6.2°C(2089) under 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C and 4.5°C global warming targets, respectively. With the increase of the global

  13. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  14. Alfvén wave solar model (AWSoM): Coronal heating

    SciTech Connect

    Van der Holst, B.; Sokolov, I. V.; Meng, X.; Jin, M.; Manchester, W. B. IV; Tóth, G.; Gombosi, T. I.

    2014-02-20

    We present a new version of the Alfvén wave solar model, a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfvén wave turbulence. The injection of Alfvén wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics include the following. (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfvén waves are partially reflected by the Alfvén speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently intensifies the dissipation and observable emission.

  15. Contribution of soil moisture in summer heat waves amplitude in MED-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Stéfanon, M.

    2012-04-01

    Contribution of soil moisture in summer heat wave amplitude in MED-CORDEX simulations Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Cindy-Lebeaupin Brossier(1,2), (1) IPSL/LMD, France; (2) CNRM, France ; Heat waves and droughts are extreme weather events intrinsically linked, through strong coupling between the Earth's energy and water cycles. Their impact in short and medium term can be considerable on our societies in terms of health, socio-economic and ecological damage, as in 2003 in Western Europe or Russia in 2010. They are even more affected by climate change than the average state of the atmosphere and could be more frequent, more intense and more extended in the future. Besides this effect could be enhanced by the fact that Mediterranean, a vulnerable area of important geographic and climatic contrasts, is among the most responsive to global warming. If triggering of heat waves is determined by the large scale, land surface-related processes and feedbacks can amplify or inhibit heat trough several feedback mechanism. In regional climate models (RCMs) the land surface model (LSM) plays a key role in energy and water exchanges between land and atmosphere and determine the partitioning of surface fluxes (the relationship of latent heat flux to sensible heat flux). In the frame of the HyMeX and MED-CORDEX programs, two simulations at 20-km grid resolution have been performed over 1989-2008 with 2 different LSMs (RUC and 5-layer diffusive schemes) on a Mediterranean domain. The control simulation (CTL) corresponds to the RUC configuration, whereas experiment with perturbed soil moisture (WET) corresponds to the 5-layer diffusive scheme. CTL is able to correctly simulates temporal and spatial variations of soil moisture, as drought conditions. WET has a high soil moisture value, constant through time and land use dependant. These simulations are inter-compared to provide an estimate of the soil moisture contribution to heat wave amplitude.

  16. Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2009-06-01

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  17. Test of the additivity principle for current fluctuations in a model of heat conduction.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2009-06-26

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  18. Millimeter wave tokamak heating and current drive with a high power free electron laser

    SciTech Connect

    Thomassen, K.I.

    1987-01-01

    Experiments on microwave generation using a free electron laser (FEL) have shown this to be an efficient way to generate millimeter wave power in short, intense pulses. Short pulse FEL's have several advantages that make them attractive for application to ECR heating of tokamak fusion reactors. This paper reports on plans made to demonstrate the technology at the Microwave Tokamak Experiment (MTX) Facility.

  19. Plasma heating and acceleration due to Landau damping of hydromagnetic waves.

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Hung, R. J.

    1972-01-01

    We analyze energy and momentum exchange associated with Landau damping of hydromagnetic waves, from a macroscopic viewpoint, and compare the conclusions with those of the resonant quasi-linear theory. It is found that the heating of protons and electrons is correctly given by the resonant theory, but that the momentum exchange is not correctly described by the resonant theory.

  20. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    PubMed

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates.

  1. Role of Soil Moisture vs. Recent Climate Change for the 2010 Heat Wave in Western Russia

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia

    2016-04-01

    Extreme event attribution statements are often conditional on increased greenhouse gas concentrations or a particular ocean state, but not on other physical factors of the climate system. Here we extend the classical framework and assess the influence of soil moisture on a heat wave to obtain a physical attribution statement. In particular, we test the role of soil-moisture-temperature feedbacks which have been shown to be generally relevant for the build-up of exceptionally high temperatures. As a case study we investigate the severe 2010 heat wave in western Russia, which was previously found to be influenced by anthropogenic climate change. We quantify the relative role of climate change and that of soil moisture-temperature feedbacks with the event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. We find that climate change from 1960 to 2000 alone has approximately tripled the risk of a severe heat wave in western Russia. The combined effect of climate change and the dry 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed the basis for this extreme heatwave.

  2. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    SciTech Connect

    He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian; Marsch, Eckart; Chen, Christopher H. K.; Zhang, Lei; Salem, Chadi S.; Bale, Stuart D.

    2015-11-10

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.

  3. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.

  4. Nonlinear Alfvén wave model of spicules and coronal heating

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro

    2008-05-01

    We review the theoretical studies of the Alfvén wave model of spicules and coronal heating, mainly based on the papers by Kudoh & Shibata (1999), Saito et al. (2001) and Moriyasu et al. (2004) which performed MHD numerical simulations of nonlinear Alfvén waves propagating along a magnetic flux tube in the solar atmosphere. Kudoh & Shibata (1999) and Saito et al. (2001) found that, if the root mean square of the perturbation is greater than ~ 1 km s-1 in the photosphere, (1) the transition region is lifted up to more than ~ 5000 km (i.e., the spicule is produced), (2) the energy flux sufficient for heating the quiet corona (~ 3.0 × 105 ergs s-1 cm-2) is transported into the corona by Alfvén waves. Moriyasu et al. (2004) demonstrated that a hot corona is created in an initially cool loop as a result of the nonlinear Alfvén waves produced near the photosphere. We conclude that the nonlinear Alfvén wave model is the promising model of spicules and coronal heating.

  5. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains

    NASA Astrophysics Data System (ADS)

    Teng, Haiyan; Branstator, Grant; Meehl, Gerald A.; Washington, Warren M.

    2016-03-01

    Compared to changes in the climatological mean temperature, we have less confidence in how much and by what mechanisms temperature variability may be affected by anthropogenic climate change. Here based on a 30-member climate change projection from an earth system model, we find that summertime subseasonal temperature variability in the U.S. Great Plains is enhanced by approximately 20% in 2070-2100 relative to 1980-2010. In particular, daily temperature departures from the new climatologies during future heat waves are on average 0.6°C warmer than are the corresponding departures under present-day conditions. Although in both periods heat waves in the Great Plains tend to be associated with planetary wave events, the amplification of future heat waves does not appear to be induced by changes in planetary wave variability in the midlatitudes. Instead, in this experiment the strengthening appears to be primarily caused by enhanced local land-atmosphere feedbacks resulting from a warmer/drier future climate.

  6. Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Bartha, E. B.; Pongracz, R.; Bartholy, J.

    2012-04-01

    Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For

  7. Neonates in Ahmedabad, India, during the 2010 heat wave: a climate change adaptation study.

    PubMed

    Kakkad, Khyati; Barzaga, Michelle L; Wallenstein, Sylvan; Azhar, Gulrez Shah; Sheffield, Perry E

    2014-01-01

    Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2-88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation-here relocating one ward-and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations.

  8. Neonates in Ahmedabad, India, during the 2010 Heat Wave: A Climate Change Adaptation Study

    PubMed Central

    Kakkad, Khyati; Barzaga, Michelle L.; Wallenstein, Sylvan; Sheffield, Perry E.

    2014-01-01

    Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2–88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation—here relocating one ward—and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations. PMID:24734050

  9. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    PubMed

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  10. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    PubMed Central

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  11. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    SciTech Connect

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Iwamae, A; Ohnishi, N; Fournier, K B; Girard, F; Primout, M; Villette, B; Tobin, M; Mima, K

    2008-06-12

    We have observed supersonic heat wave propagation in a low-density aerogel target ({rho} {approx} 3.2 mg/cc) irradiated at the intensity of 4 x 10{sup 14} W/cm{sup 2}. The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation.

  12. E × B shear pattern formation by radial propagation of heat flux waves

    SciTech Connect

    Kosuga, Y.; Diamond, P. H.; Dif-Pradalier, G.; Gürcan, Ö. D.

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  13. Longer and More Frequent Mid-Atlantic Heat Waves by Mid-Century

    NASA Astrophysics Data System (ADS)

    Sewall, J. O.

    2011-12-01

    Changes in extreme weather events are an area of concern in the face of changing climate. Heat waves (periods of sustained, above normal temperature) are of particular interest given the heavy costs, not only in strain on infrastructure and utilities but also in loss of human life, they can engender (e.g. in the United States, 1995, 2001, 2010; in Europe, 2003, 2006, 2010). In many instances, the costs of heat waves are associated with insufficient local preparedness and infrastructure. With the Earth predicted to warm, future heat waves could be more frequent, sustained, or intense; therefore, preparation for such events might greatly reduce their societal impacts. This study focuses on potential heat wave changes in the highly populous (greater than 96 people/km2) mid-Atlantic region of the Eastern United States from Alexandria, VA through Washington, DC, Baltimore, MD, Philadelphia, PA, the entire state of New Jersey, New York, NY, Long Island, NY, and the entire state of Connecticut. A nested regional climate model (RegCM3) simulated future climate over this region at a 10 km horizontal resolution for two future emissions scenarios (SRES B1 and A1FI). Output from the NCAR CCSM3 drove the regional simulations for two fifteen-year windows from 2050 - 2064 and 2085 - 2099. The final decade of each simulation was averaged for analyses and compared to a 1990 - 1999 simulation. Under both future forcing scenarios, heat waves in the study region increase compared to the twentieth century. In the B1 simulation, the number of summer (June, July, and August average) days exceeding 37.8° C increased by up to 600% at mid-century and up to 200% at the end of the century; the duration of the longest summer heat wave (consecutive days exceeding 37.8° C) increased by up to 26 days at mid-century and up to 10 days by the end of the century. For the A1FI scenario, the number of summer days exceeding 37.8° C increased by up to 250% at mid-century and up to 1300% at the end of

  14. ELF/VLF wave generation from the beating of two HF ionospheric heating sources

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Moore, R. C.; Golkowski, M.; Lehtinen, N. G.

    2012-12-01

    It is well established that Extremely Low Frequency (ELF, 0.3-3 kHz) and Very Low Frequency (VLF, 3-30 kHz) radio waves can be generated via modulated High Frequency (HF, 3-10 MHz) heating of the lower ionosphere (60-100 km). The ionospheric absorption of HF power modifies the conductivity of the lower ionosphere, which in the presence of natural currents such as the auroral electrojet, creates an `antenna in the sky.' We utilize a theoretical model of the HF to ELF/VLF conversion and the ELF/VLF propagation, and calculate the amplitudes of the generated ELF/VLF waves when two HF heating waves, separated by the ELF/VLF frequency, are transmitted from two adjacent locations. The resulting ELF/VLF radiation pattern exhibits a strong directional dependence (as much as 15 dB) that depends on the physical spacing of the two HF sources. This beat wave source can produce signals 10-20 dB stronger than those generated using amplitude modulation, particularly for frequencies greater than 5-10 kHz. We evaluate recent suggestions that beating two HF waves generates ELF/VLF waves in the F-region (>150 km), and conclude that those experimental results may have misinterpreted, and can be explained strictly by the much more well established D region mechanism.

  15. Features of amplitude and Doppler frequency variation of ELF/VLF waves generated by "beat-wave" HF heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Shumilov, O. I.; Kasatkina, E. A.; Gomonov, A. D.

    2014-07-01

    Observations of extremely low frequency (ELF, 3-3000 Hz) radio waves generated by a "beat-wave" (BW) high frequency (~ 4.04-4.9 MHz) ionospheric heating are presented. ELF waves were registered with the ELF receiver located at Lovozero (68°N, 35°E), 660 km east from the European Incoherent Scatter Tromso heating facility (69.6°N, 19.2°E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  16. ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Agrawal, D.

    2011-04-01

    Experimental observations of ELF/VLF waves generated using the dual-beam heating capability of the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska, are compared with the predictions of an ionospheric HF heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The model output is used to assess three properties of the ELF/VLF waves observed on the ground: the ELF/VLF signal magnitude, the ELF/VLF harmonic ratio, and the ELF/VLF power law exponent. Ground-based experimental observations indicate that simultaneous heating of the ionosphere by a CW HF wave and a modulated HF wave generates significantly lower ELF/VLF magnitudes than during periods without CW heating, consistent with model predictions. Further modeling predictions demonstrate the sensitive dependence of ELF/VLF magnitude on the frequency and power of the CW signal. The ratio of ELF/VLF harmonic magnitudes is also shown to be a sensitive indicator of ionospheric modification, although it is somewhat less sensitive than the ELF/VLF magnitude. Last, the peak power level of the modulated HF beam was varied in order to assess the power dependence of ELF/VLF wave generation under both single- and dual-beam heating conditions. Experimental and theoretical results indicate that accurate evaluation of the ELF/VLF power law index requires high signal-to-noise ratio; it is thus a less sensitive indicator of ionospheric modification than either ELF/VLF magnitude or the ELF/VLF harmonic ratio.

  17. Intercomparison of the Russian Summer Heat Waves of 2010 and 1972

    NASA Astrophysics Data System (ADS)

    Zveryaev, I.; Zyulyaeva, Yu.; Gulev, S.; Koltermann, P.

    2012-04-01

    Gridded monthly and daily data from the NCEP/NCAR reanalysis and some other data sets are used to investigate and inter-compare climatological background and intraseasonal evolution of the two strongest Russian summer heat waves of 2010 and 1972 that impacted significantly the economy and living conditions in European Russia. Despite the similar impact of the two heat waves, the climatological background for their development was quite different in 2010 and 1972. In particular, sea surface temperature (SST) anomaly patterns in the North Atlantic (which could potentially affect the development of the heat waves) were different, reflecting basin-scale positive SST anomaly in 2010 and so-called tripole pattern in 1972. Structure of the sea level pressure (SLP) anomalies indicating dominant regimes of the atmospheric dynamics, was also different 2010 and 1972. In particular, the summer of 1972 was characterized by the positive phase of the North Atlantic Oscillation (NAO), whereas in 2010 the NAO was in its slightly negative phase. Intraseasonal evolution of the two Russian summer heat waves was also quite different and characterized by the longer-term air temperature fluctuations in 2010 compared to those in 1972. Furthermore, in contrast to 1972 when no relation to the NAO (and regional atmospheric dynamics in general) on intraseasonal time scale has been revealed, significant positive correlation (0.56) with the NAO index have been found in 2010. Analysis of links between leading EOF modes of regional SLP and air temperature over European Russia has revealed that neither EOF-1, nor EOF-2 has been associated with intraseasonal air temperature variability in 1972, thus indicating relatively minor role of regional atmospheric dynamics in driving this variability. On the contrary, in 2010 regional air temperature variability was mainly driven by the NAO-associated EOF-1 of regional SLP. Hence, present results suggest that in 2010 and 1972 the NAO affected the Russian

  18. Evaluation of heat-cured resin bases following the addition of denture teeth using a second heat cure.

    PubMed

    Polukoshko, K M; Brudvik, J S; Nicholls, J I; Smith, D E

    1992-04-01

    This study compared heat-cured acrylic resin denture baseplate distortions following a second heat cure used to add the denture teeth. The second heat cure was done with three different water-bath curing temperatures. The distortions were evaluated in three planes by use of a measuring microscope. Recorded distortions were not clinically significant.

  19. Large scale atmospheric drivers for heat waves in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pasqui, Massimiliano; Di Giuseppe, Edmondo

    2016-04-01

    West African Heat Low (WAHL) is one of the prominent dynamical components of the West African Monsoon (WAM) system playing a key role in the summer atmospheric circulation over Mediterranean as well. It is characterized by a semi-permanent low pressure system generated and maintained by surface heating over the western part of Saharan desert in summer, and a divergent flux pattern above the atmospheric boundary level. In this study we analyse the formation and occurrence of heat waves in the Mediterranean Basin connected to the WAHL regimes in combination with the subtropical anticyclone regimes over North Atlantic basin (the "Azore High") . In this work, heat waves are defined when more than 6 consecutive days with a daily temperature above 90th percentile corresponding threshold are observed. We use 1971-2000 as reference period for thresholds calculation, based on two datasets: a) the European Climate Assessment & Dataset (ECAD/E-OBS) data; b) the Berkeley-Earth Project data; the analysis period covers March-September from 1951 to 2015 and 1951 to 2011 respectively. The WAHL index is calculated following the method proposed by Chauvin et al. (2010) and based on NCAR/NCEP Reanalysis dataset, while the Azore High pressure system regimes variability are computed as in Davis et al. (1997). We show that a statistical relationship between heat waves in Western and Central Mediterranean Basin and WAHL mechanism exists, being the latter a prominent causal factor. The relationships and causal connections between WAHL and Azores High atmospheric systems are also analysed to highlight potential implications for heat waves outlooks and early warning systems.

  20. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  1. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  2. A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Kun; Liu, Jun; Peng, Zhi-Hua; Du, Dan; Chen, Ke-Qiu

    2017-02-01

    Nonlinear thermal transport in graphene/hexagonal boron nitride (h-BN) heterostructure is investigated by the nonequilibrium molecular dynamics method. It is found that negative differential thermal resistance (NDTR) will appear as the applied temperature difference increases. Detailed phonon spectra analysis reveals that the excited out-of-plane acoustic wave plays an important role in the heat transport across such interface. That is, the mechanical wave results in a significant mismatch between the lattice vibrations of graphene and h-BN domains and hinders interfacial thermal transport. In addition, NDTR can be tuned through the temperature parameter. Interestingly, the regime of NDTR becomes smaller and eventually vanishes with increasing the heterostructure length. However, NDTR is insensitive to the variation of system width. The work may be useful for nanoscale thermal managements utilizing the graphene/h-BN heterostructure.

  3. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  4. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    SciTech Connect

    Tsytovich, Vadim; Gusein-zade, Namik; Ignatov, Alexander

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  5. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.

    PubMed

    Ameye, Maarten; Wertin, Timothy M; Bauweraerts, Ingvar; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2012-10-01

    Here, we investigated the effect of different heat-wave intensities applied at two atmospheric CO2 concentrations ([CO2]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO2] (380 or 700 μmol mol(-1)) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums. We measured gas exchange and fluorescence parameters before, during and after a mid-summer heat wave. The +12°C heat wave, significantly reduced net photosynthesis (Anet) in both species and [CO2] treatments but this effect was diminished in elevated [CO2]. The decrease in Anet was accompanied by a decrease in Fv'/Fm' in P. taeda and ΦPSII in Q. rubra. Our findings suggest that, if soil moisture is adequate, trees will experience negative effects in photosynthetic performance only with the occurrence of extreme heat waves. As elevated [CO2] diminished these negative effects, the future climate may not be as detrimental to plant communities as previously assumed.

  6. Plasma heating in stellarators by radio frequency electromagnetic waves at the fundamental ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir A.

    1998-11-01

    A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.

  7. Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.

    2013-07-01

    We have been investigating high-power radio wave-induced acoustic gravity waves (AGWs) at Gakona, Alaska, using the High-frequency Active Aurora Research Program (HAARP) heating facility (i.e. HF heater) and extensive diagnostic instruments. This work was aimed at performing a controlled study of the space plasma turbulence triggered by the AGWs originating from anomalous heat sources, as observed in our earlier experiments at Arecibo, Puerto Rico (Pradipta 2007 MS Thesis MIT Press, Cambridge, MA). The HF heater operated in continuous wave (CW) O-mode can heat ionospheric plasmas effectively to yield a depleted magnetic flux tube as rising plasma bubbles (Lee et al 1998 Geophys. Res. Lett. 25 579). Two processes are responsible for the depletion of the magnetic flux tube: (i) thermal expansion and (ii) chemical reactions caused by heated ions. The depleted plasmas create large density gradients that can augment spread F processes via generalized Rayleigh-Taylor instabilities (Lee et al 1999 Geophys. Res. Lett. 26 37). It is thus expected that the temperature of neutral particles in the heated ionospheric region can be increased. Such a heat source in the neutral atmosphere may potentially generate AGWs in the form of traveling ionospheric plasma disturbances (TIPDs). We should point out that these TIPDs have features distinctively different from electric and magnetic field (ExB) drifts of HF wave-induced large-scale non-propagating plasma structures. Moreover, it was noted in our recent study of naturally occurring AGW-induced TIDs that only large-scale AGWs can propagate upward to reach higher altitudes. Thus, in our Gakona experiments we select optimum heating schemes for HF wave-induced AGWs that can be distinguished from the naturally occurring ones. The generation and propagation of AGWs are monitored by MUIR (Modular Ultra high-frequency Ionospheric Radar), Digisonde and GPS/low-earth-orbit satellites. Our theoretical and experimental studies have shown that

  8. Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Tim

    2016-06-01

    Mechanisms for an in-phase relationship between convection and low-level zonal wind and the slow propagation of the convectively coupled Kelvin wave (CCKW) are investigated by analyzing satellite-based brightness temperature and reanalysis data and by constructing a simple theoretical model. Observational data analysis reveals an eastward shift of the low-level convergence and moisture relative to the CCKW convective center. The composite vertical structures show that the low-level convergence lies in the planetary boundary layer (PBL) (below 800 hPa), and is induced by the pressure trough above the top of PBL through an Ekman-pumping process. A traditional view of a slower eastward propagation speed compared to the dry Kelvin waves is attributed to the reduction of atmospheric static stability in mid-troposphere due to the convective heating effect. The authors' quantitative assessment of the heating effect shows that this effect alone cannot explain the observed CCKW phase speed. We hypothesize that additional slowing process arises from the effect of zonally asymmetric PBL moisture. A simple theoretical model is constructed to understand the relative role of the heating induced effective static stability effect and the PBL moisture effect. The result demonstrates the important role of the both effects. Thus, PBL-free atmosphere interaction is important in explaining the observed structure and propagation of CCKW.

  9. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases.

  10. The characteristics of ionospheric heating-produced ELF/VLF waves over 32 hours

    SciTech Connect

    Rietveld, M.T.; Mauelshagen, H.P.; Stubbe, P.; Kopka, H.; Nielsen, E. )

    1987-08-01

    In October 1981, ELF/VLF waves were produced in the ionosphere in an altering sequence of approximately 1, 2, 3, and 5 kHz by modulated HF heating of the ionosphere near Tromsoe, Norway, during a 32-hour period of high geomagnetic disturbance. The apparent source heights, which are derived from the wave phases, show a diurnal variation from about 55 km during the day to about 74 km at night. Other wave parameters such as amplitude, direction, and ellipticity of the ELF polarization ellipse also show a diurnal variation as well as amplitude, direction, and ellipticity of the ELF polarization ellipse also show a diurnal variation as well as modulation by Pc 5 hydromagnetic waves. They compare the variation of the ELF wave parameters with electric fields measured by the Scandinavian Twin Auroral Radar Experiment (STARE) and with riometer and magnetometer data in an attempt to understand the factors controlling the ELF wave generation process. They are able to successfully model many of the measured wave characteristics. High electron densities at low altitudes were found necessary to explain the daytime measurements.

  11. A simple indicator to rapidly assess the short-term impact of heat waves on mortality within the French heat warning system.

    PubMed

    Antics, Annamaria; Pascal, Mathilde; Laaidi, Karine; Wagner, Vérène; Corso, Magali; Declercq, Christophe; Beaudeau, Pascal

    2013-01-01

    We propose a simple method to provide a rapid and robust estimate of the short-term impacts of heat waves on mortality, to be used for communication within a heat warning system. The excess mortality during a heat wave is defined as the difference between the observed mortality over the period and the observed mortality over the same period during the N preceding years. This method was tested on 19 French cities between 1973 and 2007. In six cities, we compared the excess mortality to that obtained using a modelling of the temperature-mortality relationship. There was a good agreement between the excess mortalities estimated by the simple indicator and by the models. Major differences were observed during the most extreme heat waves, in 1983 and 2003, and after the implementation of the heat prevention plan in 2006. Excluding these events, the mean difference between the estimates obtained by the two methods was of 13 deaths [1:45]. A comparison of mortality with the previous years provides a simple estimate of the mortality impact of heat waves. It can be used to provide early and reliable information to stakeholders of the heat prevention plan, and to select heat waves that should be further investigated.

  12. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  13. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    NASA Astrophysics Data System (ADS)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  14. Gas dynamics of heat-release-induced waves in supercritical fluids: revisiting the Piston Effect

    NASA Astrophysics Data System (ADS)

    Migliorino, Mario Tindaro; Scalo, Carlo

    2016-11-01

    We investigate a gasdynamic approach to the modeling of heat-release-induced compression waves in supercritical fluids. We rely on highly resolved one-dimensional fully compressible Navier-Stokes simulations of CO2 at pseudo-boiling conditions in a closed duct inspired by the experiments of Miura et al.. Near-critical fluids exhibit anomalous variations of thermodynamic variables taken into account by adopting the Peng-Robinson equation of state and Chung's Method. An idealized heat source is applied, away from the boundaries, resulting in the generation of compression waves followed by contact discontinuities bounding a region of hot expanding fluid. For higher heat-release rates such compressions are coalescent with distinct shock-like features (i.e. non-isentropicity and propagation Mach numbers measurably greater than unity) and a non-uniform post-shock state, not present in ideal gas simulations, caused by the highly nonlinear equation of state. Thermoacoustic effects are limited to: (1) a one-way/one-time thermal-to-acoustic energy conversion, and (2) cumulative non-isentropic bulk heating due to the resonating compression waves, resulting in what is commonly referred to as the Piston Effect.

  15. Development and Testing of a Refractory Millimeter-Wave Absorbent Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Myrabo, Leik; Murakami, David; Parkin, Kevin

    2014-01-01

    Central to the Millimeter-Wave Thermal Launch System (MTLS) is the millimeter-wave absorbent heat exchanger. We have developed metallic and ceramic variants, with the key challenge being the millimeter-wave absorbent coatings for each. The ceramic heat exchanger came to fruition first, demonstrating for the first time 1800 K peak surface temperatures under illumination by a 110 GHz Gaussian beam. Absorption efficiencies of up to 80 are calculated for mullite heat exchanger tubes and up to 50 are calculated for alumina tubes. These are compared with estimates based on stratified layer and finite element analyses. The problem of how to connect the 1800 K end of the ceramic tubes to a graphite outlet manifold and nozzle is solved by press fitting, or by threading the ends of the ceramic tubes and screwing them into place. The problem of how to connect the ceramic tubes to a metallic or nylon inlet pipe is solved by using soft compliant PTFE and PVC tubes that accommodate thermal deformations of the ceramic tubes during startup and operation. We show the resulting heat exchangers in static tests using argon and helium as propellants.

  16. Comparison of Monte-Carlo Ion Cyclotron Heating Model with Full-Wave Linear Absorption Model

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Berry, L. A.; Jaeger, E. F.; Green, D.; Bonoli, P.; Wright, J.

    2009-05-01

    To fully account for the wave-particle interaction physics in ion-cyclotron resonant frequency heating experiments, the 5-D Monte-Carlo code ORBIT-RF is being coupled with the 2-D full wave code AORSA to iteratively evolve ion distribution in x-v space that is used to update the dielectric tensor in AORSA for evaluating the full-wave fields. It is demonstrated that using the full-wave fields from a Maxwellian dielectric tensor in AORSA and confining the resonant ions to their initial orbits in ORBIT-RF, ORBIT-RF largely reproduces the AORSA linear wave absorption profiles for fundamental and higher harmonic ICRF heating. An exception is an observed inward shift of the ORBIT-RF absorption peak for high harmonics near the magnetic-axis compared with that of AORSA, which can be attributed to a finite orbit width effect. Analysis of power absorption in velocity space confirms that significant power is absorbed by energetic particles with their banana tips at resonance locations.

  17. The influence of small additions of diethylenetriamine on the detonation waves stability for nitromethane/acetone solution

    NASA Astrophysics Data System (ADS)

    Mochalova, V.; Utkin, A.

    2014-05-01

    Instability of detonation front in the nitromethane/acetone (NM/A) solution was observed in our previous work: at 10% of acetone the amplitude of heterogeneities was about 20 microns and at 20% of acetone this size was 50 microns. It is known that small additions of diethylenetriamine (DETA) considerably increase the initial rate of chemical reaction in detonation waves for NM. It was expected that DETA would influence the stability of detonation waves in the NM/A solution too. To investigate this phenomenon the laser interferometer VISAR was used for the recording of particle velocity profiles in detonation waves for NM/A. It was found that at the addition of 0.5% DETA to NM/A 90/10 the oscillations in the velocity profile decreased several times over. At the addition of 1% DETA the profile is smooth, i.e. the heterogeneities disappear and detonation wave becomes steady-state. In NM/A 80/20 at the addition of 5% DETA the heterogeneities size is reduced by the order. The increase of detonation wave velocity of NM/A grater than 1% was observed at small concentrations of DETA. Thus it was found that small additions of DETA to the NM/A solution with an unstable detonation front resulted not only in the decrease of heterogeneities size but in their disappearance and stabilization of detonation waves.

  18. Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.

    1996-11-01

    Highly localized electron heating (FWHM <~ 0.2 a) via mode converted ion Bernstein waves (IBW) has been demonstrated in the Alcator C-Mod tokamak. These experiments were carried out using 80 MHz fast wave ICRF power at P_rf <~ 2.4 MW. Electron heating at or near the plasma center (r/a <~ 0.3) has been observed in H-(^3He) plasmas at B0 = (6.4 - 7.3)T. In this case the ion-ion hybrid layer is near the plasma center and the fundamental H and ^3He cyclotron resonances are located respectively on the low and high field sides of the tokamak. Off-axis heating (r/a >≈ 0.5) has also been observed in D-(^3He) plasmas at 7.9 T. In this case the ^3He cyclotron resonance is on-axis and the fundamental D resonance and mode conversion layer are on the high field side of the tokamak. The concentration of ^3He in these experiments was in the range n_^3He / ne ~= (0.2 - 0.3) and the location of the mode conversion layer was controlled by changing the ^3He concentration or the toroidal magnetic field. The rf heating profiles were deduced using an rf power modulation technique in which the local electron heating rate was obtained from a ``break in slope'' analysis of the measured electron temperature versus time. Detailed comparisons with 1-D and toroidal full-wave ICRF models (FELICE and FISIC codes) have been carried out. The 1-D predictions for the fractional electron power absorption and damping location are found to be in qualitative agreement with the experiment. However discrepancies have been found between the full-wave toroidal code predictions and experiment. This disagreement is thought to be due to a lack of radial and poloidal resolution in the solution of the mode converted ion Bernstein wave in toroidal geometry and will be discussed. A fast wave current drive package has been modified to study the current generated via the mode converted IBW. Based on these numerical results and the experimental results for power absorption, off-axis current of up to 200 kA is

  19. Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2012-01-01

    The propagation of shock waves in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux, which has a variable azimuthally fluid velocity together with a variable axial fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The fluid velocities in the ambient medium are assume to be vary and obey power laws. The density of the ambient medium is assumed to be constant, the heat conduction is express in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. In order to obtain the similarity solutions the angular velocity of the ambient medium is assume to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameter and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  20. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  1. Using NASA Earth Science Datasets for National Climate Assessment Indicators: Urban Impacts of Heat Waves Associated with Climate Change

    NASA Astrophysics Data System (ADS)

    Sadoff, N.; Weber, S.; Zell, E. R.; de Sherbinin, A. M.

    2014-12-01

    Climate-induced heat waves have been increasing globally in the past 5-10 years and are projected to continue increasing throughout the 21st century. In urban areas, heat waves are exacerbated by the non-climate stressor of urban heat islands (UHIs). The vulnerability of a city's population to heat waves reflects exposure to extreme heat events, sensitivity of the population to impacts, such as adverse health effects, and adaptive capacity to prepare for and respond to heat waves. Socially and economically vulnerable populations are especially at risk to the impacts of heat waves, due to increasing energy costs, air pollution, and heat-related illness and mortality. NASA earth science datasets, combined with socioeconomic data, can be used to create indicators that characterize vulnerability to urban heat events and address the effectiveness of adaptation measures designed to reduce local temperatures. The indicator development process should include engagement from local stakeholders and end users from the onset to ensure local relevance and, ultimately, indicator uptake and sustainability. This presentation will explore the process of working with urban stakeholders in Philadelphia to develop a set of policy-relevant, interdisciplinary vulnerability indicators focused on extreme heat events in urban areas. Ambient and land surface temperature, land cover classifications, NDVI, and US Census data are used to create a basket of indicators that reflect urban heat wave duration and intensity, UHI exposure, socioeconomic vulnerability, and adaptation effectiveness. These indicators can be assessed at the city level and also comparatively among different parts of a city to help quantify and track heat wave impacts on vulnerable populations and the effectiveness of adaptation measures.

  2. Evaporation and Accompanying Isotopic Fractionation of Sulfur from FE-S Melt During Shock Wave Heating

    NASA Technical Reports Server (NTRS)

    Tachibana, S.; Huss, G. R.; Miura, H.; Nakamoto, T.

    2004-01-01

    Chondrules probably formed by melting and subsequent cooling of solid precursors. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. It is known that kinetic evaporation, especially evaporation from a melt, often leads to enrichment of heavy isotopes in an evaporation residue. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules for K, Mg, Si, and Fe (as FeO). The lack of isotopic fractionation has also been found for sulfur in troilites (FeS) within Bishunpur (LL3.1) and Semarkona (LL3.0) chondrules by an ion microprobe study. The largest fractionation, found in only one grain, was 2.7 +/- 1.4 %/amu, while all other troilite grains showed isotopic fractionations of <1 %/amu. The suppressed isotopic fractionation has been interpreted as results of (i) rapid heating of precursors at temperatures below the silicate solidus and (ii) diffusion-controlled evaporation through a surrounding silicate melt at temperatures above the silicate solidus. The kinetic evaporation model suggests that a rapid heating rate of >10(exp 4)-10(exp 6) K/h for a temperature range of 1000-1300 C is required to explain observed isotopic fractionations. Such a rapid heating rate seems to be difficult to be achieved in the X-wind model, but can be achieved in shock wave heating models. In this study, we have applied the sulfur evaporation model to the shock wave heating conditions of to evaluate evaporation of sulfur and accompanying isotopic fractionation during shock wave heating at temperatures below the silicate solidus.

  3. A self-regulating heat pump to utilize wind and wave energy sources

    SciTech Connect

    Pritchard, C.; Low, R. )

    1990-01-01

    This paper describes the efficiency of using shaft work to drive a heat pump and the utilization of variable shaft work to upgrade heat from a source at near- constant temperature. A prototype heat pump is described that enables heat from an ambient source at {approximately} 20{degrees}C to be delivered to a load at {approximately} 100{degrees}C by a vapor compression system working with variable power input, such as that deriving from wind or wave energy. The design incorporates features that enable power inputs from 0.3-3 kW to be harnessed, corresponding to the wave energy in a 0.1-m width of usable wavefront, or the wind energy abstracted by a rotor of 2.5-m diameter in windspeeds of 7-15 m/s. A c.o.p. of {approximately}3 may be obtained over this range of power input. Thus the heat output is equivalent to that obtainable directly from an energy conversion device of three times the size.

  4. Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2016-05-01

    The study examines links of summer heat waves and winter cold spells in Central Europe to atmospheric circulation and specifically its persistence in an ensemble of regional climate models (RCMs). We analyse 13 RCMs driven by the ERA-40 reanalysis and compare them against observations over reference period 1971-2000. Using objective classification of circulation types and an efficiency coefficient with a block resampling test, we identify circulation types significantly conducive to heat waves and cold spells. We show that the RCMs have a stronger tendency to group together days with very high or low temperature and tend to simulate too many heat waves and cold spells, especially those lasting 5 days and more. Circulation types conducive to heat waves in summer are characterized by anticyclonic, southerly and easterly flow, with increasing importance of warm advection during heat waves. Winter cold spells are typically associated with easterly and anticyclonic flow, and the onset of cold spells tends to be linked to northerly and cyclonic flow with cold advection. The RCMs are generally able to reproduce the links between circulation and heat waves or cold spells, including the radiation-to-advection effect for heat waves and the opposite advection-to-radiation effect for cold spells. They capture relatively well also changes of mean temperature anomalies during sequences of given circulation types, namely the tendency towards temperature increase (decrease) during those types conducive to heat waves (cold spells). Since mean lengths of all circulation supertypes are overestimated in the RCMs, we conclude that the overly persistent circulation in climate models contributes to the overestimated frequency of long heat waves and cold spells. As these biases are rather general among the examined RCMs and similar drawbacks are likely to be manifested in climate model simulations for the twenty-first century, the results also suggest that climate change scenarios for

  5. Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States

    SciTech Connect

    Wu, Jianyong; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Kim, Young-Min; Liu, Yang

    2014-01-01

    Background: It is anticipated that climate change will influence heat-related mortality in the future. However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas emission scenarios. Objectives: We estimated the future heat wave impact on mortality in the eastern United States (~ 1,700 counties) under two Representative Concentration Pathways (RCPs) and analyzed the sources of uncertainties. Methods Using dynamically downscaled hourly temperature projections in 2057-2059, we calculated heat wave days and episodes based on four heat wave metrics, and estimated the excess mortality attributable to them. The sources of uncertainty in estimated excess mortality were apportioned using a variance-decomposition method. Results: In the eastern U.S., the excess mortality attributable to heat waves could range from 200-7,807 with the mean of 2,379 persons/year in 2057-2059. The projected average excess mortality in RCP 4.5 and 8.5 scenarios was 1,403 and 3,556 persons/year, respectively. Excess mortality would be relatively high in the southern and eastern coastal areas. The major sources of uncertainty in the estimates are relative risk of heat wave mortality, the RCP scenarios, and the heat wave definitions. Conclusions: The estimated mortality risks from future heat waves are likely an order of magnitude higher than its current level and lead to thousands of deaths each year under the RCP8.5 scenario. The substantial spatial variability in estimated county-level heat mortality suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data.

  6. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  7. Genome-wide evolutionary response to a heat wave in Drosophila

    PubMed Central

    Rodríguez-Trelles, Francisco; Tarrío, Rosa; Santos, Mauro

    2013-01-01

    Extreme climatic events can substantially affect organismal performance and Darwinian fitness. In April 2011, a strong heat wave struck extensive geographical areas of the world, including Western Europe. At that time, we happened to resume and extend a long-term time series of seasonal genetic data in the widespread fly Drosophila subobscura, which provided a unique opportunity to quantify the intensity of the genetic perturbation caused by the heat wave. We show that the spring 2011 genetic constitution of the populations transiently shifted to summer-like frequencies, and that the magnitude of the genetic anomaly quantitatively matched the temperature anomaly. The results provide compelling evidence that direct effects of rising temperature are driving adaptive evolutionary shifts, and also suggest a strong genetic resilience in this species. PMID:23740296

  8. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  9. The time development of a blast wave with shock heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  10. The time development of a blast wave with shock-heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  11. General and specific mortality among the elderly during the 2003 heat wave in Genoa (Italy).

    PubMed

    Conti, Susanna; Masocco, Maria; Meli, Paola; Minelli, Giada; Palummeri, Ernesto; Solimini, Renata; Toccaceli, Virgilia; Vichi, Monica

    2007-02-01

    The effects of heat waves on health can be serious for elderly persons, especially those in urban areas. We investigated in-depth the mortality excess during the 2003 heat wave among elderly persons (>74 years) in the City of Genoa (Italy). The excess in general mortality was calculated for the period July 16-August 31, as the ratio of observed to expected deaths. To evaluate "harvesting", we compared observed and expected mortality in the period September 2003-April 2004. We also studied the relationship between mortality and climatic conditions considering daily maximum temperature and Humidex discomfort degrees, as well as "lag-time". For cause-specific mortality, we considered all pathologies reported on the death certificate. The excess in general mortality was significant and was greatest in the first half of August. During Summer 2003, in Genoa the climatic conditions (described in terms of maximum temperature and Humidex Index) were extremely hot; regarding lag-time, the greatest correlation between the number of observed deaths and the maximum temperature values was observed for the three preceding days (rho=0.568; significance level<0.01). The prominent causes of death, for which an excess was observed, were cerebrovascular diseases, severe respiratory diseases, severe renal diseases, dementia; moreover, certain pathologic conditions and symptoms, usually not lethal, were also frequent causes of death (e.g., hypovolemia, hyperpyrexia, decubitus ulcers and immobilization syndrome). The results of this study confirm the relationship between the heat waves and death among elderly, stressing that, because of their poorer physical health and the prevalence of cognitive disturbances that hinder risk perception, it is necessary to properly care for them during heat waves.

  12. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    SciTech Connect

    T.M. Biewer; R.E. Bell; S.J. Diem; C.K. Phillips; J.R. Wilson; P.M. Ryan

    2004-12-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma.

  13. Additions to compact heat exchanger technology: Jet impingement cooling & flow & heat transfer in metal foam-fins

    NASA Astrophysics Data System (ADS)

    Onstad, Andrew J.

    Compact heat exchangers have been designed following the same basic methodology for over fifty years. However, with the present emphasis on energy efficiency and light weight of prime movers there is increasing demand for completely new heat exchangers. Moreover, new materials and mesoscale fabrication technologies offer the possibility of significantly improving heat exchanger performance over conventional designs. This work involves fundamental flow and heat transfer experimentation to explore two new heat exchange systems: in Part I, large arrays of impinging jets with local extraction and in Part II, metal foams used as fins. Jet impingement cooling is widely used in applications ranging from paper manufacturing to the cooling of gas turbine blades because of the very high local heat transfer coefficients that are possible. While the use of single jet impingement results in non-uniform cooling, increased and more uniform mean heat transfer coefficients may be attained by dividing the total cooling flow among an array of smaller jets. Unfortunately, when the spent fluid from the array's central jets interact with the outer jets, the overall mean heat transfer coefficient is reduced. This problem can be alleviated by locally extracting the spent fluid before it is able to interact with the surrounding jets. An experimental investigation was carried out on a compact impingement array (Xn/Djet = 2.34) utilizing local extraction of the spent fluid (Aspent/Ajet = 2.23) from the jet exit plane. Spatially resolved measurements of the mean velocity field within the array were carried out at jet Reynolds numbers of 2300 and 5300 by magnetic resonance velocimetry, MRV. The geometry provided for a smooth transition from the jet to the target surface and out through the extraction holes without obvious flow recirculation. Mean Nusselt number measurements were also carried out for a Reynolds number range of 2000 to 10,000. The Nusselt number was found to increase with the

  14. HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES

    SciTech Connect

    Shelyag, S.; Przybylski, D.; Khomenko, E.; Vicente, A. de

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  15. Co-counter asymmetry in fast wave heating and current drive

    SciTech Connect

    Jaeger, E.F.; Carter, M.D.; Berry, L.A.; Batchelor, D.B.; Forest, C.B.; Weitzner, H.

    1997-04-01

    Full wave ICRF coupling models show differences in plasma response when antenna arrays are phase to drive currents and counter to the plasma current. The source of this difference lies in the natural up- sown asymmetry of the antenna`s radiated power spectrum. This asymmetry is due to Hall terms in the wave equation, and occurs even without a poloidal magnetic field. When a poloidal field is included, the up-down asymmetry acquires a toroidal component. The result is that plasma absorption (i.e. antenna loading) is shifted or skewed toward the co-current drive direction, independent of the direction of the magnetic field. When wave are launched to drive current counter the plasma current , electron heating an current profiles are more peaked on axis, and this peaking becomes more pronounce a lower toroidal magnetic fields.

  16. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  17. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  18. THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.

    2013-08-20

    The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.

  19. Simulation of High Power ICRF Wave Heating in the ITER Burning Plasma

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Barrett, R. F.; D'Azevedo, E. F.

    2007-11-01

    ITER relies on Ion-cyclotron Radio Frequency (ICRF) power to heat the plasma to fusion temperatures. To heat effectively, the waves must couple efficiently to the core plasma. Recent simulations using AORSA [1] on the 120 TF Cray XT-4 (Jaguar) at ORNL show that the waves propagate radially inward and are rapidly absorbed with little heating of the plasma edge. AORSA has achieved 87.5 trillion calculations per second (87.5 teraflops) on Jaguar, which is 73 percent of the system's theoretical peak. Three dimensional visualizations show ``hot spots'' near the antenna surface where the wave amplitude is high. AORSA simulations are also being used to study how to best use ICRF to drive plasma currents for optimizing ITER performance and pulse length. Results for Scenario 4 show a maximum current of 0.54 MA for 20 MW of power at 57 MHz. [1] E.F. Jaeger, L.A. Berry, E. D'Azevedo, et al., Phys. Plasmas. 8, 1573 (2001).

  20. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2012-09-01

    A global perspective is developed on a number of high impact climate extremes in 2010 through diagnostic studies of the anomalies, diabatic heating, and global energy and water cycles that demonstrate relationships among variables and across events. Natural variability, especially ENSO, and global warming from human influences together resulted in very high sea surface temperatures (SSTs) in several places that played a vital role in subsequent developments. Record high SSTs in the Northern Indian Ocean in May 2010, the Gulf of Mexico in August 2010, the Caribbean in September 2010, and north of Australia in December 2010 provided a source of unusually abundant atmospheric moisture for nearby monsoon rains and flooding in Pakistan, Colombia, and Queensland. The resulting anomalous diabatic heating in the northern Indian and tropical Atlantic Oceans altered the atmospheric circulation by forcing quasi-stationary Rossby waves and altering monsoons. The anomalous monsoonal circulations had direct links to higher latitudes: from Southeast Asia to southern Russia, and from Colombia to Brazil. Strong convection in the tropical Atlantic in northern summer 2010 was associated with a Rossby wave train that extended into Europe creating anomalous cyclonic conditions over the Mediterranean area while normal anticyclonic conditions shifted downstream where they likely interacted with an anomalously strong monsoon circulation, helping to support the persistent atmospheric anticyclonic regime over Russia. This set the stage for the "blocking" anticyclone and associated Russian heat wave and wild fires. Attribution is limited by shortcomings in models in replicating monsoons, teleconnections and blocking.

  1. Russia Browning: The 2010 Heat Wave Was Not an Isolated Event

    NASA Astrophysics Data System (ADS)

    Wright, C. K.; de Beurs, K. M.; Henebry, G. M.

    2011-12-01

    Record-high temperatures and wildfires eliminated nearly a third of Russia's 2010 wheat crop. Similar crop losses in Ukraine and Kazakhstan, combined with a Russian export ban, roiled international grain markets. Here we show that the 2010 crop failures were not isolated events, but rather the continuation of a decade-long browning trend across much of the Eurasian "breadbasket". Over the period 2001-2010, we find that nearly 40% of the Eurasian wheat belt (EWB) exhibited significant negative trends in the Normalized Difference Vegetation Index (NDVI). The height of the Russian heat wave was caused by severe atmospheric blocking during July and August of 2010. However, we find highly negative NDVI anomalies during the early growing season preceding the onset of atmospheric blocking; suggesting that land surface feedbacks linked to early season drying amplified the blocking event's severity and duration. The unusually warm and dry early growing season preceding the heat wave was consistent with the highly negative phase of the North Atlantic Oscillation (NAO) which emerged in 2009/2010. We also find an empirical link between the NAO's recent downward trend and browning of the EWB. Recent evidence that receding Arctic sea ice is forcing a downward trend in the NAO suggests the possibility that global climate change played a role in the Russian heat wave. Food security models predicting that the EWB will contribute an increasing share of global wheat production due to climate-change effects including longer growing seasons and warmer winters may be unrealistic given observed trends.

  2. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  3. Local heating of human skin by millimeter waves: effect of blood flow.

    PubMed

    Alekseev, S I; Radzievsky, A A; Szabo, I; Ziskin, M C

    2005-09-01

    We investigated the influence of blood perfusion on local heating of the forearm and middle finger skin following 42.25 GHz exposure with an open ended waveguide (WG) and with a YAV mm wave therapeutic device. Both sources had bell-shaped distributions of the incident power density (IPD) with peak intensities of 208 and 55 mW/cm(2), respectively. Blood perfusion was changed in two ways: by blood flow occlusion and by externally applied vasodilator (nonivamide/nicoboxil) cream to the skin. For thermal modeling, we used the bioheat transfer equation (BHTE) and the hybrid bioheat equation (HBHE) which combines the BHTE and the scalar effective thermal conductivity equation (ETCE). Under normal conditions with the 208 mW/cm(2) exposure, the cutaneous temperature elevation (DeltaT) in the finger (2.5 +/- 0.3 degrees C) having higher blood flow was notably smaller than the cutaneous DeltaT in the forearm (4.7 +/- 0.4 degrees C). However, heating of the forearm and finger skin with blood flow occluded was the same, indicating that the thermal conductivity of tissue in the absence of blood flow at both locations was also the same. The BHTE accurately predicted local hyperthermia in the forearm only at low blood flow. The HBHE made accurate predictions at both low and high perfusion rates. The relationship between blood flow and the effective thermal conductivity (k(eff)) was found to be linear. The heat dissipating effect of higher perfusion was mostly due to an apparent increase in k(eff). It was shown that mm wave exposure could result in steady state heating of tissue layers located much deeper than the penetration depth (0.56 mm). The surface DeltaT and heat penetration into tissue increased with enlarging the irradiating beam area and with increasing exposure duration. Thus, mm waves at sufficient intensities could thermally affect thermo-sensitive structures located in the skin and underlying tissue.

  4. Fast wave heating and edge power losses in NSTX and NSTX-U

    NASA Astrophysics Data System (ADS)

    Bertelli, Nicola

    2013-10-01

    Experimental studies of high harmonic fast wave (HHFW) heating on the National Spherical Torus Experiment (NSTX) have demonstrated that substantial HHFW power loss can occur along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. Extended ray tracing and full wave codes are being applied to specific NSTX discharges in order to predict the causes of this power loss. Previous full wave simulations predict that cavity-like modes may form outside of the LCFS. We find that inserting a collisional loss in the SOL of AORSA to represent a damping process indicates an effective collisional term of ν / ω ~ [ 0 . 05 - 0 . 1 ] which is considerably larger than the ν / ω ~ 0 . 005 obtained with Spitzer resistivity, suggesting the damping scale of the loss mechanism. The magnitude of the edge collisional losses are being used to evaluate possible potential damping mechanisms in the SOL. Initial numerical analyses show that the presence of the SOL has a significant impact on the launched antenna spectrum. The upgrade of NSTX, NSTX-U, will operate with toroidal magnetic fields (BT) up to 1 T, nearly twice the values used on NSTX. The doubling of BT while retaining the 30 MHz RF frequency moves the heating regime for NSTX-U to the mid harmonic fast wave (MHFW) regime, which will be analyzed and contrasted with the HHFW regime on NSTX. These studies indicate that direct ion damping might be more significant in NSTX-U under TRANSP predicted full performance conditions. Modifications of fast ion distributions due to the interaction of fast waves with NBI will be presented in both MHFW and HHFW regimes. Work supported by the SciDAC Center for Wave-Plasma Interactions under DE-FC02-01ER54648 and the US DOE under DE-AC02-CH0911466.

  5. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2010-04-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  6. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  7. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    NASA Astrophysics Data System (ADS)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  8. Heat wave event dynamics over the territory of Ukraine in the context of the global climate change

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna; Dereviaha, Oleksandr

    2016-04-01

    General circulation models of climate change predict that heatwaves will become more frequent and intense, especially in the higher latitudes, affecting large metropolitan areas. In the study for nine cities of the Ukraine (Kyiv, Lviv, Odesa, Poltava, Simferopol, Uzhgorod, Uman, Kharkiv, Chernivtsi), the series of average daily maximum temperature for periods of 41 to 112 years are analyzed during the warm season (May, 1 to September, 30). The study is based on the Peaks over Threshold Approach, applied to study the frequency of heat waves using three heat indices such as 90th percentile (TX90p), 95th percentile (TX95) and heat wave criterion proposed by WMO (TXA5). For five stations of Chernivtsi, Kharkiv, Kyiv, Odesa and Poltava a linear trend shows the decrease in maximum temperature. For the rest of the stations there is the increase in the year highest temperature. For all stations stepped trend is characterized strong change in the mean value of block maximum temperature. In Kyiv and Lviv the stepped and linear trends don't agree. It shows that in these stations there is different type of variability (for example, cyclical fluctuations). In comparison with the 1961-1990 period for all stations in question number of heat waves is growing. However, most increment of number of heat wave days in the period of 2001-2010 are observed in Kyiv, Simferopol and Uman. For these stations rapid growth in days with maximum temperatures being more than 30 and 35°C, are obtained as well. In Lviv, Poltava and Kharkiv uneven decrease in number of heat wave days occur during XX century for all indices in question. In the other stations periods with small number of heat wave days alternates with ones with large number of heat wave days, which correspond to periods of decrease and increase of maximum temperature. The least length of heat waves takes place in Lviv (doesn't exceed 10 days), Odesa and Chernivtsi (doesn't exceed 15 days) for all indices. The largest length of heat

  9. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Bernardini, M.; Asproulias, I.; Larsson, J.; Pirozzoli, S.; Grasso, F.

    2016-12-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock wave turbulent boundary layer interactions at free-stream Mach number 2.28 and shock angle of the wedge generator φ =8∘ . Five values of the wall-to-recovery-temperature ratio (Tw/Tr ) are considered, corresponding to cold, adiabatic, and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, which produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, with the maximum thermal and dynamic loads found for the case of the cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by scattered spots with extremely high values compared to the mean. Furthermore, the analogy between momentum and heat transfer, typical of compressible, wall-bounded, equilibrium turbulent flows, does not apply for most of the interaction domain. The premultiplied spectra of the wall heat flux do not show any evidence of the influence of the low-frequency shock motion, and the primary mechanism for the generation of peak heating is found to be linked with the turbulence amplification in the interaction region.

  10. Ion-Bernstein-wave heating in the JIPPT-II-U tokamak plasma

    NASA Astrophysics Data System (ADS)

    Ono, M.; Watari, T.; Ando, R.; Fujita, J.; Hirokura, Y.; Ida, K.; Kako, E.; Kawahata, K.; Kawasumi, Y.; Matsuoka, K.; Nishizawa, A.; Noda, N.; Ogawa, I.; Ohkubo, K.; Okamoto, M.; Soto, K.; Tanahashi, S.; Taniguchi, Y.; Tetsuka, T.; Toi, K.; Yamazaki, K.

    1985-05-01

    Ion-Bernstein-wave heating is investigated in the JIPPT-II-U tokamak plasma, n¯e~=1.5×1013 cm-3, Te0~=700 eV, and Ti0~=300 eV for Prf<~100 kW. When the (3/2)ΩH layer is placed near the plasma minor axis, the bulk hydrogen-ion temperature shows a significant rise, ΔTi⊥<=700 eV and ΔTipara<=300 eV. The ion heating dependence on the magnetic field and rf power suggests a presence of direct bulk hydrogen heating mechanism at ω~=(3/2)ΩH.

  11. Heat Waves

    MedlinePlus

    ... This typically occurs when people exercise heavily or work in a hot, humid place where body fluids are lost through heavy sweating. Blood flow to the skin increases, causing blood flow to decrease to the vital organs. This ... cool the body, stops working. The body temperature can rise so high that ...

  12. Additive impacts on particle emissions from heating low emitting cooking oils

    NASA Astrophysics Data System (ADS)

    Amouei Torkmahalleh, M.; Zhao, Y.; Hopke, P. K.; Rossner, A.; Ferro, A. R.

    2013-08-01

    The effect of five additives, including table salt, sea salt, black pepper, garlic powder, and turmeric, on the emission of PM2.5 and ultrafine particles (UFP) from heated cooking oil (200 °C) were studied. One hundred milligrams of the additives were added individually to either canola or soybean oil without stirring. Black pepper, table salt, and sea salt reduced the PM2.5 emission of canola oil by 86% (p < 0.001), 88% (p < 0.001), and 91% (p < 0.001), respectively. Black pepper, table salt, and sea salt also decreased the total particle number emissions of canola oil by 45% (p = 0.003), 52% (p = 0.001), and 53% (p < 0.001), respectively. Turmeric and garlic powder showed no changes in the PM2.5 and total number emissions of canola oil. Table salt and sea salt, decreased the level of PM2.5 emissions from soybean oil by 47% (p < 0.001) and 77% (p < 0.001), respectively. No differences in the PM2.5 emissions were observed when other additives were added to soybean oil. Black pepper, sea salt, and table salt reduced the total particle number emissions from the soybean oil by 51%, 61% and 68% (p < 0.001), respectively. Turmeric and garlic powder had no effect on soybean oil with respect to total particle number emissions. Our results indicate that table salt, sea salt, and black pepper can be used to reduce the particle total number and PM2.5 emissions when cooking with oil.

  13. Comparative Calculation of Heat Exchange with the Ground in Residential Building Including Periodes of Heat Waves

    NASA Astrophysics Data System (ADS)

    Staszczuk, Anna; Kuczyński, Tadeusz; Wojciech, Magdalena; Ziembicki, Piotr

    2016-06-01

    The paper provides verification of 3D transient ground-coupled model to calculation of heat exchange between ground and typical one-storey, passive residential building. The model was performed with computer software WUFI®plus and carried out to estimate the indoor air temperatures during extending hot weather periods. For verifying the results of calculations performed by the WUFI®plus software, the most recent version of EnergyPlus software version was used. Comparison analysis of calculation results obtained with the two above mentioned calculation method was made for two scenarios of slab on ground constructions: without thermal insulation and with thermal insulation under the whole slab area. Comprehensive statistical analysis was done including time series analysis and descriptive statistics parameters.

  14. In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John R.; Funsten, Herbert O.

    2016-07-01

    With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions.

  15. Universal Heat Conduction in the Iron Arsenide Superconductor KFe2As2: Evidence of a d-Wave State

    SciTech Connect

    Reid, J.-Ph.; Tanatar, Makariy A.; Juneau-Fecteau, A.; Gordon, R.T.; Rene de Cotret, S.; Doiron-Leyraud, N.; Saito, T.; Fukazawa, H.; Kohori, Y.; Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H.; Prozorov, Ruslan; Taillefer, Louis

    2012-08-21

    The thermal conductivity κ of the iron arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c axis. A residual linear term at T→0, κ0/T is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of κ0/T in the plane is equal to that reported by Dong et al. [ Phys. Rev. Lett. 104 087005 (2010)] for a sample whose residual resistivity ρ0 was 10 times larger. This independence of κ0/T on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate Γc for suppressing Tc to zero; the magnitude of κ0/T, and its dependence on current direction and on magnetic field; the temperature dependence of κ(T).

  16. Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state.

    PubMed

    Reid, J-Ph; Tanatar, M A; Juneau-Fecteau, A; Gordon, R T; de Cotret, S René; Doiron-Leyraud, N; Saito, T; Fukazawa, H; Kohori, Y; Kihou, K; Lee, C H; Iyo, A; Eisaki, H; Prozorov, R; Taillefer, Louis

    2012-08-24

    The thermal conductivity κ of the iron arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c axis. A residual linear term at T→0, κ(0)/T is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of κ(0)/T in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity ρ(0) was 10 times larger. This independence of κ(0)/T on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate Γ(c) for suppressing T(c) to zero; the magnitude of κ(0)/T, and its dependence on current direction and on magnetic field; the temperature dependence of κ(T).

  17. Inertia gravity waves in a rotating, differentially heated annulus with an upper free surface

    NASA Astrophysics Data System (ADS)

    Randriamampianina, Anthony; Harlander, Uwe; Vincze, Miklos; von Larcher, Thomas; Viazzo, Stephane

    2015-04-01

    Inertia gravity waves (IGWs) are ubiquitous in the atmosphere and oceans, and are known to play a fundamental role in a wide variety of processes, among others the induction and modulation of turbulence. Observations and simulations have revealed their spontaneous occurrence simultaneously with the onset of baroclinic instability, recognized to be one of the dominant energetic processes in the large-scale atmospheric and oceanic circulations. In spite of intensive research activities these last decades, the generation mechanism and the propagation of IGWs, as well as their interaction with large-scale structures triggering locally chaotic motions, remain poorly understood. A better understanding of these phenomena is therefore mandatory for the development of IGW's parameterization schemes actually required for numerical global weather prediction. A combined laboratory experiment and direct numerical simulations study is proposed for the detailed investigations of instabilities arising within a differentially heated rotating annulus, the baroclinic cavity. The configuration corresponds to an experimental setup used at BTU, Cottbus Senftenberg, Germany [1], characterized by an open upper surface and filled with water (Pr = 7). Infrared thermography and simultaneous kalliroscope visualization in horizontal planes, illuminated by a laser sheet, have been applied to detect the surface signatures of IGWs. These findings confirmed the computations carried out by three different numerical approaches, using either spectral methods, high order compact finite difference scheme (M2P2, Marseille), or the EULAG code (Freie Universitaet Berlin). These small-scale features have been observed in addition to those developing along the inner cold cylinder, previously identified by simulations in a closed cavity, filled with a liquid defined by Pr = 16 [2]. These new IGWs show characteristics similar to the ones obtained by [3] at the exit of the meandering jet between the cyclonic

  18. Assessing projected changes in heat waves over Northern Europe using two regional climate models at 8-km resolution.

    NASA Astrophysics Data System (ADS)

    Fox Maule, Cathrine; Christensen, Ole B.; Mayer, Stephanie; Thejll, Peter

    2013-04-01

    As temperatures in Northern Europe increase due to climate change the occurrence of extreme events such as heat waves is likely to change. A higher occurrence rate of heat waves can have serious health consequences, in particular for the elderly, but also for very young children and the infirm. Not only the occurrence rate of heat waves, but also changes in the duration of individual heat waves, is of importance. It is therefore of relevance to investigate how the occurrence of heat waves is likely to increase in the future, to allow for adaptation. We have looked at the projected changes in the occurrence rate of heat waves in a part of northern Europe including southern Scandinavia, the Baltic Sea and the North Sea, according to two different greenhouse gas emission scenarios: RCP4.5 and RCP8.5. In this study we have chosen to use the Danish Meteorological Institutes definition, in which a high temperature event is classified as a heat wave if the average of the maximum temperature of a period of at least 3 consecutive days exceeds 28°C. To estimate the change in the occurrence rate of heat waves we have used two different GCM-RCM combinations, NorESM-WRF (BCCR) and EC-EARTH-HIRHAM5 (DMI). Both regional models have down-scaled the global models to a resolution of about 8 km, and hourly values of several parameters including temperature, precipitation and wind have been stored. We compare the climate model data from three different time slices, 1981-2010 run with historical greenhouse gas concentrations, 2021-2050 (RPC4.5 and RCP 8.5) and 2071-2100 (RPC4.5 and RCP 8.5), to see the time evolution in the occurrence rate of heat waves for the two RCP scenarios. Our results indicate that the occurrence rate of heat waves in this region will increase as a consequence of global warming, and that individual heat waves will tend to last longer.

  19. Minor ion heating in spectra of linearly and circularly polarized Alfvén waves: Thermal and non-thermal motions associated with perpendicular heating

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei

    2014-02-01

    Minor ion (such as He2+) heating via nonresonant interaction with spectra of linearly and circularly polarized Alfvén waves (LPAWs and CPAWs hereafter) is studied. The obtained analytic solutions are in good agreement with the simulation results, indicating that newborn ions are heated by low-frequency Alfvén waves with finite amplitude in low-beta plasmas such as the solar corona. The analytic solutions also reproduce the preferential heating of heavy ions in the solar wind. In the presence of parallel propagating Alfvén waves, turbulence-induced particle motion is clearly observed in the wave (magnetic field) polarized directions. After the waves diminish, the newborn ions are heated, which is caused by the phase difference (randomization) between ions due to their different parallel thermal motions. The heating is dominant in the direction perpendicular to the ambient magnetic field. The perpendicular heating, η =(Ti⊥R-Ti0⊥R)/Ti0⊥R (where Ti0⊥R and Ti⊥R are the perpendicular temperature of species i before and after genuine heating, respectively), in the spectrum of CPAWs is a factor of two stronger than that of LPAWs. Moreover, we also study the effect of field-aligned differential flow speed of species i relative to H+, δvip=(vi-vp).B /|B| (where vi and vp denote vector velocities of the H+ and species i, respectively), on the perpendicular heating. It reveals that large drift speed, vd=δvip, has an effect on reducing the efficiency of perpendicular heating, which is consistent with observations.

  20. Heat wave beats green wave: the effect of a climate extreme on alpine grassland phenology as seen by phenocams

    NASA Astrophysics Data System (ADS)

    Cremonese, Edoardo; Filippa, Gianluca; Migliavacca, Mirco; Siniscalco, Consolata; Oddi, Ludovica; Galvagno, Marta

    2016-04-01

    The year 2015 has been one of the warmest on record for many regions of the world. The record-breaking temperatures did not spare the European Alps, where the summer anomaly reached +4°C. This heat wave caused important impacts on the seasonal development and structural properties of alpine grasslands that deserve investigations. Phenocams are useful tools to describe canopy greenness seasonal dynamics and many recent studies demonstrated that the major phenological events (e.g. budbrust, senescence, …) can be extracted from greenness trajectories. In contrast, little is know about their capabilities to describe the impact of extreme climate events on a fully developed canopy. Moreover the relation between quantitative structural and functional vegetation properties (e.g. biomass, LAI, …) and phenocam data remains poorly investigated. In this study we examine the impact of the 2015 summer heat wave on a subalpine grassland by jointly analyzing phenocam greenness trajectories, proximal sensing and flux data together with field measures of vegetation structural properties. The effect of different environmental drivers on greenness seasonal development was further evaluated by a modeling approach (GSI model). Phenocam tracked the impact of heatwave 2015 that caused a lower canopy development and an anticipation of yellowing by more than 2 months. The same pattern was observed for CO2 fluxes, NDVI and field measures. GSI model results show that during the heatwave, a combination of moisture and high temperature limitation was responsible for the observed reduction of the canopy development. Moreover, spatially explicit analysis of digital images allowed to highlight the differential response of specific plant functional types to the extreme event.

  1. Urban enhancement of the heat waves in Madrid and its metropolitan area

    NASA Astrophysics Data System (ADS)

    Fernandez, F.; Rasilla, D.

    2009-04-01

    The urban heat island (UHI) is a worldwide phenomenon that causes an increase of the temperatures in the centre of the cities. The process of urbanization has developed an intense urban heat island in Madrid, with temperature differences up to 10°C higher than the surrounding rural environment. Such differences may potentially increase the magnitude and duration of heat waves within cities, exacerbating their most negative effects over human health, particularly by night, as it deprives urban residents of the cool relief found in rural areas. In this contribution we study the long term trends on warm extreme temperature episodes in the Madrid metropolitan area, and their impact at local scale, on the onw city of Madrid. For the first task, we have compared maximum and minimum temperatures from rural (Barajas and Torrejón) and urban (El Retiro, Cuatro Vientos, Getafe) stations from 1961-2008; for the second one a local network of automated meteorological stations inside the city provided hourly data from the 2002-2004 years. Finally, the 2003 heat wave is used as an example of the spatial and temporal patterns of temperature and ozone concentrations during those extreme episodes. Our results show a regional increase in the frequency and duration of those extreme warm episodes since the end of the 80´s, although their absolute magnitude remains unchanged. The urban environment exacerbates the heat load due to the persistence of the high temperatures during the night-time hours, as it is shown by the above average number of tropical nights (> 20°C) inside the urban spaces, simultaneous to the increasing trend of maximum temperatures. Besides, the diversity of urban morphologies introduces a spatial variability on the strength of this nocturnal heat load, aggravating it in the densely urbanized areas and mitigating it in the vicinities of the green areas. The regional meteorological conditions associated to these warm episodes, characterized also by low wind speed

  2. Record-breaking 2015 heat waves in Central Europe: how to view them in the climate change context?

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondrej; Plavcová, Eva; Kyselý, Jan

    2016-04-01

    The 2015 summer was the warmest summer ever observed in Central Europe according to many characteristics, including the overall severity of heat waves. We assess how unusual this summer was by i) comparing the seasonal temperature anomalies and severity of heat waves against long-term temperature records at Central European stations, ii) evaluating its temperature characteristics at the continental scale against hot summers and major heat waves affecting Europe recently (including the 2003 western-European heat waves and the 2010 Russian heat waves), and iii) identifying time slices in climate change scenarios for the 21st century in which similar events are projected to occur over Central Europe at least once per decade. In the last point, we make use of a large ensemble of RCM simulations from CORDEX and ENSEMBLES projects and critically evaluate their ability to simulate events such as the 2015 summer (in terms of both seasonal temperature anomalies and heat waves, including their spatial extent). We examine also how results for the climate change scenarios depend on radiative forcing and driving global models.

  3. Climate extremes in urban area and their impact on human health: the summer heat waves

    NASA Astrophysics Data System (ADS)

    Baldi, Marina

    2014-05-01

    In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and

  4. Local heating of human skin by millimeter waves: a kinetics study.

    PubMed

    Alekseev, S I; Ziskin, M C

    2003-12-01

    Heating rates of human skin exposed locally to 42.25 GHz mm waves, coming from a waveguide (WG) opening or a YAV device designed for therapeutic application, were studied in vivo using infrared (IR) thermography. For both radiators, the power density distribution was described by a circularly symmetrical Gaussian type function on the exposed skin surface. Insertion of a small thermocouple (d = 0.1 mm) in the exposed area did not produce any significant artifact, either in the power density distribution or kinetics measurement, providing it was perpendicular to the E vector. The heating kinetics in the skin exposed with either the WG opening or the YAV device were well fitted to solutions of the 2-D bio-heat transfer equation for homogeneous tissue. Changes in irradiating beam size (1-8 mm) had no detectable effect on the initial (0.3-3.0 s) phase of the heating kinetics. However, the amplitude of the kinetics decreased substantially with decreasing the beam size. As the temperature rise in the time interval necessary for reliable measurement of the initial temperature rise rate was very small, an accurate experimental determination of specific absorption rate (SAR) becomes practically impossible at the low intensities normally used in our experiments. The correct SAR values may be found from fitting of the model to the heating kinetics. Bioelectromagnetics 24:571-581, 2003.

  5. Wave Heating in Ion Cyclotron Ranges of Frequencies in RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Mushiake, T.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-11-01

    The magnetosphere plasma device RT-1 has been developed for the studies on magnetosphere and advanced fusion plasmas. A levitated superconducting coil produces magnetic dipole fields that realize a high confinement state. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. We reported that the local electron beta exceeded 1 in RT-1 plasmas. In such situation, the ions still remain cold at a few ten eV. Heating ions is expected to access high ion beta state and to improve the plasma confinement theoretically. Therefore the ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW is being prepared in RT-1. Based on the results of the TASK-WF2 code, the ∩ shape loop antenna was designed for a slow wave excitation, and was implemented in the RT-1. In the ICRF heating experiments, a base plasma was sustained by ECRH. We observed the clear increase in diamagnetic signals and impurity ion temperature (CIII) in helium plasmas at the neutral gas pressure of 3 mPa, if the ICRF power of 10 kW is comparable to the ECRH one. This result is the first time in a magnetosphere plasma device. The results related to the ICRF heating will be presented in detail. JSPS KAKENHI Grant Nos 23224014 and 24360384.

  6. Remote sensing image-based analysis for heat waves assessment hazard in urban areas

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Climate change and extreme climate events are the great environmental concerns facing mankind in the twenty first century. Surface temperatures are expected to continue to increase globally and major changes are likely to occur in the global hydrological and energy cycles.Extreme climate events like heat waves are a key manifestation of complex systems, in both the natural and human world.It was estimated that during last years regional surface warming caused the frequency, intensity and duration of heat waves to increase over Europe. During last period global warming was intensified because the global mean surface temperature has increased since the late 19th century.As urbanization has become an important contributor for global warming, Urban Heat Island (UHI) effect, will be sure to influence the regional climate, environment, and socio-economic development. Much more, extreme climatic events as heat waves will amplify the UHI effect with severe urban ecosystem health consequences. Remote sensing is a key to mesoscale modeling through specification of land cover distributions and creating spatial products of moisture, reflectance, and surface temperatures. Because the knowledge of urban surface energy budgets and urban heat islands is significant to assess urban climatology, global environmental change, and human-environment interactions important for planning and management practices, is very important to study land surface temperatures and urban energy budget characteristics using the technology of satellite remote sensing imagery. In this study MODIS and IKONOS satellite remote sensing images for 1989 to 2007 period have been selected to retrieve the urban biogeophysical parameters and brightness temperatures in relation with changes of land use/cover types over Bucharest metropolitan area, Romania. The spatial distribution of heat islands has been changed from a mixed pattern, where bare land, semi-bare land and land under development were warmer than other

  7. Heat Waves Assessment in Urban Areas Through Remote Sensing Image-Based Analysis

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate change and extreme climate events are the great environmental concerns facing mankind in the twenty first century. Surface temperatures are expected to continue to increase globally and major changes are likely to occur in the global hydrological and energy cycles.Extreme climate events like heat waves are a key manifestation of complex systems, in both the natu-ral and human world.It was estimated that during last years regional surface warming caused the frequency, intensity and duration of heat waves to increase over Europe. During last pe-riod global warming was intensified because the global mean surface temperature has increased since the late 19th century.As urbanization has become an important contributor for global warming, Urban Heat Island (UHI) effect, will be sure to influence the regional climate, envi-ronment, and socio-economic development.Much more, extreme climatic events as heat waves will amplify the UHI effect with severe urban ecosystem health consequences. Remote sensing is a key to mesoscale modeling through specification of land cover distributions and creating spatial products of moisture, reflectance, and surface temperatures. Because the knowledge of urban surface energy budgets and urban heat islands is significant to assess urban climatology, global environmental change, and human-environment interactions important for planning and management practices, is very important to study land surface temperatures and urban energy budget characteristics using the technology of satellite remote sensing imagery. In this study MODIS and IKONOS satellite remote sensing images for 1989 to 2008 period have been se-lected to retrieve the urban biogeophysical parameters and brightness temperatures in relation with changes of land use/cover types over Bucharest metropolitan area, Romania. The spatial distribution of heat islands has been changed from a mixed pattern, where bare land, semi-bare land and land under development were warmer than

  8. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  9. Tissue Erosion Using Shock Wave Heating and Millisecond Boiling in HIFU Fields

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Khokhlova, Tatiana D.; Khokhlova, Vera A.; Bailey, Michael R.; Ha Hwang, Joo; Crum, Lawrence A.

    2010-03-01

    A wide variety of treatment protocols have been employed in high intensity focused ultrasound (HIFU) treatments, and the resulting bioeffects observed include both mechanical as well as thermal effects. In recent studies, there has been significant interest in generating purely mechanical damage using protocols with short, microsecond pulses. Tissue erosion effects have been attained by operating HIFU sources using short pulses of 10-20 cycles, low duty cycles (<1%), and pulse average intensities of greater than 20 kW/cm2. The goal of this work was to use a modified pulsing protocol, consisting of longer, millisecond-long pulses of ultrasound and to demonstrate that heating and rapid millisecond boiling from shock wave formation can be harnessed to induce controlled mechanical destruction of soft tissue. Experiments were performed in excised bovine liver and heart tissue using a 2-MHz transducer. Boiling activity was monitored during exposures using a high voltage probe in parallel with the HIFU source. In situ acoustic fields and heating rates were determined for exposures using a novel derating approach for nonlinear HIFU fields. Several different exposure protocols were used and included varying the duty cycle, pulse length, and power to the source. After exposures, the tissue was sectioned, and the gross lesion morphology was observed. Different types of lesions were induced in experiments that ranged from purely thermal to purely mechanical depending on the pulsing protocol used. Therefore, shock wave heating and millisecond boiling may be an effective method for reliably generating significant tissue erosion effects.

  10. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in

  11. Effects of silicic spheres for the suppression of radiation heating using on electromagnetic wave scattering theory

    NASA Astrophysics Data System (ADS)

    Ohkawa, E.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Taniguchi, K.; Ashida, Y.

    2009-12-01

    The temperature of external materials of buildings rises when they are exposed to sunlight, and the room temperature rises too if the buildings’ external wall is in the sunlight. Therefore the crisis of electric power supply is frequently caused by air conditioning in midsummer. Recently, it has been experimentally confirmed that such temperature rising of such building materials may be suppressed when they are coated with paint including fine silicic spheres whose diameters are in micron to submicron scale. So we are able to reduce the energy consumption if room temperature is controlled not with any air conditioning but with these paints, and the heat island effects would be lowered. However, the mechanism of this temperature suppression has not been investigated. Experimental consideration of this paint has been done, but the mechanism how the paint controls the temperature rise has hardly been clarified theoretically. Since the best composition of the spheres and their best size are not understood well, it is necessary to theoretically clarify the controlling mechanism for the temperature rise to develop efficient paint. In this study, we aimed to find out the mechanism of the temperature suppression. When the electromagnetic wave at a frequency near eigenfrequencies of atoms, molecules or bindings enters the atoms or the molecules, they resonate and move intensely, and finally rise the temperature. Therefore, we presume that the temperature rise could be controlled if the electromagnetic waves around the eigenfrequencies could be removed. Here, we consider electromagnetic wave of light. Then we assumed that the electromagnetic waves in a certain range of frequencies were scattered to shield the radiated heat energy in the insolation and that the transmitted light through the paint layer is weakened. For verifying the hypotheses and finding the range of effective size, we used the Mie theory of a light scattering theory to calculate the intensity of scattered

  12. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  13. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    PubMed

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures.

  14. Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells

    NASA Astrophysics Data System (ADS)

    Plavcova, Eva; Kysely, Jan

    2016-04-01

    The study examines links of summer heat waves and winter cold spells in Central Europe to atmospheric circulation and specifically its persistence in an ensemble of regional climate models (RCMs). We analyse 13 RCMs driven by the ERA-40 reanalysis and compare them against observations over 1971-2000. Using objective classification of circulation types and an efficiency coefficient with a block resampling test, we identify circulation types significantly conducive to heat waves and cold spells. We show that the RCMs have a stronger tendency to group together days with very high or low temperature and tend to simulate too many heat waves and cold spells, especially those lasting 5 days and more. Circulation types conducive to heat waves in summer are characterized by anticyclonic, southerly and easterly flow, with increasing importance of warm advection during heat waves. Winter cold spells are typically associated with easterly and anticyclonic flow, and the onset of cold spells tends to be linked to northerly and cyclonic flow with cold advection. The RCMs are generally able to reproduce the links between circulation and heat waves or cold spells, including the radiation-to-advection effect for heat waves and the opposite advection-to-radiation effect for cold spells. They capture relatively well also changes of mean temperature anomalies during sequences of given circulation types, namely the tendency towards an increase (decrease) of temperature during the types conducive to heat waves (cold spells). Since mean lengths of all circulation supertypes are overestimated in the RCMs, we conclude that the overly persistent circulation in climate models contributes to the overestimated frequency of long heat waves and cold spells. As these biases are rather general among the examined RCMs and similar drawbacks are likely to be manifested in climate model simulations for the 21st century, the results also suggest that climate change scenarios for spells of days with high

  15. Resonance scattering and radiation force calculations for an elastic cylinder using the translational addition theorem for cylindrical wave functions

    SciTech Connect

    Mitri, F. G.

    2015-09-15

    The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.

  16. Electron Cyclotron / Bernstein Wave Heating and Current Drive Experiments using Phased-array Antenna in QUEST

    SciTech Connect

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Hasegawa, M.; Yoshida, N.; Watanebe, H.; Tokunaga, K.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Sakamoto, M.; Ejiri, A.; Takase, Y.; Sakaguchi, M.; Kalinnikova, E.; Ishiguro, M.; Tashima, S.

    2011-12-23

    The phased-array antenna system for Electron Cyclotron/Bernstein Wave Heating and Current Drive experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the O-X-B mode conversion experiments, and its good performances were confirmed at a low power level. The plasma current (<{approx}15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection in the low-density operations. The long pulse discharge of 10 kA was also attained for 37 s. The new density window to sustain the plasma current was observed in the high-density plasmas. The single-null divertor configuration with the high plasma current (<{approx}25 kA) was attained in the 17 s plasma sustainment.

  17. Excitation of ion-cyclotron harmonic waves in lower-hybrid heating

    NASA Astrophysics Data System (ADS)

    Villalon, E.

    1981-06-01

    The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.

  18. Amplification of the snow melting effect on the heat wave over the Eurasia by absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kim, M. K.; Kim, K. M.; Lau, W. K. M.; Sang, J.; Yasunari, T. J.

    2015-12-01

    In this study, we present the potential impact of snow darkening effect on the Eurasian heat wave by absorbing aerosols using the NASA GEOS-5 Model experiments with aerosol tracers and a state-of-the-art snow darkening module for the land surface. Results show that snow darkening effect (SDE) can have a significant influence on not only the intensity but also the duration of heatwave during snow melting season, i.e., late spring season over the mid-western Eurasia and early summer season over the central northern Eurasia. During the early snow melting season surface air temperature is significantly increased by 3-6K due to early snow melting and enhanced solar radiation. Moreover enhanced evaporation induced by surface energy surplus during the early melting season leads to the new equilibrium level with lower soil moisture over the Eurasia since snow melting season, and thereby provide favorable condition for severe droughts and heat wave over the large parts of the Eurasia. This finding suggests that the SDE may play an important role in amplifying the snow melting effect on large-scale heat wave over the Eurasia. Energy and water balance at the surface supporting this findings are also discussed from evaporation-precipitation recycling point of view.

  19. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  20. The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes

    NASA Technical Reports Server (NTRS)

    Lau, William K.; Kim, K. M.

    2010-01-01

    The Pakistan flood and the Russia heat wave/Vvild fires of the summer of2010 were two of the most extreme, and catastrophic events in the histories of the two countries occurring at about the same time. To a casual observer, the timing may just be a random coincidence of nature, because the two events were separated by long distances, and represented opposite forces of nature, i.e., flood vs. drought, and water vs. fire. In this paper, using NASA satellite and NOAA reanalysis data, we presented observation evidences that that the two events were indeed physically connected.

  1. He2+ Heating via Parametric Instabilities of Parallel Propagating Alfvén Waves with an Incoherent Spectrum

    NASA Astrophysics Data System (ADS)

    He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2016-08-01

    The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He2+ particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He2+ particles occurs. This is caused by the cyclotron resonance between He2+ particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He2+ particles and the density fluctuations leads to the parallel heating of He2+ particles. The influence of the drift velocity between the protons and the He2+ particles on the heating of He2+ particles is also discussed in this paper.

  2. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  3. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  4. Summer heat waves over Eastern China: dynamical processes and trend attribution

    NASA Astrophysics Data System (ADS)

    Freychet, Nicolas; Tett, Simon; Wang, Jun; Hegerl, Gabriele

    2017-02-01

    Recent trends in summer heat waves (HW) over Central-Eastern China and their atmospheric drivers are investigated using the ERA Interim re-analysis. A composite analysis shows that these events are preceded by an increase in 500 hPa geopotential height. Consequently, a subsidence anomaly develops over the region and surface solar radiation increases. An increase in the northward moisture transport from the tropical region is also found to increase specific humidity, leading to warmer night-time temperatures. Feedback effects are also important: decrease of precipitation and enhanced evaporation also increases the specific humidity and North-Westerlies due to the low pressure lead to more heat convergence. HW occurrence increases, especially during the last decade, and is largely due to an increase in the mean temperature rather than to a change in dynamics, suggesting a human influence.

  5. Simulation of High-Harmonic Fast-Wave Heating on the National Spherical Tokamak Experiment

    SciTech Connect

    Green, David L; Jaeger, Erwin Frederick; Chen, Guangye; Berry, Lee A; Pugmire, Dave; Canik, John; Ryan, Philip Michael

    2011-01-01

    Images associated with radio-frequency heating of low-confinement mode plasmas in the National Spherical Tokamak Experiment, as calculated by computer simulation, are presented. The AORSA code has been extended to simulate the whole antenna-to-plasma heating system by including both the kinetic physics of the well-confined core plasma and a poorly confined scrape-off plasma and vacuum vessel structure. The images presented show the 3-D electric wave field amplitude for various antenna phasings. Visualization of the simulation results in 3-D makes clear that -30 degrees phasing excites kilo-volt per meter coaxial standing modes in the scrape-off plasma and shows magnetic-field-aligned whispering-gallery type modes localized to the plasma edge.

  6. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit

    NASA Astrophysics Data System (ADS)

    Vautard, R.; Yiou, P.; D'Andrea, F.; de Noblet, N.; Viovy, N.; Cassou, C.; Polcher, J.; Ciais, P.; Kageyama, M.; Fan, Y.

    2007-04-01

    The risk of extreme heat waves in Europe like the unprecedented one of summer 2003 is likely to increase in the future, calling for increased understanding of these phenomena. From an analysis of meteorological records over 58 years, we show that hot summers are preceded by winter rainfall deficits over Southern Europe. Subsequent drought and heat spreads northward throughout Europe in early summer, due to atmospheric transport of anomalously warm and dry air from Southern Europe in southerly wind episodes. This is shown by the observations and supported by mesoscale meteorological sensitivity simulations for Summer 1994. Moreover previous winter and early spring rainfall frequency in the Mediterranean regions is correlated with summer temperature in central continental Europe. These results emphasize the critical role of the water reservoir in the soil of continental Mediterranean areas for the maintenance of European climate.

  7. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  8. Turbulence, waves, and jets in a differentially heated rotating annulus experiment

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Read, P. L.; Yamazaki, Y. H.

    2008-12-01

    We report an analog laboratory study of planetary-scale turbulence and jet formation. A rotating annulus was cooled and heated at its inner and outer walls, respectively, causing baroclinic instability to develop in the fluid inside. At high rotation rates and low temperature differences, the flow became chaotic and ultimately fully turbulent. The inclusion of sloping top and bottom boundaries caused turbulent eddies to behave like planetary waves at large scales, and eddy interaction with the zonal flow then led to the formation of several alternating jets at mid-depth. The jets did not scale with the Rhines length, and spectral analysis of the flow indicated a distinct separation between jets and eddies in wavenumber space, with direct energy transfer occurring nonlocally between them. Our results suggest that the traditional ``turbulent cascade'' picture of zonal jet formation may be an inappropriate one in the geophysically important case of large-scale flows forced by differential solar heating.

  9. Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems

    PubMed Central

    Zhang, Kai; Rood, Richard B.; Michailidis, George; Oswald, Evan M.; Schwartz, Joel D.; Zanobetti, Antonella; Ebi, Kristie L.; O’Neill, Marie S.

    2012-01-01

    Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC); and 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as ‘hot’ with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.6 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs. PMID:22673187

  10. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    PubMed

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  11. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  12. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  13. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the

  14. Effects of cloud-radiative heating on atmospheric general circulation model (AGCM) simulations of convectively coupled equatorial waves

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Lin; Kim, Daehyun; Lee, Myong-In; Kang, In-Sik

    2007-12-01

    This study examines the effects of cloud-radiative heating on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). The strength of cloud-radiative heating is adjusted by modifying the autoconversion rate needed for cloud condensates to grow up to raindrops. The results show that increasing the autoconversion rate has little effect on the climatological mean precipitation, but it significantly reduces the time-mean clouds and radiative heating in the upper troposphere and enhances heating due to moist processes in the middle troposphere. These lead to cooling of time-mean upper troposphere temperature and drying of lower-troposphere moisture. Reduction of cloud-radiative heating enhances the prominence of Kelvin and n = 0 eastward inertial gravity (EIG) waves. It also tends to enhance significantly the variance of the Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and n = 1 westward inertial gravity (WIG) waves, but not the Madden-Julian Oscillation (MJO) or n = 0 EIG wave. Reduction of cloud-radiative heating has little effect on the phase speed of the waves, which is associated with unchanged effective static stability caused by the near cancellation between reduced dry static stability and reduced diabatic heating. An important implication of this study is that when tuning GCM's top-of-the-atmosphere radiative fluxes to fit the observations, one needs to make sure that the enhancement factor of cloud-radiative heating at the intraseasonal timescale also fits with the observation so that the convectively coupled equatorial waves are not suppressed.

  15. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is the first field based experiment that uses IR heaters to study the effects of a regionally defined heat wave on soybean physiology and productivity. The heating technology was successful and all of the heat waves were maintained at the target temperature for the three day duration of t...

  16. Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat-flux in magnetogasdynamics

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2014-05-01

    The propagation of a spherical (or cylindrical) shock wave in a non-ideal gas with heat conduction and radiation heat-flux, in the presence of a spacially decreasing azimuthal magnetic field, driven out by a moving piston is investigated. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Similarity solutions are obtained for the flow-field behind the shock and the effects of variation of the heat transfer parameters, the parameter of the non-idealness of the gas, both, decreases the compressibility of the gas and hence there is a decrease in the shock strength. Further, it is investigated that with an increase in the parameters of radiative and conductive heat transfer the tendency of formation of maxima in the distributions of heat flux, density and isothermal speed of sound decreases. The pressure and density vanish at the inner surface (piston) and hence a vacuum is form at the center of symmetry. The shock waves in conducting non-ideal gas with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, chemical detonation, rupture of a pressurized vessels, in the analysis of data from exploding wire experiments, and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles, etc. The findings of the present works provided a clear picture of whether and how the non-idealness parameter, conductive and radiative heat transfer parameters and the magnetic field affect the flow behind the shock

  17. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  18. Vegetation canopy and physiological control of GPP decline during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xiao, X.; Zhou, S.; McCarthy, H. R.; Ciais, P.; Luo, Y.

    2015-12-01

    Different vegetation indices derived from satellites were often used as a proxy of vegetation activity to monitor and evaluate the impacts of drought and heat wave on ecosystem carbon fluxes (gross primary production, respiration) through the production efficiency models (PEMs). However, photosynthesis is also regulated by a series of physiological processes which cannot be directly observed through satellites. In this study, we analyzed the response of drought and heat wave induced GPP and climate anomaly from 15 Euroflux sites and the corresponding vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Correlation analysis suggests that the vegetation indices are more responsive to GPP variation in grasslands and open shrublands, but less responsive in forest ecosystems. Physiology control can be up to 20% of the total GPP during the drought period without changing the canopy structure. At temporal scale for each site, VPD and vegetation indices can be used to track the GPP for forest and non-forest, respectively. However, different stand characteristics should be taken into consideration for forest ecosystems. Based on the above findings, a conceptual model is built to illuminate the physiological and canopy control on the GPP during the drought period. Improvement for future PEMs should incorporate better indicators to deal with drought conditions for different ecosystems.

  19. Canopy and physiological controls of GPP during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  20. High-frequency torsional Alfvén waves as an energy source for coronal heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-03-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m‑2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m‑2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  1. A LABORATORY EXPERIMENT OF MAGNETIC RECONNECTION: OUTFLOWS, HEATING, AND WAVES IN CHROMOSPHERIC JETS

    SciTech Connect

    Nishizuka, N.; Shimizu, T.; Hayashi, Y.; Tanabe, H.; Kuwahata, A.; Kaminou, Y.; Ono, Y.; Inomoto, M.

    2012-09-10

    Hinode observations have revealed intermittent recurrent plasma ejections/jets in the chromosphere. These are interpreted as a result of non-perfectly anti-parallel magnetic reconnection, i.e., component reconnection, between a twisted magnetic flux tube and the pre-existing coronal/chromospheric magnetic field, though the fundamental physics of component reconnection is not revealed. In this paper, we experimentally reproduced the magnetic configuration and investigated the dynamics of plasma ejections, heating, and wave generation triggered by component reconnection in the chromosphere. We set plasma parameters as in the chromosphere (density 10{sup 14} cm{sup -3}, temperature 5-10 eV, i.e., (5-10) Multiplication-Sign 10{sup 4} K, and reconnection magnetic field 200 G) using argon plasma. Our experiment shows bi-directional outflows with the speed of 5 km s{sup -1} at maximum, ion heating in the downstream area over 30 eV, and magnetic fluctuations mainly at 5-10 {mu}s period. We succeeded in qualitatively reproducing chromospheric jets, but quantitatively, we still have some differences between observations and experiments such as in jet velocity, total energy, and wave frequency. Some of them can be explained by the scale gap between solar and laboratory plasma, while the others are probably due to the difference in microscopy and macroscopy, collisionality, and the degree of ionization, which have not been achieved in our experiment.

  2. Plants adapted to warmer climate do not outperform regional plants during a natural heat wave.

    PubMed

    Bucharova, Anna; Durka, Walter; Hermann, Julia-Maria; Hölzel, Norbert; Michalski, Stefan; Kollmann, Johannes; Bossdorf, Oliver

    2016-06-01

    With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm-adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4-2.0°C higher than the long-term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long-term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm-adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm-adapted plants, despite elevated temperatures, which suggests that translocating warm-adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.

  3. High-frequency torsional Alfvén waves as an energy source for coronal heating.

    PubMed

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N

    2017-03-03

    The existence of the Sun's hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12-42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60" × 60" (1" = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~10(5) W m(-2)) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~10(3) W m(-2)) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  4. High-frequency torsional Alfvén waves as an energy source for coronal heating

    PubMed Central

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-01-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind. PMID:28256538

  5. Heating patterns in biological tissue phantoms caused by millimeter wave electromagnetic irradiation.

    PubMed

    Khizhnyak, E P; Ziskin, M C

    1994-09-01

    Distribution of millimeter wavelength electromagnetic energy absorption in surface layers of biological tissue models was studied using methods of Infrared Thermography. 0.1 mm thin-layer phantoms were irradiated in the near field using different types of horn antennas in the 37-78 GHz frequency range. Heating patterns were recorded during microwave irradiation, and surface SAR distributions were calculated. The temperature resolution was better than 0.05 K. It was found that horn antennas produced nonuniform heating patterns in irradiated objects. These nonuniform patterns were due to a geometrical resonance resulting from a secondary wave-mode interaction between an irradiated object and the corresponding critical cross-section of the horn antenna. Local SAR values in hot spots exceeded the spatially averaged values by over 10 times, and the widths of these hot spots at 5 times the average SAR were often 1 mm or less. The location, quantity, number and size of the local field absorption maxima of irradiated objects strongly depended on the frequency of electromagnetic irradiation, with equivalent Q-factors of 500 or more. These findings provide an explanation for a number of frequency-dependent effects of millimeter wave electromagnetic irradiation.

  6. NDVI anomalies associated with the European drought and heat wave of 2003

    NASA Astrophysics Data System (ADS)

    Bevan, Suzanne; Los, Sietse; North, Peter

    2013-04-01

    The European drought and heat wave of 2003 is commonly used as an example of extreme summer climate conditions that are likely to become more common towards the end of the 21st century, under predicted climate change scenarios. The extreme conditions are known to have had an impact on biomass primary productivity as reflected in remotely sensed vegetation indices and fAPAR, flux-tower measurements, and the results from a variety of modelling approaches. Early remote sensing analyses were based on relatively short time series of data, 4 or 5 years only. We are now able to make use of 12 years of MODIS observations to highlight the statistical significance of the widespread and persistent anomalies in vegetation greenness in 2003 compared with other summers so far this century. Anomalies in excess of 2 standard deviations initially occur at the start of June in central and eastern France. By the end of July they are common also over Germany, by mid August have spread to the French border with Spain, and by the end of August are common over the north-western corner of France, England and eastern Scotland. Using the One-Degree Daily resolution Global Precipitation Climatology Project precipitation data and European Re-Analysis Interim 2 m air temperatures we are able to show where and whether either precipitation or temperature has the greatest impact on summer vegetation greenness. With the exception of mountainous regions such as the Alps and northern and western parts of the United Kingdom, summer NDVI anomalies are highly correlated with precipitation anomalies of the preceding month. The picture for temperature is more geographically variable with summer NDVI anomalies in southern France, Italy and central England and north-eastern Scotland being negatively correlated with temperature, and northern and western coasts of France and Germany being positively correlated with temperature. In addition, we analyse the anomalies in conjunction with vegetation height from

  7. Planetary-scale circulations in the presence of climatological and wave-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  8. Past analogs of recent climate anomalies and impacts in Portugal. Droughts, storms and heat waves

    NASA Astrophysics Data System (ADS)

    Alcoforado, M. J.; Nunes, M. F.

    2009-09-01

    An indexed reconstruction of precipitation variability, based on documentary and instrumental data, has been done for southern Portugal starting in 1675. The descriptions of the extreme events in the documentary sources have also supplied information about their impacts. We will compare past and recent extreme weather events in Portugal, their causes and their impacts on society. We have selected periods of winter droughts, of storms that triggered great floods and of heat waves. There are a number of documentary sources dating from 1693-94 indicating that that there was no rainfall from December 1693 to at least November 1694 with the exception of light showers in June. Several pro-pluvia rogations ceremonies took place all over the country, even in the Northwest that is generally rainy. There are numerous descriptions of the impact of droughts on agriculture, of shortage of cereals, of escalating prices and the subsequent generalised famine. An analogy will be made for the 20th century using the 1980-81 winter drought that lasted roughly the same time and which also had severe social and economic impacts. The decrease in production of hydroelectric energy (50% below average) between January and July 1981 is also pointed out. In both cases, the lack of rainfall was partly due to a ridge that stayed over the Eastern Atlantic and kept Iberia in aerologic shelter. Apart from urban flash floods there are two types of floods in Portugal: (i) floods from the big river basins (Tagus, Mondego and Douro) that are due to the frequent passage of westerly frontal depressions during days or weeks; and (ii) floods of the small river basins due to convective depressions that affect small areas. The December 1739 flood, caused by the overflow of the great rivers, will be compared with the ones that occurred in February 1978. Both were caused by intensive precipitation all over the country at a time when the soil was already saturated with water from previous rainfall. The damages

  9. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    NASA Astrophysics Data System (ADS)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-03-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  10. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.

    PubMed

    Reddy, N R; Tetzloff, R C; Skinner, G E

    2010-08-01

    The effect of additives and post-treatment incubation conditions on the recovery of high pressure and heat-injured (i.e., processed at 620 MPa and 95 and 100 degrees C for 5 min) spores of Clostridium botulinum strains, 62-A (proteolytic type A) and 17-B (nonproteolytic type B) was studied. High pressure and heat-injured spores were inoculated into TPGY (Trypticase-Peptone-Glucose-Yeast extract) anaerobic broth media containing additives (lysozyme, L-alanine, L-aspartic acid, dipicolonic acid, sodium bicarbonate, and sodium lactate) at various concentrations (0-10 microg/ml) individually or in combination. The spore counts of high pressure and heat-injured 62-A and 17-B recovered from TPGY broth containing lysozyme (10 microg/ml) incubated for 4 months versus that recovered from peptone-yeast extract-glucose-starch (PYGS) plating agar containing lysozyme (10 microg/ml) incubated under anaerobic conditions for 5 days were also compared. None of the additives either individually or in combination in TPGY broth improved recovery of injured spore enumeration compared to processed controls without additives. Addition of lysozyme at concentrations of 5 and 10 microg/ml in TPGY broth improved initial recovery of injured spores of 17-B during the first 4 days of incubation but did not result in additional recovery at the end of the 4 month incubation compared to the processed control without lysozyme. Adding lysozyme at a concentration of 10 microg/ml to PYGS plating agar resulted in no effect on the recovery of high pressure and heat-injured 62-A and 17-B spores. The recovery counts of high pressure and heat-injured spores of 62-A and 17-B were lower (i.e., <1.0 log units) with PYGS plating agar compared to the MPN method using TPGY broth as the growth medium.

  11. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.

    PubMed

    Tamura, Yuki; Matsunaga, Yutaka; Masuda, Hiroyuki; Takahashi, Yumiko; Takahashi, Yuki; Terada, Shin; Hoshino, Daisuke; Hatta, Hideo

    2014-10-01

    A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 myotubes, thereby implying that heat stress may be an effective treatment to enhance endurance training-induced mitochondrial adaptations in skeletal muscle. However, whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo is unclear. In the present study, we report the novel findings that 1) whole body heat stress produced by exposure of ICR mice to a hot environment (40°C, 30 min/day, 5 days/wk, 3 wk) induced mitochondrial adaptations such as increased mitochondrial enzyme activity (citrate synthase and 3-hydroxyacyl CoA dehydrogenase) and respiratory chain protein content (complexes I-V) in skeletal muscle in vivo and 2) postexercise whole body heat stress additively enhanced endurance training-induced mitochondrial adaptations (treadmill running, 25 m/min, 30 min/day, 5 days/wk, 3 wk). Moreover, to determine the candidate mechanisms underlying mitochondrial adaptations, we investigated the acute effects of postexercise whole body heat stress on the phosphorylation status of cellular signaling cascades that subsequently induce mitochondrial gene transcription. We found that whole body heat stress boosted the endurance exercise-induced phosphorylation of p38 MAPK, increased the phosphorylation status of p70S6K, a biomarker of mammalian target of rapamycin complex 1 activity, and unexpectedly dephosphorylated AMP-activated protein kinase and its downstream target acetyl-CoA carboxylase in skeletal muscle. Our present observations suggest that heat stress can act as an effective postexercise treatment. Heat stress treatment appeared to be clinically beneficial for people who have difficulty participating in sufficient exercise training, such as the elderly, injured athletes, and patients.

  12. Wave solutions of ion cyclotron heated plasmas with self-consistent velocity distributions in a tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Wright, John; Bonoli, Paul; Harvey, Robert

    2015-11-01

    We describe a numerical model for the propagation and absorption of ion cyclotron waves in a tokamak with a non-Maxwellian velocity space distribution function. The non-Maxwellian distribution is calculated by solving Maxwell's equations and the Fokker-Plank equation self-consistently. This approach will be useful to interpret measurements of minority hydrogen tail formation during ICRF heating experiments in Alcator C-Mod. To couple the Maxwell equation solver with Fokker-Plank equation solver, the quasilinear diffusion coefficients for the fundamental ion cyclotron absorption and the first harmonic absorption are calculated. In a previous study, the all-orders spectral algorithm wave solver (AORSA) was coupled with the Fokker-Plank code (CQL3D) to find the self-consistent non-Maxwellian distribution. We derive the modified quasilinear diffusion coefficients for the finite Larmor radius (FLR) approximation using a significantly faster wave solver (TORIC) following the approach by Jaeger. The coupled TORIC-CQL3D model will be compared against results from AORSA-CQL3D in order to verify the accuracy of the reduced FLR physics in TORIC. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.

  13. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  14. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  15. Attributing human mortality during extreme heat waves to anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel; Heaviside, Clare; Vardoulakis, Sotiris; Huntingford, Chris; Masato, Giacomo; Guillod, Benoit P.; Frumhoff, Peter; Bowery, Andy; Wallom, David; Allen, Myles

    2016-07-01

    It has been argued that climate change is the biggest global health threat of the 21st century. The extreme high temperatures of the summer of 2003 were associated with up to seventy thousand excess deaths across Europe. Previous studies have attributed the meteorological event to the human influence on climate, or examined the role of heat waves on human health. Here, for the first time, we explicitly quantify the role of human activity on climate and heat-related mortality in an event attribution framework, analysing both the Europe-wide temperature response in 2003, and localised responses over London and Paris. Using publicly-donated computing, we perform many thousands of climate simulations of a high-resolution regional climate model. This allows generation of a comprehensive statistical description of the 2003 event and the role of human influence within it, using the results as input to a health impact assessment model of human mortality. We find large-scale dynamical modes of atmospheric variability remain largely unchanged under anthropogenic climate change, and hence the direct thermodynamical response is mainly responsible for the increased mortality. In summer 2003, anthropogenic climate change increased the risk of heat-related mortality in Central Paris by ∼70% and by ∼20% in London, which experienced lower extreme heat. Out of the estimated ∼315 and ∼735 summer deaths attributed to the heatwave event in Greater London and Central Paris, respectively, 64 (±3) deaths were attributable to anthropogenic climate change in London, and 506 (±51) in Paris. Such an ability to robustly attribute specific damages to anthropogenic drivers of increased extreme heat can inform societal responses to, and responsibilities for, climate change.

  16. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    SciTech Connect

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; Qin, C. M.; Pinsker, R. I.; Prater, R.; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.; Zhang, X. J.

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSA results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.

  17. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE PAGES

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; ...

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  18. Simulations of Alfvén and Kink Wave Driving of the Solar Chromosphere: Efficient Heating and Spicule Launching

    NASA Astrophysics Data System (ADS)

    Brady, C. S.; Arber, T. D.

    2016-10-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ˜0.1 erg cm-3 s-1 in the lower chromosphere and drops to ˜10-3 erg cm-3 s-1 in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ˜10-20 km s-1, for so-called Type I spicules, which reach heights of ˜3000-5000 km above the photosphere. A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.

  19. High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.

    2007-01-01

    Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).

  20. Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden-Julian oscillation: a theoretical model study

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Wang, Bin

    2013-01-01

    The Madden-Julian oscillation (MJO) is observed to interact with moist Kelvin waves. To understand the role of this interaction, a simple scale-interaction model is built, which describes the MJO modulation of moist Kelvin waves and the feedback from moist Kelvin waves through upscale eddy heat and momentum transfer. The backward-tilted moist Kelvin waves produce eddy momentum transfer (EMT) characterized by the lower-tropospheric westerly winds and eddy heat transfer (EHT) that warms the mid-troposphere. The EHT tends to induce the lower-tropospheric easterly winds and low pressure, which is located in front of the "westerly wind burst" induced by the EMT. Adding the eddy forcing to a neutral MJO skeleton model, we show that the EHT provides an instability source for the MJO by warming up the mid-troposphere, and the EMT offers an additional instability source by enhancing the lower-tropospheric westerly winds. The eddy forcing selects eastward propagation for the unstable mode, because it generates positive/negative eddy available potential energy for the eastward/westward modes by changing their thermal and dynamical structures. The present results show that moist Kelvin waves can provide a positive feedback to the MJO only when they are located within (or near) the convective complex (center) of the MJO. The EHT and EMT feedback works positively in the front and rear part of the MJO, respectively. These theoretical results suggest the potential importance of moist Kelvin waves in sustaining the MJO and encourage further observations to document the relationship between moist Kelvin waves and the MJO.

  1. Awareness of and attitudes towards heat waves within the context of climate change among a cohort of residents in Adelaide, Australia.

    PubMed

    Akompab, Derick A; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A; Augoustinos, Martha

    2012-12-20

    Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%), radio (71.2%), newspapers (45.3%) were the main sources from which respondents received information about heat waves. The majority of the respondents (73.0%) followed news about heat waves very or somewhat closely. About 26.6% of the respondents were extremely or very concerned about the effects of heat waves on them personally. The main issues that were of personal concern for respondents during a heat wave were their personal comfort (60.7%), their garden (48.7%), and sleeping well (47.6%). Overall, respondents were more concerned about the impacts of heat waves to the society than on themselves. There was a significant association between gender (χ² = 21.2, df = 3, p = 0.000), gross annual household income (p = 0.03) and concern for the societal effects of heat waves. Less than half (43.2%) of the respondents believed that heat waves will extremely or very likely increase in Adelaide according to climate projections. Nearly half (49.3%) believed that the effects of heat waves were already being felt in Adelaide. These findings may inform the reframing and communication strategies for heat waves in Adelaide in the context of climate change.

  2. Awareness of and Attitudes towards Heat Waves within the Context of Climate Change among a Cohort of Residents in Adelaide, Australia

    PubMed Central

    Akompab, Derick A.; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A.; Augoustinos, Martha

    2012-01-01

    Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%), radio (71.2%), newspapers (45.3%) were the main sources from which respondents received information about heat waves. The majority of the respondents (73.0%) followed news about heat waves very or somewhat closely. About 26.6% of the respondents were extremely or very concerned about the effects of heat waves on them personally. The main issues that were of personal concern for respondents during a heat wave were their personal comfort (60.7%), their garden (48.7%), and sleeping well (47.6%). Overall, respondents were more concerned about the impacts of heat waves to the society than on themselves. There was a significant association between gender (χ² = 21.2, df = 3, p = 0.000), gross annual household income (p = 0.03) and concern for the societal effects of heat waves. Less than half (43.2%) of the respondents believed that heat waves will extremely or very likely increase in Adelaide according to climate projections. Nearly half (49.3%) believed that the effects of heat waves were already being felt in Adelaide. These findings may inform the reframing and communication strategies for heat waves in Adelaide in the context of climate change. PMID:23343978

  3. Drift wave stabilized by an additional streaming ion or plasma population.

    PubMed

    Bashir, M F; Vranjes, J

    2015-03-01

    It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0)exp[-(vph-vf0)2], where vf0 is the flow speed and vph is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0

  4. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers