Science.gov

Sample records for additional high frequency

  1. Development of magnetodielectric materials to be used in additive manufacturing processes for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Parsons, Paul Emerson, II

    Electrical devices for very-high frequency (VHF, 0.03 -- 0.3 GHz) and ultra-high frequency (UHF, 0.3 -- 3.0 GHz) are commonly used for communications. However, the wavelengths, lambda, of these frequency bands correspond to lengths between 10 and 0.1 m, resulting in prohibitively large devices. Materials with an index of refraction, n, greater than 1 can be used to effectively shrink these devices by a factor of 1/ n. In this thesis, magnetodielectric materials (MDM), where n ≥1, have been made to be used in additive manufacturing processes with strict particle size requirements and were developed using various methods, such as polyol reduction and conventional ceramic solid state processing. These materials were characterized using x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), vibrating sample magnetometry (VSM), to determine their crystalline, physical, and direct current (DC) magnetization properties. The techniques used to synthesize the MDM yielded particles that were chemically similar, but had drastically different physical properties which heavily influences their high-frequency electromagnetic properties. These materials were then uniformly dispersed into a non-conducting medium, such as a low-electrical loss polymer or resin, and formed into composite samples with variable volumetric loading. These composite samples were measured using several techniques to characterize the frequency-dependent electromagnetic (EM) properties, such as relative permeability, relative permittivity, and their respective losses. Finite element method (FEM) simulations were performed using these MDM-composites to design a spiral antenna to be used at approximately 585 MHz.

  2. Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears

    PubMed Central

    Plack, Christopher J.; Oxenham, Andrew J.; Simonson, Andrea M.; O’Hanlon, Catherine G.; Drga, Vit; Arifianto, Dhany

    2008-01-01

    Auditory compression was estimated at 250 and 4000 Hz by using the additivity of forward masking technique, which measures the effects on signal threshold of combining two temporally nonoverlapping forward maskers. The increase in threshold in the combined-masker condition compared to the individual-masker conditions can be used to estimate compression. The signal was a 250 or 4000 Hz tone burst and the maskers (M1 and M2) were bands of noise. Signal thresholds were measured in the presence of M1 and M2 alone and combined for a range of masker levels. The results were used to derive response functions at each frequency. The procedure was conducted with normal-hearing and hearing-impaired listeners. The results suggest that the response function in normal ears is similar at 250 and 4000 Hz with a mid level compression exponent of about 0.2. However, compression extends over a smaller range of levels at 250 Hz. The results confirm previous estimates of compression using temporal masking curves (TMCs) without assuming a linear off-frequency reference as in the TMC procedure. The impaired ears generally showed less compression. Importantly, some impaired ears showed a linear response at 250 Hz, providing a further indication that low-frequency compression originates in the cochlea. PMID:18537383

  3. High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury.

    PubMed

    Lin, Heng-Teng; Chiu, Chong-Chi; Wang, Jhi-Joung; Hung, Ching-Hsia; Chen, Yu-Wen

    2015-03-04

    The impact of coadministration of transcutaneous electrical nerve stimulation (TENS) and diphenidol is not well established. Here we estimated the effects of diphenidol in combination with TENS on mechanical allodynia and tumor necrosis factor-α (TNF-α) expression. Using an animal chronic constriction injury (CCI) model, the rat was estimated for evidence of mechanical sensitivity via von Frey hair stimulation and TNF-α expression in the sciatic nerve using the ELISA assay. High frequency (100Hz) TENS or intraperitoneal injection of diphenidol (2.0μmol/kg) was applied daily, starting on postoperative day 1 (POD1) and lasting for the next 13 days. We demonstrated that both high frequency TENS and diphenidol groups had an increase in mechanical withdrawal thresholds of 60%. Coadministration of high frequency TENS and diphenidol gives better results of paw withdrawal thresholds in comparison with high frequency TENS alone or diphenidol alone. Both diphenidol and coadministration of high frequency TENS with diphenidol groups showed a significant reduction of the TNF-α level compared with the CCI or HFS group (P<0.05) in the sciatic nerve on POD7, whereas the CCI or high frequency TENS group exhibited a higher TNF-α level than the sham group (P<0.05). Our resulting data revealed that diphenidol alone, high frequency TENS alone, and the combination produced a reduction of neuropathic allodynia. Both diphenidol and the combination of diphenidol with high frequency TENS inhibited TNF-α expression. A moderately effective dose of diphenidol appeared to have an additive effect with high frequency TENS. Therefore, multidisciplinary treatments could be considered for this kind of mechanical allodynia.

  4. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  5. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  6. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  7. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  8. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  9. High frequency of additional gene mutations in acute myeloid leukemia with MLL partial tandem duplication: DNMT3A mutation is associated with poor prognosis.

    PubMed

    Kao, Hsiao-Wen; Liang, D Cherng; Kuo, Ming-Chung; Wu, Jin-Hou; Dunn, Po; Wang, Po-Nan; Lin, Tung-Liang; Shih, Yu-Shu; Liang, Sung-Tzu; Lin, Tung-Huei; Lai, Chen-Yu; Lin, Chun-Hui; Shih, Lee-Yung

    2015-10-20

    The mutational profiles of acute myeloid leukemia (AML) with partial tandem duplication of mixed-lineage leukemia gene (MLL-PTD) have not been comprehensively studied. We studied 19 gene mutations for 98 patients with MLL-PTD AML to determine the mutation frequency and clinical correlations. MLL-PTD was screened by reverse-transcriptase PCR and confirmed by real-time quantitative PCR. The mutational analyses were performed with PCR-based assays followed by direct sequencing. Gene mutations of signaling pathways occurred in 63.3% of patients, with FLT3-ITD (44.9%) and FLT3-TKD (13.3%) being the most frequent. 66% of patients had gene mutations involving epigenetic regulation, and DNMT3A (32.7%), IDH2 (18.4%), TET2 (18.4%), and IDH1 (10.2%) mutations were most common. Genes of transcription pathways and tumor suppressors accounted for 23.5% and 10.2% of patients. RUNX1 mutation occurred in 23.5% of patients, while none had NPM1 or double CEBPA mutation. 90.8% of MLL-PTD AML patients had at least one additional gene mutation. Of 55 MLL-PTD AML patients who received standard chemotherapy, age older than 50 years and DNMT3A mutation were associated with inferior outcome. In conclusion, gene mutations involving DNA methylation and activated signaling pathway were common co-existed gene mutations. DNMT3A mutation was a poor prognostic factor in MLL-PTD AML.

  10. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  11. High frequency of additional gene mutations in acute myeloid leukemia with MLL partial tandem duplication: DNMT3A mutation is associated with poor prognosis

    PubMed Central

    Kao, Hsiao-Wen; Liang, Der-Cherng; Kuo, Ming-Chung; Wu, Jin-Hou; Dunn, Po; Wang, Po-Nan; Lin, Tung-Liang; Shih, Yu-Shu; Liang, Sung-Tzu; Lin, Tung-Huei; Lai, Chen-Yu; Lin, Chun-Hui; Shih, Lee-Yung

    2015-01-01

    The mutational profiles of acute myeloid leukemia (AML) with partial tandem duplication of mixed-lineage leukemia gene (MLL-PTD) have not been comprehensively studied. We studied 19 gene mutations for 98 patients with MLL-PTD AML to determine the mutation frequency and clinical correlations. MLL-PTD was screened by reverse-transcriptase PCR and confirmed by real-time quantitative PCR. The mutational analyses were performed with PCR-based assays followed by direct sequencing. Gene mutations of signaling pathways occurred in 63.3% of patients, with FLT3-ITD (44.9%) and FLT3-TKD (13.3%) being the most frequent. 66% of patients had gene mutations involving epigenetic regulation, and DNMT3A (32.7%), IDH2 (18.4%), TET2 (18.4%), and IDH1 (10.2%) mutations were most common. Genes of transcription pathways and tumor suppressors accounted for 23.5% and 10.2% of patients. RUNX1 mutation occurred in 23.5% of patients, while none had NPM1 or double CEBPA mutation. 90.8% of MLL-PTD AML patients had at least one additional gene mutation. Of 55 MLL-PTD AML patients who received standard chemotherapy, age older than 50 years and DNMT3A mutation were associated with inferior outcome. In conclusion, gene mutations involving DNA methylation and activated signaling pathway were common co-existed gene mutations. DNMT3A mutation was a poor prognostic factor in MLL-PTD AML. PMID:26375248

  12. High-frequency broadband transformers

    NASA Astrophysics Data System (ADS)

    London, S. E.; Tomashevich, S. V.

    1981-05-01

    A systematic review of the theory and design principles of high-frequency broadband transformers is presented. It is shown that the transformers of highest performance are those whose coils consist of strips of double-wire and multiwire transmission lines. Such devices are characterized by a wide operating frequency range, and make possible operation at microwave frequencies at high levels of transmitted power.

  13. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  14. High Flow Addition Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  15. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  16. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  17. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  18. Additive Effects of Stimulus Quality and Word Frequency on Eye Movements during Chinese Reading

    ERIC Educational Resources Information Center

    Liu, Pingping; Li, Xingshan; Han, Buxin

    2015-01-01

    Eye movements of Chinese readers were recorded for sentences in which high- and low-frequency target words were presented normally or with reduced stimulus quality in two experiments. We found stimulus quality and word frequency produced strong additive effects on fixation durations for target words. The results demonstrate that stimulus quality…

  19. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM

  20. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  1. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  2. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  3. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  4. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  5. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  6. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  7. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  8. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  9. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  10. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  11. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  12. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  13. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  14. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  15. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  16. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  17. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  18. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  19. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  20. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  1. A high frequency silicon pressure sensor

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.; Gross, C.

    1980-01-01

    Theoretical and design considerations as well as fabrication and experimental work involved in the development of high-frequency silicon pressure sensors with an ultra-small diaphragm are discussed. A sensor is presented with a rectangular diaphragm of 0.0127 cm x 0.0254 cm x 1.06 micron; the sensor has a natural frequency of 625 kHz and a sensitivity of 0.82 mv/v-psi. High-frequency results from shock tube testing and low-frequency (less than 50 kHz) comparison with microphones are given.

  2. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  3. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  4. An introduction to high frequency radioteletype systems

    NASA Astrophysics Data System (ADS)

    Pinnau, Roger R.

    1989-10-01

    A basic introductory guide is provided to modern High Frequency (HF) data communications systems. Described are modern commercial radioteletype systems, data communication protocols, and various secrets of the trade.

  5. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  6. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  7. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  8. High-Frequency and Very-high-Frequency (HF&VHF) above-groundelectromagnetic impedance measurements

    SciTech Connect

    Frangos, William; Becker, Alex; Lee, K.H.

    2002-09-20

    We have field-tested an apparatus for measuring the electromagnetic impedance above the ground at a plurality of frequencies in the 0.3 - 30 MHz range. This window in the frequency spectrum, which lies between frequencies used for GPR and those used for conventional loop-loop EM soundings, has not been used because of difficulties in fielding equipment for making absolute and accurate measurements. Model and physical parameter studies however confirm that data in this frequency band can be used to construct high-resolution maps of electrical conductivity and permittivity of near-surface material. Our equipment was assembled using commercial electric and magnetic antennas. The magnetic loop source is excited by a conventional signal generator - power amplifier assembly. Signal detection is accomplished using RF lock-in amplifiers. All system elements are appropriately isolated by optic - fiber links. We estimate a measurement accuracy of about {+-} 10% for an 8-m separation between source and detector. Field tests were done at the University of California Richmond Field Station where the near surface electrical structure is well known. The experimental data at this site are mainly a function of electrical conductivity. In this context, we have obtained good agreement with the known local variations in resistivity both with depth and with position along a 35-m traverse. Additional tests in more resistive regimes where dielectric permittivity is not negligible yield spectral data compatible with the less well known near-surface electrical properties.

  9. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  10. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  11. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  12. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  13. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  14. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  15. RF Breakdown in High Frequency Accelerators

    SciTech Connect

    Doebert, S

    2004-05-27

    RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, operating frequency and fabrication material will be described. Since reliability is extremely important for large scale accelerators such as a linear collider, the measurements of breakdown rate as a function of the operating gradient will be highlighted.

  16. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  17. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  18. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  19. Advanced Extremely High Frequency Satellite (AEHF)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-261 Advanced Extremely High Frequency Satellite (AEHF) As of FY 2017 President’s Budget...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  20. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  1. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  2. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  3. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  4. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  5. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  6. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  7. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  8. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  9. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  10. Frequency dependent polarization analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  11. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  12. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  13. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  14. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  15. High Frequency Guided Wave Virtual Array SAFT

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  16. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  17. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  18. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  19. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  20. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  1. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  2. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  3. High-power femtosecond Raman frequency shifter.

    PubMed

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  4. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  5. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  6. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  7. High Frequency Self-pulsing Microplasmas

    NASA Astrophysics Data System (ADS)

    Lassalle, John; Pollard, William; Staack, David

    2014-10-01

    Pulsing behavior in high-pressure microplasmas was studied. Microplasmas are of interest because of potential application in plasma switches for robust electronics. These devices require fast switching. Self-pulsing microplasmas were generated in a variable-length spark gap at pressures between 0 and 220 psig in Air, Ar, N2, H2, and He for spark gap lengths from 15 to 1810 μm. Resulting breakdown voltages varied between 90 and 1500 V. Voltage measurements show pulse frequencies as high as 8.9 MHz in argon at 100 psig. These findings demonstrate the potential for fast switching of plasma switches that incorporate high-pressure microplasmas. Work was supported by the National Science Foundation, Grant #1057175, and the Department of Defense, ARO Grant #W911NF1210007.

  8. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  9. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  10. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech

    PubMed Central

    Başkent, Deniz; Chatterjee, Monita

    2010-01-01

    Recognition of periodically interrupted sentences (with an interruption rate of 1.5 Hz, 50% duty cycle) was investigated under conditions of spectral degradation, implemented with a noiseband vocoder, with and without additional unprocessed low-pass filtered speech (cutoff frequency 500 Hz). Intelligibility of interrupted speech decreased with increasing spectral degradation. For all spectral-degradation conditions, however, adding the unprocessed low-pass filtered speech enhanced the intelligibility. The improvement at 4 and 8 channels was higher than the improvement at 16 and 32 channels: 19% and 8%, on average, respectively. The Articulation Index predicted an improvement of 0.09, in a scale from 0 to 1. Thus, the improvement at poorest spectral-degradation conditions was larger than what would be expected from additional speech information. Therefore, the results implied that the fine temporal cues from the unprocessed low-frequency speech, such as the additional voice pitch cues, helped perceptual integration of temporally interrupted and spectrally degraded speech, especially when the spectral degradations were severe. Considering the vocoder processing as a cochlear-implant simulation, where implant users’ performance is closest to 4 and 8-channel vocoder performance, the results support additional benefit of low-frequency acoustic input in combined electric-acoustic stimulation for perception of temporally degraded speech. PMID:20817081

  11. Feasibility of using frequency offset on very high frequency air/ground voice channels

    NASA Astrophysics Data System (ADS)

    Badinelli, Martin; Cushman, Arthur; Randazzo, Philip

    1990-03-01

    In some large Federal Aviation Administration (FAA) air traffic control sectors, the controller manually switches between multiple ground transmitters to communicate with aircraft at opposite ends of the sector. This puts an additional burden on the controller. Aeronautical Radio, Inc. (ARINC) uses a frequency offset system which produces five frequencies from one channel assignment. ARINC provides this service to commercial air carriers who use receivers designed to ARINC specifications. These receivers are capable of eliminating the audio heterodyne generated by the offsetting process. The commercial air carriers use this system for airline business. The testing performed at the FAA Technical Center to evaluate this system as a means of controlling the air traffic in large sectors is described. The tests indicate that a frequency offset system cannot be used with general aviation aircraft receivers because many cannot filter out the audio heterodyne. Use of frequency offset may be possible in high altitude sectors where commercial aviation receivers, which meet ARINC specifications, are used if some additional concerns are resolved.

  12. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  13. High frequency oscillators for chaotic radar

    NASA Astrophysics Data System (ADS)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  14. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  15. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  16. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  17. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  18. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  19. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    NASA Astrophysics Data System (ADS)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  20. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  1. Effect of high-frequency modes on singlet fission dynamics.

    PubMed

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-28

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  2. Effect of high-frequency modes on singlet fission dynamics

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-01

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  3. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  4. High-frequency audiometry: test reliability and procedural considerations.

    PubMed

    Stelmachowicz, P G; Beauchaine, K A; Kalberer, A; Kelly, W J; Jesteadt, W

    1989-02-01

    This study compared the reliability of a recently developed high-frequency audiometer (HFA) [Stevens et al., J. Acoust. Soc. Am. 81, 470-484 (1987)] with a less complicated system that uses supraaural earphones (Koss system). The new approach permits calibration on an individual basis, making it possible to express thresholds at high frequencies in dB SPL. Data obtained from 50 normal-hearing subjects, ranging in age from 10-60 years, were used to evaluate the effects on reliability of threshold variance, earpiece/earphone fitting variance, and the variance associated with the HFA calibration process. Without earpiece/earphone replacement, the reliability of thresholds for the two systems is similar. With replacement, the HFA showed poorer reliability than the Koss system above 11 kHz, largely due to errors in estimating the calibration function. HFA reliability is greater for subjects with valid calibration functions over the entire frequency range. When average correction factors are applied to the Koss data in an effort to convert threshold estimates to dB SPL, individual transfer functions are not represented accurately. Thus the benefit of being able to express thresholds at high frequencies in dB SPL must be weighed against the additional source of variability introduced by the HFA calibration process.

  5. The Use of Additional GPS Frequencies to Independently Determine Tropospheric Water Vapor Profiles

    NASA Technical Reports Server (NTRS)

    Herman, B.M.; Feng, D.; Flittner, D. E.; Kursinski, E. R.

    2000-01-01

    It is well known that the currently employed L1 and L2 GPS/MET frequencies (1.2 - 1.6) Ghz) do not allow for the separation of water vapor and density (or temperature) from active microwave occultation measurements in regions of the troposphere warmer than 240 K Therefore, additional information must be used, from other types of measurements and weather analyses, to recover water vapor (and temperature) profiles. Thus in data sparse regions, these inferred profiles can be subject to larger errors than would result in data rich regions. The use of properly selected additional GPS frequencies enables a direct, independent measurement of the absorption associated with the water vapor profile, which may then be used in the standard GPS/MET retrievals to obtain a more accurate determination of atmospheric temperature throughout the water vapor layer. This study looks at the use of microwave crosslinks in the region of the 22 Ghz water vapor absorption line for this purpose. An added advantage of using 22 Ghz frequencies is that they are only negligibly affected by the ionosphere in contrast to the large effect at the GPS frequencies. The retrieval algorithm uses both amplitude and phase measurements to obtain profiles of atmospheric pressure, temperature and water water vapor pressure with a vertical resolution of 1 km or better. This technique also provides the cloud liquid water content along the ray path, which is in itself an important element in climate monitoring. Advantages of this method include the ability to make measurements in the presence of clouds and the use of techniques and technology proven through the GPS/MET experiment and several of NASA's planetary exploration missions. Simulations demonstrating this method will be presented for both clear and cloudy sky conditions.

  6. Frequence, Spectrum and Prognostic Impact of Additional Malignancies in Patients With Gastrointestinal Stromal Tumors1234

    PubMed Central

    Kramer, K.; Wolf, S.; Mayer, B.; Schmidt, S.A.; Agaimy, A.; Henne-Bruns, D.; Knippschild, U.; Schwab, M.; Schmieder, M.

    2015-01-01

    Currently available data on prognostic implication of additional neoplasms in GIST miss comprehensive information on patient outcome with regard to overall or disease specific and disease free survival. Registry data of GIST patients with and without additional neoplasm were compared in retrospective case series. We investigated a total of 836 patients from the multi-center Ulmer GIST registry. Additionally, a second cohort encompassing 143 consecutively recruited patients of a single oncology center were analyzed. The frequency of additional malignant neoplasms in GIST patients was 31.9% and 42.0% in both cohorts with a mean follow-up time of 54 and 65 months (median 48 and 60 months), respectively. The spectrum of additional neoplasms in both cohorts encompasses gastrointestinal tumors (43.5%), uro-genital and breast cancers (34.1%), hematological malignancies (7.3%), skin cancer (7.3%) and others. Additional neoplasms have had a significant impact on patient outcome. The five year overall survival in GIST with additional malignant neoplasms (n = 267) was 62.8% compared to 83.4% in patients without other tumors (n = 569) (P < .001, HR=0.397, 95% CI: 0.298-0.530). Five-year disease specific survival was not different between both groups (90.8% versus 90.9%). 34.2% of all deaths (n = 66 of n = 193) were GIST-related. The presented data suggest a close association between the duration of follow-up and the rate of additional malignancies in GIST patients. Moreover the data indicate a strong impact of additional malignant neoplasms in GIST on patient outcome. A comprehensive follow-up strategy of GIST patients appears to be warranted. PMID:25622906

  7. Aftershock Prediction for High-Frequency Financial Markets' Dynamics

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio; Camana, Francesco; Caraglio, Michele; Stella, Attilio L.; Zamparo, Marco

    The occurrence of aftershocks following a major financial crash manifests the critical dynamical response of financial markets. Aftershocks put additional stress on markets, with conceivable dramatic consequences. Such a phenomenon has been shown to be common to most financial assets, both at high and low frequency. Its present-day description relies on an empirical characterization proposed by Omori at the end of 1800 for seismic earthquakes. We point out the limited predictive power in this phenomenological approach and present a stochastic model, based on the scaling symmetry of financial assets, which is potentially capable to predict aftershocks occurrence, given the main shock magnitude. Comparisons with S&P high-frequency data confirm this predictive potential.

  8. Clinical Utilisation of High-frequency DPOAEs.

    PubMed

    Poling, Gayla; Lee, Jungmee; Siegel, Jonathan; Dhar, Sumitrajit

    2012-01-01

    The value of assessing auditory function at frequencies above 8kHz to detect age-related changes and ototoxic damage in the cochlea is well established but not commonplace. Physiological changes in the auditory periphery due to age and ototoxicity are initially evident, and most prominent, at frequencies above 8kHz [1]. The most well investigated use of hearing thresholds and otoacoustic emissions above 8kHz is in monitoring auditory function in patients undergoing chemotherapy [2]. Ototoxic changes in hearing thresholds at frequencies between 10-14kHz prior to the manifestation of any changes at lower frequencies have been consistently documented in these patients. Age-related changes in hearing also appear at frequencies above 8kHz prior to any observable changes at regular audiometric frequencies [3]. The value of using hearing thresholds at frequencies above 8kHz to detect noise-induced hearing loss is debated in the literature with some reports of hearing thresholds at frequencies above 8kHz demonstrating more sensitivity to noise-induced damage than others [4].

  9. High Frequency Electromagnetic Propagation/Scattering Codes

    DTIC Science & Technology

    2000-09-01

    Journal of Mathematical Analysis and Applications , 77...Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [12] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory...Widom, Eigenvalue Distribution of Time and Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [20] D.

  10. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  11. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  12. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  13. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  14. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  15. Recent Improvements in High-Frequency Eddy Current Conductivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2008-02-01

    Due to its frequency-dependent penetration depth, eddy current measurements are capable of mapping near-surface residual stress profiles based on the so-called piezoresistivity effect, i.e., the stress-dependence of electric conductivity. To capture the peak compressive residual stress in moderately shot-peened (Almen 4-8A) nickel-base superalloys, the eddy current inspection frequency has to go as high as 50-80 MHz. Recently, we have reported the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz. Unfortunately, spurious self- and stray-capacitance effects render the complex coil impedance variation with lift-off more nonlinear as the frequency increases, which makes it difficult to achieve accurate apparent eddy current conductivity (AECC) measurements with the standard four-point linear interpolation method beyond 25 MHz. In this paper, we will demonstrate that reducing the coil size reduces its sensitivity to capacitive lift-off variations, which is just the opposite of the better known inductive lift-off effect. Although reducing the coil size also reduces its absolute electric impedance and relative sensitivity to conductivity variations, a smaller coil still yields better overall performance for residual stress assessment. In addition, we will demonstrate the benefits of a semi-quadratic interpolation scheme that, together with the reduced lift-off sensitivity of the smaller probe coil, minimizes and in some cases completely eliminates the sensitivity of AECC measurements to lift-off uncertainties. These modifications allow us to do much more robust measurements up to as high as 80-100 MHz with the required high relative accuracy of +/-0.1%.

  16. Fibre Bragg gratings subject to high strain at high frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.

    2011-05-01

    A simple optical interrogation scheme based on an erbium doped fibre super-fluorescent source and a high Finesse Fabry Perot driven at effective frequencies of 20 kHz over ~ 60nm range is used to recover the output signals from Fibre Bragg Gratings (FBG) that can be deployed in a serial array. The FBG were modulated at frequencies up to 10 kHz and strains up to ~4000μstrain. These signals were recovered in the time domain with a very high bandwidth digital scope using a two dimensional waterfall display consisting of a number of segments where the time between segments is equal to the inverse of the system scanning frequency; essentially the sequential 'x' axis tick markers in a conventional x-y graph format. The amplitude induced changes in the wavelength of the FBG are converted to different times and observed as sequential horizontal scans along the time axis of the waterfall, correspond to the variations in the wavelength of the FBG (y axis). Signals from serial FBG arrays appear at different time slices on the time axis enabling near simultaneous determination of the induced strain of each grating.

  17. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  18. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  19. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration.

    PubMed

    Ritzmann, Ramona; Gollhofer, Albert; Kramer, Andreas

    2013-01-01

    This study aimed to assess the influence of different whole body vibration (WBV) determinants on the electromyographic (EMG) activity during WBV in order to identify those training conditions that cause highest neuromuscular responses and therefore provide optimal training conditions. In a randomized cross-over study, the EMG activity of six leg muscles was analyzed in 18 subjects with respect to the following determinants: (1) vibration type (side-alternating vibration (SV) vs. synchronous vibration (SyV), (2) frequency (5-10-15-20-25-30 Hz), (3) knee flexion angle (10°-30°-60°), (4) stance condition (forefoot vs. normal stance) and (5) load variation (no extra load vs. additional load equal to one-third of the body weight). The results are: (1) neuromuscular activity during SV was enhanced compared to SyV (P < 0.05); (2) a progressive increase in frequency caused a progressive increase in EMG activity (P < 0.05); (3) the EMG activity was highest for the knee extensors when the knee joint was 60° flexed (P < 0.05); (4) for the plantar flexors in the forefoot stance condition (P < 0.05); and (5) additional load caused an increase in neuromuscular activation (P < 0.05). In conclusion, large variations of the EMG activation could be observed across conditions. However, with an appropriate adjustment of specific WBV determinants, high EMG activations and therefore high activation intensities could be achieved in the selected muscles. The combination of high vibration frequencies with additional load on an SV platform led to highest EMG activities. Regarding the body position, a knee flexion of 60° and forefoot stance appear to be beneficial for the knee extensors and the plantar flexors, respectively.

  20. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  1. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  2. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  3. High-performance iodine fiber frequency standard.

    PubMed

    Lurie, Anna; Baynes, Fred N; Anstie, James D; Light, Philip S; Benabid, Fetah; Stace, Thomas M; Luiten, Andre N

    2011-12-15

    We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude.

  4. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  6. High frequency model of stacked film capacitors

    NASA Astrophysics Data System (ADS)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  7. Additive effect of simultaneously varying respiratory frequency and tidal volume on respiratory sinus arrhythmia.

    PubMed

    Guillén-Mandujano, Alejandra; Carrasco-Sosa, Salvador

    2014-12-01

    Our aims were to assess, in healthy young females and males, the effects of the linear joint variation of respiratory frequency (RF) and tidal volume (VT) on the logarithmic transformation of high-frequency power of RR intervals (lnHF). ECG and VT were recorded from 18 females and 20 males during three visually guided 30-s breathing maneuvers: linearly increasing RF (RFLI) at constant VT; linearly increasing VT (VTLI) followed by decreasing VT (VTLD) at fixed RF, and RFLI and VTLI-VTLD combined. VT of females was 20% smaller. Instantaneous RF and lnHF were computed from the time-frequency distributions of respiratory series and RR intervals. LnHF-RF and lnHF-VT relations were similar between genders. LnHF and RR intervals control-maneuver differences during combined maneuver were approximately equal to the sum of those of the independent maneuvers. LnHF-RFLI relation showed strong negative correlations in separated and combined conditions, with steeper slope in the latter (p < 0.001). LnHF-VTLI and lnHF-VTLD relations presented, in the independent maneuvers, three combinations of slopes of different sign, all with hysteresis, and in the combined maneuver, strong correlations with negative slope for VTLI and positive slope for VTLD, steeper (p < 0.001) and with greater hysteresis (p < 0.001) than the independent ones. LnHF responses to our fast, non-fatiguing and non-steady-state breathing maneuvers are: similar between genders; consistent attenuation due to RFLI, whether applied alone or combined; ambiguous and with hysteresis to independent VTLI-VTLD variations; systematic greater attenuation during RFLI combined with VTLI-VTLD, equal to the sum of the independent effects, indicating that there is no interference between them.

  8. Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Benkő, J. M.; Paparó, M.; Chapellier, E.; Poretti, E.; Baglin, A.; Weiss, W. W.; Kolenberg, K.; Guggenberger, E.; Le Borgne, J.-F.

    2014-10-01

    Context. High-precision, space-based photometric missions like CoRoT and Kepler have revealed new and surprising phenomena in classical variable stars. Such discoveries were the period doubling in RR Lyrae stars and the frequent occurrence of additional periodicities some of which can be explained by radial overtone modes, but others are discordant with the radial eigenfrequency spectrum. Aims: We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. Methods: We preprocess CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time-dependent phenomena. Results: The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient for understanding the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae subtypes is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be

  9. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  10. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  11. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  12. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  13. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  14. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  15. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  16. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  17. Analysis of High Frequency Seismic Data

    DTIC Science & Technology

    1990-10-01

    2 -4 iv 2.3 Relative noise power ia, narrow frequency bands as a function of time for noise segments at NORESS and KKL...Central Sweden Figure 2. The upper perspective diagram shows the number of events (ill all 5946) as a function of geograp ~hical location out to 1500 kml...al. (1986) obtained 1-18 I~igure i2. Number of events with magnitude ML>2.O and ML>3.Q as a fUnction of geograp ~hical location in relation to NORr.SS

  18. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  19. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  20. A high frequency resonance gravity gradiometer.

    PubMed

    Bagaev, S N; Bezrukov, L B; Kvashnin, N L; Krysanov, V A; Oreshkin, S I; Motylev, A M; Popov, S M; Rudenko, V N; Samoilenko, A A; Skvortsov, M N; Yudin, I S

    2014-06-01

    A new setup OGRAN--the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events--gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  1. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  2. High-frequency EPR study of crude oils

    NASA Astrophysics Data System (ADS)

    Volodin, M. A.; Mamin, G. V.; Izotov, V. V.; Orlinskii, S. B.

    2013-12-01

    Four different samples of crude oil were studied by means of high-frequency W-band (94 GHz) electron paramagnetic resonance (EPR) spectroscopy with the aim to develop new methods of crude oil quality control. High spectral resolution of W-band allowed to avoid an overlap of spectra contributors. The ratio K between the integral intensity of the low-field EPR component of the vanadyl complexes to that of free radical line was chosen as an attribute of each sample. Using the K-parameters and EPR spectra simulations the crude oil leaking between adjacent horizons is shown. Pulsed EPR experiments allowed detecting free radicals signals only. It is demonstrated that the extracted transverse relaxation time could be used as an additional parameter which characterizes the origin of the crude oil and nature of the oil paramagnetic centers.

  3. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  4. Phase velocity limit of high-frequency photon density waves

    NASA Astrophysics Data System (ADS)

    Haskell, Richard C.; Svaasand, Lars O.; Madsen, Sten; Rojas, Fabio E.; Feng, T.-C.; Tromberg, Bruce J.

    1995-05-01

    In frequency-domain photon migration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, high frequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to re-examine the derivation of the standard diffusion equation (SDE) from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, can be significant above 1 GHz for some biological tissue. The revised diffusion equation, including the second-order time-derivative, is often termed the P1 equation. We compare the dispersion relation of the P1 equation with that of the SDE. The P1 phase velocity is slower than that predicted by the SDE; in fact, the SDE phase velocity is unbounded with increasing modulation frequency, while the P1 phase velocity approaches c/sqrt(3) is attained only at modulation frequencies with periods shorter than the mean time between scatterings of a photon, a frequency regime that probes the medium beyond the applicability of diffusion theory. Finally we caution that values for optical properties deduced from FDPM data at high frequencies using the SDE can be in error by 30% or more.

  5. High School Science Technology Additions, Midland Public Schools.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Discusses design goals, space requirements, and need for mobile furniture and "imagination stations" at Michigan's Midland Public High School science technology addition. Describes the architectural design, costs, and specifications. Includes floor plans, general description, photos and a list of consultants, manufacturers, and suppliers…

  6. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  7. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  8. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    NASA Astrophysics Data System (ADS)

    Babaei, Mahdi; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na2ZrO3, Na2SiO3)-additive containing NaH2PO4-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  9. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  10. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  11. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  12. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  13. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  14. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  15. High frequency fishbones excited by near perpendicular neutral beam injection

    SciTech Connect

    Zhou Deng

    2006-07-15

    The high frequency fishbone instability observed in experiments with near perpendicular neutral beam injection is interpreted as the ideal internal kink mode destabilized by circulating energetic ions. The mode frequency is close to the transit frequency of circulating ions. The beta value of the circulating ions is required to peak on the magnetic axis and the average value within the q=1 magnetic surface must exceed a critical value for the mode to grow up.

  16. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  17. A novel high-efficiency methodology for metal additive manufacturing

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wei, Zhengying; Wang, Xin; Fang, Xuewei; Zhao, Guangxi

    2016-11-01

    Metal additive manufacturing (AM) offers unrivalled design freedom with the ability to manufacture complex parts. However, the high capital costs and slow throughput printing have severely restricted its application. In this paper, a new metal AM process, referred to as the "metal fused-coating additive manufacturing (MFCAM)", was developed for highly efficient metal parts production. This new process is the combination of metal fused-coating process and laser surface melting process. A two-dimensional numerical model was established to provide an insight into the primary thermo-physical phenomena occurring in the MFCAM process. Experiments of single-track formation were conducted using MFCAM to validate the feasibility of the proposed process. The good agreement between experimental and simulated results demonstrated the reasonableness of the established models.

  18. [Experiences in high frequency audiometry and possible applications (author's transl)].

    PubMed

    Dieroff, H G

    1976-09-01

    Observations on the ultrasonic perception of noise-impaired persons gave rise to use the high frequency audiometry described by Fletcher for the early recognition of noise-induced damages. Using commercial equipment we found that the earpiece was not adapted to high frequency conditions. The adaptation problem and ways of modification are described in detail. After having improved the coupling features reproducible hearing curves were obtained. Examinations were carried out on workers, whose noise exposure exceeded the critical intensity by only a few dB. The following 3 categories of impairment were found: 1. Normal hearing between 125 and 8,000 Hz as well as in the high frequency region. 2. Unsignificant noise-induced impairments between 125 and 8,000 Hz; no high frequency hearing. 3. Acoustic hearing; no high frequency hearing. The results are discussed. It is supposed that high frequency hearing losses due to noise and chemical noxious exposure (streptomycin) are valuable in diagnostics and prognostics. Accordingly persons are to be assessed as noise sensitive, when there is no more high frequency hearing before practising noise work.

  19. Transient high-frequency ultrasonic water atomization

    NASA Astrophysics Data System (ADS)

    Barreras, F.; Amaveda, H.; Lozano, A.

    2002-06-01

    An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.

  20. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  1. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  2. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  3. The ADMX-HF (High Frequency) Experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, K. W.

    2013-04-01

    For many years, the Axion Dark Matter eXperiment (ADMX) has searched for dark-matter axions by their resonant conversion to photons in a high-Q microwave cavity embedded in a strong magnetic field; to date focusing on the ˜1 GHz range, or ma˜ few micro-eV. A second platform, ADMX-HF is now being constructed at Yale University which will focus on technology development and a first look at data in the ˜10 GHz range. Consisting of a 9T superconducting magnet (40 cm long x 14 cm diameter), a dilution refrigerator and a quantum-limited receiver based on Josephson Parametric Amplifiers (JPA) ADMX-HF is projected to achieve sensitivity within the axion model band, despite its smaller volume than ADMX. ADMX-HF is a collaboration of Yale, JILA/Colorado, UC Berkeley and LLNL, and by agreement will create a unified data set with ADMX.

  4. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  5. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  6. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  7. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    PubMed

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  8. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.

  9. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  10. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  11. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  12. Radio-frequency (RF) electromagnetic emissions from materials under high-frequency mechanical excitation

    NASA Astrophysics Data System (ADS)

    Sorensen, Christian; Moore, David

    2017-01-01

    Direct contact piezoelectric transducers were used to excite compacted polycrystalline dielectric material samples with high amplitude but short duration ultrasound through a frequency range of 50 kHz to 10 MHz, while near field RF emissions were measured in 12 frequency bands from 18 to 750 GHz using a suite of detectors. Emissions were observed only in three detectors, covering the 40-75 GHz, 110-170 GHz, and 170-260 GHz frequency ranges. Emission amplitudes appear to rise nonlinearly with applied ultrasound amplitude, and the emission amplitudes versus ultrasound frequency are different than the thermal responses of these samples. Data comparing thermal responses and electromagnetic emissions versus ultrasound frequency and amplitude for several sample types (oxidizers and energetic materials) are reported.

  13. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  14. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  15. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No Significant Impact (FONSI..., day or night regardless of visibility and in air and water temperatures and thermoclines normal...

  16. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  17. Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation

    DTIC Science & Technology

    2010-06-01

    resurveyed the harbor with both sidescan sonar (on REMUS) and SAS (on the SSAM AUV) provided by NAVSEA Costal Systems Command. NOMWC, NAVOCEANO and...Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation J. R. Dubberley and M. L. Gendron Naval Research...Laboratory Code 7440.1 Building 1005 Stennis Space Center, MS 39529 USA Abstract- Synthetic Aperture Sonar (SAS) bottom mapping sensors are on the

  18. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  19. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  20. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  1. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  2. Stereoscopic high-speed imaging using additive colors

    PubMed Central

    Sankin, Georgy N.; Piech, David; Zhong, Pei

    2012-01-01

    An experimental system for digital stereoscopic imaging produced by using a high-speed color camera is described. Two bright-field image projections of a three-dimensional object are captured utilizing additive-color backlighting (blue and red). The two images are simultaneously combined on a two-dimensional image sensor using a set of dichromatic mirrors, and stored for off-line separation of each projection. This method has been demonstrated in analyzing cavitation bubble dynamics near boundaries. This technique may be useful for flow visualization and in machine vision applications. PMID:22559533

  3. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  4. High and low spatial frequencies in website evaluations.

    PubMed

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  5. Microscale capillary wave turbulence excited by high frequency vibration.

    PubMed

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  6. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  7. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  8. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  9. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  10. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects

    PubMed Central

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  11. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence.

    PubMed

    Gapeyev, A B; Mikhailik, E N; Chemeris, N K

    2008-04-01

    Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR.

  12. Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.

    2016-05-01

    For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.

  13. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  14. [111]-oriented PIN-PMN-PT crystals with ultrahigh dielectric permittivity and high frequency constant for high-frequency transducer applications

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Shujun; Luo, Jun; Geng, Xuecang; Xu, Zhuo; Shrout, Thomas R.

    2016-08-01

    The electromechanical properties of [111]-oriented tetragonal Pb(In1/2Nb1/2O3)-Pb(Mg1/3Nb2/3O3)-PbTiO3 (PIN-PMN-PT) crystals were investigated for potential high frequency ultrasonic transducers. The domain-engineered tetragonal crystals exhibit an ultrahigh free dielectric permittivity ɛ33T > 10 000 with a moderate electromechanical coupling factor k33 ˜ 0.79, leading to a high clamped dielectric permittivity ɛ33S of 2800, significantly higher than those of the rhombohedral relaxor-PT crystals and high-K (dielectric permittivity) piezoelectric ceramics. Of particular significance is that the [111]-oriented tetragonal crystals were found to possess high elastic stiffness, with frequency constant N33 of ˜2400 Hz m, allowing relatively easy fabrication of high-frequency transducers. In addition, no scaling effect of piezoelectric and dielectric properties was observed down to thickness of 0.1 mm, corresponding to an operational frequency of ˜24 MHz. These advantages of [111]-oriented tetragonal PIN-PMN-PT crystals will benefit high-frequency ultrasonic array transducers, allowing for high sensitivity, broad bandwidth, and reduced noise/crosstalk.

  15. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SONAR technologies that operate at frequencies of 50 kiloHertz (kHz) and greater from mobile platforms... proposes to use HF and UHF SONAR technology from mobile platforms nationwide. Mobile platforms include...-specific, non-mobile operating scenarios or newly developed technologies fall outside of the scope of...

  16. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  17. Additivity Principle in High-Dimensional Deterministic Systems

    NASA Astrophysics Data System (ADS)

    Saito, Keiji; Dhar, Abhishek

    2011-12-01

    The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.180601], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.

  18. Additivity principle in high-dimensional deterministic systems.

    PubMed

    Saito, Keiji; Dhar, Abhishek

    2011-12-16

    The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.

  19. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  20. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  1. Additional studies of sheep haemopexin: genetic control, frequencies and postnatal development.

    PubMed

    Stratil, A; Bobák, P; Margetín, M; Glasnák, V

    1989-01-01

    This study presents evidence that sheep haemopexin phenotypes are genetically controlled by three alleles, HpxA, HpxB1 and HpxB2, of a single autosomal locus. Frequencies of two alleles, HpxA and HpxB (HpxB encompasses two isoalleles, HpxB1 and HpxB2), were studied in eight sheep breeds in Czechoslovakia. The frequency of the HpxA allele was highest (ranging from 0.81 in Merino to 1.0 in East Friesian sheep). Qualitative and quantitative changes in haemopexin during postnatal development were studied by starch gel electrophoresis and rocket immunoelectrophoresis respectively. In electrophoresis, 1- or 2-day-old lambs had two very weak zones corresponding in mobility to two slower zones of adult animals. Later, the third more anodic zone appeared and gradually increased in intensity. In 1-month-old lambs the patterns were practically identical with those of adult animals. Using rocket immunoelectrophoresis, the level of haemopexin shortly after birth was practically zero. It rose sharply till the sixth day of life; then the level continued to rise slowly till about 1 month of age. The mean haemopexin level in adult sheep was 64.5 +/- 18.26 (SD) mg/100ml serum, ranging from 30.5 to 116.5 mg/100ml.

  2. Influence of additional weight on the frequency of kicks in infants with Down syndrome and infants with typical development

    PubMed Central

    Santos, Gabriela L.; Bueno, Thaís B.; Tudella, Eloisa; Dionisio, Jadiane

    2014-01-01

    BACKGROUND: Infants with Down syndrome present with organic and neurological changes that may lead to a delay in the acquisition of motor skills such as kicking, a fundamental skill that is a precursor of gait and is influenced by intrinsic and extrinsic factors. Therefore, this movement should be taken into account in early physical therapy interventions in infants. OBJECTIVE: To analyze and to compare the effect of additional weight on the frequency of kicks in infants with Down syndrome and infants with typical development at 3 and 4 months of age. METHOD: Five infants with Down syndrome and five with typical development at 3 and 4 months of age were filmed. The experiment was divided into four experimental conditions lasting 1 minute each: training, baseline, weight (addition of ankle weight with 1/3 the weight of the lower limb), and post-weight. RESULTS: There were significant differences between groups for all variables (p<0.05), with lower frequencies observed for infants with Down syndrome in all variables. There were significant differences between the experimental conditions baseline and post-weight (p<0.001) for both groups in the frequency of contact and success, with a higher frequency in the post-weight condition. CONCLUSIONS: The weight acted as an important stimulus for both groups, directing the kicks toward the target and improving the infants' performance in the task through repetition, however, the infants with Down syndrome had lower frequencies of kicks. PMID:25003276

  3. Investigation of iron cobalt nanocomposites for high frequency applications

    NASA Astrophysics Data System (ADS)

    Miller, Kelsy J.

    FeCo-based nanocomposite soft magnetic materials were developed in collaboration with Magnetics, Division of Spang and Co., for high frequency and high temperature application. Excellent soft magnetic properties include: low coercivity, high permeability, low energy losses, etc. These and large saturation inductions make these alloys attractive for fundamental studies and industrial applications. In this thesis, nanocrystalline composites will be developed from amorphous precursors for applications in two frequency regimes: 1) High frequency (0.01-30 MHz) such as high temperature power inductors, pulsed power transformers, and radio frequency (rf) magnetic heating; and 2) Ultra high frequency (30 MHz - 30 GHz) for radio frequency materials and electromagnetic interference (EMI) or radio frequency interference (RFI) absorption. New nanocomposites with higher saturation induction and high-temperature stability were developed with reduced glass forming elements such as Zr, Nb, Si and B. The amounts of the magnetic transition metals and early transition metal growth inhibitors were varied to determine trade-offs between higher inductions and fine microstructures and consequently low magnetic losses. Alloys having (Fe1-xCox)80+y+zNb4-y B13-zSi2Cu1 (25 ≤ x ≤ 50 and y = 0-4 and z = 0-3) nominal compositions were cast using planar flow casting (PFC) at Magnetics. Technical magnetic properties: permeability, maximum induction, remanence ratio, coercive field and high frequency magnetic losses as a function of composition and annealing temperature are reported after primary crystallization for 1 hr in a transverse magnetic field (TMF). Of note is the development of inductor cores with maximum inductions in excess of 1.76 T and 1.67 T in cores that exhibit power losses comparable with state of the art commercial soft magnetic alloys. For application in EMI/RFI absorption, FeCo-based alloys have the largest saturation induction and a tunable magnetic anisotropy which may

  4. Fuzzy and conventional control of high-frequency ventilation.

    PubMed

    Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

    1994-07-01

    A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

  5. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  6. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  7. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  8. Frequency and temperature dependence of high damping elastomers

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1993-08-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between {minus}20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer`s response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between {minus}20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping.

  9. Effect of middle-ear pathology on high-frequency ear-canal reflectance measurements in the frequency and time domains

    NASA Astrophysics Data System (ADS)

    Merchant, Gabrielle R.; Siegel, Jonathan H.; Neely, Stephen T.; Rosowski, John J.; Nakajima, Hideko H.

    2015-12-01

    Wideband immittance and reflectance have not been well described at frequencies above 6-8 kHz, and past analyses of these measurements have focused on the responses to stimulus frequencies below 3-4 kHz, while ignoring high-frequency or time-domain information. This work uses a novel approach to measure reflectance that utilizes high-frequency signals and analyzes reflectance in both the frequency and the time domains. Experiments were performed with fresh normal human temporal bones before and after simulating various middle-ear pathologies. In addition to experimental data, novel model analyses were used to obtain fitted parameter values of middle-ear elements that vary systematically due to simulations and thus may have diagnostic implications. Our results show that high-frequency measurements improve temporal resolution of reflectance measurements, and this data combined with novel modeling techniques provides separation of three major conductive pathologies.

  10. Reduced length fibre Bragg gratings for high frequency acoustic sensing

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Robertson, David; Brooks, Chris; Norman, Patrick; Rosalie, Cedric; Rajic, Nik

    2014-12-01

    In-fibre Bragg gratings (FBGs) are now well established for applications in acoustic sensing. The upper frequency response limit of the Bragg grating is determined by its gauge length, which has typically been limited to about 1 mm for commercially available Type 1 gratings. This paper investigates the effect of FBG gauge length on frequency response for sensing of acoustic waves. The investigation shows that the ratio of wavelength to FBG length must be at least 8.8 in order to reliably resolve the strain response without significant gain roll-off. Bragg gratings with a gauge length of 200 µm have been fabricated and their capacity to measure low amplitude high frequency acoustic strain fields in excess of 2 MHz is experimentally demonstrated. The ultimate goal of this work is to enhance the sensitivity of acoustic damage detection techniques by extending the frequency range over which acoustic waves may be reliably measured using FBGs.

  11. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  12. High-frequency audiometric assessment of a young adult population.

    PubMed

    Green, D M; Kidd, G; Stevens, K N

    1987-02-01

    The hearing thresholds of 37 young adults (18-26 years) were measured at 13 frequencies (8, 9,10,...,20 kHz) using a newly developed high-frequency audiometer. All subjects were screened at 15 dB HL at the low audiometric frequencies, had tympanometry within normal limits, and had no history of significant hearing problems. The audiometer delivers sound from a driver unit to the ear canal through a lossy tube and earpiece providing a source impedance essentially equal to the characteristic impedance of the tube. A small microphone located within the earpiece is used to measure the response of the ear canal when an impulse is applied at the driver unit. From this response, a gain function is calculated relating the equivalent sound-pressure level of the source to the SPL at the medial end of the ear canal. For the subjects tested, this gain function showed a gradual increase from 2 to 12 dB over the frequency range. The standard deviation of the gain function was about 2.5 dB across subjects in the lower frequency region (8-14 kHz) and about 4 dB at the higher frequencies. Cross modes and poor fit of the earpiece to the ear canal prevented accurate calibration for some subjects at the highest frequencies. The average SPL at threshold was 23 dB at 8 kHz, 30 dB at 12 kHz, and 87 dB at 18 kHz. Despite the homogeneous nature of the sample, the younger subjects in the sample had reliably better thresholds than the older subjects. Repeated measurements of threshold over an interval as long as 1 month showed a standard deviation of 2.5 dB at the lower frequencies (8-14 kHz) and 4.5 dB at the higher frequencies.

  13. High frequency SAW devices based on third harmonic generation.

    PubMed

    Le Brizoual, L; Elmazria, O; Sarry, F; El Hakiki, M; Talbi, A; Alnot, P

    2006-12-01

    We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K(2)) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.

  14. Casimir force between δ -δ' mirrors transparent at high frequencies

    NASA Astrophysics Data System (ADS)

    Braga, Alessandra N.; Silva, Jeferson Danilo L.; Alves, Danilo T.

    2016-12-01

    We investigate, in the context of a real massless scalar field in 1 +1 dimensions, models of partially reflecting mirrors simulated by Dirac δ -δ' point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified δ -δ' point interaction that enables full transparency in the limit of high frequencies. Taking this modified δ -δ' model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  15. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  16. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  17. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  18. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  19. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  20. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-06

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.

  1. Frequencies and amplitudes of high-degree solar oscillations

    NASA Astrophysics Data System (ADS)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  2. Self-integrating inductive loop for measuring high frequency pulses

    NASA Astrophysics Data System (ADS)

    Rojas-Moreno, Mónica V.; Robles, Guillermo; Martínez-Tarifa, Juan M.; Sanz-Feito, Javier

    2011-08-01

    High frequency pulses can be measured by means of inductive sensors. The main advantage of these sensors consists of non-contact measurements that isolate and protect measuring equipment. The objective of this paper is to present the implementation of an inductive sensor for measuring rapidly varying currents. It consists of a rectangular loop with a resistor at its terminals. The inductive loop gives the derivative of the current according to Faraday's law and the resistor connected to the loop modifies the sensor's frequency response to obtain an output proportional to the current pulse. The self-integrating inductive sensor was validated with two sensors, a non-inductive resistor and a commercial high frequency current transformer. The results were compared to determine the advantages and drawbacks of the probe as an adequate inductive transducer.

  3. Note: High precision measurements using high frequency gigahertz signals.

    PubMed

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  4. High-frequency and low-frequency chest compression: effects on lung water secretion, mucus transport, heart rate, and blood pressure using a trapezoidal source pressure waveform.

    PubMed

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwong; Warwick, Warren J

    2012-01-01

    High-frequency chest compression (HFCC), using an appropriate source (pump) waveform for frequencies at or above 3 Hz, can enhance pulmonary clearance for patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Using a trapezoidal HFCC source pressure waveform, secretion of water from epithelial tissue and transport of mucus through lung airways can be enhanced for patients with CF and COPD. At frequencies below 3 Hz, low-frequency chest compression (LFCC) appears to have a significant impact on the cardiovascular system. For a trapezoidal source pressure waveform at frequencies close to 1 Hz, LFCC produces amplitude or intensity variations in various components of the electrocardiogram time-domain waveform, produces changes at very low frequencies associated with the electrocardiogram frequency spectra (indicating enhanced parasympathetic nervous system activity), and promotes a form of heart rate synchronization. It appears that LFCC can also provide additional cardiovascular benefits by reducing peak and average systolic and diastolic blood pressure for patients with hypertension.

  5. High Speed Laser with 100 Ghz Resonance Frequency

    DTIC Science & Technology

    2014-02-28

    practical limit occurs when the detuned master laser encounters the next-order laser modes (i.e. Fabry - Perot modes). Our current DFB slave laser...lasers and vertical- cavity surface-emitting lasers (VCSELs), showing the broad applicability of the technique and that the coupling Q (optical quality...Q-factor, and also increases as the injection power and optical frequency increase. Additionally, we show that lasers with very different cavity

  6. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring.

    PubMed

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  7. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  8. Bifurcational Mechanism of Multistability Formation and Frequency Entrainment in a van der Pol Oscillator with an Additional Oscillatory Circuit

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey; Astakhov, Oleg; Astakhov, Vladimir; Kurths, Jürgen

    2016-06-01

    In this paper, the bifurcational mechanism of frequency entrainment in a van der Pol oscillator coupled with an additional oscillatory circuit is studied. It is shown that bistability observed in the system is based on two bifurcations: a supercritical Andronov-Hopf bifurcation and a sub-critical Neimark-Sacker bifurcation. The attracting basin boundaries are determined by stable and unstable invariant manifolds of a saddle two-dimensional torus.

  9. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  10. High frequency alternating current chip nano calorimeter with laser heating.

    PubMed

    Shoifet, E; Chua, Y Z; Huth, H; Schick, C

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (~1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm(2)). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10(-3) Hz and 10(6) Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  11. High frequency alternating current chip nano calorimeter with laser heating

    NASA Astrophysics Data System (ADS)

    Shoifet, E.; Chua, Y. Z.; Huth, H.; Schick, C.

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (˜1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm2). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10-3 Hz and 106 Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  12. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  13. Frequency of Guns in the Households of High School Seniors

    ERIC Educational Resources Information Center

    Coker, Ann L.; Bush, Heather M.; Follingstad, Diane R.; Brancato, Candace J.

    2017-01-01

    Background: In 2013, President Obama lifted the federal ban on gun violence research. The current study provides one of the first reports to estimate household gun ownership as reported by youth. Methods: In this cohort study of 3,006 high school seniors from 24 schools, we examined the frequency of household guns ownership. Results: About 65%…

  14. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  15. High temporal frequency measurements of greenhouse gas emissions from soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency,...

  16. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2006-09-30

    with Michael Porter and the ONR High Frequency Initiative and the ONR PLUSNet program. REFERENCES M. B. Porter and H. P. Bucker, “Gaussian...Harrison and Michael Porter , “A passive fathometer for determining bottom depth and imaging seabed layering using ambient noise”, J. Acoust. Soc. Am., 120

  17. Measurement of high frequency waves using a wave follower

    NASA Technical Reports Server (NTRS)

    Tang, S.; Shemdin, O. H.

    1983-01-01

    High frequency waves were measured using a laser-optical sensor mounted on a wave follower. Measured down-wind wave slope spectra are shown to be wind speed dependent; the mean square wave-slopes are generally larger than those measured by Cox and Munk (1954) using the sun glitter method.

  18. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  19. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  20. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    SciTech Connect

    Deng, Zhao; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  1. High Precision Digital Frequency Signal Source Based on FPGA

    NASA Astrophysics Data System (ADS)

    Yanbin, SHI; Jian, GUO; Ning, CUI

    The realization method of DDS technology is introduced, and its superior technical characteristics are analyzed in this paper. According to its characteristics, the high accuracy digital frequency signal source based on FPGA is designed. The simulation result indicated, compares with the traditional signal source, this type of signal source realized by the method of FPGA+DDS have many merits such as high precision and fast switch speed, which can satisfies the developing tendency of test facility.

  2. On the Frequency of Additional Planets in Short Period Hot Jupiter Systems from Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Dittmann, Jason; Close, L.; Scuderi, L.

    2011-05-01

    The large number of hot Jupiter planets allows one to probe these systems for additional unseen planets via transit timing variations (TTVs). Even relatively small terrestrial planets, when placed in an energetically favorable mean motion resonance (MMR), can cause detectable TTVs with an amplitude of several minutes (Holman and Murray 2005, Agol et al. 2005). In an effort to discover and characterize such companions, we have embarked on a systematic study of known transiting hot Jupiters, utilizing the 1.55 meter Kuiper telescope on Mt. Bigelow to measure multiple individual transits in an observing season to within 30 second precision, and constrain the nature of any planetary companions. Here, we present current and preliminary results on this study, and show that the systems HAT-P-5, HAT- P-6, HAT-P-8, HAT-P-9, WASP-11/HAT-P-10, HAT-P-11, TrES-2, and WASP-10 do not contain small mass companions in MMRs, or moderate mass companions in close enough proximity to induce TTVs on the order of 1.5 minutes.

  3. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  4. High frequency plasma generators for ion thruster applications

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Komatsu, G. K.; Christensen, T.

    1981-01-01

    Two concepts for high frequency discharge ion thrusters are described. Both sources are designed for use with 30 cm grid sets and argon propellant and utilize multi-cusp permanent magnet geometries for plasma confinement. The RF induction source is a conventional design representing a synthesis of the RIT and multi-cusp concepts. The preliminary data (without system optimization) indicate a discharge efficiency comparable to that obtained in 30 cm hollow cathode multi-cusp argon thrusters. The electron cyclotron heating source is electrodeless and exhibits plasma characteristics which should lead to greatly reduced discharge chamber and screen sputter rates with the optimization of the magnetic fields, microwave frequency, and feed configuration.

  5. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  6. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  7. Advances in high frequency ultrasound separation of particulates from biomass.

    PubMed

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality.

  8. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  9. Highly flexible distributions to fit multiple frequency financial returns

    NASA Astrophysics Data System (ADS)

    BenSaïda, Ahmed; Slim, Skander

    2016-01-01

    Financial data are usually studied via low flexible distributions, independently of the frequency of the data, due to their simplicity and analytical tractability. In this paper we analyze two highly flexible five-parameter distributions into fitting financial returns, these are the skewed generalized t (SGT) and the generalized hyperbolic (GH). Applications carried on two exchange rates (Euro-Dollar and Dollar-Yen), and two indexes (S&P 500 and Nikkei 225) over four frequencies: weekly, daily, 30-min and 5-min, confirm the superiority of the SGT and GH in approximating the distribution of a given data at a remarkable precision. Moreover, as we move from higher to lower frequency, the distribution's overall shape does indeed change radically, and the estimated parameters refute the tendency to normality, which calls into question the aggregational Gaussianity's stylized fact.

  10. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  11. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  12. High-frequency measurements of multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Lafferty, R. E.; Maher, J. P.

    1981-06-01

    A resonant coaxial transmission line, short circuited at one end and open circuited at the other, whose fundamental resonant frequency and Q factor are known, is perturbed with a test capacitor connected either in series at the shorted end of the line, or in shunt at the open end. Measuring the Q factor of the system with the delta f technique yields the effective series resistance, capacitance, and the Q factor of the test specimen. This method of measurement has the advantage that there are no adjustable elements to alter circuit conditions in an unprescribed way, the only variable is the frequency which can be measured with an uncertainty of less than 1 ppm, the loss of the line as a function of frequency is quite predictable, and the Q factor of the line can be made sufficiently high to support accurate measurements of low loss capacitors.

  13. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  14. High-performing vapor-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Godone, A.; Levi, F.; Calosso, C. E.; Micalizio, S.

    2015-03-01

    Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1×10-13 at 1s (short term) and in the range of 10-15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.

  15. Software for Displaying High-Frequency Test Data

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  16. High-speed frequency-domain terahertz coherence tomography.

    PubMed

    Yahng, Ji Sang; Park, Choon-Su; Lee, Hwi Don; Kim, Chang-Seok; Yee, Dae-Su

    2016-01-25

    High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm(2) by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system.

  17. Amplitude modulation reduces loudness adaptation to high-frequency tones

    PubMed Central

    Wynne, Dwight P.; George, Sahara E.; Zeng, Fan-Gang

    2015-01-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%–80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time. PMID:26233027

  18. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  19. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  20. DC and High-Frequency Characteristics of GaN Schottky Varactors for Frequency Multiplication

    NASA Astrophysics Data System (ADS)

    Jin, Chong; Pavlidis, Dimitris; Considine, Laurence

    The design, fabrication and characterization of GaN based varactor diodes are presented. MOCVD was used for layer growth and the DC characteristic of 4µm diameter diodes showed a turn-on voltage of 0.5V, a breakdown voltage of 21V and a modulation ratio of 1.63. High frequency characterization allowed obtaining the diode equivalent circuit and observed the bias dependence of the series resistance. The diode cutoff frequency was 900GHz. A large-signal model was developed for the diode and the device power performance was evaluated. A power of 7.2dBm with an efficiency of 16.6% was predicted for 47GHz to 94GHz doubling.

  1. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  2. High-frequency BiCMOS transconductance integrators

    NASA Astrophysics Data System (ADS)

    Beards, R. Douglas

    1990-10-01

    The capabilities of a fine-line bipolar complementary metal oxide semiconductor (BiCMOS) process in the design of wideband transconductance integrators for precision monolithic continuous time filtering are explored. The design considerations of such an integrator are examined in detail, with an emphasis on tunability and phase compensation as a means for realizing a precision wideband design. The concept of open-loop transconductance filtering is described and possible circuit topologies are investigated. Detailed small-signal and large-signal analysis of one proposed circuit which has both tunable bandwidth and tunable phase compensation is presented. Application of such an integrator to open-loop transconductance filtering in the 10-50 MHz frequency range is studied. Simulation results show specific performance expectations of the proposed circuit. The tunable compensation circuit was seen to restrict the amplitude of signals which the integrator can pass without severe distortion or even instability occurring. A potential solution to this problem is deemed to be unsuitable for high frequency applications. The general design philosophy of applying low-frequency techniques to realize a high frequency circuit was seen to result in several fundamental problems.

  3. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  4. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  5. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  6. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    PubMed

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low.

  7. Resent developments in high-frequency surface-wave techniques

    NASA Astrophysics Data System (ADS)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  8. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  9. Hydrogen peroxide decelerates recovery of action potential after high-frequency fatigue in skeletal muscle.

    PubMed

    Oba, T; Ishikawa, T; Takaishi, T; Aoki, T; Yamaguchi, M

    2000-10-01

    Effects of reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)), on recovery of action potential by resting for 30 min after high-frequency fatigue were studied using frog skeletal muscle fibers. After stimulation at a frequency of 50 HZ for 2 min, the action potential amplitude was decreased by 14.5 mV from controls, and resting membrane was depolarized by 15.4 mV. Action potential duration was also prolonged by high-frequency stimulation (1.5 ms in controls to 2.6 ms). The high-frequency stimulation used here caused no muscle damage. The action potential was partially improved after a 30-min rest. Addition of catalase at 500 units/ml or H(2)O(2) at 0.5 mM to sartorius muscle did not alter any of the parameters of the action potential after high-frequency stimulation. Treatment with catalase accelerated post-fatigue recovery of the action potential. Application of H(2)O(2) delayed post-fatigue recovery of resting and action potentials. When added to detubulated toe muscle fibers, catalase no longer improved the attenuation of action potential induced by high-frequency stimulation, even after a 30-min rest. These findings suggest that removal of H(2)O(2) from transverse tubules is effective for post-fatigue recovery of action potential in skeletal muscle.

  10. High-Frequency Resonance in the Gerbil Medial Superior Olive

    PubMed Central

    Mikiel-Hunter, Jason; Kotak, Vibhakar; Rinzel, John

    2016-01-01

    A high-frequency, subthreshold resonance in the guinea pig medial superior olive (MSO) was recently linked to the efficient extraction of spatial cues from the fine structure of acoustic stimuli. We report here that MSO neurons in gerbil also have resonant properties and, based on our whole-cell recordings and computational modeling, that a low-voltage-gated potassium current, IKLT, underlies the resonance. We show that resonance was lost following dynamic clamp replacement of IKLT with a leak conductance and in the model when voltage-gating of IKLT was suppressed. Resonance was characterized using small amplitude sinusoidal stimuli to generate impedance curves as typically done for linear systems analysis. Extending our study into the nonlinear, voltage-dependent regime, we increased stimulus amplitude and found, experimentally and in simulations, that the subthreshold resonant frequency (242Hz for weak stimuli) increased continuously to the resonant frequency for spiking (285Hz). The spike resonance of these phasic-firing (type III excitable) MSO neurons and of the model is of particular interest also because previous studies of resonance typically involved neurons/models (type II excitable, such as the standard Hodgkin-Huxley model) that can fire tonically for steady inputs. To probe more directly how these resonances relate to MSO neurons as slope-detectors, we presented periodic trains of brief, fast-rising excitatory post-synaptic potentials (EPSCs) to the model. While weak subthreshold EPSC trains were essentially low-pass filtered, resonance emerged as EPSC amplitude increased. Interestingly, for spike-evoking EPSC trains, the threshold amplitude at spike resonant frequency (317Hz) was lower than the single ESPC threshold. Our finding of a frequency-dependent threshold for repetitive brief EPSC stimuli and preferred frequency for spiking calls for further consideration of both subthreshold and suprathreshold resonance to fast and precise temporal processing

  11. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  12. Recording and analysis techniques for high-frequency oscillations.

    PubMed

    Worrell, G A; Jerbi, K; Kobayashi, K; Lina, J M; Zelmann, R; Le Van Quyen, M

    2012-09-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.

  13. Recording and analysis techniques for high-frequency oscillations

    PubMed Central

    Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.M.; Zelmann, R.; Le Van Quyen, M.

    2013-01-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions. PMID:22420981

  14. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  15. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  16. Status asthmaticus treated by high-frequency oscillatory ventilation.

    PubMed

    Duval, E L; van Vught, A J

    2000-10-01

    We present a 2.5-year-old girl in severe asthma crisis who clinically deteriorated on conventional mechanical ventilation, but was successfully ventilated with high-frequency oscillatory ventilation (HFOV). Although HFOV is accepted as a technique for managing pediatric respiratory failure, its use in obstructive airway disease is generally thought to be contraindicated because of the risk of dynamic air-trapping. However, we suggest that obstructive airway disease can safely be managed with HFOV, provided certain conditions are met. These include the application of sufficiently high mean airway pressures to open and stent the airways ("an open airway strategy"), lower frequencies to overcome the greater attenuation of the oscillatory waves in the narrowed airways, permissive hypercapnia to enable reducing pressure swings as much as possible, longer expiratory times, and muscle paralysis to avoid spontaneous breathing.

  17. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  18. Low frequency/high sensitivity triaxial monolithic sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100 mHz with large band (10-7 Hz - 10 Hz), high quality factor (Q < 1500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/√Hz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  19. Very low frequency/high sensitivity triaxial monolithic inertial sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2014-03-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100mHz), with large band (10-7 Hz - 10Hz), high quality factor (Q > 2500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/√Hz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  20. Low frequency/high sensitivity triaxial monolithic inertial sensor

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, Rocco; Barone, F.

    2013-10-01

    This paper describes a new mechanical implementation of a triaxial sensor, configurable as seismometer and/or as accelerometer, consisting of three one-dimensional monolithic FP sensors, suitably geometrically positioned. The triaxial sensor is, therefore, compact, light, scalable, tunable instrument (frequency < 100mHz), with large band (10-7 Hz - 10Hz), high quality factor (Q < 2500 in air) with good immunity to environmental noises, guaranteed by an integrated laser optical readout. The measured sensitivity curve is in very good agreement with the theoretical ones (10-12m/pHz) in the band (0.1 ÷ 10Hz). Typical applications are in the field of earthquake engineering, geophysics, civil engineering and in all applications requiring large band-low frequency performances coupled with high sensitivities.

  1. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  2. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus

    PubMed Central

    Luo, Feng

    2015-01-01

    Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca2+-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS. PMID:26334006

  3. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2011-09-01

    scattering in ocean environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of...TYPE 3 . DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE High Frequency Acoustic Reflection and Transmission in Ocean Sediments...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3

  4. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  5. Automated composite ellipsoid modelling for high frequency GTD analysis

    NASA Technical Reports Server (NTRS)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  6. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  7. Modeling high-frequency capacitance in SOI MOS capacitors

    NASA Astrophysics Data System (ADS)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  8. Direct frequency comb spectroscopy and high-resolution coherent control

    NASA Astrophysics Data System (ADS)

    Stowe, Matthew C.

    We present the first experiments demonstrating absolute frequency measurements of one- and two-photon transitions using direct frequency comb spectroscopy (DFCS). In particular we phase stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creating a broad-bandwidth optical frequency comb. By referencing the optical comb directly to the cesium microwave frequency standard, we were able to measure absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the phase coherence between wavelengths spanning from 741 nm to 795 nm. As an initial demonstration of DFCS we studied transitions from the 5S to 5P, 5D, and 7S states in Rb. To reduce Doppler broadening the atoms were laser cooled in a magneto-optical trap. We present an overview of several systematic error sources that perturb the natural transition frequencies, magnitudes, and linewidths. These include radiation pressure from the probe beam, AC-Stark shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After careful study and suppression of these systematic error sources, we measured transition linewidths as narrow as 1.1 MHz FWHM and 10 kHz linecenter uncertainties. Our measurements of the 5S to 7S two-photon transition frequency demonstrated the ability to determine the comb mode order numbers when the initial transition frequency is not known to better than the comb mode frequency spacing. By modifying the spectral phase of the pulses we demonstrated high-resolution coherent control. Our first coherent control experiment utilized a grating based pulse stretcher/compressor to apply a large chirp to the pulses. We measured the two-photon transition rate as a function of linear frequency chirp. The results illustrate the differences between similar classic coherent experiments done with a single femtosecond pulse and ours conducted with multiple pulses. Furthermore, we show that it is possible to reduce the two

  9. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators.

    PubMed

    Lu, Qijing; Liu, Sheng; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-04-15

    We report on the stimulated Brillouin laser (SBL) and over-dense frequency comb generation in high-Q microbubble resonators (MBRs). Both first-order and cascaded SBL are achieved due to the rich high-order axial modes in the MBRs, although the free spectral range (FSR) of azimuthal mode of the MBR is severely mismatched with the Brillouin shift. The SBL is also generated by varying the internal pressure of MBR at fixed initially non-resonant pump light wavelength. In addition, over-dense frequency combs are realized with comb spacings that are one and two FSRs of aixal mode.

  10. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  11. System and method for high power diode based additive manufacturing

    DOEpatents

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  12. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  13. Capacitor Characterization Study for a High Power High Frequency Converter Application (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    Bixel, W.C. Lanter, B.Ray, “Evaluation of Fluorene Polyester Film Capacitors ”, CARTS USA-2010, 15-18 Mar 2010 New Orleans LA. 16 H. Kosai, S...AFRL-RZ-WP-TP-2010-2099 CAPACITOR CHARACTERIZATION STUDY FOR A HIGH POWER, HIGH FREQUENCY CONVERTER APPLICATION (PREPRINT) William Lanter...Paper Preprint 04 August 2009 – 01 April 2010 4. TITLE AND SUBTITLE CAPACITOR CHARACTERIZATION STUDY FOR A HIGH POWER, HIGH FREQUENCY CONVERTER

  14. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus)

    PubMed Central

    Volodin, Ilya A.; Fritsch, Guido

    2016-01-01

    Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0) and a high (g0) fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0). Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female) captive dholes (Cuon alpinus) and for 2 (1 male, 1 female) wild red fox (Vulpes vulpes). In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures. PMID:26730952

  15. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  16. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    NASA Astrophysics Data System (ADS)

    Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee

    2015-08-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  17. Translational damping on high-frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Parks, Perry A.

    Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.

  18. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  19. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  20. Characterizing the Frequency of High Flows in Rivers

    NASA Astrophysics Data System (ADS)

    Basso, S.; Schirmer, M.; Botter, G.

    2014-12-01

    Probability density functions and related cumulative distributions are widely used to describe magnitude and frequency of river flows at-a-station. They constitute important tools in hydrological and engineering applications for their ability to quantify in a condensed fashion the overall flow availability and variability, and properly describe the underlying hydrologic regime. The river flow regime is a pivotal driver of natural and industrial processes occurring in riverine environments, like e.g. riparian vegetation dynamics and hydropower production. Nonetheless, some processes are strongly influenced by specific ranges of streamflows, namely high flows, whose features are described in the right-tail of the probability distribution. For this reason, an accurate description of high flow frequencies represents an important task to study fluvial processes such as sediment transport and floods. Recently, a physically-based stochastic model of streamflow dynamics has been developed and applied to a variety of catchments. The model provides an analytical expression for the streamflow distribution, which proved able to reproduce the frequencies of observed discharges and characterize in a meaningful way river flow regimes. This work focuses on the model capability to reproduce observed patterns in the tail of the flow distribution. In particular, a new method for the estimate of flow recession rates (based on analysis of single recessions) proved more effective in representing the cumulative distribution function, especially for high flows. At the same time, the model proves able to capture the emergence of heavy tailed distributions with divergent moments. The correlation between the peak flows and recession features, particularly accentuated in some cases, is extremely important for a correct representation of the tail of the streamflow distribution. The results constitute a basis for a physically-based study of hydrologic and sediment transport regimes, and poses

  1. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    NASA Astrophysics Data System (ADS)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  2. The effectiveness of a graphical presentation in addition to a frequency format in the context of familial breast cancer risk communication: a multicenter controlled trial

    PubMed Central

    2013-01-01

    Background Inadequate understanding of risk among counselees is a common problem in familial cancer clinics. It has been suggested that graphical displays can help counselees understand cancer risks and subsequent decision-making. We evaluated the effects of a graphical presentation in addition to a frequency format on counselees’ understanding, psychological well-being, and preventive intentions. Design: Multicenter controlled trial. Setting: Three familial cancer clinics in the Netherlands. Methods Participants: Unaffected women with a breast cancer family history (first-time attendees). Intervention: Immediately after standard genetic counseling, an additional consultation by a trained risk counselor took place where women were presented with their lifetime breast cancer risk in frequency format (X out of 100) (n = 63) or frequency format plus graphical display (10 × 10 human icons) (n = 91). Main outcome measures: understanding of risk (risk accuracy, risk perception), psychological well-being, and intentions regarding cancer prevention. Measurements were assessed using questionnaires at baseline, 2-week and 6-month follow-up. Results Baseline participant characteristics did not differ between the two groups. In both groups there was an increase in women’s risk accuracy from baseline to follow-up. No significant differences were found between women who received the frequency format and those who received an additional graphical display in terms of understanding, psychological well-being and intentions regarding cancer prevention. The groups did not differ in their evaluation of the process of counseling. Conclusion Women’s personal risk estimation accuracy was generally high at baseline and the results suggest that an additional graphical display does not lead to a significant benefit in terms of increasing understanding of risk, psychological well-being and preventive intentions. Trial registration Current Controlled Trials http://ISRCTN14566836

  3. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  4. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  5. High frequency noise studies at the Hartousov mofette area (CZE)

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  6. Modeling electron cloud dynamics in high-frequency accelerators

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Stoltz, Peter H.

    2017-03-01

    The dynamics of electron cloud buildup, saturation, and dissipation represent a complex interaction between accelerator and beam parameters. In many accelerators bunch charges are large and beam frequencies are small. In this case electrons have a good probability of being accelerated to the opposite side of the beam pipe before the next bunch crossing. If the time for electrons to drift across the beam pipe is less than the time to the next bunch crossing the cloud density can build up rapidly under this scenario. However, in accelerators where buch charges are small and beam frequencies are large, electrons created by secondary electron emission will not be accelerated to the opposite wall before the next bunch crossing. In this case the time for a cloud to build up is larger, but the amount of electron cloud that exists close to the beam may be increased. In this paper, we report simulation results for modeling of electron cloud buildup and dynamics in high-frequency accelerators. We model parameters relevant to the JLab Electron-Ion Collider (JLEIC) that is currently being designed. We consider beam frequencies up to 476 MHz for a variety of different ions, from protons up to Pb (82+), and with bunch charges ranging from 4.2 × 109 (p) to 0.05 × 109 (Pb) ions per bunch, and ion energies from 100 (p) - 40 (Pb) GeV/u. We compare simulations of electron cloud buildup and dynamics for these different cases, and contrast with similar simulations of proton-driven electron cloud buildup in the Fermilab recycler under the PIP-II upgrade scenario, with a frequency of 52.8 MHz, bunch charge of 80 × 109 p/bunch, and energies ranging from 8 - 20 GeV.

  7. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  8. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  9. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  10. Planck early results. VI. The High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck HFI Core Team; Ade, P. A. R.; Aghanim, N.; Ansari, R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Banday, A. J.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bradshaw, T.; Bucher, M.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, C.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Couchot, F.; Coulais, A.; Cressiot, C.; Crill, B. P.; Crook, M.; de Bernardis, P.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Dole, H.; Doré, O.; Douspis, M.; Dunkley, J.; Efstathiou, G.; Filliard, C.; Forni, O.; Fosalba, P.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; Gispert, R.; Górski, K. M.; Gratton, S.; Griffin, M.; Guyot, G.; Haissinski, J.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Kaplan, J.; Kneissl, R.; Knox, L.; Kunz, M.; Lagache, G.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leroy, C.; Lesgourgues, J.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.; Masi, S.; Matsumura, T.; McAuley, I.; McGehee, P.; Melin, J.-B.; Mercier, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mortlock, D.; Murphy, A.; Nati, F.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Osborne, S.; Pajot, F.; Patanchon, G.; Peacocke, T.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Ponthieu, N.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Saha, R.; Santos, D.; Savini, G.; Schaefer, B. M.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Vibert, D.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.

    2011-12-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4'. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. Corresponding author: F. R. Bouchet, e-mail: bouchet@iap.fr

  11. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  12. Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility.

    PubMed

    An, Tae Kyu; Kang, Il; Yun, Hui-jun; Cha, Hyojung; Hwang, Jihun; Park, Seonuk; Kim, Jiye; Kim, Yu Jin; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi; Park, Chan Eon

    2013-12-23

    A facile spin-coating method in which a small percentage of the solvent additive, 1-chloronaphthalene (CN), is found to increase the drying time during film deposition, is reported. The field-effect mobility of a PDPPDBTE film cast from a chloroform-CN mixed solution is 0.46 cm(2) V(-1) s(-1). The addition of CN to the chloroform solution facilitates the formation of highly crystalline polymer structures.

  13. A comparison of frequency estimation techniques for high-dynamic trajectories

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hinedi, S.; Kumar, R.

    1988-01-01

    A comparison is presented for four different estimation techniques applied to the problem of continuously estimating the parameters of a sinusoidal Global Positioning System (GPS) signal, observed in the presence of additive noise, under extremely high-dynamic conditions. Frequency estimates are emphasized, although phase and/or frequency rate are also estimated by some of the algorithms. These parameters are related to the velocity, position, and acceleration of the maneuvering transmitter. Estimated performance at low carrier-to-noise ratios and high dynamics is investigated for the purpose of determining the useful operating range of an approximate Maximum Likelihood (ML) estimator, an Extended Kalman Filter (EKF), a Cross-Product Automatic Frequency Control (CPAFC) loop, and a digital phase-locked loop (PPL). Numerical simulations are used to evaluate performance while tracking a common trajectory exhibiting high dynamics.

  14. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    PubMed

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations.

  15. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  16. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    USGS Publications Warehouse

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using

  17. Toward high-frequency operation of spin lasers

    NASA Astrophysics Data System (ADS)

    Junior, Paulo E. Faria; Xu, Gaofeng; Lee, Jeongsu; Gerhardt, Nils C.; Sipahi, Guilherme M.; Žutić, Igor

    2015-08-01

    Injecting spin-polarized carriers into semiconductor lasers provides important opportunities to extend what is known about spintronic devices, as well as to overcome many limitations of conventional (spin-unpolarized) lasers. By developing a microscopic model of spin-dependent optical gain derived from an accurate electronic structure in a quantum-well-based laser, we study how its operation properties can be modified by spin-polarized carriers, carrier density, and resonant cavity design. We reveal that by applying a uniaxial strain, it is possible to attain a large birefringence. While such birefringence is viewed as detrimental in conventional lasers, it could enable fast polarization oscillations of the emitted light in spin lasers, which can be exploited for optical communication and high-performance interconnects. The resulting oscillation frequency (>200 GHz) would significantly exceed the frequency range possible in conventional lasers.

  18. Modeling and Experimental Analysis of Piezoelectric Shakers for High-Frequency Calibration of Accelerometers

    SciTech Connect

    Vogl, Gregory W.; Harper, Kari K.; Payne, Bev

    2010-05-28

    Piezoelectric shakers have been developed and used at the National Institute of Standards and Technology (NIST) for decades for high-frequency calibration of accelerometers. Recently, NIST researchers built new piezoelectric shakers in the hopes of reducing the uncertainties in the calibrations of accelerometers while extending the calibration frequency range beyond 20 kHz. The ability to build and measure piezoelectric shakers invites modeling of these systems in order to improve their design for increased performance, which includes a sinusoidal motion with lower distortion, lower cross-axial motion, and an increased frequency range. In this paper, we present a model of piezoelectric shakers and match it to experimental data. The equations of motion for all masses are solved along with the coupled state equations for the piezoelectric actuator. Finally, additional electrical elements like inductors, capacitors, and resistors are added to the piezoelectric actuator for matching of experimental and theoretical frequency responses.

  19. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  20. MultiView High Precision VLBI Astrometry at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Rioja, María J.; Dodson, Richard; Orosz, Gabor; Imai, Hiroshi; Frey, Sandor

    2017-03-01

    The arrival of the Square Kilometer Array (SKA) will revitalize all aspects of Very Long Baseline Interferometry (VLBI) astronomy at lower frequencies. In the last decade, there have been huge strides toward routinely achieving high precision VLBI astrometry at frequencies dominated by tropospheric contributions, most notably at 22 GHz, using advanced phase-referencing techniques. Nevertheless, to increase the capability for high precision astrometric measurements at low radio frequencies (<8 GHz), an effective calibration strategy of the systematic ionospheric propagation effects that is widely applicable is required. Observations at low frequencies are dominated by distinct direction-dependent ionospheric propagation errors, which place a very tight limit on the angular separation of a suitable phase-referencing calibrator. The MultiView technique holds the key to compensating for atmospheric spatial-structure errors, by using observations of multiple calibrators and two-dimensional interpolation in the visibility domain. In this paper we present the first demonstration of the power of MultiView using three calibrators, several degrees from the target, along with a comparative study of the astrometric accuracy between MultiView and phase-referencing techniques. MultiView calibration provides an order of magnitude improvement in astrometry with respect to conventional phase referencing, achieving ∼100 μas astrometry errors in a single epoch of observations, effectively reaching the thermal noise limit. MultiView will achieve its full potential with the enhanced sensitivity and multibeam capabilities of SKA and the pathfinders, which will enable simultaneous observations of the target and calibrators. Our demonstration indicates that the 10 μas goal of astrometry at ∼1.6 GHz using VLBI with SKA is feasible using the MultiView technique.

  1. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  2. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  3. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  4. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea

    PubMed Central

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C. J.

    2017-01-01

    Abstract Objective: The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Design: Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Study sample: Five participants (eight ears) with extensive high-frequency DRs were tested. Results: Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Conclusions: Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants. PMID:27724057

  5. High-pressure high-temperature synthesis of magnesium diboride with different additions

    NASA Astrophysics Data System (ADS)

    Prikhna, Tatiana; Gawalek, Wolfgang; Savchuk, Yaroslav; Sergienko, Nina; Moshchil, Viktor; Dub, Sergey; Sverdun, Vladimir; Kovalev, Leo; Penkin, Vladimir; Zeisberger, Matthias; Wendt, Michael; Fuchs, Gunter; Habisreuther, Tobias; Litzkendorf, Doris; Nagorny, Peter; Melnikov, Vladimir

    2007-09-01

    An increase of the critical current density in high-pressure synthesized (at 2 GPa, 800-900 °C) MgB2 was observed when some amount (2-10%) of powdered Ta, Ti or Zr was added to the initial mixture of Mg and B. As a result of high-pressure synthesis, the metallic additives transformed into hydrides, so the absorbed impurity hydrogen coming most likely from the materials of a high-pressure cell surrounded the synthesized samples. Blocks of high-pressure synthesized MgB2 (with Ti additions) were for the first time used in an SC electromotor that demonstrated the efficiency similar to that of MT-YBCO bulk (at the same working temperature 15-20 K).

  6. Ionospheric heating with oblique high-frequency waves

    SciTech Connect

    Field, E.C. Jr.; Bloom, R.M. ); Kossey, P.A. )

    1990-12-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions.

  7. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  8. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  9. Maximization of the effective impulse delivered by a high-frequency/low-frequency planetary drill tool.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2011-11-01

    Ultrasonic tools are used for a variety of cutting applications in surgery and the food industry, but when they are applied to harder materials, such as rock, their cutting performance declines because of the low effective impulse delivered by each vibration cycle. To overcome this problem, a technique known as high-frequency/low-frequency (or alternatively, ultrasonic/sonic) drilling is employed. In this approach, an ultrasonic step-horn is used to deliver an impulse to a free mass which subsequently moves toward a drilling bit, delivering the impulse on contact. The free mass then rebounds to complete the cycle. The horn has time between impacts to build significant vibration amplitude and thus delivers a much larger impulse to the free mass than could be delivered if it were applied directly to the target. To maximize the impulse delivered to the target by the cutting bit, both the momentum transfer from the ultrasonic horn to the free mass and the dynamics of the horn/free mass/cutting bit stack must be optimized. This paper uses finite element techniques to optimize the ultrasonic horns and numerical propagation of the stack dynamics to maximize the delivered effective impulse, validated in both cases by extensive experimental analysis.

  10. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  11. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  12. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  13. Spectroscopic measurements of high frequency plasma in supercritical carbon dioxide

    SciTech Connect

    Maehara, T.; Mukasa, S.; Takemori, T.; Watanabe, T.; Kurokawa, K.; Toyota, H.; Nomura, S.; Kawashima, A.; Iwamae, A.

    2009-03-15

    Spectroscopic measurements of high frequency (hf) plasma were performed under high pressure conditions (5 and 7 MPa) and supercritical (sc) CO{sub 2} conditions (8-20 MPa). Temperature evaluated from C{sub 2} Swan bands (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) increased from 3600 to 4600 K with an increase in pressure. The first observation of broadening and shifting of the O I line profile (3p {sup 5} P{sub 3,2,1}{yields}3s {sup 5} S{sub 2}{sup 0}) of hf plasma under sc CO{sub 2} conditions was carried out. However, the origin of broadening and the shifting cannot be understood because the present theory explaining them is not valid for such high pressure conditions.

  14. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  15. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  16. Attenuation of High-Frequency Seismic Waves in Eastern Iran

    NASA Astrophysics Data System (ADS)

    Mahood, M.

    2014-09-01

    We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5-25 km. We estimated the quality factor of coda waves ( Q c) and body waves ( Q p and Q s) in the frequency band of 1.5-24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships ( Q = Q o f n ) estimated for the region are Q c = (108 ± 10) f (0.96±0.01), Q p = (50 ± 5) f (1.01±0.04), and Q s = (75 ± 6) f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.

  17. Plasma-Based Tunable High Frequency Power Limiter

    NASA Astrophysics Data System (ADS)

    Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios

    2016-09-01

    Power limiters are often employed to protect sensitive receivers from being damaged or saturated by high-power incoming waves. Although wideband low-power limiters based on semiconductor technology are widely available, the options for high-power frequency-selective ones are very few. In this work, we study the application of a gas discharge tube (GDT) integrated in an evanescent-mode (EVA) cavity resonator as a plasma-based power limiter. Plasmas can inherently handle higher power in comparison with semiconductor diodes. Also, using a resonant structure provides the ability of having both lower threshold power and frequency-selective limiting, which are important if only a narrowband high-power signal is targeted. Higher input RF power results in stronger discharge in the GDT and consequently higher electron density which results in larger reflection. It is also possible to tune the threshold power by pre-ionizing the GDT with a DC bias voltage. As a proof of concept, a 2-GHz EVA resonator loaded by a 90-V GDT was fabricated and measured. With reasonable amount of insertion loss, the limiting threshold power was successfully tuned from 8.3 W to 590 mW when the external DC bias was varied from 0 to 80 V. The limiter performed well up to 100 W of maximum available input power.

  18. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  19. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  20. Multi-frequency metal detector in high mineralization

    NASA Astrophysics Data System (ADS)

    Stamatescu, Laurence; Harmer, Gregory; Nesper, Oliver; Bordean, Dorin; Tkachenko, Yuri

    2009-05-01

    The successful detection and discrimination of mines is very difficult in areas of high soil mineralization. In these areas, the soil can make a significant contribution to the received signal that causes false detections or masks the true mine response. To address this problem, Minelab has developed a continuous wave (CW) multi-frequency digital detector (MFDD). It transmits four frequencies (between 1 kHz and 45 kHz) and each has a high dynamic range that approaches 120 dB. The mineralized soil with high magnetic susceptibility affects the characteristics of the sensor-head, in particular the inductance of the transmitting and receiving windings. These in turn affect the front-end electronics and measuring circuits and can lead to excessive ground noise that makes detection difficult. Minelab has modeled the effect that the soil has on the sensor-head and developed methods to monitor these effects. By having a well calibrated detector, which is demonstrated by the tight agreement of raw ground signals with theoretical ground models, the tasks of ground balance and discrimination become much more reliable and robust.

  1. [High-frequency transistor tract for UHF therapy device].

    PubMed

    Tamarchak, D Ia

    1998-01-01

    The paper deals with the specific features of construction of a common circuit and individual units of high-frequency transistor tracts for physiotherapeutic UHF apparatuses whose design is a possible way of conversion of radioelectron equipment. The design of UHF tracts gives rise to some radio engineering problems due to the low output resistance of bipolar transistors and to the operational characteristics of physiotherapeutic equipment and, as a result, the load of the tract is a two-conductor long line loaded with complex resistance whose active part changes slightly and the reactive one varies very greatly. The structure of a high-frequency, which transfers power from the generator with external excitement to the active part of complex load by changing its reactive part in the wide range, was analyzed. It is shown that for reliable operation of the UHF apparatus, its tract should have a multichannel structure with subsequent summation of the power and automatic compensation of the reactive component of alternating load. This provides a measuring mode for the power connected to the patient. The tract structure in question may serve the basis for the designing transistor physiotherapy apparatuses of average and high power (Poutput = 50-400 W).

  2. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  3. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  4. High frequency atmospheric gravity wave damping in the mesosphere

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Liu, A. Z.; Li, F.; Tang, J.

    2003-09-01

    Correlative measurements of temperature and winds by Na lidar and brightness in OH and O 2 Atmospheric band airglow have been made at Albuquerque, NM and Maui, HI for a study of high frequency (period less than 30 minutes) Atmospheric Gravity Waves. Wave studies from four nights have been made and the correlative information describes the intrinsic wave properties with altitude, their damping characteristics, and resulting accelerations to the large scale circulation in the 85-100 km altitude region. Generally, saturated to super-saturated conditions were observed below 95 km. Above this altitude, they were less saturated to freely propagating.

  5. Acoustic trapping with a high frequency linear phased array

    PubMed Central

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array. PMID:23258939

  6. Fluctuation patterns in high-frequency financial asset returns

    NASA Astrophysics Data System (ADS)

    Preis, T.; Paul, W.; Schneider, J. J.

    2008-06-01

    We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.

  7. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  8. Observations and modeling of dynamically triggered high frequency burst events

    NASA Astrophysics Data System (ADS)

    Fischer, Adam David

    2008-10-01

    A series of high-frequency (>20Hz) bursts of energy are observed on strong motion records during the 1999 Chi-Chi, Taiwan Earthquake Mw7.6. We hypothesized that these bursts originated near the individual stations as small, shallow events that were dynamically triggered by the P- and S-waves generated by the Chi-Chi mainshock. These bursts were originally interpreted as a mainshock source signal by Chen et al., [2006] but our observations of events on strong motion records recorded at stations up to 170 km from the mainshock epicenter is consistent with the local triggering hypothesis. If the bursts originated on the Chi-Chi fault plane, as hypothesized by Chen et al. [2006] based on their analysis of recordings within 20Km from the Chelungpu fault, then they should not be observable at this distance assuming any reasonable value of crustal attenuation. The bursts on all strong motion stations in the Taiwan Central Weather Bureau network (TWCB) were identified using a numerical algorithm approach. This data set was analyzed in the context of local dynamic triggering which resulted in a stress threshold for triggering in the range 0.03 to 0.05 MPa for S-wave triggering and 0.0013 to 0.0033 MPa for P-wave triggering, consistent with prior observations of surface wave triggering. In an attempt to better characterize the nature of high frequency bursts, similar analysis of strong motion records was performed on the records of the 2004 Parkfield, CA earthquake (Mw6) at the USGS UPSAR array. The average array spacing was relatively small compared to the instruments in Taiwan so that further constraint of the location of bursts was possible. Bursts were found to be incoherent even for stations spaced 40m apart, suggesting that they occur in a region approximately 20m from the stations. The triggering threshold was found to be ~0.02Mpa, consistent with the observations from Taiwan. To test the possibility of nucleating unstable slip events in the very shallow crust we

  9. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  10. Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound.

    PubMed

    Schoellhammer, Carl M; Polat, Baris E; Mendenhall, Jonathan; Maa, Ruby; Jones, Brianna; Hart, Douglas P; Langer, Robert; Blankschtein, Daniel

    2012-10-28

    Low-frequency ultrasound has been studied extensively due to its ability to enhance skin permeability. In spite of this effort, improvements in enhancing the efficacy of transdermal ultrasound treatments have been limited. Currently, when greater skin permeability is desired at a given frequency, one is limited to increasing the intensity or the duration of the ultrasound treatment, which carries the risk of thermal side effects. Therefore, the ability to increase skin permeability without increasing ultrasound intensity or treatment time would represent a significant and desirable outcome. Here, we hypothesize that the simultaneous application of two distinct ultrasound frequencies, in the range of 20 kHz to 3 MHz, can enhance the efficacy of ultrasound exposure. Aluminum foil pitting experiments showed a significant increase in cavitational activity when two frequencies were applied instead of just one low frequency. Additionally, in vitro tests with porcine skin indicated that the permeability and resulting formation of localized transport regions are greatly enhanced when two frequencies (low and high) are used simultaneously. These results were corroborated with glucose (180 Da) and inulin (5000 Da) transdermal flux experiments, which showed greater permeant delivery both into and through the dual-frequency pre-treated skin.

  11. The optimization of super-high resolution frequency measurement techniques based on phase quantization regularities between any frequencies.

    PubMed

    Li, Zhiqi; Zhou, Wei; Zhou, Hui; Zhang, Xueping; Zhao, Jie

    2013-02-01

    Step phase quantization regularity between different nominal frequency signals is introduced in this paper. Based on this regularity, an optimized high resolution frequency measurement technique is presented. The key features and issues of phase quantization characteristics and measurements are described. Based on the relationship between the same or multiple nominal signals with a certain differences, the resolution of frequency measurements is developed and the range is widened. Several measurement results are provided to support the concepts with experimental evidence. The resolution of frequency measurement can reach 10(-12) (s(-1)) over a wide range or higher for specific frequency signals.

  12. Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter.

    PubMed

    Burenkov, Ivan A; Gerrits, Thomas; Lita, Adriana; Nam, Sae Woo; Krister Shalm, L; Polyakov, Sergey V

    2017-01-23

    We demonstrate an efficient and inherently ultra-low noise frequency conversion via a parametric sum frequency generation. Due to the wide separation between the input and pump frequencies and the low pump frequency relative to the input photons, the upconversion results in only ≈100 background photons per hour. To measure such a low rate, we introduced a dark count reduction algorithm for an optical transition edge sensor.

  13. Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.

    PubMed

    Alvarez-Nodarse, R; Quintero, N R; Mertens, F G

    2014-10-01

    A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.

  14. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  15. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  16. Low and high frequency instabilities in an explosion-generated-plasma and possibility of wave triplet

    NASA Astrophysics Data System (ADS)

    Malik, O. P.; Singh, Sukhmander; Malik, Hitendra K.; Kumar, A.

    2015-01-01

    An explosion-generated-plasma is explored for low and high frequency instabilities by taking into account the drift of all the plasma species together with the dust particles which are charged. The possibility of wave triplet is also discussed based on the solution of dispersion equation and synchronism conditions. High frequency instability (HFI) and low frequency instability (LFI) are found to occur in this system. LFI grows faster with the higher concentration of dust particles, whereas its growth rate goes down if the mass of the dust is higher. The ion and electron temperatures affect its growth in opposite manner and the electron temperature causes this instability to grow. In addition to the instabilities, a simple wave is also observed to propagate, whose velocity is larger for larger wave number, smaller mass of the dust and higher ion temperature.

  17. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  18. Investigations of propagating wave types in railway tracks at high frequencies

    NASA Astrophysics Data System (ADS)

    Ryue, J.; Thompson, D. J.; White, P. R.; Thompson, D. R.

    2008-08-01

    At low frequencies waves propagate in a rail as bending, extensional or torsional waves. At higher frequencies, above about 1.5 kHz, the rail cross-section deforms and many higher order wave types exist. This cross-section deformation has to be taken into account for an accurate evaluation of the dispersion properties at high frequencies. Simulation results in the literature show that a multiplicity of wave modes is possible within this high-frequency range. In this work, wave types that propagate primarily through separate regions of the rail cross-section are investigated for frequencies up to 80 kHz. Two numerical methods are applied to obtain the dispersion properties for a railway track model including rail pads as a continuous foundation. These are a conventional finite element (FE) method and a wavenumber finite element (WFE) method, each of which can include the effects of cross-sectional deformation. In order to validate the predicted results, experiments were performed on a short test track using an impact hammer and accelerometers. Additional measurements used piezoceramic transducers to excite the rail at higher frequencies. The results are compared with simulations in terms of the group velocity and they present very good agreement. From this comparison, it is identified which wave types predominantly propagate on various regions of the rail cross-section.

  19. High-frequency phenomena in magnetic recording and inductive devices

    NASA Astrophysics Data System (ADS)

    Jury, Jason Charles

    At high frequencies (>1 GHz), ferromagnetic materials and associated electronic circuitry show interesting and sometimes undesirable behavior. In this dissertation, we examine high-frequency effects in magnetic recording and magnetic inductive devices. We analyze "impedance profiling" of the disk drive interconnect, as a way of shaping the write current waveform. This proves to be useful under somewhat limited conditions (for write head with low impedance, characteristic time of the shaped waveform less than the one-way interconnect propagation delay). We then analyze a buffer amplifier (consisting of a single transistor in an emitter-follower configuration) as a means of improving the electronic signal to noise ratio (SNR) associated with high-resistance read sensors. We develop and utilize a "matched filter bound" SNR for assessing the performance of the disk drive read-path. For a hypothetical recording system at an areal density of 1 terabit/in2, the buffer amplifier improves SNR anywhere from 0.5 dB for 670 Mb/s up to 1 dB for 4.17 Gb/s. We then present measurements and quantitative analysis for magnetic fluctuation noise in read sensors. The analysis is enabled by rigorous calibration of the noise measurement setup. We are able to explain the behavior of the mag-noise (primary) resonance frequency versus bias current and externally-applied field, by using a micromagnetic model (NIST-OOMMF) where we also account for sensor heating and associated reduction in free-layer and biasing magnet saturation moment. We then analyze the behavior of multi-domain magnetic materials and the associated inductive device behaviors. First we utilize micromagnetic modeling to calculate the spin-resonance modes associated with multi-domain films. We find agreement in trend between the modeling results and experimentally-observed sub-FMR permeability resonances, particularly that both model and experiment predict a power-law dependence of frequency on the ratio of thickness to

  20. Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering

    NASA Technical Reports Server (NTRS)

    Takatori, K.; Shimade, M.; Koizumi, M.

    1984-01-01

    Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.

  1. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  2. Low-power decoupling at high spinning frequencies in high static fields.

    PubMed

    Weingarth, Markus; Bodenhausen, Geoffrey; Tekely, Piotr

    2009-08-01

    We demonstrate that heteronuclear decoupling using a Phase-Inverted Supercycled Sequence for Attenuation of Rotary ResOnance (PISSARRO) is very efficient at high spinning frequencies (nu(rot)=60kHz) and high magnetic fields (900MHz for protons at 21T) even with moderate radio-frequency decoupling amplitudes (nu(1)(I)=15kHz), despite the wide range of isotropic chemical shifts of the protons and the increased effect of their chemical shift anisotropy.

  3. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  4. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  5. Mapping High-Frequency Waves in the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Viberg, H.; Khotyaintsev, Y. V.; Vaivads, A.; Andre, M.

    2012-12-01

    We study the occurrence of high frequency waves, between the electron cyclotron and plasma frequency, in a reconnection diffusion region in the Earth's magnetotail at a distance of about 19 RE from the Earth. Most of the wave activity is concentrated in the separatrix regions, with no significant activity observed in the inflow and outflow regions. Different types of waves are observed at the outer part of the separatrix region depending on the plasma characteristics in the inflow region. For the cold ~100 eV lobe plasma in the inflow we observe Langmuir waves which are generated by the bump-on-tail instability of a several keV electron beam propagating in the cold background plasma. For the hotter ~1 keV inflow plasma, which is similar to the plasmasheet population, electron cyclotron waves are observed in this region, most probably generated by low energy (several tens of eV) electron beams. Deeper into the separatrix region (closer to the current sheet), we observe mostly electrostatic solitary waves (ESWs) in association with two counter-streaming electron beams: low energy beam towards the X-line, and high energy beam away from the X-line. Observations of HF waves provide important information about electron dynamics in the diffusion region, and allow for precise mapping of kinetic boundaries.

  6. High-frequency ultrasonic arrays for ocular imaging

    NASA Astrophysics Data System (ADS)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  7. Optoacoustics for high-frequency ultrasonic imaging and manipulation

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew; Buma, Takashi

    2004-05-01

    Pulsed lasers can generate ultrasound through thermoelastic expansion of a thin optical absorber. By carefully designing the optical absorbing structure, efficient transduction is possible for a number of biomedical applications including high-frequency imaging, microfluidics, and sensing. The major key for efficient optoacoustic transduction in biomedical applications is to engineer a nearly perfect optical absorber possessing a large coefficient of thermal expansion with acoustic properties well matched to a water medium. We have obtained an optoacoustic efficiency increase of over 20 dB compared to conventional approaches using a thin, optically absorbing layer consisting of polydimethylsiloxane (PDMS) and carbon black spin coated onto a clear PDMS substrate. This structure has been extensively analyzed both experimentally and analytically and seems to provide opportunities for a wide range of optoacoustic devices. In this talk we show how PDMS-based optoacoustic transduction can be used for high-frequency imaging using longitudinal waves and acoustic tweezing using Lamb waves. The basic mechanism of optoacoustic transduction will be described, and specific devices will be presented.

  8. Experimental laboratory system to generate high frequency test environments

    SciTech Connect

    Gregory, D.L.; Paez, T.L.

    1991-01-01

    This is an extension of two previous analytical studies to investigate a technique for generating high frequency, high amplitude vibration environments. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. These analytical studies predicted that test environments with an energy content exceeding 10 kHz could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 40 kHz. Results for sinusoidal shaker inputs tuned to create chaotic impact response are shown along with the responses due to random vibration shaker inputs. The experiments and results are discussed. 4 refs., 5 figs.

  9. High-frequency oscillations and mesial temporal lobe epilepsy.

    PubMed

    Lévesque, Maxime; Shiri, Zahra; Chen, Li-Yuan; Avoli, Massimo

    2017-01-20

    The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.

  10. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  12. Development oF High Frequency Electromagnetic Mapping (HFEM) technology

    NASA Astrophysics Data System (ADS)

    Jesch, R. L.

    1982-04-01

    High frequency electromagnetic mapping (HFEM) techniques were developed for evaluating rubblized oil shale in the cold retort state in the modified in situ process. This technology development is also applicable for using HFEM techniques for diagnosing, monitoring, controlling and evaluating modified in situ retorts after they are ignited. The baseline data work required to design a high temperature sample holder and experiments for determining the EM properties of oil shale samples at elevated temperatures (200 to 500 C) are described. A theoretical approach is given for modeling oil shale retorts for electromagnetic sensing techniques by a spheroid with an average dielectric constant along with numerical results. Finally, the measurement results are given for the spent and raw shale samples that were obtained from portions of the ten half score samples plus the results of the electromagnetic transmission measurements taken on oil shale samples.

  13. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  14. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  15. High-frequency health data and spline functions.

    PubMed

    Martín-Rodríguez, Gloria; Murillo-Fort, Carlos

    2005-03-30

    Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.

  16. Testing the High Turbulence Level Breakdown of Low-Frequency Gyrokinetics Against High-Frequency Cyclokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Deng, Zhao

    2014-10-01

    Gyrokinetic simulations of L-mode near edge tokamak plasmas with the GYRO code underpredict both the transport and the turbulence levels by 5 to 10 fold, which suggest either some important mechanism is missing from current gyrokinetic codes like GYRO or the gyrokinetic approximation itself is breaking down. It is known that GYRO drift-kinetic simulations with gyro-averaging suppressed recover most of the missing transport. With these motivations, we developed a flux tube nonlinear cyclokinetic code rCYCLO with the parallel motion and variation suppressed. rCYCLO dynamically follows the high frequency ion gyro-phase motion (with no averaging) which is nonlinearly coupled into the low frequency drift-waves thereby interrupting and possibly suppressing the gyro-averaging. By comparison with the corresponding gyrokinetic simulations, we can test the conditions for the breakdown of gyrokinetics. rCYCLO nonlinearly couples ∇B driven ion temperature gradient (ITG) modes and collisional fluid electron drift modes to ion cyclotron (IC) modes. As required, rCYCLO cyclokinetic transport recovers gyrokinetics at high relative ion cyclotron frequency (Ω*) and low turbulence levels. However, because the IC modes are stable and act as a turbulence sink, we have found that at high turbulence levels and low-Ω* cyclokinetic transport is lower (not higher) than gyrokinetic transport. Work is in progress with unstable IC modes to explore the possibility of driving cyclokinetic transport higher than gyrokinetic transport. Supported by the CSC, NSFC No. 1126114032, No. 10975012 ITER-CN No. 2013GB112006 and the US DOE under DE-FG02-95ER54309.

  17. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors

    NASA Astrophysics Data System (ADS)

    Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim

    2012-12-01

    This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.

  18. High Frequency Monitoring System of Groundwater Level in Sheliao

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chia, Y.; Chuang, P.

    2012-12-01

    Long-term groundwater monitoring had been executed since 1950s in Taiwan. In 1980s, with improving technology, various types of automatic reorders of groundwater level had become the most widely used equipment in groundwater monitoring. Among these devices, submersible pressure transducer is frequently selected to monitor groundwater level for its high frequency and high resolution. In this study, it is chosen to monitor groundwater level change in Sheliao well. On the other hand, factors which might influence the performance of recorded data were excluded in the early stage of establishment as well. And the final approach is to achieve a comprehensive understanding of the minor groundwater level change of Sheliao well, and specify its connection between precipitation, atmosphere, earth tide and earthquake. The Shelia well is located in central Taiwan, constructed in an unconfined aquifer, recorded hourly groundwater level change since 1997. We tried to establish a 1 Hz sampling rate pressure-sensing system in 2011 June. The groundwater level was monitored in a resolution of 2-mm. According to the records, several small-scale of fluctuations were observed and were all correlate well to the earthquakes. However, during the time that no earthquake occurred, some short-term fluctuations were still occurred, performed in a different pattern to those induced by earthquakes. After further investigation, those anomalous fluctuations of groundwater level were found corresponded to precipitation quite well. The fluctuations were observed under some specific condition, which involving different range of accumulated precipitation, rainfall intensity, and rainfall duration. The result implied groundwater level in Sheliao well changes with loading effect result from runoff on the ground surface and infiltration. And the earth tide lead to regularly change was also observed. We conclude that Sheliao can be characterized as a partial-confined aquifer with high frequency and high

  19. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron.

    PubMed

    Kuznetsov, Alexey S; Kopell, Nancy J; Wilson, Charles J

    2006-02-01

    Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.

  20. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis

    PubMed Central

    Wang, Ming-Yu; Wang, Xian-Bin; Sun, Xue-Hui; Liu, Feng-Li; Huang, Sheng-Chuan

    2016-01-01

    Early diagnosis and management improve the outcome of patients with rheumatoid arthritis (RA). The present study explored the application of high-frequency ultrasound (US) and magnetic resonance imaging (MRI) in the detection of early RA. Thirty-nine patients (20 males and 19 females) diagnosed with early RA were enrolled in the study. A total of 1,248 positions, including 858 hand joints and 390 tendons, were examined by high-frequency US and MRI to evaluate the presence of bone erosion, bone marrow edema (BME), synovial proliferation, joint effusion, tendinitis and tendon sheath edema. The imaging results of the above abnormalities, detected by US, were compared with those identified using MRI. No statistically significant overall changes were observed between high-frequency US and MRI in detecting bone erosion [44 (5.1%) vs. 35 (4.1%), respectively; P>0.05], tendinitis [18 (4.6%) vs. 14 (1.5%), respectively; P>0.05] and tendon sheath edema [37 (9.5%) vs. 30 (7.7%), respectively; P>0.05]. Significant differences were observed between high-frequency US and MRI with regards to the detection of synovial proliferation [132 (15.4%) vs. 66 (7.7%), respectively; P<0.05] and joint effusion [89 (10.4%) vs. 52 (6.1%), respectively; P<0.05]. In addition, significant differences were identified between the detection of BME using MRI compared with high-frequency US (5.5 vs. 0%, respectively; P<0.05). MRI and high-frequency US of the dominant hand and wrist joints were comparably sensitive to bone erosion, tendinitis and tendon sheath edema. However, MRI was more sensitive in detecting bone marrow edema in early RA, while US was more sensitive in the evaluation of joint effusion and synovial proliferation. In conclusion, US and MRI are promising for the detection and diagnosis of inflammatory activity in patients with RA. PMID:27882112

  1. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis.

    PubMed

    Wang, Ming-Yu; Wang, Xian-Bin; Sun, Xue-Hui; Liu, Feng-Li; Huang, Sheng-Chuan

    2016-11-01

    Early diagnosis and management improve the outcome of patients with rheumatoid arthritis (RA). The present study explored the application of high-frequency ultrasound (US) and magnetic resonance imaging (MRI) in the detection of early RA. Thirty-nine patients (20 males and 19 females) diagnosed with early RA were enrolled in the study. A total of 1,248 positions, including 858 hand joints and 390 tendons, were examined by high-frequency US and MRI to evaluate the presence of bone erosion, bone marrow edema (BME), synovial proliferation, joint effusion, tendinitis and tendon sheath edema. The imaging results of the above abnormalities, detected by US, were compared with those identified using MRI. No statistically significant overall changes were observed between high-frequency US and MRI in detecting bone erosion [44 (5.1%) vs. 35 (4.1%), respectively; P>0.05], tendinitis [18 (4.6%) vs. 14 (1.5%), respectively; P>0.05] and tendon sheath edema [37 (9.5%) vs. 30 (7.7%), respectively; P>0.05]. Significant differences were observed between high-frequency US and MRI with regards to the detection of synovial proliferation [132 (15.4%) vs. 66 (7.7%), respectively; P<0.05] and joint effusion [89 (10.4%) vs. 52 (6.1%), respectively; P<0.05]. In addition, significant differences were identified between the detection of BME using MRI compared with high-frequency US (5.5 vs. 0%, respectively; P<0.05). MRI and high-frequency US of the dominant hand and wrist joints were comparably sensitive to bone erosion, tendinitis and tendon sheath edema. However, MRI was more sensitive in detecting bone marrow edema in early RA, while US was more sensitive in the evaluation of joint effusion and synovial proliferation. In conclusion, US and MRI are promising for the detection and diagnosis of inflammatory activity in patients with RA.

  2. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-07-22

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  3. High-frequency homogenization for travelling waves in periodic media

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  4. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  5. Investigating DOC export dynamics using high-frequency instream concentration measurements

    NASA Astrophysics Data System (ADS)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  6. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  7. Compact microwave cavity for high performance rubidium frequency standards

    NASA Astrophysics Data System (ADS)

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K.

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE011-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10-13 τ-1/2. The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  8. Compact microwave cavity for high performance rubidium frequency standards.

    PubMed

    Stefanucci, Camillo; Bandi, Thejesh; Merli, Francesco; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Skrivervik, Anja K

    2012-10-01

    The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE(011)-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10(-13) τ(-1/2). The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

  9. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  10. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  11. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  12. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  13. High-frequency modes of a magnetic antivortex

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Riley, Grant; Haldar, Arabinda; Buchanan, Kristen

    2015-03-01

    Magnetic vortices have attracted considerable attention in recent years not only because of their interesting physical properties but also due to their potential for applications. The magnetic antivortex (AV), the topological counterpart of the magnetic vortex, possesses similarly rich dynamics and its spin configuration may prove advantageous for spin-wave-based devices, however, it has not been studied as intensely. Recent experiments show that AV's will form naturally at the intersections of patterned pound-key-like nanostructures that are magnetically soft. Here we present micromagnetic simulations of the dynamics of AV's in these structures. The simulations show that pound-key-like structures made of 30-nm thick Permalloy exhibit a complex dynamic profile that includes a number of discrete high-frequency modes (>1 GHz). Spatial maps of the dynamic modes that were constructed using Fourier analysis of the simulation results show modes that are in similar in character to the radial and azimuthal modes observed for magnetic vortices but the spin dynamics also differ from those of a vortex due to the presence of the elongated nanowires in the pound-key-like structure. The frequencies of the observed modes tend to decrease with increasing sample size, however, the general features of the modes remains relatively unaffected by the structure size. The simulations will be compared to Brillouin Light Scattering (BLS) experimental results. This work was supported by the US DOE-BES Award #ER 46854.

  14. Digital avionics susceptibility to high energy radio frequency fields

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1988-01-01

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  15. Fault-zone attenuation of high-frequency seismic waves

    NASA Astrophysics Data System (ADS)

    Blakeslee, Sam; Malin, Peter; Alvarez, Marcos

    1989-11-01

    We have developed a technique to measure seismic attenuation within an active fault-zone at seismogenic depths. Utilizing a pair of stations and pairs of earthquakes, spectral ratios are performed to isolate attenuation produced by wave-propagation within the fault-zone. This empirical approach eliminates common source, propagation, instrument and near-surface site effects. The technique was applied to a cluster of 19 earthquakes recorded by a pair of downhole instruments located within the San Andreas fault-zone, at Parkfield California. Over the 1-40 Hz bandwidth used in this analysis, amplitudes are found to decrease exponentially with frequency. Furthermore, the fault-zone propagation distance correlates with the severity of attenuation. Assuming a constant Q attenuation operator, the S-wave quality factor within the fault-zone at a depth of 5-6 kilometers is 31 (+7,-5). If fault-zones are low-Q environments, then near-source attenuation of high-frequency seismic waves may help to explain phenomenon such as fmax. Fault-zone Q may prove to be a valuable indicator of the mechanical behavior and rheology of fault-zones. Specific asperities can be monitored for precursory changes associated with the evolving stress-field within the fault-zone. The spatial and temporal resolution of the technique is fundamentally limited by the uncertainty in earthquake location and the interval time between earthquakes.

  16. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  17. Why high-frequency pulse tubes can be tipped

    SciTech Connect

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  18. High-frequency stimulation of excitable cells and networks.

    PubMed

    Weinberg, Seth H

    2013-01-01

    High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse. Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate, increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the influence of HF stimulation on neural networks.

  19. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  20. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  1. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  2. Influence of pore roughness on high-frequency permeability

    NASA Astrophysics Data System (ADS)

    Cortis, Andrea; Smeulders, David M. J.; Guermond, Jean Luc; Lafarge, Denis

    2003-06-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev. Lett. 61, 1591 (1988)] and Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)]. For wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension proposed by Achdou and Avellaneda [Phys. Fluids A 4, 2561 (1992)]. The dependency of the nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations for various apex angles in two-dimensional channels confirmed this theoretical dependency, which is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found that the contribution of the singularities does not alter the parameters of the classical theory by Johnson et al..

  3. Diffusion coefficient in hydrogel under high-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Akira; Tanaka, Kei; Kumata, Tatsuya; Watanabe, Yoshiaki; Miyata, Shogo; Furukawa, Katsuko; Ushida, Takashi

    2007-03-01

    Modulating hydrogel properties by external stimuli can be applied for drug delivery system. For example, ultrasound can enhance drug release from hydrogel by the mechanism which is not fully understood. We measured diffusion coefficient in hydrogel under high-frequency ultrasound to understand mass transport property. To estimate diffusion coefficient, FRAP (fluorescence recovery after photobleaching) technique was applied with time-lapse fluorescence microscopy and we analyzed fluorescence recovery after photobleaching of FITC-dextran (4˜40 kDa) which was fully fused in agarose gel (1˜3 %). As a result, diffusion coefficient was altered when agarose gel was sonicated by 1MHz ultrasound with 400kPa (peak-peak). We discussed several possible underlying mechanisms such as cavitation, heat and phase transition with extended experimental data.

  4. High-frequency characterization and modeling of single metallic nanowires

    NASA Astrophysics Data System (ADS)

    Hsu, Chuan-Lun; Ardila, Gustavo; Benech, Philippe

    2013-07-01

    The transmission line characteristics of an individual aluminum metallic nanowire up to 100 GHz are presented in this paper. We have built a reliable framework for characterizing such nanowires using a specially designed coplanar waveguide platform. We systematically estimate the pad parasitics, contact impedance and transmission line parameters based on an equivalent circuit model and cascade-based de-embedding theory. This is the first time that such external parasitic elements have been successfully removed from a nanoscale transmission line. The extracted frequency-dependent electrical responses show good signal levels and a high degree of reproducibility. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  5. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    PubMed Central

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  6. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  7. High frequency of horizontal gene transfer in the oceans.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth; Delaney, Jennifer; Ruhnau, Fabian; Ritchie, Kim B; Paul, John H

    2010-10-01

    Oceanic bacteria perform many environmental functions, including biogeochemical cycling of many elements, metabolizing of greenhouse gases, functioning in oceanic food webs (microbial loop), and producing valuable natural products and viruses. We demonstrate that the widespread capability of marine bacteria to participate in horizontal gene transfer (HGT) in coastal and oceanic environments may be the result of gene transfer agents (GTAs), viral-like particles produced by α-Proteobacteria. We documented GTA-mediated gene transfer frequencies a thousand to a hundred million times higher than prior estimates of HGT in the oceans, with as high as 47% of the culturable natural microbial community confirmed as gene recipients. These findings suggest a plausible mechanism by which marine bacteria acquire novel traits, thus ensuring resilience in the face of environmental change.

  8. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  9. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  10. High-speed high-resolution heterodyne interferometer using a laser with low beat frequency.

    PubMed

    Diao, Xiaofei; Hu, Pengcheng; Xue, Zi; Kang, Yanhui

    2016-01-01

    A high-speed high-resolution heterodyne interferometer using a laser with low beat frequency is developed. The interferometer has two spatially separated parallel beams with different frequencies. Two interference signals with opposite Doppler shift are optically generated by the interferometric optics. The measurement electronics uses two identical phasemeters for the two opposite interference signals. The two interference signals are selectively used according to the speed of the target, which makes sure that the Doppler shift of the selected signal is always positive, so that the measurable speed is no longer limited by the beat frequency of the laser source. Experimental results show that the measurement resolution is 0.62 nm. The measurable speed can exceed the restriction determined by the beat frequency. Compared with a commercial interferometer, the displacement difference is less than 40 nm in a travel range of 900 mm.

  11. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  12. High-frequency dynamics of hybrid oxide Josephson heterostructures

    NASA Astrophysics Data System (ADS)

    Komissinskiy, P.; Ovsyannikov, G. A.; Constantinian, K. Y.; Kislinski, Y. V.; Borisenko, I. V.; Soloviev, I. I.; Kornev, V. K.; Goldobin, E.; Winkler, D.

    2008-07-01

    We summarize our results on Josephson heterostructures Nb/Au/YBa2Cu3Ox that combine conventional (S) and oxide high- Tc superconductors with a dominant d -wave symmetry of the superconducting order parameter (D). The heterostructures were fabricated on (001) and (1 1 20) YBa2Cu3Ox films grown by pulsed laser deposition. The structural and surface studies of the (1 1 20) YBa2Cu3Ox thin films reveal nanofaceted surface structure with two facet domain orientations, which are attributed as (001) and (110)-oriented surfaces of YBa2Cu3Ox and result in S/D(001) and S/D(110) nanojunctions formed on the facets. Electrophysical properties of the Nb/Au/YBa2Cu3Ox heterostructures are investigated by the electrical and magnetic measurements at low temperatures and analyzed within the faceting scenario. The superconducting current-phase relation (CPR) of the heterostructures with finite first and second harmonics is derived from the Shapiro steps, which appear in the I-V curves of the heterostructures irradiated at frequencies up to 100 GHz. The experimental positions and amplitudes of the Shapiro steps are explained within the modified resistive Josephson junction model, where the second harmonic of the CPR and capacitance of the Josephson junctions are taken into account. We experimentally observe a crossover from a lumped to a distributed Josephson junction limit for the size of the heterostructures smaller than Josephson penetration depth. The effect is attributed to the variations of the harmonics of the superconducting CPR across the heterojunction, which may give rise to splintered vortices of magnetic flux quantum. Our investigations of parameters and phenomena that are specific for superconductors having d -wave symmetry of the superconducting order parameter may be of importance for applications such as high-frequency detectors and novel elements of a possible quantum computer.

  13. Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging

    PubMed Central

    Shekhar, Himanshu; Rychak, Joshua J.; Doyley, Marvin M.

    2013-01-01

    Purpose: Subharmonic imaging is of interest for high frequency (>10 MHz) nonlinear imaging, because it can specifically detect the response of ultrasound contrast agents (UCA). However, conventional UCA produce a weak subharmonic response at high frequencies, which limits the sensitivity of subharmonic imaging. We hypothesized that modifying the size distribution of the agent can enhance its high-frequency subharmonic response. The overall goal of this study was to investigate size-manipulated populations of the agent to determine the range of sizes that produce the strongest subharmonic response at high frequencies (in this case, 20 MHz). A secondary goal was to assess whether the number or the volume-weighted size distribution better represents the efficacy of the agent for high-frequency subharmonic imaging. Methods: The authors created six distinct agent size distributions from the native distribution of a commercially available UCA (Targestar-P®). The median (number-weighted) diameter of the native agent was 1.63 μm, while the median diameters of the size-manipulated populations ranged from 1.35 to 2.99 μm. The authors conducted acoustic measurements with native and size-manipulated agent populations to assess their subharmonic response to 20 MHz excitation (pulse duration 1.5 μs, pressure amplitudes 100–398 kPa). Results: The results showed a considerable difference between the subharmonic response of the agent populations that were investigated. The subharmonic response peaked for the agent population with a median diameter of 2.15 μm, which demonstrated a subharmonic signal that was 8 dB higher than the native agent. Comparing the subharmonic response of different UCA populations indicated that microbubbles with diameters between 1.3 and 3 μm are the dominant contributors to the subharmonic response at 20 MHz. Additionally, a better correlation was observed between the subharmonic response of the agent and the number-weighted size-distribution (R2

  14. The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Allen, John

    2016-11-01

    Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.

  15. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  16. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  17. Analysis of high frequency geostationary ocean colour data using DINEOF

    NASA Astrophysics Data System (ADS)

    Alvera-Azcárate, Aida; Vanhellemont, Quinten; Ruddick, Kevin; Barth, Alexander; Beckers, Jean-Marie

    2015-06-01

    DINEOF (Data Interpolating Empirical Orthogonal Functions), a technique to reconstruct missing data, is applied to turbidity data obtained through the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation 2. The aim of this work is to assess if the tidal variability of the southern North Sea in 2008 can be accurately reproduced in the reconstructed dataset. Such high frequency data have not previously been analysed with DINEOF and present new challenges, like a strong tidal signal and long night-time gaps. An outlier detection approach that exploits the high temporal resolution (15 min) of the SEVIRI dataset is developed. After removal of outliers, the turbidity dataset is reconstructed with DINEOF. In situ Smartbuoy data are used to assess the accuracy of the reconstruction. Then, a series of tidal cycles are examined at various positions over the southern North Sea. These examples demonstrate the capability of DINEOF to reproduce tidal variability in the reconstructed dataset, and show the high temporal and spatial variability of turbidity in the southern North Sea. An analysis of the main harmonic constituents (annual cycle, daily cycle, M2 and S2 tidal components) is performed, to assess the contribution of each of these modes to the total variability of turbidity. The variability not explained by the harmonic fit, due to the natural processes and satellite processing errors as noise, is also assessed.

  18. Genotype-Frequency Estimation from High-Throughput Sequencing Data.

    PubMed

    Maruki, Takahiro; Lynch, Michael

    2015-10-01

    Rapidly improving high-throughput sequencing technologies provide unprecedented opportunities for carrying out population-genomic studies with various organisms. To take full advantage of these methods, it is essential to correctly estimate allele and genotype frequencies, and here we present a maximum-likelihood method that accomplishes these tasks. The proposed method fully accounts for uncertainties resulting from sequencing errors and biparental chromosome sampling and yields essentially unbiased estimates with minimal sampling variances with moderately high depths of coverage regardless of a mating system and structure of the population. Moreover, we have developed statistical tests for examining the significance of polymorphisms and their genotypic deviations from Hardy-Weinberg equilibrium. We examine the performance of the proposed method by computer simulations and apply it to low-coverage human data generated by high-throughput sequencing. The results show that the proposed method improves our ability to carry out population-genomic analyses in important ways. The software package of the proposed method is freely available from https://github.com/Takahiro-Maruki/Package-GFE.

  19. Impedance Spectroscopy Analysis of Mg4Nb2O9 Ceramics with Different Additions of V2O5 for Microwave and Radio Frequency Applications

    NASA Astrophysics Data System (ADS)

    Filho, J. M. S.; Rodrigues Junior, C. A.; Sousa, D. G.; Oliveira, R. G. M.; Costa, M. M.; Barroso, G. C.; Sombra, A. S. B.

    2017-03-01

    The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole-Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.

  20. Relics in galaxy clusters at high radio frequencies

    NASA Astrophysics Data System (ADS)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-03-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  1. Nitrogen addition and harvest frequency rather than initial plant species composition determine vertical structure and light interception in grasslands.

    PubMed

    Petersen, Ute; Isselstein, Johannes

    2015-07-21

    In biodiversity experiments based on seeded experimental communities, species richness and species composition exert a strong influence on canopy structure and can lead to an improved use of aboveground resources. In this study, we want to explore whether these findings are applicable to agriculturally managed permanent grassland. Vertical layered profiles of biomass, leaf area (LA) and light intensity were measured in a removal-type biodiversity experiment (GrassMan) to compare the canopy structure in grassland vegetation of different plant species composition (called sward types). Additionally, the altered sward types were subjected to four different management regimes by a combination of the factors fertilization (unfertilized, NPK fertilized) and cutting frequency (one late cut or three cuts). In spite of large compositional differences (ratio grasses : non-leguminous forbs : leguminous forbs ranging from 93 : 7 : 0 to 39 : 52 : 9), the vegetation of the same management regime hardly differed in its canopy structure, whereas the different management regimes led to distinct vertical profiles in the vegetation. However, the allocation of biomass in response to cutting and fertilization differed among the sward types. Vegetation dominated by grasses was denser and had more LA when fertilized compared with vegetation rich in dicots which merely grew taller. In functionally more diverse vegetation, light interception was not increased compared with vegetation consisting of more than 90 % of grasses in terms of biomass. Management had a much stronger influence on structure and light interception than plant species composition in this grassland experiment.

  2. Gender identification from high-pass filtered vowel segments: the use of high-frequency energy.

    PubMed

    Donai, Jeremy J; Lass, Norman J

    2015-10-01

    The purpose of this study was to examine the use of high-frequency information for making gender identity judgments from high-pass filtered vowel segments produced by adult speakers. Specifically, the effect of removing lower-frequency spectral detail (i.e., F3 and below) from vowel segments via high-pass filtering was evaluated. Thirty listeners (ages 18-35) with normal hearing participated in the experiment. A within-subjects design was used to measure gender identification for six 250-ms vowel segments (/æ/, /ɪ /, /ɝ/, /ʌ/, /ɔ/, and /u/), produced by ten male and ten female speakers. The results of this experiment demonstrated that despite the removal of low-frequency spectral detail, the listeners were accurate in identifying speaker gender from the vowel segments, and did so with performance significantly above chance. The removal of low-frequency spectral detail reduced gender identification by approximately 16 % relative to unfiltered vowel segments. Classification results using linear discriminant function analyses followed the perceptual data, using spectral and temporal representations derived from the high-pass filtered segments. Cumulatively, these findings indicate that normal-hearing listeners are able to make accurate perceptual judgments regarding speaker gender from vowel segments with low-frequency spectral detail removed via high-pass filtering. Therefore, it is reasonable to suggest the presence of perceptual cues related to gender identity in the high-frequency region of naturally produced vowel signals. Implications of these findings and possible mechanisms for performing the gender identification task from high-pass filtered stimuli are discussed.

  3. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.

    2016-11-01

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  4. Gravitational Wave Astronomy:The High Frequency Window

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Kokkotas, Kostas D.

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

  5. Pressure levels and pulsation frequencies can be varied on high pressure/frequency testing device

    NASA Technical Reports Server (NTRS)

    Routson, J. W.

    1967-01-01

    Hydraulic system components test device obtains a pulsating pressure from a hydraulic actuator that is being driven by a vibration exciter of sufficient force and displacement. Input to the exciter controls the frequency of pressure variation.

  6. Low temperature high frequency coaxial pulse tube for space application

    NASA Astrophysics Data System (ADS)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc; Daniel, Christophe

    2014-01-01

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  7. High-frequency electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Young, T. S. T.

    1973-01-01

    High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.

  8. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    SciTech Connect

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  9. Remote Sensing: Radio Frequency Detection for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Huggett, Daniel; Jeandron, Michael; Maddox, Larry; Yoshida, Sanichiro

    2011-10-01

    In an effort to give high school students experience in real world science applications, we have partnered with Loranger High School in Loranger, LA to mentor 9 senior physics students in radio frequency electromagnetic detection. The effort consists of two projects: Mapping of 60 Hz noise around the Laser Interferometer Gravitational Wave Observatory (LIGO), and the construction of a 20 MHz radio telescope for observations of the Sun and Jupiter (Radio Jove, NASA). The results of the LIGO mapping will aid in strategies to reduce the 60 Hz line noise in the LIGO noise spectrum. The Radio Jove project will introduce students to the field of radio astronomy and give them better insight into the dynamic nature of large solar system objects. Both groups will work together in the early stages as they learn the basics of electromagnetic transmission and detection. The groups will document and report their progress regularly. The students will work under the supervision of three undergraduate mentors. Our program is designed to give them theoretical and practical knowledge in radiation and electronics. The students will learn how to design and test receiver in the lab and field settings.

  10. High-frequency nano-optomechanical disk resonators in liquids.

    PubMed

    Gil-Santos, E; Baker, C; Nguyen, D T; Hease, W; Gomez, C; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  11. Low temperature high frequency coaxial pulse tube for space application

    SciTech Connect

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  12. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  13. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  14. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    NASA Astrophysics Data System (ADS)

    Boumaaraf, Abdelâali; Mohamadi, Tayeb; Gourmat, Laïd

    2016-07-01

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10hz to 60 hz with a small frequency and reduce the cost of the control system.

  15. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti

    PubMed Central

    Matko, Vojko; Milanović, Miro

    2014-01-01

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334

  16. Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb

    NASA Astrophysics Data System (ADS)

    Endo, Mamoru; Sukegawa, Takashi; Silva, Alissa; Kobayashi, Yohei

    2014-08-01

    In recent years, a calibration method for an astronomical spectrograph using an optical frequency comb (OFC) with a repetition rate of more than ten GHz has been developed successfully [1-5]. But controlling filtering cavities that are used for thinning out longitudinal modes precludes long term stability. The super-mode noise coming from the fundamental repetition rate is an additional problem. We developed a laser-diode pumped Yb:Y2O3 ceramic oscillator, which enabled the generation of 4-GHz (maximum repetition rate of 6.7 GHz) pulse trains directly with a spectrum width of 7 nm (full-width half-maximum, FWHM), and controlled its optical frequency within a MHz level of accuracy using a beat note between the 4-GHz laser and a 246-MHz Yb-fiber OFC. The optical frequency of the Yb-fiber OFC was phase locked to a Rb clock frequency standard. Furthermore we also built a table-top multi-pass spectrograph with a maximum frequency resolution of 600 MHz and a bandwidth of 1 nm using a large-size high-efficiency transmission grating. The resolution could be changed by selecting the number of passes through the grating. This spectrograph could resolve each longitudinal mode of our 4-GHz OFC clearly, and more than 10% throughput was obtained when the resolution was set to 600 MHz. We believe that small and middle scale astronomical observatories could easily implement such an OFC-calibrated spectrograph.

  17. Wafer-level pulsed-DC electromigration response at very high frequencies

    NASA Astrophysics Data System (ADS)

    Pierce, D. G.; Snyder, E. S.; Swanson, S. E.; Irwin, L. W.

    1994-03-01

    DC and pulsed-DC electromigration tests were performed at the Wafer-Level Pulsed-DC Electromigration Response and pulsed-DC electromigration tests were performed at the wafer level using standard and self-stressing test structures. DC characterization tests over a very large temperature range (180 to 560 C) were consistent with an interface diffusion mechanism in parallel with lattice diffusion. That data allowed for extraction of the respective activation energies and the diffusion coefficient of the rapid mechanism. The ability to extract simultaneously a defect-based diffusion coefficient and activation energy is significant given the extreme difficulty in making those measurements in aluminum. The pulsed-DC experiments were conducted over a range that includes the highest frequency to date, from DC to 500 MHz. Measurements were also made as a function of duty factor from 15% to 100% at selected frequencies. The data shows that the pulsed-DC lifetime is consistent with the average current density model at high (greater than 10 MHz) frequencies and showed no additional effects at the highest frequency tested (500 MHz). At low frequencies, we attribute the lessened enhancement to thermal effects rather than vacancy relaxation effects. Finally, the deviation in lifetime from the expected current density dependence, characterized over 1 and 1/2 orders of magnitude in current density, is explained in terms of a shift in the boundary condition for electromigration as the current density is decreased.

  18. Upper Limits On High-Frequency Single-Source Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Halmrast, Daniel; Beklen, Elif; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy; Ellis, Justin; Lam, Michael T.; McLaughlin, Maura; Pennucci, Timothy

    2017-01-01

    In the coming years, pulsar timing arrays (PTAs) are poised to detect gravitational waves (GWs) from supermassive black hole binary systems. In addition to measuring the GW stochastic background, PTAs can also detect single-source GWs. By analyzing data taken over many years, PTAs are typically sensitive to nanohertz-frequency GW sources. However, the microhertz to millihertz GW frequency regime is outside the typical range of PTA sensitivity, and is relatively unexplored. Through analysis of multiple-hour long observations of particular pulsars routinely measured by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), we searched for continuous wave (CW) sources at GW frequencies in the microhertz to millihertz regime. Using such single-pulsar measurements taken by the NRAO Green Bank Telescope, we applied CW detection algorithms to the datasets. While no CW sources were detected within the data, new upper limits on the strains of single-source GWs were found in the GW frequency range of 10 microhertz to 1 millihertz. By repeatedly simulating sources with known strains, we determined the minimum strains required for CW detection, and showed that these minimum strains place upper limits on the strengths of potential sources. Due to the positions of the pulsars analyzed, we also placed stronger directional limits on CW sources in the high GW frequency regime.

  19. Wafer-level pulsed-DC electromigration response at very high frequencies

    SciTech Connect

    Pierce, D.G.; Snyder, E.S.; Swanson, S.E.; Irwin, L.W.

    1994-03-01

    DC and pulsed-DC electromigration tests were performed at the Wafer-Level Pulsed-DC Electromigration Response and pulsed-DC electromigration tests were performed at the wafer level using standard and self-stressing test structures. DC characterization tests over a very large temperature range (180 to 560{degrees}C) were consistent with an interface diffusion mechanism in parallel with lattice diffusion. That data allowed for extraction of the respective activation energies and the diffusion coefficient of the rapid mechanism. The ability to extract simultaneously a defect-based diffusion coefficient and activation energy is significant given the extreme difficulty in making those measurements in aluminum. The pulsed-DC experiments were conducted over a range that includes the highest frequency to date, from DC to 500 MHz. Measurements were also made as a function of duty factor from 15% to 100% at selected frequencies. The data shows that the pulsed-DC lifetime is consistent with the average current density model at high (> 10 MHz) frequencies and showed no additional effects at the highest frequency tested (500 MHz). At low frequencies, we attribute the lessened enhancement to thermal effects rather than vacancy relaxation effects. Finally, the deviation in lifetime from the expected current density dependence, characterized over 1{1/2} orders of magnitude in current density, is explained in terms of a shift in the boundary condition for electromigration as the current density is decreased.

  20. Magnetic and high frequency properties of nanogranular CoFe-TiO{sub 2} films

    SciTech Connect

    Wang Yicheng; Zhang Huaiwu; Wen Dandan; Zhong Zhiyong; Bai Feiming

    2013-05-07

    A series of soft magnetic nanogranular CoFe-TiO{sub 2} films with different thicknesses were fabricated on Si substrates by co-sputtering CoFe and TiO{sub 2}, and the magnetic and high frequency properties were studied in details. X-ray diffraction analysis confirmed that the films were nanocrystalline/amorphous composites. A saturation magnetization as high as 21 kGs and a ferromagnetic resonance (FMR) frequency above 3 GHz were obtained. It was found that the coercivity decreased steeply with the increase of film thickness and its minimum value was about 6 Oe. In addition, the variations of FMR peak broadness of the imaginary part and damping factor were also presented and discussed as functions of film thickness.

  1. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE PAGES

    Malik, V.; Goodwill, J.; Mallapragada, S.; ...

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  2. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    SciTech Connect

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.

  3. The potential for very high-frequency gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Cruise, A. M.

    2012-05-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies.

  4. The relationship between food frequency and menstrual distress in high school females

    PubMed Central

    Mohamadirizi, Soheila; Kordi, Masoumeh

    2015-01-01

    Background: Nutrition pattern is one of the important factors predicting menstrual distress, which varies among different cultures and countries. The purpose of this study is to determine the relationship between food frequency and menstrual distress in high school girls from Mashhad. Materials and Methods: This cross-sectional study was conducted in 2012 using a two-stage sampling method on 407 high school female students from Mashhad who met the inclusion criteria. Subjects completed questionnaires of demographic characteristics, food frequency, and Menstrual Distress Questionnaire (MDQ) during three phases of the menstrual cycle (a week before bleeding, during menstrual bleeding period, and a week after menstruation). The collected data were analyzed by statistical tests such as Pearson correlation coefficient test, independent Student's t-test, and one-way analysis of variance (ANOVA). Results: Results showed that 87.7% of the students were at moderate economic status, 82.2% were exposed to cigarette smoke, 94.8% had mothers without university education, and 9.4% had working mothers. About 71% of the students reported minor pre-menstruation distress, 81% reported minor distress during bleeding, and 39% reported minor post-menstruation distress. In addition, the mean (SD) values for sweet–fatty foods, salty–fatty foods, fast foods, and caffeine were 3.6, 3.3, 1.3, and 10.2 per week, respectively. In addition, Pearson correlation coefficient test showed no significant correlation between total menstruation distress and food frequency (P > 0.05). Conclusions: With regard to the inappropriate food frequency and high intensity of menstrual distress among high school students and as health care and educational efforts for prevention and health promotion in society are among the duties of health workers, the results of this study can help the officials involved in education to emphasize on nutrition and the menstrual health of students. PMID:26793254

  5. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  6. Challenges in graphene integration for high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  7. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  8. LONGITUDINAL DYNAMICS IN HIGH FREQUENCY FFAG RECIRCULATING ACCELERATORS.

    SciTech Connect

    BERG,J.S.

    2002-04-08

    A recirculating accelerator accelerates the beam by passing through accelerating cavities multiple times. An FFAG recirculating accelerator uses a single arc to connect the linacs together, as opposed to multiple arcs for the different energies. For most scenarios using high-frequency RF, it is impractical to change the phase of the RF on each pass, at least for lower energy accelerators. Ideally, therefore, the WAG arc will be isochronous, so that the particles come back to the same phase (on-crest) on each linac pass. However, it is not possible to make the FFAG arcs isochronous (compared to the RF period) over a large energy range. This paper demonstrates that one can nonetheless make an WAG recirculating accelerator work. Given the arc's path length as a function of energy and the number of turns to accelerate for, one can find the minimum voltage (and corresponding initial conditions) required to accelerate a reference particle to the desired energy. I also briefly examine how the longitudinal acceptance varies with the number of turns that one accelerates.

  9. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  10. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    NASA Astrophysics Data System (ADS)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  11. High-frequency acoustic for nanostructure wetting characterization.

    PubMed

    Li, Sizhe; Lamant, Sebastien; Carlier, Julien; Toubal, Malika; Campistron, Pierre; Xu, Xiumei; Vereecke, Guy; Senez, Vincent; Thomy, Vincent; Nongaillard, Bertrand

    2014-07-01

    Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.

  12. High frequency of BRAF V600E mutations in ameloblastoma.

    PubMed

    Kurppa, Kari J; Catón, Javier; Morgan, Peter R; Ristimäki, Ari; Ruhin, Blandine; Kellokoski, Jari; Elenius, Klaus; Heikinheimo, Kristiina

    2014-04-01

    Ameloblastoma is a benign but locally infiltrative odontogenic neoplasm. Although ameloblastomas rarely metastasise, recurrences together with radical surgery often result in facial deformity and significant morbidity. Development of non-invasive therapies has been precluded by a lack of understanding of the molecular background of ameloblastoma pathogenesis. When addressing the role of ERBB receptors as potential new targets for ameloblastoma, we discovered significant EGFR over-expression in clinical samples using real-time RT-PCR, but observed variable sensitivity of novel primary ameloblastoma cells to EGFR-targeted drugs in vitro. In the quest for mutations downstream of EGFR that could explain this apparent discrepancy, Sanger sequencing revealed an oncogenic BRAF V600E mutation in the cell line resistant to EGFR inhibition. Further analysis of the clinical samples by Sanger sequencing and BRAF V600E-specific immunohistochemistry demonstrated a high frequency of BRAF V600E mutations (15 of 24 samples, 63%). These data provide novel insight into the poorly understood molecular pathogenesis of ameloblastoma and offer a rationale to test drugs targeting EGFR or mutant BRAF as novel therapies for ameloblastoma.

  13. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  14. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  15. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  16. High-frequency (1000 Hz) tympanometry in normal neonates.

    PubMed

    Kei, Joseph; Allison-Levick, Julie; Dockray, Jacqueline; Harrys, Rachel; Kirkegard, Christina; Wong, Janet; Maurer, Marion; Hegarty, Jayne; Young, June; Tudehope, David

    2003-01-01

    The characteristics of high frequency (1000 Hz) acoustic admittance results obtained from normal neonates were described in this study. Participants were 170 healthy neonates (96 boys and 74 girls) aged between 1 and 6 days (mean = 3.26 days, SD = 0.92). Transient evoked otoacoustic emissions (TEOAEs), and 226 Hz and 1000 Hz probe tone tympanograms were obtained from the participants using a Madsen Capella OAE/middle ear analyser. The results showed that of the 170 neonates, 34 were not successfully tested in both ears, 14 failed the TEOAE screen in one or both ears, and 122 (70 boys, 52 girls) passed the TEOAE screen in both ears and also maintained an acceptable probe seal during tympanometry. The 1000 Hz tympanometric data for the 122 neonates (244 ears) showed a single-peaked tympanogram in 225 ears (92.2%), a flat-sloping tympanogram in 14 ears (5.7%), a double-peaked tympanogram in 3 ears (1.2%) and other unusual shapes in 2 ears (0.8%). There was a significant ear effect, with right ears showing significantly higher mean peak compensated static admittance and tympanometric width, but lower mean acoustic admittance at +200 daPa and gradient than left ears. No significant gender effects or its interaction with ear were found. The normative tympanometric data derived from this cohort may serve as a guide for detecting middle ear dysfunction in neonates.

  17. High-frequency transducers for medical ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Zhao, Jian-Zhong; Alves, Carlos H. F.; Cannata, Jonathan M.; Chen, WoHsing; Meyer, Richard J., Jr.; Ritter, Timothy A.; Shung, K. Kirk

    2000-04-01

    A wide variety of fabrication techniques and materials produce ultrasound transducers with very different performance characteristics. High frequency (50 MHz), focused single element transducers using lead zirconate titanate (PZT) fiber composite, lead titanate (PbTiO3) ceramic, polyvinylidene fluoride (PVDF) polymer and lithium niobate (LiNbO3) single crystal are compared in design and performance. The transducers were all constructed with a 3 mm aperture and f- number of 2 - 3. Design considerations discussed include optimization of designs using different lens, backing and matching materials for acoustic matching and the use of several electrical tuning techniques to match the transducers to the 50(Omega) circuitry. Transducers were tested for insertion loss and -6dB bandwidth using a quartz flat- plate target. Insertion loss measurements between transducers were -20dB to -50dB with bandwidths in the range of 50 - 120%. Through the use of an ultrasound backscatter microscope (UBM), the transducer were compared using in vitro images of the human eye. Images of a wire phantom were also made for comparison of lateral and axial resolution of each device.

  18. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  19. Fluid Modeling of a Very High Frequency Capacitively Coupled Reactor

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rochan; Raja, Laxminarayan; Ventzek, Peter; Iwao, Toshihiko; Ishibashi, Kiyotaka; Esgee Technologies Inc. Collaboration; University of Texas at Austin Collaboration; Tokyo Electron Ltd. Collaboration

    2016-09-01

    Very High Frequency Capacitively Coupled Plasma (VHF-CCP) discharges have been studied extensively for semiconductor manufacturing applications for well over a decade. Modeling of these discharges however poses significant challenges owing to complexity associated with simulation of multiple coupled phenomena (electro-static/magnetic fields and plasma physics) over different scales and the representation of these phenomena in a computational framework. We present 2D simulations of a self-consistent plasma with the electromagnetic field represented using vector and scalar potentials. For a range of operating conditions, the ratio of capacitive and inductive power, calculated using empirical correlations available in the literature, are matched by adjusting both the electrostatic and electromagnetic fields in a decoupled manner. We present results using this model that demonstrate most of the important VHF-CCP discharge phenomena reported in the literature, such as electromagnetic wave versus electrostatic heating and its impact on plasma non-uniformity, wave resonances, etc. while realizing a practically feasible computational model.

  20. High frequency electromagnetic impedance measurements for characterization, monitoring and verification efforts. 1998 annual progress report

    SciTech Connect

    Lee, K.H.; Pellerin, L.; Becker, A.

    1998-06-01

    'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents

  1. Contribution of High Frequencies to Speech Recognition in Quiet and Noise in Listeners with Varying Degrees of High-Frequency Sensorineural Hearing Loss

    ERIC Educational Resources Information Center

    Amos, Nathan E.; Humes, Larry E.

    2007-01-01

    Purpose: The contribution of audible high-frequency information to speech-understanding performance in listeners with varying degrees of high-frequency sensorineural hearing loss was examined. Method: Thirty-six elderly hearing-impaired (EHI) and 24 young normal-hearing (YNH) listeners were tested in quiet (+20 dB speech-to-noise ratio [SNR]) and…

  2. On the measurement of frequency and of its sample variance with high-resolution counters

    SciTech Connect

    Rubiola, Enrico

    2005-05-15

    A frequency counter measures the input frequency {nu} averaged over a suitable time {tau}, versus the reference clock. High resolution is achieved by interpolating the clock signal. Further increased resolution is obtained by averaging multiple frequency measurements highly overlapped. In the presence of additive white noise or white phase noise, the square uncertainty improves from {sigma}{sub {nu}}{sup 2}{proportional_to}1/{tau}{sup 2} to {sigma}{sub {nu}}{sup 2}{proportional_to}1/{tau}{sup 3}. Surprisingly, when a file of contiguous data is fed into the formula of the two-sample (Allan) variance {sigma}{sub y}{sup 2}({tau})=E{l_brace}(1/2)(y{sub k+1}-y{sub k}){sup 2}{r_brace} of the fractional frequency fluctuation y, the result is the modified Allan variance mod {sigma}{sub y}{sup 2}({tau}). But if a sufficient number of contiguous measures are averaged in order to get a longer {tau} and the data are fed into the same formula, the results is the (nonmodified) Allan variance. Of course interpretation mistakes are around the corner if the counter internal process is not well understood. The typical domain of interest is the the short-term stability measurement of oscillators.

  3. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  4. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  5. Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)

    NASA Astrophysics Data System (ADS)

    Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.

    2009-08-01

    Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.

  6. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    SciTech Connect

    Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  7. Pad-printed thick-film transducers for high-frequency and high-power applications

    NASA Astrophysics Data System (ADS)

    Wolny, Wanda W.; Ketterling, Jeffrey A.; Levassort, Franck; Lou-Moeller, Rasmus; Filoux, Erwan; Mamou, Jonathan; Silverman, Ronald H.; Lethiecq, Marc

    2011-03-01

    High-frequency-ultrasound transducers are widely used but are typically based either on planar piezoceramic sections that are lapped down to smaller thicknesses or on piezopolymers that may be deformed into more complex geometries. Piezoceramics then require dicing to obtain arrays or can be fractured into spherical geometries to achieve focusing. Piezopolymers are not as efficient for very small element sizes and are normally available only in discrete thicknesses. Thick-film (TF) transducers provide a means of overcoming these limits because the piezoelectric film is deposited with the required thickness, size and geometry, thus avoiding any subsequent machining. Thick-film transducers offer the potential of a wide range of geometries such as single-elements and annular or linear arrays. Here, a single-element focused transducer was developed using a piezoceramic composition adapted to high-power operation which is commonly used at standard MHz frequencies. After fabrication, the transducer was characterized. Using specific transmit-receive electronics and a water tank adapted to high-frequency devices, the transducer was excited using a short pulse to evaluate its bandwidth and imaging capabilities. Finally, it was excited by a one-period sine wave using several power levels to evaluate its capacity to produce high-intensity focused ultrasound at frequencies over 20 MHz.

  8. Frequency domain probe design for high frequency sensing of soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate moisture sensing is an important need for many research programs as well as in control of industrial processes. This paper covers the development of a frequency domain sensing probe for use in obtaining measurements of material properties suitable for work ranging from 0 to 6GHz. The probe ...

  9. High Resolution Krylov Space 3-D Wavenumber-Frequency Analysis

    DTIC Science & Technology

    2007-04-01

    wavenumber-frequency distri- bution of signal modes. That is, PPER (k, f, t) = eH(k) R̂[f, t] e(k). (3) Different from eq.(2), here R̂[f, t] is a time... PPER (k, f, t) frequency f w av en um be r k Capon wavenumber frequency analysis 0.4 0.5 0.6 0.7 0.8 0.9 1 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 30

  10. Absorption of sound in air - High-frequency measurements

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Shields, F. D.

    1977-01-01

    The absorption of sound in air at frequencies from 4 to 100 kHz in 1/12 octave intervals, for temperatures from 255.4 K (0 F) to 310.9 K (100 F) in 5.5 K (10 F) intervals, and at 10% relative-humidity increments between 0% and saturation has been measured. The values of free-field absorption have been analyzed to determine the relaxation frequency of oxygen for each of the 92 combinations of temperature and relative humidity studied and the results are compared to an empirical expression. The relaxation frequencies of oxygen have been analyzed to determine the microscopic energy-transfer rates.

  11. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  12. High-Resolution and Frequency, Printed Miniature Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2013-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.

  13. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  14. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    NASA Astrophysics Data System (ADS)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  15. Castration alters protein balance after high-frequency muscle contraction.

    PubMed

    Steiner, Jennifer L; Fukuda, David H; Rossetti, Michael L; Hoffman, Jay R; Gordon, Bradley S

    2017-02-01

    Resistance exercise increases muscle mass by shifting protein balance in favor of protein accretion. Androgens independently alter protein balance, but it is unknown whether androgens alter this measure after resistance exercise. To answer this, male mice were subjected to sham or castration surgery 7-8 wk before undergoing a bout of unilateral, high-frequency, electrically induced muscle contractions in the fasted or refed state. Puromycin was injected 30 min before euthanasia to measure protein synthesis. The tibialis anterior was analyzed 4 h postcontraction. In fasted mice, neither basal nor stimulated rates of protein synthesis were affected by castration despite lower phosphorylation of mechanistic target of rapamycin in complex 1 (mTORC1) substrates [p70S6K1 (Thr389) and 4E-BP1 (Ser65)]. Markers of autophagy (LC3 II/I ratio and p62 protein content) were elevated by castration, and these measures remained elevated above sham values after contractions. Furthermore, in fasted mice, the protein content of Regulated in Development and DNA Damage 1 (REDD1) was correlated with LC3 II/I in noncontracted muscle, whereas phosphorylation of uncoordinated like kinase 1 (ULK1) (Ser757) was correlated with LC3 II/I in the contracted muscle. When mice were refed before contractions, protein synthesis and mTORC1 signaling were not affected by castration in either the noncontracted or contracted muscle. Conversely, markers of autophagy remained elevated in the muscles of refed, castrated mice even after contractions. These data suggest the castration-mediated elevation in baseline autophagy reduces the absolute positive shift in protein balance after muscle contractions in the refed or fasted states.

  16. Resting and Task-Modulated High-Frequency Brain Rhythms Measured by Scalp Encephalography in Infants with Tuberous Sclerosis Complex

    PubMed Central

    Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.

    2013-01-01

    The electrophysiological correlates of cognitive deficits in Tuberous Sclerosis Complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide frequency range. The spatio-temporal dynamics of these frequencies in TSC are currently unknown. Using a novel signal decomposition approach this study investigated dominant cortical frequencies in 10 infants with TSC, in the age range 18–30 months, and 12 age-matched healthy controls. Distinct spectral characteristics were estimated in the two groups. High-frequency (in the high-gamma (>50 Hz) and ripple (>80 Hz) ranges), non-random EEG components were identified in both TSC and healthy infants at 18 months. Additional components in the lower gamma (30–50 Hz) ranges were also identified, with higher characteristic frequencies in TSC than in controls. Lower frequencies were statistically identical in both sub-groups. A significant shift in the high-frequency spectral content of the EEG was observed as a function of age, independently of task performance, possibly reflecting an overall maturation of developing neural circuits. This shift occurred earlier in healthy infants than in TSC, i.e., by age 20 months the highest dominant frequencies were in the high gamma range, whereas in TSC dominant frequencies above 100 Hz were still measurable. At age 28–30 months a statistically significant decrease in dominant high frequencies was observed in both TSC and healthy infants, possibly reflecting increased myelination and neuronal connection strengthening with age. Although based on small samples, and thus preliminary, the findings in this study suggest that dominant cortical rhythms, a fundamental aspect of neurodynamics, may be affected in TSC, possibly leading to impaired information processing in the brain. PMID:23838730

  17. HEATING OF SIMPLE SOLUTIONS AND EMULSIONS EXPOSED TO HIGH FREQUENCY HIGH POTENTIAL ELECTROSTATIC FIELDS

    PubMed Central

    Marshall, W. H.

    1930-01-01

    1. It is shown that the absorption in liquid dielectrics is a function of potential gradient (field intensity) as well as frequency and that for values of potential gradient above, at least 70 volts per millimeter, the rate of rise of temperature-frequency curve increases rapidly with frequency. 2. The presence of ions in measurable quantity considerably changes the absorption characteristics and apparently causes the values to remain constant, whereas the values for water drop about 40 per cent, during exposure. The absorption also changes rapidly with the concentration of the electrolyte. 3. Very high absorption values are found for an emulsion of cotton-seed oil in 1 per cent sodium oleate. It is shown that the absorption is due to the colloidal structure (with the possibility that the energy is dissipated at the phase boundaries). PMID:19872553

  18. Spatial and frequency coherence of oblique, one-hop, high-frequency paths

    SciTech Connect

    Fitzgerald, T.J.

    1995-10-01

    We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.

  19. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    NASA Astrophysics Data System (ADS)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  20. Effects of High-Frequency Cue Reduction on the Comprehension of Distorted Speech

    DTIC Science & Technology

    1978-07-06

    sensorineural high-frequency hearing losses were examined for... sensorineural losses is required, it is not altogether permissible to simulate hearing losses by frequency-filtering in normals. With less severe hearing ...through filtering that simulated the hearing loss of subjects in this study. It was suggested that hypacusics with high-frequency hear - ing losses

  1. A four-quadrant current regulated converter with a high-frequency link

    SciTech Connect

    Ziogas, P.D.; Ranganathan, V.T.; Stefanovic, V.R.

    1982-09-01

    A novel and highly versatile four-quadrant static converter is discussed. A resonant high frequency link is employed which provides an extremely fast response to external commands and a wide frequency range of converter operation. This converter is therefore very suitable for four-quadrant dc chopper and constant or variable frequency inverter applications.

  2. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    NASA Astrophysics Data System (ADS)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; Imany, Poolad; Langrock, Carsten; Fejer, Martin M.; Leaird, Daniel E.; Weiner, Andrew M.

    2017-01-01

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation scheme could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.

  3. Regulated magnetic domains and high-frequency property in magnetic materials with columnar structure

    NASA Astrophysics Data System (ADS)

    Zhou, Cai; Wei, Wenwen; Jiang, Changjun

    2015-10-01

    The regulation of magnetic domains and high-frequency property in Fe20Ni80 thin films sputtered on anodic aluminum oxide (AAO) substrates with different apertures and a Si substrate were investigated. The obvious stripe domain structure was observed in FeNi thin film sputtered on AAO (pore in diameter d ~ 20 nm) substrate. The distinct cross-sectional columnar structures prepared on three different substrates and measured by scanning electron microscope were shown, which arose from different growth mechanisms on various kinds of substrates. The structure of AAO substrate could modulate the growth mechanism of thin films and the appearance of stripe domains structure. In addition, the resonant frequency was enhanced in FeNi thin film prepared on AAO ( d ~ 20 nm) substrate.

  4. High-frequency Plasma Waves Associated with Magnetic Reconnection in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Activities of high-frequency plasma waves associated with magnetic reconnection in the solar wind observed by Time Domain Sampler (TDS) experiments on STEREO/WAVES are preliminarily analyzed. The TDS instrument can provide burst mode electric fields data with as long as 16384 sample points at 250 kHz sampling rate. In all 1120 suspected reconnection events, it is found that the most commonly occurred waves are neither ion acoustic waves, electrostatic solitary waves, nor Langmuir/upper hybrid waves, but Bernstein-like waves with harmonics of the electron cyclotron frequency. In addition, to each type of waves, Langmuir/upper hybrid waves reveal the largest occurrence rate in the reconnection region than in the ambient solar wind. These results indicate that Bernstein-like waves and Langmuir/upper hybrid waves might play important roles in the reconnection associated particle heating processes and they might also influence the dissipation of magnetic reconnection.

  5. Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology.

    PubMed

    Ibrahim, George M; Anderson, Ryan; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Singh-Cadieux, Gabrielle; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2013-11-01

    Synchronization of neural oscillations is thought to integrate distributed neural populations into functional cell assemblies. Epilepsy is widely regarded as a disorder of neural synchrony. Knowledge is scant, however, regarding whether ictal changes in synchrony involving epileptogenic cortex are expressed similarly across various frequency ranges. Cortical regions involved in epileptic networks also exhibit pathological high-frequency oscillations (pHFOs, >80 Hz), which are increasingly utilized as biomarkers of epileptogenic tissue. It is uncertain how pHFO amplitudes are related to epileptic network connectivity. By calculating phase-locking values among intracranial electrodes implanted in children with intractable epilepsy, we constructed ictal connectivity networks and performed graph theoretical analysis to characterize their network properties at distinct frequency bands. Ictal data from 17 children were analyzed with a hierarchical mixed-effects model adjusting for patient-level covariates. Epileptogenic cortex was defined in two ways: 1) a hypothesis-driven method using the visually defined seizure-onset zone and 2) a data-agnostic method using the high-frequency amplitude of each electrode. Epileptogenic cortex exhibited a logarithmic decrease in interregional functional connectivity at high frequencies (>30 Hz) during seizure initiation and propagation but not at termination. At slower frequencies, conversely, epileptogenic cortex expressed a relative increase in functional connectivity. Our findings suggest that pHFOs reflect epileptogenic network interactions, yielding theoretical support for their utility in the presurgical evaluation of intractable epilepsy. The view that abnormal network synchronization plays a critical role in ictogenesis and seizure dynamics is supported by the observation that functional isolation of epileptogenic cortex at high frequencies is absent at seizure termination.

  6. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  7. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  8. Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations - Part I: Experimental study

    NASA Astrophysics Data System (ADS)

    Dajun, Wang; Chunyan, Zhou; Li, Junbao; Shen, Song; Li, Min; Liu, Xijun

    2013-07-01

    This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water-shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell-fluid coupled system.

  9. High frequency magnetization dynamics of ferromagnetic nano-structures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan

    The development of smaller high frequency magnetic devices with new functionalities requires a more thorough understanding of magnetization dynamics. This thesis documents research into ultrafast magnetization dynamics in ferromagnetic nanoscale materials and summarizes the theoretical foundations and measurement techniques. We present our investigation into the microwave properties of monodisperse, superparamagnetic Fe2O3 nanoparticle arrays using broadband ferromagnetic resonance. We identified a novel field-for resonance relationship in the films. Compared with ferromagnetic films of equal magnetization, resonance frequencies are decreased for in-plane magnetization and increased for out-of-plane magnetization, over the range 0--8 Ghz. The behavior identified is that of a superparamagnetic thin film, where thin-film dipolar fields act on a gradually saturating magnetization described by the Langevin function. Resonance linewidths can be described by the natural dispersion in properties of the system. The second section addresses magnetization dynamics in metalic heterostructures, where the component ultrathin films have nanometer scale dimensions. We have searched for a signature of nonlocal magnetization dynamics, or magnetization dynamics driven by pure spin currents ("spin pumping"), in magnetically soft, polycrystalline Ni81Fe19/Cu/Co93Zr7 tri-layers using ferromagnetic resonance. An interface-related enhancement of damping is expected for each ferromagnetic layer when incorporated in a tri-layer; the enhancement should be absent where layer resonances overlap. While size effects in Gilbert damping have been identified, we note that expectations specific to spin pumping are not confirmed. We have also observed this effect in Ni81Fe19/Cu/Ni81Fe19/Mn 50Fe50 exchange biased spin valves with clearly defined giant magneto-resistance (GMR). Finally, we have investigated the dynamic effects in these films using a novel time-resolved x-ray technique. The reciprocal

  10. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation.

    PubMed

    Lin, Kuang-Wei; Duryea, Alexander P; Kim, Yohan; Hall, Timothy L; Xu, Zhen; Cain, Charles A

    2014-02-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P-) exceeds the intrinsic threshold of the medium (26 to 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called dual-beam histotripsy. A 20-element dual-frequency (500-kHz and 3-MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in red blood cell phantoms and porcine hepatic tissue specimens. The results showed that when sub-intrinsic-threshold pump (500-kHz) and probe (3-MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Because the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations in which precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high-frequency

  11. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  12. High flatness optical frequency comb generator based on the chirping of modulators

    NASA Astrophysics Data System (ADS)

    Qu, Kun; Zhao, Shanghong; Liang, Dan Ya; Zhu, Zihang; Dong, Chen; Li, Xuan

    2016-06-01

    A novel scheme for generation of an optical frequency comb (OFC) based on the chirping of two cascaded modulators is proposed. The first modulator is a dual-electrode Mach-Zehnder modulator (MZM), while the other modulator is an integrated MZM composed of two parallel MZMs that increases the number of comb lines. Our modified scheme can generate a large number of frequency lines with excellent flatness by simply modifying the chirp factor, and it is shown that up to 54 frequency lines could be observed. Theoretical analysis and simulation results show that under the variety of conditions that can be used in this scheme, the power fluctuations of the OFC lines are less than 0.5 dB in all cases; these results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness. Additionally, our modified scheme has the merit of tunable frequency spacing, which is practical for experimental realization of the OFC.

  13. Controlling and enhancing high frequency collective electron dynamics in superlattices by chaos-assisted miniband transport

    NASA Astrophysics Data System (ADS)

    Fromhold, Mark; Greenaway, Mark; Alexeeva, Natalia; Balanov, Alexander; Makarovsky, Oleg; Patane, Amalia; Gaifullin, Marat; Kusmartsev, Feo

    We show in both measurements and calculations that a tilted magnetic field can transform the structure and THz dynamics of charge domains in a biased semiconductor superlattice (SL). In SLs, at critical field values, when the Bloch frequency equals the cyclotron frequency corresponding to the magnetic field component along the SL axis, the semiclassical electron motion changes abruptly from localized stable trajectories to unbounded chaotic paths, which propagate rapidly through the SL. This delocalisation of the electron creates a series of sharp resonant peaks in drift velocity-field characteristics, which were detected in previous DC current-voltage measurements. We show that these additional peaks can create multiple propagating charge domains, shaped by both the strength and tilt angle of the magnetic field. As a result, the tilted magnetic field generates AC currents whose magnitude and frequencies are far higher than with no magnetic field applied. Chaos-assisted single-electron transport induced by the interplay between cyclotron and Bloch motion therefore provides a mechanism for controlling the collective dynamics of miniband electrons, and thus enhancing the high frequency response of SLs.

  14. Characteristics of a piezoresistive accelerometer in high frequency, high shock environments

    SciTech Connect

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1993-12-31

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer with and without mechanical isolation in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: titanium and beryllium. The characteristics of the piezoresistive accelerometer for frequencies of DC-10 kHz and shock magnitudes of up to 4,000 g as determined from measurements with a titanium Hopkinson bar are presented. The SNL uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. These characteristics have been verified by the calibration of the Hopkinson bar used for accelerometer testing. The beryllium Hopkinson bar configuration is described. Preliminary characteristics of the piezoresistive accelerometer at a nominal shock level of 17,000 g for a frequency range of DC-50 kHz are presented.

  15. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  16. Highly efficient frequency conversion with bandwidth compression of quantum light

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  17. Investigating perfluorohexane particles with high-frequency ultrasound.

    PubMed

    Couture, Olivier; Bevan, Peter D; Cherin, Emmanuel; Cheung, Kevin; Burns, Peter N; Foster, F Stuart

    2006-01-01

    Submicron particles filled with liquid perfluorocarbon are currently being studied as a potential ultrasound-targeted contrast agent. The objective of this study was to evaluate the scattering properties of these particles. Sets of perfluorohexane-filled particles of different average sizes (300 nm to 1000 nm) were produced with a constant total volume fraction. The attenuation coefficient was measured in the 15- to 50-MHz frequency range and was found to increase smoothly with frequency and to be independent of the amplitude and bandwidth of the transmitted pulse. The values range from 0.31 to 0.64 dB/mm at 30 MHz for mean particle size ranging from 970 to 310 nm, respectively. The backscattering spectra of the particle solutions were measured and showed no sign of nonlinear scattering. The backscattering coefficient increased with the power 3.9 +/- 0.3 of the frequency. These results confirm that liquid perfluorocarbon droplets behave as linear Rayleigh scatterers.

  18. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    NASA Astrophysics Data System (ADS)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  19. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart.

    PubMed

    Chen, J; Mandapati, R; Berenfeld, O; Skanes, A C; Jalife, J

    The mechanism(s) underlying ventricular fibrillation (VF) remain unclear. We hypothesized that at least some forms of VF are not random and that high-frequency periodic sources of activity manifest themselves as spatiotemporal periodicities, which drive VF. Twenty-four VF episodes from 8 Langendorff-perfused rabbit hearts were studied using high-resolution video imaging in conjunction with ECG recordings and spectral analysis. Sequential wavefronts that activated the ventricles in a spatially and temporally periodic fashion were identified. In addition, we analyzed the lifespan and dynamics of wavelets in VF, using a new method of phase mapping that enables identification of phase singularity points (PSs), which flank individual wavelets. Spatiotemporal periodicity was found in 21 of 24 episodes. Complete reentry on the epicardial surface was observed in 3 of 24 episodes. The cycle length of discrete regions of spatiotemporal periodicity correlated highly with the dominant frequency of the optical pseudo-ECG (R(2)=0.75) and with the global bipolar electrogram (R(2)=0.79). The lifespan of PSs was short (14.7+/-14.4 ms); 98% of PSs existed for <1 rotation. The mean number of waves entering (6.50+/-0.69) exceeded the mean number of waves that exited our mapping field (4.25+/-0.56; P<0.05). These results strongly suggest that ongoing stable sources are responsible for the majority of the frequency content of VF and therefore play a role in its maintenance. In this model, multiple wavelets resulting from wavebreaks do not appear to be responsible for the sustenance of this arrhythmia, but are rather the consequence of breakup of high-frequency activation from a dominant reentrant source.

  20. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.