Science.gov

Sample records for additional important role

  1. Cascade Michael addition/cycloketalization of cyclic 1,3-dicarbonyl compounds: important role of the tethered alcohol of α,β-unsaturated carbonyl compounds on reaction rate and regioselectivity.

    PubMed

    Yao, Hongliang; Song, Liyan; Liu, Yuan; Tong, Rongbiao

    2014-09-19

    Reactions of α,β-unsaturated aldehydes and cyclic 1,3-dicarbonyl compounds proceed primarily by cascade Knoevenagel condensation/six-π-electron electrocyclization (K6EC, formal [3 + 3] cycloaddition), while α,β-unsaturated ketones usually react with cyclic 1,3-dicarbonyl compounds in a 1,4-addition manner. This paper discloses our findings that under acidic conditions, α,β-unsaturated carbonyl compounds (ketones and aldehydes) with a tethered alcohol react with cyclic 1,3-dicarbonyl compounds in a highly regioselective 1,4-addition fashion via in situ generation of a hypothetical α-methylene cyclic oxonium ion as the reactive Michael acceptor. Our studies uncovered the important effect of the tethered alcohol on the reaction rate and/or efficiency and some new mechanistic aspects of the cascade Michael addition/cycloketalization. Finally, the substrate scope was examined, and 43 analogues of penicipyrone and tenuipyrone were prepared in good to excellent yields.

  2. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  3. Curriculum change: the importance of team role.

    PubMed

    Broomfield, D; Bligh, J

    1997-03-01

    This paper describes a study examining aspects of team role in the management of curriculum change. The Belbin Team Role Self-Perception Inventory was completed by 25 members (83%) of a faculty curriculum development team. Overall the group showed a preference for the implementer and shaper roles, whilst the completer-finisher role was relatively weakly represented, ranking fifth out of eight possible roles. Older and more senior team members favoured the co-ordinator role, whilst younger and more junior members favoured the team-worker and completer-finisher roles. Some implications of these findings are discussed in the light of the current trend for widespread change in undergraduate medical curricula and the challenges faced by medical schools in a resource constrained environment.

  4. Roles of additives and surface control in slurry atomization

    SciTech Connect

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy at 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.

  5. Role of additional radiotherapy in advanced stages of Hodgkin's disease.

    PubMed

    Meerwaldt, J H; Coleman, C N; Fischer, R I; Lister, T A; Diehl, V

    1992-09-01

    Although radiotherapy is widely used as additional treatment following chemotherapy, its precise role has never been clearly proven. Relapses tend to occur in previously involved bulky sites. Non-randomized studies may suggest a positive effect of the addition of radiotherapy. This effect however, might also be caused by selection. Randomized studies have not resulted in a survival advantage for the patients treated with additional radiotherapy compared to no further treatment or additional chemotherapy. The SWOG study 7808 suggest a 20% benefit in remission duration for the nodular sclerosis histology subgroup. Definitive conclusions have to wait for more mature results of randomized studies including the ongoing EORTC study and the possibility to perform an overview of all studies.

  6. Coaching Teachers: An Important Principal Role. Research into Practice

    ERIC Educational Resources Information Center

    Williamson, Ronald

    2012-01-01

    A principal's most important role is instructional leader. There is a growing recognition of the importance of working with teachers, serving as a mentor and coach. Coaching has emerged as one of the more effective professional development options for adult learners. It is an important tool because it is an investment in human capital and in the…

  7. The role of conceptual understanding in children's addition problem solving.

    PubMed

    Canobi, K H; Reeve, R A; Pattison, P E

    1998-09-01

    The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.

  8. Importance of the nature of α-substituents in pyrrolidine organocatalysts in asymmetric Michael additions.

    PubMed

    Patil, Mahendra P; Sharma, Akhilesh K; Sunoj, Raghavan B

    2010-11-05

    The fundamental factors contributing toward the stereoselectivity in organocatalyzed asymmetric Michael reaction between aldehydes (propanal and 3-phenyl propanal) and methyl vinyl ketone (MVK) are established by using density functional theory methods. Three of the most commonly employed α-substituted pyrrolidine organocatalysts are examined. Several key stereochemical modes of addition between (i) a model enamine or (ii) pyrrolidine enamines derived from aldehydes and secondary amine to MVK are examined. Among these possibilities, the addition of (E)-enamine to cis-MVK is found to have a lower activation barrier. The stereochemical outcome of the reaction is reported on the basis of the relative energies between pertinent diastereomeric transition states. Moderate selectivity is predicted for the reaction involving pyrrolidine catalysts I and II, which carry relatively less bulky α-substituents dimethylmethoxymethyl and diphenylmethyl, respectively. On the other hand, high selectivity is computed in the case of catalyst III having a sufficiently large α-substituent (diarylmethoxymethyl or diphenylprolinol methyl ether). The enantiomeric excess in the case of 3-phenyl propanal is found to be much higher as compared to that with unsubstituted propanal, suggesting potential for improvement in stereoselectivity by substrate modifications. The computed enantiomeric excess is found to be in reasonable agreement with the reported experimental stereoselectivities. A detailed investigation on the geometries of the crucial transition states reveals that apart from steric interactions between the α-substituent and MVK, various other factors such as orbital interactions and weak stabilizing hydrogen-bonding interactions play a vital role in stereoselectivity. The results serve to establish the importance of cumulative effects of various stabilizing and destabilizing interactions at the transition state as responsible for the stereochemical outcome of the reaction. The

  9. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  10. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  11. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  12. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  13. 27 CFR 479.83 - Transfer tax in addition to import duty.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Transfer tax in addition to import duty. 479.83 Section 479.83 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS,...

  14. 75 FR 66643 - Importation of Mexican Hass Avocados; Additional Shipping Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... / Friday, October 29, 2010 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 319 RIN 0579-AD15 Importation of Mexican Hass Avocados; Additional Shipping Options AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Final rule. SUMMARY:...

  15. The importance of taxonomic resolution for additive beta diversity as revealed through DNA barcoding.

    PubMed

    Bringloe, Trevor T; Cottenie, Karl; Martin, Gillian K; Adamowicz, Sarah J

    2016-12-01

    Additive diversity partitioning (α, β, and γ) is commonly used to study the distribution of species-level diversity across spatial scales. Here, we first investigate whether published studies of additive diversity partitioning show signs of difficulty attaining species-level resolution due to inherent limitations with morphological identifications. Second, we present a DNA barcoding approach to delineate specimens of stream caddisfly larvae (order Trichoptera) and consider the importance of taxonomic resolution on classical (additive) measures of beta (β) diversity. Caddisfly larvae were sampled using a hierarchical spatial design in two regions (subarctic Churchill, Manitoba, Canada; temperate Pennsylvania, USA) and then additively partitioned according to Barcode Index Numbers (molecular clusters that serve as a proxy for species), genus, and family levels; diversity components were expressed as proportional species turnover. We screened 114 articles of additive diversity partitioning and found that a third reported difficulties with achieving species-level identifications, with a clear taxonomic tendency towards challenges identifying invertebrate taxa. Regarding our own study, caddisfly BINs appeared to show greater subregional turnover (e.g., proportional additive β) compared to genus or family levels. Diversity component studies failing to achieve species resolution due to morphological identifications may therefore be underestimating diversity turnover at larger spatial scales.

  16. The Role of Relational Reasoning in Children's Addition Concepts

    ERIC Educational Resources Information Center

    Farrington-Flint, Lee; Canobi, Katherine H.; Wood, Clare; Faulkner, Dorothy

    2007-01-01

    The study addresses the relational reasoning of different-aged children and how addition reasoning is related to problem-solving skills within addition and to reasoning skills outside addition. Ninety-two 5- to 8-year-olds were asked to solve a series of conceptually related and unrelated addition problems, and the speed and accuracy of all…

  17. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  18. The role of additional pulses in electropermeabilization protocols.

    PubMed

    Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo

    2014-01-01

    Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate

  19. The Role of Additional Pulses in Electropermeabilization Protocols

    PubMed Central

    Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo

    2014-01-01

    Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate

  20. Role of membrane contact sites in protein import into mitochondria.

    PubMed

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-03-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.

  1. Role and importance of biochemical markers in clinical cardiology.

    PubMed

    Panteghini, Mauro

    2004-07-01

    This paper reviews the current contribution of the biochemical marker determination to clinical cardiology and discusses some important developments in this field. Biochemical markers play a pivotal role in the diagnosis and management of patients with acute coronary syndrome (ACS), as witnessed by the incorporation of cardiac troponins into new international guidelines for patients with ACS and in the re-definition of myocardial infarction. Despite the success of cardiac troponins, there is still a need for the development of early markers that can reliably rule out ACS from the emergency room at presentation and also detect myocardial ischaemia in the absence of irreversible myocyte injury. Under investigation are two classes of indicators: markers of early injury/ischaemia and markers of inflammation and coronary plaque instability and disruption. Finally, with the characterisation of the cardiac natriuretic peptides, Laboratory Medicine is also assuming a role in the assessment of cardiac function.

  2. The Role of Conceptual Understanding in Children's Addition Problem Solving.

    ERIC Educational Resources Information Center

    Canobi, Katherine H.; Reeve, Robert A.; Pattison, Philippa E.

    1998-01-01

    Examined the relationship between 6- to 8-year olds' conceptual understanding of additive composition, commutativity, and associativity principles and addition problem-solving procedures. Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving…

  3. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity.

    PubMed

    Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J

    2012-05-01

    Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.

  4. Perceived Role Legitimacy and Role Importance of Australian School Staff in Addressing Student Cannabis Use

    ERIC Educational Resources Information Center

    Gates, Peter J.; Norberg, Melissa M.; Dillon, Paul; Manocha, Ramesh

    2013-01-01

    The high prevalence of cannabis use by Australian secondary school students makes schools an ideal setting for the delivery of substance use prevention programs. Although efficacious school-based cannabis prevention programs exist, there is scant research investigating the perceived role legitimacy and role importance of school staff. As such,…

  5. The Crucial Role of Additive Manufacturing at NASA

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2016-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  6. Important roles for membrane lipids in haloarchaeal bioenergetics.

    PubMed

    Kellermann, Matthias Y; Yoshinaga, Marcos Y; Valentine, Raymond C; Wörmer, Lars; Valentine, David L

    2016-11-01

    Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg(2+) acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.

  7. Children's Additive Concepts: Promoting Understanding and the Role of Inhibition

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; Dube, Adam K.

    2013-01-01

    This study investigated the promotion of children's understanding and acquisition of arithmetic concepts and the effects of inhibitory skills. Children in Grades 3, 4, and 5 solved two sets of three-term addition and subtraction problems (e.g., 3 + 24 - 24, 3 + 24 - 22) and completed an inhibition task. Half of the participants received a…

  8. The Role of Drugs, Diet, and Food Additives in Hyperactivity.

    ERIC Educational Resources Information Center

    Harshbarger, Mary E.

    A variety of causes have been suggested for hyperactivity: anoxia and other adverse birth conditions, genetic factors, delayed maturation, maternal smoking and drinking during pregnancy, interaction of temperament and environment, lead poisoning, radiation stress, allergy and food additives, and deprivation of required stimulation. Treatments…

  9. (Roles of additives and surface control in slurry atomization)

    SciTech Connect

    Not Available

    1992-01-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particle Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.

  10. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  11. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  12. Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma

    PubMed Central

    Rosas-Salazar, Christian; James, Kristina; Escobar, Gabriel; Gebretsadik, Tebeb; Li, Sherian Xu; Carroll, Kecia N.; Walsh, Eileen; Mitchel, Edward; Das, Suman; Kumar, Rajesh; Yu, Chang; Dupont, William D.; Hartert, Tina V.

    2016-01-01

    Background Environmental exposures that occur in utero and during early life may contribute to the development of childhood asthma through alteration of the human microbiome. The objectives of this study were to estimate the cumulative effect and relative importance of environmental exposures on the risk of childhood asthma. Methods We conducted a population-based birth cohort study of mother-child dyads who were born between 1995 and 2003 and were continuously enrolled in the PRIMA (Prevention of RSV: Impact on Morbidity and Asthma) cohort. The individual and cumulative impact of maternal urinary tract infections (UTI) during pregnancy, maternal colonization with group B streptococcus (GBS), mode of delivery, infant antibiotic use, and older siblings at home, on the risk of childhood asthma were estimated using logistic regression. Dose-response effect on childhood asthma risk was assessed for continuous risk factors: number of maternal UTIs during pregnancy, courses of infant antibiotics, and number of older siblings at home. We further assessed and compared the relative importance of these exposures on the asthma risk. In a subgroup of children for whom maternal antibiotic use during pregnancy information was available, the effect of maternal antibiotic use on the risk of childhood asthma was estimated. Results Among 136,098 singleton birth infants, 13.29% developed asthma. In both univariate and adjusted analyses, maternal UTI during pregnancy (odds ratio [OR] 1.2, 95% confidence interval [CI] 1.18, 1.25; adjusted OR [AOR] 1.04, 95%CI 1.02, 1.07 for every additional UTI) and infant antibiotic use (OR 1.21, 95%CI 1.20, 1.22; AOR 1.16, 95%CI 1.15, 1.17 for every additional course) were associated with an increased risk of childhood asthma, while having older siblings at home (OR 0.92, 95%CI 0.91, 0.93; AOR 0.85, 95%CI 0.84, 0.87 for each additional sibling) was associated with a decreased risk of childhood asthma, in a dose-dependent manner. Compared with vaginal

  13. 17 CFR 39.37 - Additional disclosure for systemically important derivatives clearing organizations and subpart C...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... systemically important derivatives clearing organizations and subpart C derivatives clearing organizations. 39.37 Section 39.37 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS Provisions Applicable to Systemically Important Derivatives Clearing...

  14. Roles of additives and surface control in slurry atomization

    SciTech Connect

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation and thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.

  15. Role and Importance of IGF-1 in Traumatic Brain Injuries

    PubMed Central

    Mangiola, Annunziato; Vigo, Vera; Anile, Carmelo; De Bonis, Pasquale; Marziali, Giammaria; Lofrese, Giorgio

    2015-01-01

    It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients. PMID:26417600

  16. 75 FR 29680 - Importation of Mexican Hass Avocados; Additional Shipping Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... specify that the boxes, bins, or crates would have to be safeguarded from insects by covering with a lid, insect-proof mesh, or by some other barrier that prevents insects from entering the boxes or bins. Those... provide an additional layer of protection against insects of concern. The regulations also contain...

  17. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    ERIC Educational Resources Information Center

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  18. Importance of perceived naturalness for acceptance of food additives and cultured meat.

    PubMed

    Siegrist, Michael; Sütterlin, Bernadette

    2017-03-14

    Four experiments examined some factors influencing the perceived naturalness of food products and their biasing effect on risk perception. The results of Experiment 1a showed that three food additives displaying their respective E-numbers (i.e., codes for food additives in the European Union and Switzerland) decreased perceived naturalness. Experiment 1b demonstrated that mentioning possible health effects decreased the perceived naturalness of a plant-based food additive. This experiment further showed that it would not matter for perceived naturalness whether the food was synthetic or nature-identical. Moreover, the results of Experiments 2 and 3 suggested that the same risk associated with meat consumption was much more acceptable for traditionally produced meat compared with in-vitro meat. Experiment 3 further indicated that the perceived naturalness of the meat (i.e., traditional or cultured meat) had a full mediation effect on participants' evaluation of the acceptability of the risk of colon cancer associated with the meat consumption. Even if the new production method (i.e., cultured meat) was more environmentally friendly and less harmful to animals, the perceived lack of naturalness might reduce the acceptability of the risk associated with such a product. The present study provides evidence that consumers rely on symbolic information when evaluating foods, which may lead to biased judgments and decisions.

  19. The Importance of Sex-Role to Gay Liberation

    ERIC Educational Resources Information Center

    MacDonald, A. P., Jr.

    1974-01-01

    Research that focuses on the characteristics of people who hold positive and negative attitudes toward homosexuals is reviewed and summarized. The data support the notion that attitudes toward gays are maximally determined by the need to preserve masculine and feminine roles, and minimally determined by conservative sexual standards. (Author/BW)

  20. Bioethics mediation: the role and importance of nursing advocacy.

    PubMed

    Schlairet, Maura C

    2009-01-01

    Ethics consultations are utilized in health care to identify and manage conflict, difficult decision-making, and ethical issues. In bioethics mediation, a more updated approach using interpersonal, mediative, conflict management, and dispute resolution skills is merged with ethical principles to manage dilemmas arising in healthcare settings. This article argues, based on a professional obligation to advocate for the good of the client, that nurses must assume leadership roles in mediation processes. Nurses can initiate and fully participate in formal bioethics mediation and other mediative interventions. Nurse administrators can work to evolve existing ethics consult models to mediation models. Nonetheless, mediative efforts of individual nurses must be grounded in realization of the multifactorial nature of conflict and dilemma in healthcare settings. Multidisciplinary mediative interventions, framed by sound institutional policies, may best serve the complex needs of ethically vulnerable clients. To best advocate for these at-risk clients, nurses must assume various leadership roles in mediation processes.

  1. The Role of Isolation in Radicalization: How Important Is It?

    DTIC Science & Technology

    2013-12-01

    55 C. TEENAGE YEARS...distress.94 In addition, there are associations between social isolation and mental illness, distress, dementia, premature death,95 and suicide .96...LaRicka R. Wingate, “The Psychology and Neurobiology of Suicidal Behavior,” Annual Review of Psychology 56 (2005): 302. 97 Brannan and Strindberg

  2. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  3. ASXL1 plays an important role in erythropoiesis

    PubMed Central

    Shi, Hui; Yamamoto, Shohei; Sheng, Mengyao; Bai, Jie; Zhang, Peng; Chen, Runze; Chen, Shi; Shi, Lihong; Abdel-Wahab, Omar; Xu, Mingjiang; Zhou, Yuan; Yang, Feng-Chun

    2016-01-01

    ASXL1 mutations are found in a spectrum of myeloid malignancies with poor prognosis. Recently, we reported that Asxl1+/− mice develop myelodysplastic syndrome (MDS) or MDS and myeloproliferative neoplasms (MPN) overlapping diseases (MDS/MPN). Although defective erythroid maturation and anemia are associated with the prognosis of patients with MDS or MDS/MPN, the role of ASXL1 in erythropoiesis remains unclear. Here, we showed that chronic myelomonocytic leukemia (CMML) patients with ASXL1 mutations exhibited more severe anemia with a significantly increased proportion of bone marrow (BM) early stage erythroblasts and reduced enucleated erythrocytes compared to CMML patients with WT ASXL1. Knockdown of ASXL1 in cord blood CD34+ cells reduced erythropoiesis and impaired erythrocyte enucleation. Consistently, the BM and spleens of VavCre+;Asxl1f/f (Asxl1∆/∆) mice had less numbers of erythroid progenitors than Asxl1f/f controls. Asxl1∆/∆ mice also had an increased percentage of erythroblasts and a reduced erythrocyte enucleation in their BM compared to littermate controls. Furthermore, Asxl1∆/∆ erythroblasts revealed altered expression of genes involved in erythroid development and homeostasis, which was associated with lower levels of H3K27me3 and H3K4me3. Our study unveils a key role for ASXL1 in erythropoiesis and indicates that ASXL1 loss hinders erythroid development/maturation, which could be of prognostic value for MDS/MPN patients. PMID:27352931

  4. Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine.

    PubMed

    Pillai, Ambikalmajan M R; Knapp, Furn F Russ

    2015-01-01

    Lutetium-177 ((177)Lu) is a late entrant into the nuclear medicine therapy arena but is expected to become one of the most widely used therapeutic radionuclides. This paper analyses the reason for the increasing preference of (177)Lu as a therapeutic radionuclide. While the radionuclidic properties favor its use for several therapeutic applications, the potential for large scale production of (177)Lu is also an important aspect for its acceptability as a therapeutic radionuclide. This introductory discussion also summarizes some developing clinical uses and suggested future directions for applications of (177)Lu.

  5. Important role of matrix metalloproteinase 9 in epileptogenesis

    PubMed Central

    Wilczynski, Grzegorz M.; Konopacki, Filip A.; Wilczek, Ewa; Lasiecka, Zofia; Gorlewicz, Adam; Michaluk, Piotr; Wawrzyniak, Marcin; Malinowska, Monika; Okulski, Pawel; Kolodziej, Lukasz R.; Konopka, Witold; Duniec, Kamila; Mioduszewska, Barbara; Nikolaev, Evgeni; Walczak, Agnieszka; Owczarek, Dorota; Gorecki, Dariusz C.; Zuschratter, Werner; Ottersen, Ole Petter; Kaczmarek, Leszek

    2008-01-01

    Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE. PMID:18332222

  6. Important roles of Vilse in dendritic architecture and synaptic plasticity

    PubMed Central

    Lee, Jin-Yu; Lee, Li-Jen; Fan, Chih-Chen; Chang, Ho-Ching; Shih, Hsin-An; Min, Ming-Yuan; Chang, Mau-Sun

    2017-01-01

    Vilse/Arhgap39 is a Rho GTPase activating protein (RhoGAP) and utilizes its WW domain to regulate Rac/Cdc42-dependent morphogenesis in Drosophila and murine hippocampal neurons. However, the function of Vilse in mammalian dendrite architecture and synaptic plasticity remained unclear. In the present study, we aimed to explore the possible role of Vilse in dendritic structure and synaptic function in the brain. Homozygous knockout of Vilse resulted in premature embryonic lethality in mice. Changes in dendritic complexity and spine density were noticed in hippocampal neurons of Camk2a-Cre mediated forebrain-specific Vilse knockout (VilseΔ/Δ) mice. VilseΔ/Δ mice displayed impaired spatial memory in water maze and Y-maze tests. Electrical stimulation in hippocampal CA1 region revealed that the synaptic transmission and plasticity were defected in VilseΔ/Δ mice. Collectively, our results demonstrate that Vilse is essential for embryonic development and required for spatial memory. PMID:28368047

  7. The Important Role of Physics in Industry and Economic Development

    NASA Astrophysics Data System (ADS)

    Alvarado, Igor

    2012-10-01

    Good Physics requires good education. Good education translates into good Physics professionals. The process starts early with Science, Technology, Engineering and Mathematics (STEM) education programs for Middle and High-School students. Then it continues with competitive higher education programs (2 years and 4 years) at colleges and universities designed to satisfy the needs of industry and academia. The research work conducted by graduate students in Physics (and Engineering Physics) frequently translates into new discoveries and innovations that have direct impact in society (e.g. Proton Cancer Therapy). Some of the major and largest scientific experiments in the world today are physics-centered (e.g. Large Hadron Collider-LHC) that generate employment and business opportunities for thousands of scientists, academic research groups and companies from around the world. New superconducting magnets and advanced materials that have resulted from previous research in physics are commonly used in these extreme experiments. But not all physicists will end up working at these large high-energy physics experiments, universities or National Laboratories (e.g. Fermilab); industry requires new generations of (industrial) physicists in such sectors as semiconductor, energy, space, life sciences, defense and advanced manufacturing. This work presents an industry perspective about the role of Physics in economic development and the need for a collaborative Academic-Industry approach for a more effective translational research. A series of examples will be presented with emphasis in the measurement, control, diagnostics and computing capabilities needed to translate the science (physics) into innovations and practical solutions that can benefit society as a whole.

  8. Vegetation plays an important role in mediating future water resources

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  9. The important role of stratum corneum lipids for the cutaneous barrier function.

    PubMed

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  10. Why Are Omics Technologies Important to Understanding the Role of Nutrition in Inflammatory Bowel Diseases?

    PubMed Central

    Ferguson, Lynnette R.; Barnett, Matthew P. G.

    2016-01-01

    For many years, there has been confusion about the role that nutrition plays in inflammatory bowel diseases (IBD). It is apparent that good dietary advice for one individual may prove inappropriate for another. As with many diseases, genome-wide association studies across large collaborative groups have been important in revealing the role of genetics in IBD, with more than 200 genes associated with susceptibility to the disease. These associations provide clues to explain the differences in nutrient requirements among individuals. In addition to genes directly involved in the control of inflammation, a number of the associated genes play roles in modulating the gut microbiota. Cell line models enable the generation of hypotheses as to how various bioactive dietary components might be especially beneficial for certain genetic groups. Animal models are necessary to mimic aspects of the complex aetiology of IBD, and provide an important link between tissue culture studies and human trials. Once we are sufficiently confident of our hypotheses, we can then take modified diets to an IBD population that is stratified according to genotype. Studies in IBD patients fed a Mediterranean-style diet have been important in validating our hypotheses and as a proof-of-principle for the application of these sensitive omics technologies to aiding in the control of IBD symptoms. PMID:27775675

  11. Roles of additives and surface control in slurry atomization. Final project report

    SciTech Connect

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy at 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.

  12. The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    PubMed Central

    Shang, Chuin-Shee; Wen, Tzai-Hung; Tsai, Kun-Hsien

    2010-01-01

    Background Travelers who acquire dengue infection are often routes for virus transmission to other regions. Nevertheless, the interplay between infected travelers, climate, vectors, and indigenous dengue incidence remains unclear. The role of foreign-origin cases on local dengue epidemics thus has been largely neglected by research. This study investigated the effect of both imported dengue and local meteorological factors on the occurrence of indigenous dengue in Taiwan. Methods and Principal Findings Using logistic and Poisson regression models, we analyzed bi-weekly, laboratory-confirmed dengue cases at their onset dates of illness from 1998 to 2007 to identify correlations between indigenous dengue and imported dengue cases (in the context of local meteorological factors) across different time lags. Our results revealed that the occurrence of indigenous dengue was significantly correlated with temporally-lagged cases of imported dengue (2–14 weeks), higher temperatures (6–14 weeks), and lower relative humidity (6–20 weeks). In addition, imported and indigenous dengue cases had a significant quantitative relationship in the onset of local epidemics. However, this relationship became less significant once indigenous epidemics progressed past the initial stage. Conclusions These findings imply that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. Early detection and case management of imported cases through rapid diagnosis may avert large-scale epidemics of dengue/dengue hemorrhagic fever. The deployment of an early-warning surveillance system, with the capacity to integrate meteorological data, will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries. PMID:20689820

  13. On the role of DNA in DNA-based catalytic enantioselective conjugate addition reactions.

    PubMed

    Dijk, Ewold W; Boersma, Arnold J; Feringa, Ben L; Roelfes, Gerard

    2010-09-07

    A kinetic study of DNA-based catalytic enantioselective Friedel-Crafts alkylation and Michael addition reactions showed that DNA affects the rate of these reactions significantly. Whereas in the presence of DNA, a large acceleration was found for the Friedel-Crafts alkylation and a modest acceleration in the Michael addition of dimethyl malonate, a deceleration was observed when using nitromethane as nucleophile. Also, the enantioselectivities proved to be dependent on the DNA sequence. In comparison with the previously reported Diels-Alder reaction, the results presented here suggest that DNA plays a similar role in both cycloaddition and conjugate addition reactions.

  14. Improving solubilization in microemulsions with additives. 1. The lipophilic linker role

    SciTech Connect

    Graciaa, A.; Lachaise, J.; Cucuphat, C. ); Bourrel, M. ); Salager, J.L. )

    1993-03-01

    Very lipophilic additives are able to substantially improve the solubilization in surfactant-oil-water microemulsions. The so-called lipophilic linker effect is studied, and its role is discussed. It is shown that the presence of a very lipophilic amphiphilic additive may improve substantially the solubilization in microemulsions. This substance is called a lipophilic linker because its preferential orientation in the oil layers next to the interface might provide some ordering of the oil molecules as well as an additional link with the surfactant. Both effects result in a higher interaction on the oil side of the interface. 21 refs., 5 figs., 1 tab.

  15. The Role of Number Words in Preschoolers' Addition Concepts and Problem-Solving Procedures

    ERIC Educational Resources Information Center

    Patel, Pooja; Canobi, Katherine Helen

    2010-01-01

    Preschoolers' conceptual understanding and procedural skills were examined so as to explore the role of number-words and concept-procedure interactions in their additional knowledge. Eighteen three- to four-year-olds and 24 four- to five-year-olds judged commutativity and associativity principles and solved two-term problems involving number words…

  16. The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Aida; San Miguel, Alfonso; López-Carrasco, Celia; Huntsinger, Lynn; Roig, Sonia

    2016-10-01

    Scattered trees are considered keystone structures and play an important role in Mediterranean sylvopastoral systems. Such systems are associated with high biodiversity and provide important natural resources and ecosystem services. In this study, we measured the contribution of scattered trees and different grazing management (cattle, sheep and wildlife only) to the diversity of the grassland sward in a dehesa (open holm oak woodland) located in Central Spain. We analyzed alpha and beta diversity through measurement of species richness, Shannon-Wiener, and Whittaker indices, respectively; and the floristic composition of the herb layer using subplots within two adjacent plots (trees present vs. trees absent) under three different grazing management regimes, including wildlife only, during a year. We found a 20-30% increment in the alpha diversity of wooded plots, compared to those without trees, regardless of grazing management. All beta indices calculated showed more than 60% species turnover. Wooded plots were occupied by different herbaceous species in different heterogeneous microsites (under the canopy, in the ecotone or on open land) created by the trees. Livestock grazing modified species composition (e.g. more nitrophilous species) compared to wildlife only plots. In addition to all their other benefits, trees are important to maintaining grassland diversity in Mediterranean dehesas.

  17. The concentration of Cryptosporidium and Giardia in water--the role and importance of recovery efficiency.

    PubMed

    Ongerth, Jerry E

    2013-05-01

    The concentration of Cryptosporidium and of Giardia in surface water is a subject of importance to public health and public water supply. The term concentration is a fundamental property of any water quality parameter having a classical definition as used in chemistry and biology. Analytical methods for measuring the occurrence of Cryptosporidium and Giardia in water find only a fraction of the organisms actually present. This paper collects recently available data to examine the role and importance of recovery efficiency measurement to description of the concentrations of these organisms. Data from Australian sources graphically illustrate the variability of recovery efficiency at individual sites over relatively short time scales. Additional data on replicated recovery measurements establish their reproducibility. The recently released USEPA LT2 data along with those from Australia illustrate the independent variation of Cryptosporidium and Giardia occurrence and recovery efficiency at individual sampling locations. Calculation of concentration from paired raw numbers and recovery efficiency measurements clearly shows the magnitude and importance of taking recovery into account in expressing the concentration of these organisms.

  18. Addition of Ezetimibe to statins for patients at high cardiovascular risk: Systematic review of patient-important outcomes.

    PubMed

    Fei, Yutong; Guyatt, Gordon Henry; Alexander, Paul Elias; El Dib, Regina; Siemieniuk, Reed A C; Vandvik, Per Olav; Nunnally, Mark E; Gomaa, Huda; Morgan, Rebecca L; Agarwal, Arnav; Zhang, Ying; Bhatnagar, Neera; Spencer, Frederick A

    2017-01-16

    Ezetimibe is widely used in combination with statins to reduce low-density lipoprotein. We sought to examine the impact of ezetimibe when added to statins on patient-important outcomes. Medline, EMBASE, CINAHL, and CENTRAL were searched through July, 2016. Randomized controlled trials (RCTs) of ezetimibe combined with statins versus statins alone that followed patients for at least 6 months and reported on at least one of all-cause mortality, cardiovascular deaths, non-fatal myocardial infarctions (MI), and non-fatal strokes were included. Pairs of reviewers extracted study data and assessed risk of bias independently and in duplicate. Quality of evidence was assessed using the GRADE approach. We conducted a narrative review with complementary subgroup and sensitivity analyses. IMPROVE-IT study enrolled 93% of all patients enrolled in the 8 included trials. Our analysis of the IMPROVE-IT study results showed that in patients at high risk of cardiovascular events, ezetimibe added to statins was associated with i) a likely reduction in non-fatal MI (17 fewer/1000 treated over 6 years, moderate certainty in evidence); ii) a possible reduction in non-fatal stroke (6 fewer/1000 treated over 6 years, low certainty); iii) no impact on myopathy (moderate certainty); iv) potentially no impact on all-cause mortality and cardiovascular death (both moderate certainty); and v) possibly no impact on cancer (low certainty). Addition of ezetimibe to moderate-dose statins is likely to result in 17 fewer MIs and possibly 6 fewer strokes/1000 treated over 6 years but is unlikely to reduce all-cause mortality or cardiovascular death. Patients who place a high value on a small absolute reduction in MI and are not adverse to use of an additional medication over a long duration may opt for ezetimibe in addition to statin therapy. Our analysis revealed no increased specific harms associated with addition of ezetimibe to statins.

  19. Scientist Role Models in the Classroom: How Important Is Gender Matching?

    ERIC Educational Resources Information Center

    Conner, Laura D. Carsten; Danielson, Jennifer

    2016-01-01

    Gender-matched role models are often proposed as a mechanism to increase identification with science among girls, with the ultimate aim of broadening participation in science. While there is a great deal of evidence suggesting that role models can be effective, there is mixed support in the literature for the importance of gender matching. We used…

  20. Dual role of the receptor Tom20 in specificity and efficiency of protein import into mitochondria

    PubMed Central

    Yamamoto, Hayashi; Itoh, Nobuka; Kawano, Shin; Yatsukawa, Yoh-ichi; Momose, Takaki; Makio, Tadashi; Matsunaga, Mayumi; Yokota, Mihoko; Esaki, Masatoshi; Shodai, Toshihiro; Kohda, Daisuke; Aiken Hobbs, Alyson E.; Jensen, Robert E.; Endo, Toshiya

    2011-01-01

    Mitochondria import most of their resident proteins from the cytosol, and the import receptor Tom20 of the outer-membrane translocator TOM40 complex plays an essential role in specificity of mitochondrial protein import. Here we analyzed the effects of Tom20 binding on NMR spectra of a long mitochondrial presequence and found that it contains two distinct Tom20-binding elements. In vitro import and cross-linking experiments revealed that, although the N-terminal Tom20-binding element is essential for targeting to mitochondria, the C-terminal element increases efficiency of protein import in the step prior to translocation across the inner membrane. Therefore Tom20 has a dual role in protein import into mitochondria: recognition of the targeting signal in the presequence and tethering the presequence to the TOM40 complex to increase import efficiency. PMID:21173275

  1. A painful reminder: the role of level and salience of attitude importance in cognitive dissonance.

    PubMed

    Starzyk, Katherine B; Fabrigar, Leandre R; Soryal, Ashley S; Fanning, Jessie J

    2009-01-01

    In his seminal book, L. Festinger (1957) emphasized the role of attitude importance in cognitive dissonance. This study (N = 308) explored whether people's use of dissonance reduction strategies differs as a function of level of attitude importance and whether the personal importance of an attitude is salient. Results showed that level and salience of attitude importance interacted to affect high-choice (HC) participants' tendency to use attitude change and trivialization to reduce dissonance. When HC participants were not reminded of the personal importance of their attitude (i.e., it was not salient), they changed their attitudes equally irrespective of attitude importance, but engaged in greater trivialization with increasing levels of importance. In contrast, when attitude importance was salient, HC participants changed their attitudes less with increasing attitude importance and showed no evidence of trivializing under any level of importance.

  2. Important aspects regarding the role of microorganisms in bisphosphonate-related osteonecrosis of the jaws.

    PubMed

    Boff, Renata Chiapinotto; Salum, Fernanda Gonçalves; Figueiredo, Maria Antonia; Cherubini, Karen

    2014-08-01

    Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is an important side effect of bisphosphonates, whose etiopathogenesis has not been completely elucidated. Theories pointing to bone turnover and angiogenesis inhibition, as well as effects on epithelial cells of oral mucosa and the role of microorganisms have been reported. Nevertheless, the true contribution of each one of these factors to BRONJ is unknown. We present here a literature review focusing on important aspects regarding the role of microorganisms in BRONJ development. Knowledge about specific microbiota and its role in the etiopathogenesis of this disease can help the optimisation of preventive and therapeutic interventions in patients with or at-risk for BRONJ.

  3. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    NASA Astrophysics Data System (ADS)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  4. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    PubMed

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  5. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  6. Proprotein convertases play an important role in regulating PKGI endoproteolytic cleavage and nuclear transport

    PubMed Central

    Kato, Shin; Zhang, Ruiguang

    2013-01-01

    Nitric oxide and cGMP modulate vascular smooth muscle cell (SMC) phenotype by regulating cell differentiation and proliferation. Recent studies suggest that cGMP-dependent protein kinase I (PKGI) cleavage and the nuclear translocation of a constitutively active kinase fragment, PKGIγ, are required for nuclear cGMP signaling in SMC. However, the mechanisms that control PKGI proteolysis are unknown. Inspection of the amino acid sequence of a PKGI cleavage site that yields PKGIγ and a protease database revealed a putative minimum consensus sequence for proprotein convertases (PCs). Therefore we investigated the role of PCs in regulating PKGI proteolysis. We observed that overexpression of PCs, furin and PC5, but not PC7, which are all expressed in SMC, increase PKGI cleavage in a dose-dependent manner in human embryonic kidney (HEK) 293 cells. Moreover, furin-induced proteolysis of mutant PKGI, in which alanines were substituted into the putative PC consensus sequence, was decreased in these cells. In addition, overexpression of furin increased PKGI proteolysis in LoVo cells, which is an adenocarcinoma cell line expressing defective furin without PC activity. Also, expression of α1-PDX, an engineered serpin-like PC inhibitor, reduced PC activity and decreased PKGI proteolysis in HEK293 cells. Last, treatment of low-passage rat aortic SMC with membrane-permeable PC inhibitor peptides decreased cGMP-stimulated nuclear PKGIγ translocation. These data indicate for the first time that PCs have a role in regulating PKGI proteolysis and the nuclear localization of its active cleavage product, which are important for cGMP-mediated SMC phenotype. PMID:23686857

  7. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus.

    PubMed

    Roset, Mara S; García Fernández, Lucía; DelVecchio, Vito G; Briones, Gabriel

    2013-02-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.

  8. Role Modeling in Medical Education: The Importance of a Reflective Imitation

    PubMed Central

    2014-01-01

    The medical literature almost uniformly addresses the positive aspects of role modeling. Still, some authors have questioned its educational value, a disagreement that is probably due to differing definitions of role modeling. If defined as demonstration of skills, provision of feedback, and emulation of specific professional behaviors, then role modeling is an important component of clinical training. However, if it is defined as a learner’s unselective imitation of role models and uncritical adoption of the messages of the learning environment, then the benefits of role modeling should be weighed against its unintended harm. In this Perspective, the author argues that imitation of role models may initially help students adapt to the clinical environment. However, if sustained, imitation may perpetuate undesirable practices, such as doctor-centered patient interviewing, and unintended institutional norms, such as discrimination between private and public patients. The author suggests that the value of role modeling can be advanced not only by targeting role models and improving faculty performance but also by enhancing students’ reflective assessment of their preceptors’ behaviors, especially so that they can better discern those that are worth imitating. This student-centered approach may be accomplished by first, warning students against uncritically imitating preceptors who are perceived as role models; second, showing students that their preceptors share their doubts and uncertainties; third, gaining an insight into possible undesirable messages of the learning environment; and finally, developing policies for faculty recruitment and promotion that consider whether a clinical preceptor is a role model. PMID:24556777

  9. On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes

    PubMed Central

    Mulliez, Etienne; Duarte, Victor; Arragain, Simon; Fontecave, Marc; Atta, Mohamed

    2017-01-01

    The canonical CysXXXCysXXCys motif is the hallmark of the Radical-SAM superfamily. This motif is responsible for the ligation of a [4Fe-4S] cluster containing a free coordination site available for SAM binding. The five enzymes MoaA, TYW1, MiaB, RimO and LipA contain in addition a second [4Fe-4S] cluster itself bound to three other cysteines and thus also displaying a potentially free coordination site. This review article summarizes recent important achievements obtained on these five enzymes with the main focus to delineate the role of this additional [4Fe-4S] cluster in catalysis. PMID:28361051

  10. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease.

    PubMed

    Rogers, Danny; Schor, Nina F

    2010-02-01

    Although Alzheimer's and Parkinson's diseases predominately affect elderly adults, the proteins that play a role in the pathogenesis of these diseases are expressed throughout life. In fact, many of the proteins hypothesized to be important in the progression of neurodegeneration play direct or indirect roles in the development of the central nervous system. The systems affected by these proteins include neural stem cell fate decisions, neuronal differentiation, cellular migration, protection from oxidative stress, and programmed cell death. Insights into the developmental roles of these proteins may ultimately impact the understanding of neurodegenerative diseases and lead to the discovery of novel treatments.

  11. The Role of Cocoa as a Cigarette Additive: Opportunities for Product Regulation

    PubMed Central

    Kennedy, Ryan David; Connolly, Gregory N.

    2014-01-01

    Introduction: The 2009 Family Smoking Prevention and Tobacco Control Act prohibited the use of characterizing flavors in cigarettes; however, some of these flavors are still used in cigarettes at varying levels. We reviewed tobacco industry internal documents to investigate the role of one of these flavors, cocoa, with the objective of understanding its relationship to sensory and risk perception, promotion of dependence, and enhancement of attractiveness and acceptability. Methods: We used the Legacy Tobacco Documents Library to identify documents relevant to our research questions. Initial search terms were generated following an examination of published literature on cocoa, other cigarette additives, and sensory and risk perception. Further research questions and search terms were generated based on review of documents generated from the initial search terms. Results: Cocoa is widely applied to cigarettes and has been used by the tobacco industry as an additive since the early 20th century. Cocoa can alter the sensory properties of cigarette smoke, including by providing a more appealing taste and decreasing its harshness. The tobacco industry has experimented with manipulating cocoa levels as a means of achieving sensory properties that appeal to women and youth. Conclusions: Although cocoa is identified as a flavor on tobacco industry Web sites, it may serve other sensory purposes in cigarettes as well. Eliminating cocoa as an additive from tobacco products may affect tobacco product abuse liability by altering smokers’ perceptions of product risk, and decreasing product appeal, especially among vulnerable populations. PMID:24610479

  12. Redesigning and Transforming: A Case Study of the Role of Semiotic Import in Early Composing Processes

    ERIC Educational Resources Information Center

    Ranker, Jason

    2009-01-01

    In this article, I explore the role of semiotic import (Van Leeuwen, 2005) in the composing processes of three bilingual students (six to seven years old) emerging as writers of English. Using social semiotic (Van Leeuwen, 2005) and design (New London Group, 2000) frameworks, I trace a qualitative "micro-history" of how the students imported…

  13. The Importance of Positive Self-Concept for Islamic Education Teachers as a Role Model

    ERIC Educational Resources Information Center

    Muhamad, Nurul Asiah Fasehah; Hamzah, Mohd Isa; Tamuri, Ab. Halim; Ja'afar, Noornajihan; Ghazali, Norzulaili Mohd; Amat, Robiatul Adawiyah Mohd; Raus, Norakyairee Mohd; Hassan, Syed Najihuddin Syed

    2013-01-01

    This study embarks from the great and huge responsibility of teachers nowadays especially the IRT (Islamic religious teachers). As the role model of students, they play an important task especially in producing the good Muslim character. Therefore, their job not only focuses on the content of subject but becomes wider in scope, more than other…

  14. Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids

    PubMed Central

    Zhang, Chunhua; Hicks, Glenn R.; Raikhel, Natasha V.

    2015-01-01

    The vacuole is an essential organelle for plant growth and development. It is the location for the storage of nutrients; such as sugars and proteins; and other metabolic products. Understanding the mechanisms of vacuolar trafficking and molecule transport across the vacuolar membrane is of great importance in understanding basic plant development and cell biology and for crop quality improvement. Proteins play important roles in vacuolar trafficking; such proteins include Rab GTPase signaling proteins; cargo recognition receptors; and SNAREs (Soluble NSF Attachment Protein Receptors) that are involved in membrane fusion. Some vacuole membrane proteins also serve as the transporters or channels for transport across the tonoplast. Less understood but critical are the roles of lipids in vacuolar trafficking. In this review, we will first summarize molecular composition of plant vacuoles and we will then discuss our latest understanding on the role of lipids in plant vacuolar trafficking and a surprising connection to ribosome function through the study of ribosomal mutants. PMID:27135331

  15. Modification of Baselines for Gasoline Produced or Imported for Use in Hawaii, Alaska, and U.S. Territories Additional Resources

    EPA Pesticide Factsheets

    This documents for modifications to fuel regulations to allow refiners and importers of conventional gasoline used in Hawaii, Alaska and U.S. Territories to petition EPA to change the way in which they calculate emissions from such gasoline.

  16. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  17. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    PubMed Central

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-01-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis. PMID:27708371

  18. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-10-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.

  19. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    ERIC Educational Resources Information Center

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  20. The role and importance of research and scholarship in dental education and practice.

    PubMed

    Bertolami, Charles N

    2002-08-01

    Understanding the role and importance of research and scholarship in dental education and practice requires an appreciation of dentistry as a learned profession. A foundational attribute for the members of such a profession has to be sheer intellectual curiosity--a trait as important for the clinician as for the scientist. That improved patient care results from technical advances made possible through research is not seriously disputed by anyone. What is less apparent, however, is the role for research in the education of dentists and in the broader life of dental schools. Accosting this matter requires a distinction to be made between research and scholarship: while all research qualifies as scholarship, not all scholarship qualifies as research. Though the exact role of research in the educational process is open to debate, the importance of scholarship is not. An education colored by research is one way of achieving the intellectual rigor necessary for the professional. The key is cultivating in students a taste for complexity, for problems, and for problem solving. All dental schools without exception need to help students acquire this taste. In doing so, they will generate a few scientists; but, more importantly, they will create out of every graduate a man or woman of science. Only by becoming a person of science is there any hope that the practitioner will be able to acquire and assimilate new knowledge and to adapt to the changes in practice and in the profession that the future requires.

  1. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.

    PubMed

    Simula, Alexandre; Anastasaki, Athina; Haddleton, David M

    2016-02-01

    The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h.

  2. Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth.

    PubMed

    Hubberten, Hans-Michael; Klie, Sebastian; Caldana, Camila; Degenkolbe, Thomas; Willmitzer, Lothar; Hoefgen, Rainer

    2012-05-01

    O-acetylserine (OAS) is one of the most prominent metabolites whose levels are altered upon sulfur starvation. However, its putative role as a signaling molecule in higher plants is controversial. This paper provides further evidence that OAS is a signaling molecule, based on computational analysis of time-series experiments and on studies of transgenic plants conditionally displaying increased OAS levels. Transcripts whose levels correlated with the transient and specific increase in OAS levels observed in leaves of Arabidopsis thaliana plants 5-10 min after transfer to darkness and with diurnal oscillation of the OAS content, showing a characteristic peak during the night, were identified. Induction of a serine-O-acetyltransferase gene (SERAT) in transgenic A. thaliana plants expressing the genes under the control of an inducible promoter resulted in a specific time-dependent increase in OAS levels. Monitoring the transcriptome response at time points at which no changes in sulfur-related metabolites except OAS were observed and correlating this with the light/dark transition and diurnal experiments resulted in identification of six genes whose expression was highly correlated with that of OAS (adenosine-5'-phosphosulfate reductase 3, sulfur-deficiency-induced 1, sulfur-deficiency-induced 2, low-sulfur-induced 1, serine hydroxymethyltransferase 7 and ChaC-like protein). These data suggest that OAS displays a signalling function leading to changes in transcript levels of a specific gene set irrespective of the sulfur status of the plant. Additionally, a role for OAS in a specific part of the sulfate response can be deduced.

  3. [Important role of a nurse parctitioner-like specialized registered nurse in a cardiac surgery team].

    PubMed

    Izutani, Hironori

    2012-11-01

    Team medical practice by physician, nurse, and other co-medical staffs has been performed and it provides numerous values to the patients. Japanese Ministry of Health, Labor and Welfare reported that a registered nurse was a key person of medicine. The importance of nurse's role expansion and involving medical cure by a registered nurse was emphasized in the report. Japanese nurse practitioner for a new profession is going to start in near future. In our institute, a specialized registered nurse has joined a cardiac surgery team. She plays an important role of assisting and consulting cardiac physicians for patient cure and care as a member of the surgery team. Cardiac surgery team including specialized registered nurse gives quality surgical results and patient satisfaction.

  4. Role of media and peers on body change strategies among adult men: is body size important?

    PubMed

    McCabe, Marita P; McGreevy, Shauna J

    2011-01-01

    There has been limited previous research that has examined the role of sociocultural influences on body change strategies among adult men. The current study investigated the role of specific types of messages (encouragement, teasing and modelling) from peers and the media on the strategies to change weight among adult men. Differences were evaluated between 526 men aged from 18 to 60 years from three groups (normal weight, overweight and obese) on body image, body change strategies and messages about their body received from peers and the media. Men were primarily drawn from United States, Australia and Europe. Results showed that messages received by men regarding losing weight or increasing muscle size differed according to weight. Body image and media messages were the strongest predictors of losing weight, whereas body image importance and messages from peers were the strongest predictors of increasing muscles. These findings highlight the importance of sociocultural influences on body change strategies among adult males.

  5. A study on the role and importance of irrigation management in integrated river basin management.

    PubMed

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice.

  6. Role of Ag addition in L10 ordering of FePt-based nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Vasiliu, F.; Mercioniu, I.; Crisan, O.

    2014-01-01

    The FePt system has important perspectives as high-temperature corrosion-resistant magnets. In the form of rapidly solidified melt-spun ribbons, FePt-based magnets may exhibit in certain cases a two-phase hard-soft magnetic behaviour. The present paper deals with a microstructural and magnetic study of FePtAgB alloys with increasing Ag content. The aim is to identify and confirm the effect of Ag addition in decreasing the temperature of the FePt disorder-order structural phase transformation. A detailed high-resolution transmission electron microscopy study is employed, and the alternative disposal of hard and soft regions within the two-phase microstructure is observed and interpreted with respect to the X-ray diffraction results. In the as-cast Ag-containing samples, it is shown that there is an optimum of the Ag content for which best magnetic properties are obtained. Ag addition creates a nonlinear behaviour of the coercive field and the ordering parameter, similar to the RKKY interaction-induced interlayer exchange coupling (IEC) observed in magnetic layers separated by non-magnetic spacer layers. Direct formation of the L10 phase from the as-cast state in the FePtAgB alloys is reported with magnetic parameters compatible to other exchange spring permanent nanomagnets. These findings open novel perspectives into utilization of such alloys in applications requiring magnets operating in high-temperature industrial environments.

  7. The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture.

    PubMed

    Ham, Byung-Kook; Lucas, William J

    2014-04-01

    The plant vascular system serves a vital function by distributing water, nutrients and hormones essential for growth and development to the various organs of the plant. In this review, attention is focused on the role played by the phloem as the conduit for delivery of both photosynthate and information macromolecules, especially from the context of its mediation in traits that are important to modern agriculture. Resource allocation of sugars and amino acids, by the phloem, to specific sink tissues is of importance to crop yield and global food security. Current findings are discussed in the context of a hierarchical control network that operates to integrate resource allocation to competing sinks. The role of plasmodesmata that connect companion cells to neighbouring sieve elements and phloem parenchyma cells is evaluated in terms of their function as valves, connecting the sieve tube pressure manifold system to the various plant tissues. Recent studies have also revealed that plasmodesmata and the phloem sieve tube system function cooperatively to mediate the long-distance delivery of proteins and a diverse array of RNA species. Delivery of these information macromolecules is discussed in terms of their roles in control over the vegetative-to-floral transition, tuberization in potato, stress-related signalling involving miRNAs, and genetic reprogramming through the delivery of 24-nucleotide small RNAs that function in transcriptional gene silencing in recipient sink organs. Finally, we discuss important future research areas that could contribute to developing agricultural crops with engineered performance characteristics for enhance yield potential.

  8. Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding.

    PubMed

    Zhang, Lingdi; Li, Xueni; Hill, Ryan C; Qiu, Yan; Zhang, Wenzheng; Hansen, Kirk C; Zhao, Rui

    2015-03-31

    Brr2 is a DExD/H-box RNA helicase that is responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 is a large protein (∼250 kD) that consists of an N-terminal domain (∼500 residues) with unknown function and two Hel308-like modules that are responsible for RNA unwinding. Here we demonstrate that removal of the entire N-terminal domain is lethal to Saccharomyces cerevisiae and deletion of the N-terminal 120 residues leads to splicing defects and severely impaired growth. This N-terminal truncation does not significantly affect Brr2's helicase activity. Brr2-Δ120 can be successfully assembled into the tri-snRNP (albeit at a lower level than the WT Brr2) and the spliceosomal B complex. However, the truncation significantly impairs spliceosomal activation, leading to a dramatic reduction of U5, U6 snRNAs and accumulation of U1 snRNA in the B(act) complex. The N-terminal domain of Brr2 does not seem to be directly involved in regulating U1/5'ss unwinding. Instead, the N-terminal domain seems to be critical for retaining U5 and U6 snRNPs during/after spliceosomal activation through its interaction with snRNAs and possibly other spliceosomal proteins, revealing a new role of Brr2 in spliceosomal activation in addition to U4/U6 unwinding.

  9. A role for sequestosome 1/p62 in mitochondrial dynamics, import and genome integrity.

    PubMed

    Seibenhener, M Lamar; Du, Yifeng; Diaz-Meco, Maria-Theresa; Moscat, Jorge; Wooten, Michael C; Wooten, Marie W

    2013-03-01

    As a signaling scaffold, p62/sequestosome (p62/SQSTM1) plays important roles in cell signaling and degradation of misfolded proteins. While localization of p62 to mitochondria has been reported, a description of its function once there, remains unclear. Here, we report that p62 is localized to mitochondria in non-stressed situations and demonstrate that deficiency in p62 exacerbates defects in mitochondrial membrane potential and energetics leading to mitochondrial dysfunction. We report on the relationship between mitochondrial protein import and p62. In a p62 null background, mitochondrial import of the mitochondrial transcription factor TFAM is disrupted. When p62 is returned, mitochondrial function is restored to more normal levels. We identify for the first time that p62 localization plays a role in regulating mitochondrial morphology, genome integrity and mitochondrial import of a key transcription factor. We present evidence that these responses to the presence of p62 extend beyond the protein's immediate influence on membrane potential.

  10. The role of human carboxylesterases in drug metabolism: have we overlooked their importance?

    PubMed

    Laizure, S Casey; Herring, Vanessa; Hu, Zheyi; Witbrodt, Kevin; Parker, Robert B

    2013-02-01

    Carboxylesterases are a multigene family of mammalian enzymes widely distributed throughout the body that catalyze the hydrolysis of esters, amides, thioesters, and carbamates. In humans, two carboxylesterases, hCE1 and hCE2, are important mediators of drug metabolism. Both are expressed in the liver, but hCE1 greatly exceeds hCE2. In the intestine, only hCE2 is present and highly expressed. The most common drug substrates of these enzymes are ester prodrugs specifically designed to enhance oral bioavailability by hydrolysis to the active carboxylic acid after absorption from the gastrointestinal tract. Carboxylesterases also play an important role in the hydrolysis of some drugs to inactive metabolites. It has been widely believed that drugs undergoing hydrolysis by hCE1 and hCE2 are not subject to clinically significant alterations in their disposition, but evidence exists that genetic polymorphisms, drug-drug interactions, drug-disease interactions and other factors are important determinants of the variability in the therapeutic response to carboxylesterase-substrate drugs. The implications for drug therapy are far-reaching, as substrate drugs include numerous examples from widely prescribed therapeutic classes. Representative drugs include angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antiplatelet drugs, statins, antivirals, and central nervous system agents. As research interest increases in the carboxylesterases, evidence is accumulating of their important role in drug metabolism and, therefore, the outcomes of pharmacotherapy.

  11. LKR/SDH Plays Important Roles throughout the Tick Life Cycle Including a Long Starvation Period

    PubMed Central

    Battur, Banzragch; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Battsetseg, Badgar; Taylor, DeMar; Baymbaa, Badarch; Fujisaki, Kozo

    2009-01-01

    Background Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. Methodology/Principal Findings We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. Conclusions/Significance Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods. PMID:19774086

  12. A hypomorphic allele reveals an important role of Inturned in mouse skeletal development

    PubMed Central

    Chang, Rachel; Petersen, Juliette R.; Niswander, Lee A.; Liu, Aimin

    2015-01-01

    Background Cilia are important for Hedgehog signaling in vertebrates and many genes that encode proteins involved in ciliogenesis have been studied for their roles in embryonic development. Null mutations in many of these genes cause early embryonic lethality, hence an understanding of their roles in postnatal development is limited. Results The Inturned (Intu) gene is required for ciliogenesis and here we report a recessive hypomorphic mutation, resulting in substitution of a conserved hydrophobic residue (I813N) near the C-terminus, that sheds light on later functions of Intu. Mice homozygous for this Double-thumb (IntuDtm) allele exhibit polydactyly, retarded growth, and reduced survival. There is a moderate loss of cilia in IntuDtm/Dtm mutants, and IntuI813N exhibits compromised ability to increase ciliogenesis in cultured Intu null mutant cells. IntuDtm mutants show rib defects and delay of endochondral ossification in long bones, digits, vertebrae and the sternum. These skeletal defects correlate with a decrease in Hh signaling. However, patterning of the neural tube and planar cell polarity appear to be normal. Conclusion This hypomorphic Intu allele highlights an important role of Intu in mouse skeletal development. PMID:25774014

  13. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    PubMed Central

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  14. The role of noninnocent solvent molecules in organocatalyzed asymmetric Michael addition reactions.

    PubMed

    Patil, Mahendra P; Sunoj, Raghavan B

    2008-01-01

    A proline-catalyzed asymmetric Michael addition between ketones and trans-beta-nitrostyrene was studied by using the density-functional theory with mPW1PW91 and B3LYP functionals. Improved insight into the enantio- and diastereoselective formation of gamma-nitroketones/-aldehydes is obtained through transition-state analysis. Consideration of the activation parameters obtained from gas-phase calculations and continuum solvation models failed to reproduce the reported experimental stereoselectivities for the reaction between cyclohexanone and 3-pentanone with trans-beta-nitrostyrene. The correct diastereo- and enantioselectivites were obtained only upon explicit inclusion of solvent molecules in the diastereomeric transition states that pertain to the C--C bond formation. Among the several transition-state models that were examined, the one that exhibits cooperative hydrogen-bonding interactions with two molecules of methanol could explain the correct stereochemical outcome of the Michael reaction. The change in differential stabilization that arises as a result of electrostatic and hydrogen-bonding interactions in the key transition states is identified as the contributing factor toward obtaining the correct diastereomer. This study establishes the importance of including explicit solvent molecules in situations in which the gas-phase and continuum models are inadequate in obtaining meaningful insight regarding experimental stereoselectivities.

  15. Number line estimation and mental addition: examining the potential roles of language and education.

    PubMed

    Laski, Elida V; Yu, Qingyi

    2014-01-01

    This study investigated the relative importance of language and education to the development of numerical knowledge. Consistent with previous research suggesting that counting systems that transparently reflect the base-10 system facilitate an understanding of numerical concepts, Chinese and Chinese American kindergartners' and second graders' number line estimation (0-100 and 0-1000) was 1 to 2 years more advanced than that of American children tested in previous studies. However, Chinese children performed better than their Chinese American peers, who were fluent in Chinese but had been educated in America, at kindergarten on 0-100 number lines, at second grade on 0-1000 number lines, and at both time points on complex addition problems. Overall, the pattern of findings suggests that educational approach may have a greater influence on numerical development than the linguistic structure of the counting system. The findings also demonstrate that, despite generating accurate estimates of numerical magnitude on 0-100 number lines earlier, it still takes Chinese children approximately 2 years to demonstrate accurate estimates on 0-1000 number lines, which raises questions about how to promote the mapping of knowledge across numerical scales.

  16. Thrombin Maybe Plays an Important Role in MK Differentiation into Platelets

    PubMed Central

    Yang, Xiao-Lei; Ge, Meng-Kai; Mao, De-Kui; Lv, Ying-Tao; Sun, Shu-Yan; Yu, Ai-Ping

    2016-01-01

    Objectives. After development and differentiation, megakaryocytes (MKs) can produce platelets. As is well known, thrombopoietin (TPO) can induce MKs to differentiate. The effect of thrombin on MKs differentiation is not clear. In this study, we used a human megakaryoblastic leukemia cell line (Meg-01) to assess the effect of thrombin on MKs differentiation. Methods. In order to interrogate the role of thrombin in Meg-01 cells differentiation, the changes of morphology, cellular function, and expression of diverse factors were analyzed. Results. The results show that thrombin suppresses Meg-01 cells proliferation and induces apoptosis and cell cycle arrest. Thrombin upregulates the expression of CD41b, which is one of the most important MK markers. Globin transcription factor 1 (GATA-1), an important transcriptional regulator, controls MK development and maturation. The expression of GATA-1 is also upregulated by thrombin in Meg-01 cells. The expression of B-cell lymphoma 2 (Bcl-2), an apoptosis-inhibitory protein, is downregulated by thrombin. Phosphorylated protein kinase B (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated by thrombin in Meg-01 cells. All the results are consistent with Meg-01 cells treated with TPO. Discussion and Conclusion. In conclusion, all these data indicate that thrombin maybe plays an important role in MK differentiation into platelets. However, whether the platelet-like particles are certainly platelets remains unknown. PMID:27064425

  17. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala.

    PubMed

    Myers, Brent; Greenwood-Van Meerveld, Beverley

    2009-01-01

    A common characteristic of irritable bowel syndrome (IBS) is that symptoms, including abdominal pain and abnormal bowel habits, are often triggered or exacerbated during periods of stress and anxiety. However, the impact of anxiety and affective disorders on the gastrointestinal (GI) tract is poorly understood and may in part explain the lack of effective therapeutic approaches to treat IBS. The amygdala is an important structure for regulating anxiety with the central nucleus of the amygdala facilitating the activation of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system in response to stress. Moreover, chronic stress enhances function of the amygdala and promotes neural plasticity throughout the amygdaloid complex. This review outlines the latest findings obtained from human studies and animal models related to the role of the emotional brain in the regulation of enteric function, specifically how increasing the gain of the amygdala to induce anxiety-like behavior using corticosterone or chronic stress increases responsiveness to both visceral and somatic stimuli in rodents. A focus of the review is the relative importance of mineralocorticoid receptor and glucocorticoid receptor-mediated mechanisms within the amygdala in the regulation of anxiety and nociceptive behaviors that are characteristic features of IBS. This review also discusses several outstanding questions important for future research on the role of the amygdala in the generation of abnormal GI function that may lead to potential targets for new therapies to treat functional bowel disorders such as IBS.

  18. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation.

    PubMed

    Hattangadi, Shilpa M; Burke, Karly A; Lodish, Harvey F

    2010-06-10

    Gene-targeting experiments report that the homeodomain-interacting protein kinases 1 and 2, Hipk1 and Hipk2, are essential but redundant in hematopoietic development because Hipk1/Hipk2 double-deficient animals exhibit severe defects in hematopoiesis and vasculogenesis, whereas the single knockouts do not. These serine-threonine kinases phosphorylate and consequently modify the functions of several important hematopoietic transcription factors and cofactors. Here we show that Hipk2 knockdown alone plays a significant role in terminal fetal liver erythroid differentiation. Hipk1 and Hipk2 are highly induced during primary mouse fetal liver erythropoiesis. Specific knockdown of Hipk2 inhibits terminal erythroid cell proliferation (explained in part by impaired cell-cycle progression as well as increased apoptosis) and terminal enucleation as well as the accumulation of hemoglobin. Hipk2 knockdown also reduces the transcription of many genes involved in proliferation and apoptosis as well as important, erythroid-specific genes involved in hemoglobin biosynthesis, such as alpha-globin and mitoferrin 1, demonstrating that Hipk2 plays an important role in some but not all aspects of normal terminal erythroid differentiation.

  19. The patient's role in patient safety and the importance of a dedicated vascular access team.

    PubMed

    Shemesh, David; Olsha, Oded; Goldin, Ilya; Danin, Sigalit

    2015-01-01

    The role of dialysis patients in ensuring their own safety throughout the process of vascular access construction should be far from negligible. Patients can make important contributions to their safety starting in the predialysis stage, via vascular access construction and through the experience of chronic hemodialysis. Currently, patients assume a passive role and their empowerment requires both patients and caregivers to overcome many personal and cultural barriers, thus encouraging safety-related behavior. There are many opportunities for end-stage renal failure patients to be involved in every stage of their disease. In this chapter, we discuss how hemodialysis patients can participate in patient safety, including some of the main opportunities for involvement along the care pathway from the point at which the decision is made that the patient requires vascular access surgery.

  20. Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection

    PubMed Central

    Zhou, Yaqin; Zhu, Ying

    2015-01-01

    The pro-inflammatory cytokine interleukin (IL)-32 has gained much attention recently because of its important role in the inflammatory network. Since the discovery of IL-32 in 2005, our appreciation for its diverse roles continues to grow. Recent studies have discovered the antiviral effects induced by IL-32 and its associated regulatory mechanisms. The interactions between IL-32 and various cytokines including cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interferon (IFN)-λ1, interleukin (IL)-6, and soluble IL-6 receptor have been described. This review aims to integrate these new findings into explicit concepts and raises the intriguing possibility of IL-32 as a therapeutic target. PMID:26087456

  1. Neutral and charged clusters in the atmosphere - Their importance and potential role in heterogeneous catalysis

    NASA Technical Reports Server (NTRS)

    Castleman, A. W., Jr.

    1982-01-01

    An assessment is presented of current knowledge concerning the role and importance of neutral and charged clusters in atmospheric heterogeneous catalysis, with a view to the recommendation of future studies needed for progress in the quantification of aerosol formation and catalytic reactivity. It is established that nucleation from the gaseous to the aerosol state commences via the formation of clusters among molecules participating in the phase-transformation process. Nucleation may proceed in some cases by way of the formation of prenucleation embryos, which then evolve through the energy barrier and undergo phase transformation. In other cases, cluster-cluster interaction among neutral particles or stagewise building of alternate-sign ion clusters may be important in the gas-to-particle conversion process.

  2. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion

    PubMed Central

    Liu, Chang; Xu, Hua; Zhang, Bo; Johansson, Malin E. V.; Li, Jing; Hansson, Gunnar C.

    2013-01-01

    The Na+/H+ exchanger NHE8 is expressed on the apical membrane of intestinal epithelial cells and is particularly abundant in the colon. Our previous study showed that Muc2 expression was significantly reduced in NHE8-knockout (NHE8−/−) mice, suggesting that NHE8 plays a role in mucosal protection in the colon. The current study confirms and extends our studies on the role of NHE8 in mucosal protection. The number of bacteria attached on the distal colon was significantly increased in NHE8−/− mice compared with their wild-type littermates. As expected, IL-4 expression was markedly increased in NHE8−/− mice compared with wild-type mice. Immunohistochemistry showed disorganization in the mucin layer of NHE8−/− mice, suggesting a possible direct bacteria-epithelia interaction. Furthermore, NHE8−/− mice were susceptible to dextran sodium sulfate-induced mucosal injury. In wild-type mice, dextran sodium sulfate treatment inhibited colonic NHE8 expression. In Caco-2 cells, the absence of NHE8 expression resulted in higher adhesion rates of Salmonella typhimurium but not Lactobacillus plantarum. Similarly, in vivo, S. typhimurium adhesion rate was increased in NHE8−/− mice compared with wild-type mice. Our study suggests that NHE8 plays important roles in protecting intestinal epithelia from infectious bacterial adherence. PMID:23657568

  3. Sebox plays an important role during the early mouse oogenesis in vitro.

    PubMed

    Moreno, Dafne Linda; Salazar, Zayil; Betancourt, Miguel; Casas, Eduardo; Ducolomb, Yvonne; González, Cristina; Bonilla, Edmundo

    2014-02-01

    Oogenesis is a highly complex process that requires the exquisite temporal and spatial regulation of gene expression at multiple levels. Skin-embryo-brain-oocyte homeobox (Sebox) gene encodes a transcription factor that is highly expressed in germinal vesicle stage oocytes and that plays an essential role in early embryogenesis at the 2-cell stage in the mouse. As Sebox is also expressed in mouse fetal ovaries, the aim of the present study was to study its role during the early oogenesis in vitro. Expression of Sebox was low in 15.5 to 17.5 days post coitum (dpc) ovaries, showed a peak at 18.5 dpc and then its expression decreased dramatically in newborn ovaries. Sebox expression was efficiently knocked down (>80%) in fetal mouse ovary explants in culture using RNAi technology. When fetal ovary explants were transfected with Sebox-specific RNAi, the number of oocytes at germinal vesicle stage and showing a diameter of 40-70 μm was decreased significantly to 75% after 7 days of culture relative to the negative control, and to 22.4% after 10 days of culture, thus indicating that Sebox plays an important role in the early oogenesis in mice.

  4. Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians.

    PubMed

    González-Estévez, Cristina; Arseni, Varvara; Thambyrajah, Roshana S; Felix, Daniel A; Aboobaker, A Aziz

    2009-01-01

    miRNAs are an important class of non-protein coding small RNAs whose specific functions in animals are rapidly being elucidated. It is clear that miRNAs can play crucial roles in stem cell maintenance, cell fate determination and differentiation. We use planarians, which possess a large population of pluripotent somatic stem cells, as a powerful model system to study many aspects of stem cell biology and regeneration. In particular we wish to investigate the regulatory role miRNAs may have in planarian stem cell self renewal, proliferation and differentiation. Here, we characterized the differential spatial patterns of expression of miRNAs in whole and regenerating planarians by in situ hybridization to nascent miRNA transcripts. These miRNA expression patterns are the first which have been determined for a Lophotrocozoan animal. We have characterized the expression patterns of 42 miRNAs in adult planarians, constituting a complete range of tissue specific expression patterns. We also followed miRNA expression during planarian regeneration. The majority of planarian miRNAs were expressed either in areas where stem cells (neoblasts) are located and/or in the nervous system. Some miRNAs were definitively expressed in stem cells and dividing cells as confirmed by in situ hybridisation after irradiation. We also found miRNAs to be expressed in germ stem cells of the sexual strain. Together, these data suggest an important role for miRNAs in stem cell regulation and in neural cell differentiation in planarians.

  5. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation.

    PubMed

    Huang, Huoqing; Zhang, Rui; Fu, Dawei; Luo, Jianjie; Li, Zhongyuan; Luo, Huiying; Shi, Pengjun; Yang, Peilong; Diao, Qiyu; Yao, Bin

    2011-03-01

    A novel class of cysteine phytase showing ability to degrade phytate has recently been isolated from rumen bacteria. To expand our knowledge of this enzyme class, a total of 101 distinct cysteine phytase gene fragments were identified from the ruminal genomic DNA of Bore goats and Holstein cows, and most of them shared low identities (< 50%) with known sequences. By phylogenetic analysis, these sequences were separated into three clusters that showed substantial diversity. The two most abundant cysteine phytase genes of goat rumens were cloned and their protein products were characterized. Four findings were revealed based on our results. (i) Compared with soil and water environment, where β-propeller phytase is the most important phytate-degrading enzyme, cysteine phytase is the major phytate-degrading enzyme in the anaerobic ruminal environment. (ii) Cysteine phytase fragments in the rumen contents of goat and cow have the same diversity profile, although most of the sequences and their abundance differ in the two species. (iii) Each species has their respective high-abundance genes, which may play major roles for phytate degradation. (iv) Compared with previously reported cysteine phytases that have pH optimum at 4.5, the pH optima of the two most abundant secreted goat cysteine phytases are 6.5 and 6.0, which are within the pH range found in the rumens. This study provides valuable information about the diversity, abundance and enzymatic properties of the ruminal cysteine phytases and emphasizes the important role(s) of these cysteine phytases probably in the terrestrial cycle of phosphorus.

  6. Polymer Stability Plays an Important Role in the Positional Regulation of FtsZ

    PubMed Central

    Levin, Petra Anne; Schwartz, Rachel L.; Grossman, Alan D.

    2001-01-01

    We conducted a series of experiments examining the effect of polymer stability on FtsZ localization dynamics in Bacillus subtilis. A loss-of-function mutation in ezrA, a putative polymer-destabilizing factor, suppresses the defects in FtsZ polymer stability associated with minCD overexpression. In addition, a mutation that is predicted to stabilize the FtsZ polymer leads to the formation of polar FtsZ rings. These data support the hypothesis that carefully balanced polymer stability is important for the assembly and localization of FtsZ during the bacterial cell cycle. PMID:11514533

  7. Thioesterase II of Escherichia coli Plays an Important Role in 3-Hydroxydecanoic Acid Production

    PubMed Central

    Zheng, Zhong; Gong, Qiang; Liu, Tao; Deng, Ying; Chen, Jin-Chun; Chen, Guo-Qiang

    2004-01-01

    3-Hydroxydecanoic acid (3HD) was produced in Escherichia coli by mobilizing (R)-3-hydroxydecanoyl-acyl carrier protein-coenzyme A transacylase (PhaG, encoded by the phaG gene). By employing an isogenic tesB (encoding thioesterase II)-negative knockout E. coli strain, CH01, it was found that the expressions of tesB and phaG can up-regulate each other. In addition, 3HD was synthesized from glucose or fructose by recombinant E. coli harboring phaG and tesB. This study supports the hypothesis that the physiological role of thioesterase II in E. coli is to prevent the abnormal accumulation of intracellular acyl-coenzyme A. PMID:15240249

  8. Computational modeling of tuberculous meningitis reveals an important role for tumor necrosis factor-α.

    PubMed

    El-Kebir, M; van der Kuip, M; van Furth, A M; Kirschner, D E

    2013-07-07

    Tuberculosis is a global health issue with annually about 1.5 million deaths and 2 billion infected people worldwide. Extra-pulmonary tuberculosis comprises 13% of all cases of which tuberculous meningitis is the most severe. It has a high mortality and is often diagnosed once irreversible neurological damage has already occurred. Development of diagnostic and treatment strategies requires a thorough understanding of the pathogenesis of tuberculous meningitis. This disease is characterized by the formation of a cerebral granuloma, which is a collection of immune cells that attempt to immunologically restrain, and physically contain bacteria. The cytokine tumor necrosis factor-α is known for its important role in granuloma formation. Because traditional experimental animal studies exploring tuberculous meningitis are difficult and expensive, another approach is needed to begin to address this important and significant disease outcome. Here, we present an in silico model capturing the unique immunological environment of the brain that allows us to study the key mechanisms driving granuloma formation in time. Uncertainty and sensitivity analysis reveals a dose-dependent effect of tumor necrosis factor-α on bacterial load and immune cell numbers thereby influencing the onset of tuberculous meningitis. Insufficient levels result in bacterial overgrowth, whereas high levels lead to uncontrolled inflammation being detrimental to the host. These findings have important implications for the development of immuno-modulating treatment strategies for tuberculous meningitis.

  9. Computational modeling of tuberculous meningitis reveals an important role for tumor necrosis factor-α

    PubMed Central

    El-Kebir, M.; van der Kuip, M.; van Furth, A.M.; Kirschner, D.E.

    2013-01-01

    Tuberculosis is a global health issue with annually about 1.5 million deaths and 2 billion infected people worldwide. Extra pulmonary tuberculosis comprises 13% of all cases of which tuberculous meningitis is the most severe. It has a high mortality and is often diagnosed once irreversible neurological damage has already occurred. Development of diagnostic and treatment strategies requires a thorough understanding of the pathogenesis of tuberculous meningitis. This disease is characterized by the formation of a cerebral granuloma, which is a collection of immune cells that attempt to immunologically restrain, and physically contain bacteria. The cytokine tumor necrosis factor-α is known for its important role in granuloma formation. Because traditional experimental animal studies exploring tuberculous meningitis are difficult and expensive, another approach is needed to begin to address this important and significant disease outcome. Here, we present an in silico model capturing the unique immunological environment of the brain that allows us to study the key mechanisms driving granuloma formation in time. Uncertainty and sensitivity analysis reveal a dose-dependent effect of tumor necrosis factor-α on bacterial load and immune cell numbers thereby influencing the onset of tuberculous meningitis. Insufficient levels result in bacterial overgrowth, whereas high levels lead to uncontrolled inflammation being detrimental to the host. These findings have important implications for the development of immuno-modulating treatment strategies for tuberculous meningitis. PMID:23542051

  10. The role and importance of cofilin in human sperm capacitation and the acrosome reaction.

    PubMed

    Megnagi, Bar; Finkelstein, Maya; Shabtay, Ortal; Breitbart, Haim

    2015-12-01

    The spermatozoon is capable of fertilizing an oocyte only after undergoing several biochemical changes in the female reproductive tract, referred to as capacitation. The capacitated spermatozoon interacts with the egg zona pellucida and undergoes the acrosome reaction, which enables its penetration into the egg and fertilization. Actin dynamics play a major role throughout all these processes. Actin polymerization occurs during capacitation, whereas prior to the acrosome reaction, F-actin must undergo depolymerization. In the present study, we describe the presence of the actin-severing protein, cofilin, in human sperm. We examined the function and regulation of cofilin during human sperm capacitation and compared it to gelsolin, an actin-severing protein that was previously investigated by our group. In contrast to gelsolin, we found that cofilin is mainly phosphorylated/inhibited at the beginning of capacitation, and dephosphorylation occurs towards the end of the process. In addition, unlike gelsolin, cofilin phosphorylation is not affected by changing the cellular levels of PIP2. Despite the different regulation of the two proteins, the role of cofilin appears similar to that of gelsolin, and its activation leads to actin depolymerization, inhibition of sperm motility and induction of the acrosome reaction. Moreover, like gelsolin, cofilin translocates from the tail to the head during capacitation. In summary, gelsolin and cofilin play a similar role in F-actin depolymerization prior to the acrosome reaction but their pattern of phosphorylation/inactivation during the capacitation process is different. Thus, for the sperm to achieve high levels of F-actin along the capacitation process, both proteins must be inactivated at different times and, in order to depolymerize F-actin, both must be activated prior to the acrosome reaction.

  11. Role of inorganic additives on the ballistic performance of gun propellant formulations.

    PubMed

    Damse, R S; Sikder, A K

    2008-06-15

    This paper explores the possibility of increasing the ballistic performance of gun propellant with the addition of inorganic additives viz. aluminium and ammonium perchlorate. Compositions based on propellant NQ containing additional aluminium and ammonium perchlorate in different parts were studied theoretically and experimentally. Performance in respect of ballistic parameters, sensitivity, thermal characteristics, thermal stability and mechanical properties are evaluated and compared with that of the conventional triple base propellant NQ. Experimental data on comparative study indicate that the compositions containing aluminium and ammonium perchlorate are superior to propellant NQ in respect of energy.

  12. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis.

    PubMed

    Shen, Xiaoyan; Wang, Zenglan; Song, Xiaofeng; Xu, Jiajia; Jiang, Chunyun; Zhao, Yanxiu; Ma, Changle; Zhang, Hui

    2014-10-01

    Plants can successfully improve their resistance to previously lethal salinity stress by a short exposure to low levels of salt stress, a process known as salt acclimation (SA). In spite of its fundamental significance in theoretical study and agricultural practice, the molecular mechanisms underlying plant SA remain elusive. In this study, we found that salt acclimated Arabidopsis young seedlings can survive subsequent 200 mM NaCl stress. RNA-seq was performed to analyze the genome-wide transcriptional response under SA conditions. Among 518 differentially expressed genes (DEGs) under SA, 366 up-regulated genes were enriched for cell wall biosynthesis, osmoregulation, oxidative stress, or transcription factors. Seven DEGs participate in the synthesis of lignin and 24 DEGs encode plant cell wall proteins, suggesting the importance of cell wall remodeling under SA. Furthermore, in comparison to non-acclimated salt stress, 228 of 245 DEGs were repressed by acclimated salt stress, including many genes related to ethylene biosynthesis and signaling pathway. In addition, MAPK6, a major component of the ethylene signaling pathway, was found to play a crucial role in SA. Our transcriptomic analysis has provided important insight on the roles of transcription factors, cell wall remodeling, and the ethylene biosynthesis and signaling pathways during SA in Arabidopsis.

  13. Role of additives on tensile strength of wood-plastic composite

    NASA Astrophysics Data System (ADS)

    Khan, Mubarak A.; Ali, K. M. Idriss

    Wood-plastic composite (WPC) formation has been studied with simul+styrene system at various compositions of styrene with methanol as the swelling solvent. Effect of additives, e.g. multifunctional monomers (MFM) and oligomers used in very low quantity (1% v/v) on the polymer loading (PL) and tensile strength (TS) of the WPC has been elaborately investigated. Enhanced PL and TS values are observed. Inorganic co-additives like Lithium (Li +), Copper (Cu 2+) and acid (H +) and urea (U) used in combinations with additives (MFM or oligomers) have influenced the results of PL and TS in these systems. Li + ion has been a good replacement for H + ion; U has substantially enhanced the PL values with retention of the TS values of WPC. Co-additive Cu 2+ used in these system can act as a preservative and protective agent for WPC.

  14. [Does the diuretic effect of calcium inhibitors play an important role in the hypertensive efficacy?].

    PubMed

    Maldonado Martin, A; Gil Extremera, B; Rubio Luengo, M A

    1995-04-08

    Calcium ions play an important role in the pathophysiology of hypertension. Calcium antagonists, a group of first line drugs in the treatment of hypertension, reduce the intracellular content of calcium in vascular smooth muscle cells, and decrease the peripheral vascular resistance and blood pressure. These drugs differ from other vasodilators in that they also have natriuretic effects; thus they can affect the kidney on three levels: Renal haemodynamics are affected by increased renal blood flow, and increased glomerular filtration rate. Changes in the renin-angiotensin system can decrease aldosterone secretion. Finally, they affect sodium management by acting directly on the renal tubule, increasing sodium excretion and inhibiting tubular reabsorption of this ion. The natriuretic effect of calcium antagonists is independent of the subject's sodium balance. The vasodilating action of these drugs is therefore accompanied by a natriuretic effect that makes satisfactory control of hypertension possible without placing the patient on a low-salt or salt-free diet.

  15. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases

    PubMed Central

    Rokicki, Marek; Wojtacha, Jacek; Dżeljijli, Agata

    2016-01-01

    The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions. PMID:27212975

  16. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection.

    PubMed

    Kwiecinski, Jakub; Jin, Tao; Josefsson, Elisabet

    2014-12-01

    Staphylococcus aureus is the most common cause of skin infections that range from mild diseases up to life-threatening conditions. Mechanisms of S. aureus virulence in those infections remain poorly studied. To investigate the impact of S. aureus surface proteins on skin infection, we used mouse models of skin abscess formation and skin necrosis, induced by a subcutaneous injection of bacteria. In the skin abscess model, a sortase-deficient S. aureus strain lacking all of its cell-wall anchored proteins was less virulent than its wild-type strain. Also, strains specifically lacking protein A, fibronecting binding proteins, clumping factor A or surface protein SasF were impaired in their virulence. When a model of dermonecrosis was studied, the S. aureus surface proteins could not be shown to be involved. In summary, surface proteins play an important role in virulence of S. aureus skin abscess infections, but not in formation of skin necrosis.

  17. Importance And Role Of Competence In Professional Career Of Product Develop Engineers

    NASA Astrophysics Data System (ADS)

    Miltenović, Aleksandar; Banić, Milan; Miltenović, Vojislav

    2015-07-01

    Product development is a creative task where is systematically created a new product, which makes possible to firms to offer attractive, innovative and market oriented products. In conditions of fierce competition and saturated markets, companies that do not innovate are stagnating and disappear from the market. Innovation is therefore every intervention which can reduce production costs, enables optimum utilization of available human, energy and material resources, improve product quality, improve the placement, which leads to an increase in competitiveness. A prerequisite for fulfillment of the above-mentioned tasks is that the companies have engineers with the appropriate competencies, which are able to, through creativity, innovation and fascinating technique of creating new or improving existing products and lunch it on the market. The paper discusses the role and importance of the competences that are necessary for a successful professional career of product development engineers.

  18. The scourge of antibiotic resistance: the important role of the environment.

    PubMed

    Finley, Rita L; Collignon, Peter; Larsson, D G Joakim; McEwen, Scott A; Li, Xian-Zhi; Gaze, William H; Reid-Smith, Richard; Timinouni, Mohammed; Graham, David W; Topp, Edward

    2013-09-01

    Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.

  19. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network

    PubMed Central

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-01

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism. PMID:28106078

  20. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network.

    PubMed

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-20

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism.

  1. Important roles of P2Y receptors in the inflammation and cancer of digestive system

    PubMed Central

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-01-01

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future. PMID:26908460

  2. The hypocretin/orexin system: an increasingly important role in neuropsychiatry.

    PubMed

    Chen, Quanhui; de Lecea, Luis; Hu, Zhian; Gao, Dong

    2015-01-01

    Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.

  3. TGF-β signaling plays an important role in resisting γ-irradiation

    SciTech Connect

    An, You Sun; Kim, Mi-Ra; Lee, Seung-Sook; Lee, Yun-Sil; Chung, Eunkyung; Song, Jie-Young; Lee, Jeeyong; Yi, Jae Youn

    2013-02-15

    Transforming growth factor-β1 (TGF-β1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-β1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-β1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-β receptors, we investigated the involvement of TGF-β signaling in the effects of γ-irradiation. We found that canonical TGF-β signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-β receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-β1. Our data thus indicate that TGF-β1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival. - Highlights: ► TGF-β1 pretreatment inhibits γ-irradiation-induced apoptosis. ► TGF-β signaling reduces γ-irradiation-induced γ-H2AX foci formation. ► de novo protein synthesis is necessary for TGF-β1-induced radio-resistance.

  4. ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity1[W][OA

    PubMed Central

    Macho, Alberto P.; Boutrot, Freddy; Rathjen, John P.; Zipfel, Cyril

    2012-01-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis. PMID:22730426

  5. Latinas and Postpartum Depression: Role of Partner Relationship, Additional Children, and Breastfeeding

    ERIC Educational Resources Information Center

    Hassert, Silva; Kurpius, Sharon E. Robinson

    2011-01-01

    Breastfeeding, additional children, and partner relationship predicted postpartum depression among 59 Latinas who had an infant who was 6 months old or younger. The most powerful predictor was conflict with partner. Counselors working with Latinas experiencing postpartum depression should explore the partner relationship, particularly relationship…

  6. Testing a Gender Additive Model: The Role of Body Image in Adolescent Depression

    ERIC Educational Resources Information Center

    Bearman, Sarah Kate; Stice, Eric

    2008-01-01

    Despite consistent evidence that adolescent girls are at greater risk of developing depression than adolescent boys, risk factor models that account for this difference have been elusive. The objective of this research was to examine risk factors proposed by the "gender additive" model of depression that attempts to partially explain the increased…

  7. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions.

    PubMed

    Tsou, Jen-Hui; Yang, Ying-Chen; Pao, Ping-Chieh; Lin, Hui-Ching; Huang, Nai-Kuei; Lin, Shih-Ting; Hsu, Kuei-Sen; Yeh, Che-Ming; Lee, Kuen-Haur; Kuo, Chu-Jen; Yang, De-Ming; Lin, Jiann-Her; Chang, Wen-Chang; Lee, Yi-Chao

    2017-04-01

    Rnf112 is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is regulated during brain development. Our previous study has revealed that Rnf112 can promote neuronal differentiation by inhibiting the progression of the cell cycle in cell models. In this study, we further revealed the important functions of Rnf112 in embryo development and in adult brain. Our data showed that most of the Rnf112 (-/-) embryos exhibited blood vascular defects and died in utero. Upon further investigation, we found that the survival rate of homozygous Rnf112 knockout mice in 129/sv and C57BL/6 mixed genetic background was increased. The survived newborns of Rnf112 (-/-) mice manifested growth retardation as indicated by smaller size and a reduced weight. Although the overall organization of the brain did not appear to be severely affected in Rnf112 (-/-) mice, using in vivo 3D MRI imaging, we found that when compared to wild-type littermates, brains of Rnf112 (-/-) mice were smaller. In addition, Rnf112 (-/-) mice displayed impairment of brain functions including motor balance, and spatial learning and memory. Our results provide important aspects for the study of Rnf112 gene functions.

  8. Role of nitrogen additive and temperature on growth of diamond films from nanocrystalline to polycrystalline.

    PubMed

    Chunjiu, Tang; José, Grácio; Neves, A J; Hugo, Calisto; Fernandes, A J S; Lianshe, Fu; Sérgio, Pereira; Liping, Gu; Gil, Cabral; Carmo, M C

    2010-04-01

    In this work, the coupled effect of nitrogen addition into CH4/H2 mixtures and surface temperature on diamond growth ranging from large grained polycrystalline to fine-grained nanocrystalline were investigated. Moreover a new growth parameter window for simultaneous growth of nanocrystalline diamond (NCD) and {100} textured large-grained diamond films was developed by using a high power high pressure 5 kW microwave plasma assisted chemical vapor deposition (MPCVD) reactor. Scanning electron microscope (SEM), Raman spectroscopy, and X-ray diffraction (XRD) are employed to characterize the morphology, crystalline quality and texture of the diamond samples. Our results can be grouped by two catalogs: First, deposition run without and with 0.24% N2 addition, while keeping all the other parameters constant, resulted in a high quality transparent large-grained polycrystalline diamond film and a NCD film, respectively. This result clearly evidences nitrogen induced nanocrystallinity. Then, two different substrate surface temperatures were obtained by overlapping a small silicon slice on the top centre of a large silicon wafer of 5.08 cm in diameter in only one deposition run using 0.24% N2 addition and the same set of parameters as the previous runs. From this growth run, a NCD film of growth rate around 2.3 microm/h was obtained at low temperature, while a {100} textured large-grained diamond film of much higher growth rate about 10.4 microm/h was grown at high temperature. These results not only confirm the reproducibility of NCD by N2 addition, but also indicate that distinct growth modes were involved at different substrate temperatures with 0.24% nitrogen addition, or coupled effect of nitrogen addition and temperature on the growth of CVD diamond films happened. Finite element method (FEM) analysis was employed to simulate the temperature gradient and distribution on these two samples, and based on this simulation and other simulation results in the literature, the

  9. The continuing important role of radionuclide generator systems for nuclear medicine.

    PubMed

    Knapp, F F; Mirzadeh, S

    1994-10-01

    In this review, the continuing importance and status of development of radionuclide generator systems for nuclear medicine are discussed. Radioisotope costs and availability are two important factors, and both nuclear reactors and accelerator facilities are required for production of the parent radioisotopes. Radionuclide generator research is currently focused on the development of generators which provide radioisotopes for positron emission tomography (PET) applications and daughter radioisotopes for various therapeutic applications which decay primarily by particle emission. Generator research continues to be influenced by developments and requirements of complementary technologies, such as the increasing availability of PET. In addition, the availability of a wide spectrum of tumor-specific antibodies, fragments, and peptides for radioimmunodiagnosis and radioimmunotherapy has stimulated the need for generator-derived radioisotopes. The advantages of treatment of arthritis of the synovial joints with radioactive particles (radiation synovectomy) may be expected to be of increasing importance as the elderly population increases, and many of these agents are prepared using generator-derived radioisotopes such as yttrium-90 and rhenium-188. Therapeutic use of the "in vivo generator" is a new approach, where the less radiotoxic parent radioisotope is used to prepare tissue-specific therapeutic agents. Following in vivo site localization, decay of the parent provides the daughter for therapy at the target site. The principal foundation of most diagnostic agents will continue to require technetium-99m from the molybdenum-99/technetium-99m ("Moly") generator. With the limited availability of nuclear reactors and facilities necessary for production and processing of fission 99mTc and the significant issues and problems associated with radioactive waste processing, however, the possibility of utilizing lower specific activity 99Mo produced from neutron activation of

  10. LOX-1 plays an important role in ischemia-induced angiogenesis of limbs.

    PubMed

    Shiraki, Takeru; Aoyama, Takuma; Yokoyama, Chiharu; Hayakawa, Yuka; Tanaka, Toshiki; Nishigaki, Kazuhiko; Sawamura, Tatsuya; Minatoguchi, Shinya

    2014-01-01

    LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic

  11. Structure and Function of Human Xylulokinase, an Enzyme with Important Roles in Carbohydrate Metabolism*

    PubMed Central

    Bunker, Richard D.; Bulloch, Esther M. M.; Dickson, James M. J.; Loomes, Kerry M.; Baker, Edward N.

    2013-01-01

    d-Xylulokinase (XK; EC 2.7.1.17) catalyzes the ATP-dependent phosphorylation of d-xylulose (Xu) to produce xylulose 5-phosphate (Xu5P). In mammals, XK is the last enzyme in the glucuronate-xylulose pathway, active in the liver and kidneys, and is linked through its product Xu5P to the pentose-phosphate pathway. XK may play an important role in metabolic disease, given that Xu5P is a key regulator of glucose metabolism and lipogenesis. We have expressed the product of a putative human XK gene and identified it as the authentic human d-xylulokinase (hXK). NMR studies with a variety of sugars showed that hXK acts only on d-xylulose, and a coupled photometric assay established its key kinetic parameters as Km(Xu) = 24 ± 3 μm and kcat = 35 ± 5 s−1. Crystal structures were determined for hXK, on its own and in complexes with Xu, ADP, and a fluorinated inhibitor. These reveal that hXK has a two-domain fold characteristic of the sugar kinase/hsp70/actin superfamily, with glycerol kinase as its closest relative. Xu binds to domain-I and ADP to domain-II, but in this open form of hXK they are 10 Å apart, implying that a large scale conformational change is required for catalysis. Xu binds in its linear keto-form, sandwiched between a Trp side chain and polar side chains that provide exquisite hydrogen bonding recognition. The hXK structure provides a basis for the design of specific inhibitors with which to probe its roles in sugar metabolism and metabolic disease. PMID:23179721

  12. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori.

    PubMed

    Park, Ah-Mee; Hagiwara, Satoru; Hsu, Daniel K; Liu, Fu-Tong; Yoshie, Osamu

    2016-04-01

    We studied the role of galectin-3 (Gal3) in gastric infection by Helicobacter pylori We first demonstrated that Gal3 was selectively expressed by gastric surface epithelial cells and abundantly secreted into the surface mucus layer. We next inoculated H. pylori Sydney strain 1 into wild-type (WT) and Gal3-deficient mice using a stomach tube. At 2 weeks postinoculation, the bacterial cells were mostly trapped within the surface mucus layer in WT mice. In sharp contrast, they infiltrated deep into the gastric glands in Gal3-deficient mice. Bacterial loads in the gastric tissues were also much higher in Gal3-deficient mice than in WT mice. At 6 months postinoculation,H. pylori had successfully colonized within the gastric glands of both WT and Gal3-deficient mice, although the bacterial loads were still higher in the latter. Furthermore, large lymphoid clusters mostly consisting of B cells were frequently observed in the gastric submucosa of Gal3-deficient mice.In vitro, peritoneal macrophages from Gal3-deficient mice were inefficient in killing engulfed H. pylori Furthermore, recombinant Gal3 not only induced rapid aggregation of H. pylori but also exerted a potent bactericidal effect on H. pylori as revealed by propidium iodide uptake and a morphological shift from spiral to coccoid form. However, a minor fraction of bacterial cells, probably transient phase variants of Gal3-binding sugar moieties, escaped killing by Gal3. Collectively, our data demonstrate that Gal3 plays an important role in innate immunity to infection and colonization of H. pylori.

  13. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  14. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  15. Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth

    PubMed Central

    Nieto-Sotelo, Jorge; Martínez, Luz María; Ponce, Georgina; Cassab, Gladys I.; Alagón, Alejandro; Meeley, Robert B.; Ribaut, Jean-Marcel; Yang, Runying

    2002-01-01

    HSP101 belongs to the ClpB protein subfamily whose members promote the renaturation of protein aggregates and are essential for the induction of thermotolerance. We found that maize HSP101 accumulated in mature kernels in the absence of heat stress. At optimal temperatures, HSP101 disappeared within the first 3 days after imbibition, although its levels increased in response to heat shock. In embryonic cells, HSP101 concentrated in the nucleus and in some nucleoli. Hsp101 maps near the umc132 and npi280 markers on chromosome 6. Five maize hsp101-m-::Mu1 alleles were isolated. Mutants were null for HSP101 and defective in both induced and basal thermotolerance. Moreover, during the first 3 days after imbibition, primary roots grew faster in the mutants at optimal temperature. Thus, HSP101 is a nucleus-localized protein that, in addition to its role in thermotolerance, negatively influences the growth rate of the primary root. HSP101 is dispensable for proper embryo and whole plant development in the absence of heat stress. PMID:12119379

  16. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  17. Bmi1 plays an important role in dentin and mandible homeostasis by maintaining redox balance

    PubMed Central

    Yin, Ying; Xue, Xian; Wang, Qian; Chen, Ning; Miao, Dengshun

    2016-01-01

    To explore whether polycomb repressor Bmi1 plays an important role in dentin and mandible development homeostasis by maintaining redox balance, 3-week-old Bmi1 gene knockout (Bmi1-/-) mice were treated with the antioxidant N-acetylcysteine (NAC) for 2 weeks in their drinking water and phenotypes of the tooth and mandibles were compared with vehicle-treated Bmi1-/- mice and wild-type mice by radiograph, histochemistry and immunohistochemistry. Alterations of oxidative stress, DNA damage, cell proliferation and cell cycle-related parameters were also examined in mandibles. Results showed that the tooth volume and the dentin sialoprotein immunopositive areas, the cortical thickness, alveolar bone volume, osteoblast number and activity, and mRNA expression levels of Runx2, alkaline phosphatase and type I collagen were all reduced significantly in Bmi1-/- mice compared with their wild-type littermates, whereas these parameters were increased significantly in NAC-treated Bmi1-/- mice compared with vehicle-Bmi1-/- mice, although they were not normalized. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were reduced, DNA damage markers including γ-H2AX and 8-oxoguanine levels were increased, the number of Ki67 positive cells was decreased, whereas protein expression levels of p16, p19, p21, p27 and p53 were up-regulated in mandibles from Bmi1-/- mice compared with those from wild-type mice; alterations of these antioxidative enzyme activities, DNA damage markers, cell proliferation and cell cycle-related parameters were all partially rescued by the treatment with antioxidant NAC in Bmi1 deficient mice. These results demonstrated that Bmi1 deficiency resulted in defects in dentin and alveolar bone formation, while the treatment with antioxidant could improve these defects obviously. Therefore, our results indicate that Bmi1 plays an important role in stimulating dentin formation and alveolar bone formation by maintaining redox homeostasis

  18. Role of additives in wood polymer composites. Relationship to analogous radiation grafting and curing processes

    NASA Astrophysics Data System (ADS)

    Ng, Loo-Teck; Garnett, John L.; Mohajerani, Shahroo

    1999-08-01

    Wood polymer composites (WPC) were prepared by impregnating an Australian softwood, Pinus radiata with methyl methacrylate which subsequently underwent in situ polymerisation utilising either γ radiation or the catalyst-accelerator method. Novel additives including thermal initiator, crosslinking agents, an inclusion compound and oxygen scavenger were incorporated to improve the polymer loading and properties of the resulting WPC. Polymer loadings of WPC obtained utilising the accelerator-catalyst method corresponded well with those obtained using γ radiation with 20 kGy radiation dose. The mechanistic significance of the current work in analogous radiation grafting and curing processes is discussed.

  19. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy.

    PubMed

    Zhang, Lei; Zhang, La; Li, Yin; Guo, Xin-Feng; Liu, Xu-Sheng

    2016-11-01

    Compared with herbal drugs, medicine processed from animals (animal medicine) was thought to have more bioactive substances and higher activities. Biotransformation effect often plays an important role in their effect. However, researches about effect of animal medicine on diabetic nephropathy and applying animal medicine as natural bio-transformer were seldom reported. The purpose of this paper was to reveal the use of Bombyx Mori L. on diabetic nephropathy from ancient to modern times. The classical literature indicated that Saosi Decoction (), which contains Bombyx Mori L. or silkworm cocoon, was applied to treat disorders congruent with modern disease diabetic nephropathy from the Ming to Qing Dynasty in ancient China. Modern studies showed that Bombyx Mori L. contains four main active constituents. Among these, 1-deoxynojirimycin (1-DNJ) and quercetin showed promising potential to be new agents in diabetic nephropathy treatment. The concentrations of 1-DNJ and the activities of quercetin in Bombyx Mori L. are higher than in mulberry leaves, because of the biotransformation in the Bombyx Mori L. body. However, these specifific components need further human and mechanistic studies to determine their therapeutic potential for this challenging condition.

  20. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-10-01

    Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia.

  1. Heterocystous Cyanobacteria in Microbialites Play an Important Role in N2 Fixation and Carbonate Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Alcantara-Hernandez, R. J.

    2015-12-01

    Lake Alchichica is a maars type crater-lake located in Central Mexico (pH > 8.9, EC ~13.39 mS cm-1). This limnological system harbors two types of microbialites that can be found around the entire perimeter of the lake (Fig. 1). These structures are representative examples of complex and diverse microbiological assemblages, where microbial activity promotes lithification by trapping, binding and/or precipitating detrital or chemical sediments. Previous studies determined that the microbialites of Lake Alchichica fix N2 to thrive under the N-limiting conditions of the lake, and that these nitrogenase activity peaks are related to heterocystous cyanobacteria that couple photosynthesis to N2 fixation during daylight periods. Heterocystous cyanobacteria (Nostocales) together with Oscillatoriales (non-heterocystous filamentous cyanobacteria) and other cyanobacterial groups have been described as the most abundant cyanobacteria in Alchichica microbialites, and in lithifying mats. Our results suggest that heterocystous cyanobacteria play an important role not only by fixing N2 for biomass construction, but also because their heterocysts host in their external cell membranes main sites for carbonate mineral precipitation including calcium carbonates and siderite. Previous research has shown that the heterocyst is the specialized site for cellular respiration associated to the pH decrease of vegetative/photosynthetic cells, contributing thus to the precipitation of carbonates and the accretion of the organosedimentary structure

  2. Adiponectin plays an important role in efficient energy usage under energy shortage.

    PubMed

    Saito, Kiyomi; Arata, Satoru; Hosono, Tomohiko; Sano, Yoshihiro; Takahashi, Katsuhiko; Choi-Miura, Nam-Ho; Nakano, Yasuko; Tobe, Takashi; Tomita, Motowo

    2006-07-01

    Adiponectin is an adipose tissue-specific secretory protein known to be an insulin-sensitizing protein. In this study, we generated adiponectin sense and antisense transgenic (Tg) mice to investigate whether adiponectin plays a role in the regulation of energy homeostasis during the growth stage. Spontaneous motor activity of antisense Tg mice were markedly reduced during fasting, particularly in young female mice, compared with wild type (Wt) and sense Tg mice. Furthermore, both body weight and adipose tissue mass of the antisense female Tg mice drastically reduced during fasting. To examine the relationship between the collapse of abdominal white adipose tissue (WAT) and serum adiponectin level, we measured the expression of genes related to energy expenditure, such as uncoupling protein (UCP). Notably, the mRNA of UCP1 in the WAT of antisense Tg female mice was markedly less than that of Wt mice and the UCP1 mRNA was strongly increased during fasting. These findings suggest that the serum adiponectin is important to maintaining energy homeostasis under energy shortage conditions, such as over female pubertal development.

  3. [The role and importance of the microRNAs in the diagnosis and development of diseases].

    PubMed

    Rico-Rosillo, María Guadalupe; Vega-Robledo, Gloria Bertha; Oliva-Rico, Diego

    2014-01-01

    MicroRNAs are small non-coding ribonucleic acids of endogenous nature. They persist in various groups of eukaryotes and perform critical functions during the development and the cell homeostasis. They have from 19 to 25 nucleotides in length and regulate the translation of the target RNA messenger (mRNA). MicroRNAs can inhibit its translation, stabilizing it or inducing its degradation. They regulate the genetic expression and are involved in the control of cellular functions (the differentiation, the proliferation, the apoptosis and the metabolism). They are also involved in the response to stress, the angiogenesis, the oncogenesis and in cardiovascular functions. That is the reason why their abnormal expressions are associated to many pathological conditions. The aim of this review was to describe the importance of microRNAs, their biological origin and their role in various diseases, such as cancer, diabetes, obesity, and neurological disorders. The microRNAs are an attractive therapeutic target because it has been observed that just one of them can regulate several genes and it could influence all the signaling route; besides, they could inhibit themselves in vivo without adverse effects related to the usual therapeutic agents. Since they can be detected in serum, plasma, urine and saliva samples in a stable, reproducible and consistent form between individuals of the same species, we expect them to be useful as biomarkers for the clinical diagnosis and the monitoring of diseases.

  4. Transposons play an important role in the evolution and diversification of centromeres among closely related species.

    PubMed

    Gao, Dongying; Jiang, Ning; Wing, Rod A; Jiang, Jiming; Jackson, Scott A

    2015-01-01

    Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8) from the African cultivated rice (O. glaberrima) and two subspecies of the Asian cultivated rice (O. sativa), indica and japonica. We detected much higher transposon contents (>69%) in centromere regions than in the whole genomes of O. sativa ssp. japonica and O. glaberrima (~35%). We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP) data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions.

  5. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance

    PubMed Central

    Liu, Zhi-Qiang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2008-01-01

    AIM: To determine whether efflux systems contribute to multidrug resistance of H pylori. METHODS: A chloramphenicol-induced multidrug resistance model of six susceptible H pylori strains (5 isolates and H pylori NCTC11637) was developed. Multidrug-resistant (MDR) strains were selected and the minimal inhibitory concentration (MIC) of erythromycin, metronidazole, penicillin G, tetracycline, and ciprofloxacin in multidrug resistant strains and their parent strains was determined by agar dilution tests. The level of mRNA expression of hefA was assessed by fluorescence real-time quantitative PCR. A H pylori LZ1026 knockout mutant (ΔH pylori LZ1026) for (putative) efflux protein was constructed by inserting the kanamycin resistance cassette from pEGFP-N2 into hefA, and its susceptibility profiles to 10 antibiotics were evaluated. RESULTS: The MIC of six multidrug-resistant strains (including 5 clinical isolates and H pylori NCTC11637) increased significantly (≥ 4-fold) compared with their parent strains. The expression level of hefA gene was significantly higher in the MDR strains than in their parent strains (P = 0.033). A H pylori LZ1026 mutant was successfully constructed and the ΔH pylori LZ1026 was more susceptible to four of the 10 antibiotics. All the 20 strains displayed transcripts for hefA that confirmed the in vitro expression of these genes. CONCLUSION: The efflux pump gene hefA plays an important role in multidrug resistance of H pylori. PMID:18777600

  6. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    PubMed

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-02

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC.

  7. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

    PubMed Central

    2014-01-01

    QTL, and also suggests a model for the potential role of additive expression in the formation and conservation of heterosis for GY via dominant, multigenic quantitative trait loci. Our findings contribute to a deeper understanding of the multifactorial phenomenon of heterosis, and thus to the breeding of new high yielding varieties. PMID:24693880

  8. [Roles of additives and surface control in slurry atomization]. Quarterly report, March 1992

    SciTech Connect

    Not Available

    1992-08-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particle Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.

  9. [The role of additives in bio-mass coal briquette on sulfur retention enhancement].

    PubMed

    Lu, Yongqi; Xu, Kangfu; Ma, Yongliang; Wei, Tiejun; Hao, Jiming

    2002-01-30

    The research first conducted the sulfur-fixing experiment of bio-mass coal briquette in a tubular furnace. The impacts of three additives Al2O3, Fe2O3 and MnO2 on the sulfur retention by calcium-based sorbent in briquette were investigated, and only Al2O3 displayed the enhancement of sulfur retention. The TGA experiment was further carried out, and proved that the high-temperature decomposition of CaSO4 in the deoxidization atmosphere was effectively inhibited with the addition of Al2O3. The XPS and XRD analyses of briquette ash showed that due to the interaction among Al2O3, CaSO4 and CaO, the composite CaSO4.3CaO.3Al2O3 which has more thermal stability was formed. With its wrapping or binding onto the surface of CaSO4 crystal, the decomposition of CaSO4 was mitigated.

  10. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    PubMed

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters.

  11. Role of Free Radicals/Reactive Oxygen Species in MeHg Photodegradation: Importance of Utilizing Appropriate Scavengers.

    PubMed

    Han, Xiaoxiao; Li, Yanbin; Li, Dan; Liu, Chang

    2017-04-04

    A variety of free radicals (FR)/reactive oxygen species (ROS) have been proposed to dominate methylmercury (MeHg) photodegradation, primarily based on the results of FR/ROS scavenger addition experiments. However, in addition to eliminating FR/ROS, the added scavengers may also affect the experimental results by altering some water chemical properties, resulting in a misleading assessment of the importance of FR/ROS. In this study, 20 common FR/ROS scavengers were evaluated in terms of their influence on light absorbance, pH, MeHg analysis, MeHg-dissolved organic matter (DOM) complexation, and the scavenger-induced degradation of MeHg. Only nine scavengers were identified to be appropriate for investigating MeHg photodegradation. By utilizing these appropriate scavengers, direct photodegradation of MeHg-DOM complexes was found to be the major pathway of MeHg photodegradation in Laoshan Reservoir water and Stone Old Beach seawater. In contrast, MeHg photodegradation in Ink River water primarily occurs through both ·OH and (3)DOM* mediated indirect pathways and direct photodegradation of MeHg-DOM complexes. The diverse pathways of MeHg photodegradation in the tested water may be due to differences in water chemical properties. A severe overestimation of the role of FR/ROS was observed when several improper but commonly used scavengers were adopted, highlighting the necessity of utilizing appropriate scavengers.

  12. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy.

    PubMed

    Mao, Bin-Hsu; Tsai, Jui-Chen; Chen, Chun-Wan; Yan, Shian-Jang; Wang, Ying-Jan

    2016-10-01

    Safety concerns have been raised over the extensive applications of silver nanoparticles (AgNPs) because nano dimensions make them highly bioactive, being potentially harmful to the exposed humans. Surface physico-chemistry (shape, surface charge, chemical composition, etc.) that mainly dictates nano-bio interactions is relevant for influencing their biocompatibility and toxicity. Although the hazardousness of AgNPs has been demonstrated in vitro and in vivo, mechanistic understanding of the toxicity particularly at the molecular and organismal levels, in addition to oxidative stress and silver ion dissolution, has remained unclear. A growing body of research has elucidated that autophagy, being activated in response to exposure to various nanomaterials, may serve as a cellular defense mechanism against nanotoxicity. Recently, autophagy activation was shown to correlate with AgNPs exposure; however, the subsequent autophagosome-lysosome fusion was defective. As autophagy plays a crucial role in selective removal of stress-mediated protein aggregates and injured organelles, AgNPs-induced autophagic flux defect may consequently lead to aggravated cytotoxic responses. Furthermore, we suggest that p62 accumulation resulting from defective autophagy may also potentially account for AgNPs cytotoxicity. Intriguingly, AgNPs have been shown to interfere with ubiquitin modifications, either via upregulating levels of enzymes participating in ubiquitination, or through impairing the biological reactivity of ubiquitin (due to formation of AgNPs-ubiquitin corona). Ubiquitination both confers selectivity to autophagy as well as modulates stabilization, activation, and trafficking of proteins involved in autophagic clearance pathways. In this regard, we offer a new perspective that interference of AgNPs with ubiquitination may account for AgNPs-induced defective autophagy and cytotoxic effects.

  13. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  14. Important role of pedestal ion temperature in the ELM mitigation by supersonic molecular beam injection

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Yu, D. L.; Chen, C. Y.; Wei, Y. L.; Zhong, W. L.; Zou, X. L.; Zuo, H. Y.; Du, J. L.; Liu, L.; Dong, C. F.; Shi, Z. B.; Zhao, K. J.; Feng, B. B.; Zhou, Y.; Wang, Z. H.; Xu, M.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Yao, L. H.; Ding, X. T.; Dong, J. Q.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-12-01

    Edge localized mode (ELM) is successfully mitigated by helium and deuterium supersonic molecular beam injections (SMBIs) on HL-2A. During the ELM mitigation by SMBIs, gradients of ion temperature (T i) and electron density are softened in the pedestal. It has been observed that the averaged gradient of the T i decreases around 44% and the well depth of radial electric field (E r) is reduced by the SMBI during ELM mitigation. Furthermore, at least 20% decrements of T i have to be attained to achieve a noticeable increase (decrease) of the ELM frequency (amplitude). In addition, the duration of ELM mitigation with helium SMBI is much longer than that with deuterium, likely due to the higher level of recycling neutral gas compared to that of deuterium; in the case of ELM mitigation by helium SMBI, the recovery duration of the density gradient is much shorter (10-20 ms) than that of T i (up to 40 ms or longer), indicating the importance of the T i in the ELM mitigation by SMBI. Finally, it has been observed that the T i is reduced before the beginning of the ELM mitigation, suggesting that the mechanism of the ELM mitigation by SMBI is closely related to the cooling effect.

  15. The Endothelial Tyrosine Phosphatase SHP-1 Plays an Important Role for Vascular Haemostasis in TNFα-Induced Inflammation In Vivo

    PubMed Central

    Koch, Elisabeth; Pircher, Joachim; Czermak, Thomas; Gaitzsch, Erik; Alig, Stefan; Mannell, Hanna; Niemeyer, Markus; Krötz, Florian; Wörnle, Markus

    2013-01-01

    Introduction. Inflammation and endothelium-derived superoxides are important pathomechanisms in atherothrombotic diseases. We could previously show that the tyrosine phosphatase SHP-1 acts as a negative regulator in endothelial superoxide production. In this study we investigated the influence of SHP-1 on platelet-endothelium interaction and arterial thrombosis in TNFα-induced endothelial inflammation in vivo. Methods. Arteriolar thrombosis and platelet rolling in vivo were investigated in C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. Results. Inhibition of SHP-1 by the specific pharmacological inhibitor sodium stibogluconate did not significantly enhance platelet-endothelium interaction in vivo under physiological conditions but led to an augmented fraction of rolling platelets in TNFα-induced systemic inflammation. Accordingly, ferric-chloride-induced arteriolar thrombus formation, which was already increased by SHP-1 inhibition, was further enhanced in the setting of TNFα-induced inflammation. Platelet aggregation in vitro as well as ex vivo was not influenced by SHP-1-inhibition. In cultured endothelial cells, sodium stibogluconate increased TNFα-induced surface expression of p-selectin and von Willebrand factor. Additionally, TNFα increased SHP-1 activity and protein expression. Conclusions. The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular hemostasis in vivo, which is crucial in TNFα-induced endothelial inflammation where it may serve as an autoinhibitory molecule to prevent excess inflammatory response and thrombus formation. PMID:23766558

  16. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  17. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  18. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT.

    PubMed

    Pekmezci, Melike; Rice, Terri; Molinaro, Annette M; Walsh, Kyle M; Decker, Paul A; Hansen, Helen; Sicotte, Hugues; Kollmeyer, Thomas M; McCoy, Lucie S; Sarkar, Gobinda; Perry, Arie; Giannini, Caterina; Tihan, Tarik; Berger, Mitchel S; Wiemels, Joseph L; Bracci, Paige M; Eckel-Passow, Jeanette E; Lachance, Daniel H; Clarke, Jennifer; Taylor, Jennie W; Luks, Tracy; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2017-03-02

    The "integrated diagnosis" for infiltrating gliomas in the 2016 revised World Health Organization (WHO) classification of tumors of the central nervous system requires assessment of the tumor for IDH mutations and 1p/19q codeletion. Since TERT promoter mutations and ATRX alterations have been shown to be associated with prognosis, we analyzed whether these tumor markers provide additional prognostic information within each of the five WHO 2016 categories. We used data for 1206 patients from the UCSF Adult Glioma Study, the Mayo Clinic and The Cancer Genome Atlas (TCGA) with infiltrative glioma, grades II-IV for whom tumor status for IDH, 1p/19q codeletion, ATRX, and TERT had been determined. All cases were assigned to one of 5 groups following the WHO 2016 diagnostic criteria based on their morphologic features, and IDH and 1p/19q codeletion status. These groups are: (1) Oligodendroglioma, IDH-mutant and 1p/19q-codeleted; (2) Astrocytoma, IDH-mutant; (3) Glioblastoma, IDH-mutant; (4) Glioblastoma, IDH-wildtype; and (5) Astrocytoma, IDH-wildtype. Within each group, we used univariate and multivariate Cox proportional hazards models to assess associations of overall survival with patient age at diagnosis, grade, and ATRX alteration status and/or TERT promoter mutation status. Among Group 1 IDH-mutant 1p/19q-codeleted oligodendrogliomas, the TERT-WT group had significantly worse overall survival than the TERT-MUT group (HR: 2.72, 95% CI 1.05-7.04, p = 0.04). In both Group 2, IDH-mutant astrocytomas and Group 3, IDH-mutant glioblastomas, neither TERT mutations nor ATRX alterations were significantly associated with survival. Among Group 4, IDH-wildtype glioblastomas, ATRX alterations were associated with favorable outcomes (HR: 0.36, 95% CI 0.17-0.81, p = 0.01). Among Group 5, IDH-wildtype astrocytomas, the TERT-WT group had significantly better overall survival than the TERT-MUT group (HR: 0.48, 95% CI 0.27-0.87), p = 0.02). Thus, we present evidence that in

  19. Additional approach to PDT: type III mechanism and the role of native free radicals

    NASA Astrophysics Data System (ADS)

    Gal, Dezso; Kriska, Tamas; Shutova, Tatiana G.; Nemeth, Andras

    2001-04-01

    It has been suggested by us earlier that interactions of excited triplet sensitizer (3PS) and native free radicals compete with Type I (sensitizer radical mediated) and Type II (singlet oxygen mediated) mechanisms during PDT. Evidence such as fall in the overall radical concentration in vivo ( in mice tumors) during PDT and in the life time of 3PS caused by free radicals supported this assumption In addition, following results have been obtained recently. 1.) Excited Photofrin II and m-THPC affected luminol dependent chemiluminescence (CL) generated by respiratory burst of macrophages like free radical inhibitors. 2.) Quantification of spin trapping for chemical and in vitro systems by kinetic ESR spectrometry yielded detailed knowledge of triplet-doublet interactions 3.)Measurements in open systems (tank reactor) yielded data for the interactions between 3PS and peroxy type radicals 4.)Simulation of experimental data based on mechanisms suggested gave fair agreement. Based on experimental results new PS-s called Antioxidant Carrier Sensiters (ACS-s) have been devised, synthesized and tested one of them showing enhanced activity for PDT.

  20. White coat hypertension is more risky than prehypertension: important role of arterial wave reflections.

    PubMed

    Sung, Shih-Hsien; Cheng, Hao-Min; Wang, Kang-Ling; Yu, Wen-Chung; Chuang, Shao-Yuan; Ting, Chih-Tai; Lakatta, Edward G; Yin, Frank C P; Chou, Pesus; Chen, Chen-Huan

    2013-06-01

    Arterial aging may link cardiovascular risk to white coat hypertension (WCH). The aims of the present study were to investigate the role of arterial aging in the white coat effect, defined as the difference between office and 24-hour ambulatory systolic blood pressures, and to compare WCH with prehypertension (PH) with respect to target organ damage and long-term cardiovascular mortality. A total of 1257 never-been-treated volunteer subjects from a community-based survey were studied. WCH and PH were defined by office and 24-hour ambulatory blood pressures. Left ventricular mass index, carotid intima-media thickness, estimated glomerular filtration rate, carotid-femoral pulse wave velocity, carotid augmentation index, amplitude of the reflection pressure wave, and 15-year cardiovascular mortality were determined. Subjects with WCH were significantly older and had greater body mass index, blood pressure values, intima-media thickness, carotid-femoral pulse wave velocity, augmentation index, amplitude of the backward pressure wave, and a lower estimated glomerular filtration rate than PH. Amplitude of the backward pressure wave was the most important independent correlate of the white coat effect in multivariate analysis (model r(2)=0.451; partial r(2)/model r(2)=90.5%). WCH had significantly greater cardiovascular mortality than PH (hazard ratio, 2.94; 95% confidence interval, 1.09-7.91), after accounting for age, sex, body mass index, smoking, fasting plasma glucose, and total cholesterol/high-density lipoprotein-cholesterol ratio. Further adjustment of the model for amplitude of the backward pressure wave eliminated the statistical significance of the WCH effect. In conclusion, the white coat effect is mainly caused by arterial aging. WCH carries higher risk for cardiovascular mortality than PH, probably via enhanced wave reflections that accompany arterial aging.

  1. Basal Transcription Factor 3 Plays an Important Role in Seed Germination and Seedling Growth of Rice

    PubMed Central

    Wang, Wenyi; Xu, Mengyun; Wang, Ya

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3Ri) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3Ri seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3Ri seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3Ri lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  2. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases

    PubMed Central

    Rižner, Tea Lanišnik

    2016-01-01

    Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis. PMID:26924986

  3. Scutellarin’s Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα

    PubMed Central

    Chen, Chen; Yang, Jian; Li, Jiaxun; Hu, Na; Li, Yang; Zhang, Dongmei; Guo, Tao; Liu, Xuan; Yang, Weimin

    2015-01-01

    Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia reoxygenation (HR) injury in vitro. In rat MIR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size and restored the endothelium-dependent vasodilation of isolated CA rings. PKG inhibitor Rp-8-Br-cGMP (50 μg/kg, iv) could ameliorate the protective effects of SCU. Increase in phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a main substrate of PKG, at Ser 239 was observed in both heart tissue and serum of SCU-treated animals. In cultured human cardiac microvascular endothelial cells (HCMECs), SCU (1 and 10 μM) dose-dependently protected cell viability and increased the mRNA and protein level of PKG-Iα against HR injury. The activity of PKG was also increased by SCU treatment. The activation of PKG–1α was then studied using targeted proteomic analysis (MRM-MS) checking the phosphorylation state of the autophosphorylation domain (aa42-94). Significant decrease in phosphorylation of PKG-Iα at Ser50, Ser72, Ser89 was induced by HR injury while SCU treatment significantly increased the phosphorylation of PKG-Iα, not only at Ser50, Ser72 and Ser89, but also at Ser44 and Thr58 (two novel phosphorylation domains). Our results demonstrate PKG-Iα might play an important role in the protective effects of SCU on ED against MIR injury. PMID:26440524

  4. Emerging concept for the role of photorespiration as an important part of abiotic stress response.

    PubMed

    Voss, I; Sunil, B; Scheibe, R; Raghavendra, A S

    2013-07-01

    When plants are exposed to stress, generation of reactive oxygen species (ROS) is often one of the first responses. In order to survive, cells attempt to down-regulate the production of ROS, while at the same time scavenging ROS. Photorespiration is now appreciated as an important part of stress responses in green tissues for preventing ROS accumulation. Photorespiratory reactions can dissipate excess reducing equivalents and energy either directly (using ATP, NAD(P)H and reduced ferredoxin) or indirectly (e.g., via alternative oxidase (AOX) and providing an internal CO2 pool). Photorespiration, however, is also a source of H2 O2 that is possibly involved in signal transduction, resulting in modulation of gene expression. We propose that photorespiration can assume a major role in the readjustment of redox homeostasis. Protection of photosynthesis from photoinhibition through photorespiration is well known. Photorespiration can mitigate oxidative stress under conditions of drought/water stress, salinity, low CO2 and chilling. Adjustments to even mild disturbances in redox status, caused by a deficiency in ascorbate, AOX or chloroplastic NADP-malate dehydrogenase, comprise increases in photorespiratory components such as catalase, P-protein of glycine decarboxylase complex (GDC) and glycine content. The accumulation of excess reducing equivalents or ROS in plant cells also affects mitochondria. Therefore, a strong interaction between the chloroplast redox status and photorespiration is not surprising, but highlights interesting properties evident in plant cells. We draw attention to the fact that a complex network of multiple and dynamic systems, including photorespiration, prevents oxidative damage while optimising photosynthesis. Further experiments are necessary to identify and validate the direct targets of redox signals among photorespiratory components.

  5. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo.

    PubMed

    Kominami, Tetsuya; Akagawa, Megumi; Takata, Hiromi

    2006-02-01

    To gain information on the process of ectoderm patterning, the animal halves of sea urchin embryos were isolated at various stages, and their morphology was examined when control embryos developed into pluteus larvae. The animal halves separated at the 8-cell stage developed into 'dauerblastula', without showing any conspicuous ectoderm differentiation. In contrast, some of the animal halves isolated at the 60-cell stage (after the sixth cleavage) formed a ciliated band and oral opening, suggesting that some patterning signal was transmitted from the vegetal to animal hemisphere during early cleavage. Further patterning of the animal hemisphere did not seem to occur until hatching, since both the animal halves isolated at the 60-cell stage and hatching stage showed the same degree of ectoderm patterning. After hatching, the later animal halves were isolated, the more patterned ectoderm they formed. The animal halves isolated just prior to gastrulation differentiated well-patterned ectoderm. It is of note, however, that the level of separation was a more crucial factor than the timing of separation; even the animal fragments of newly hatched embryos differentiated well-patterned ectoderm if they had been separated at a subequatorial level. This suggests that the signal for ectoderm patterning is transmitted over the equator after hatching, and once the cells in the supra-equatorial region receive the signal, they, in turn, can transmit the signal upwardly. Interestingly, if the third cleavage plane was shifted toward the vegetal pole, the isolated animal pole-side fragments developed into 'embryoids' with fully patterned ectoderm. These results indicate that not the micromere descendants but the subequatorial cytoplasm plays an important role in ectoderm patterning.

  6. LvDJ-1 plays an important role in resistance against Vibrio alginolyticus in Litopenaeus vannamei.

    PubMed

    Huang, Mingzhu; Liu, Yuan; Xie, Chenying; Wang, Wei-Na

    2015-05-01

    DJ-1 was first identified as an oncogene that transformed mouse NIH3T3 cells in cooperation with activated Ras. It has since exhibited a variety of functions in a range of organisms. In this study, the DJ-1 gene in Litopenaeus vannamei (LvDJ-1) was identified and characterized. A recombinant protein LvDJ-1 was produced in Pichia pastoris. LvDJ-1 expression in vivo was knocked down by dsRNA-mediated RNA interference (RNAi), which led to significantly decreased levels of LvDJ-1 mRNA and protein. When the L. vannamei were challenged with RNAi and Vibrio alginolyticus, the transcription and expression of copper zinc superoxide dismutase (LvCZSOD) in the hepatopancreas were dramatically lower in shrimp with knocked down LvDJ-1 than in controls. Transcription and expression of P53 (LvP53) were significantly higher in shrimp lacking LvDJ-1 than in controls. Hepatopancreas samples were analyzed using real time polymerase chain reaction and Western blot. Moreover, blood samples from the shrimp, assessed with flow cytometry, showed significant increases in respiratory burst and apoptosis in those lacking LvDJ-1 compared to the controls. Cumulative mortality in the shrimp lacking LvDJ-1 was significantly different from that in the control group after challenge with V. alginolyticus. Altogether, the results prove that LvDJ-1 regulates apoptosis and antioxidant activity, and that these functions play an important role in L. vannamei resistance against V. alginolyticus.

  7. Sex and Sex-Role Identification: An Important Distinction for Organizational Research.

    ERIC Educational Resources Information Center

    Powell, Gary N.; Butterfield, R. Anthony

    Studies which have investigated males' and females' attitudes and behavior in organizations have yielded apparently contradictory results. In some studies, individuals have followed traditional sex-role stereotypes; in others, they have not. A proposed explanation for these inconsistencies is that sex-role identification is a more important…

  8. The SmpB-tmRNA tagging system plays important roles in Streptomyces coelicolor growth and development.

    PubMed

    Yang, Chunzhong; Glover, John R

    2009-01-01

    The ssrA gene encodes tmRNA that, together with a specialized tmRNA-binding protein, SmpB, forms part of a ribonucleoprotein complex, provides a template for the resumption of translation elongation, subsequent termination and recycling of stalled ribosomes. In addition, the mRNA-like domain of tmRNA encodes a peptide that tags polypeptides derived from stalled ribosomes for degradation. Streptomyces are unique bacteria that undergo a developmental cycle culminating at sporulation that is at least partly controlled at the level of translation elongation by the abundance of a rare tRNA that decodes UUA codons found in a relatively small number of open reading frames prompting us to examine the role of tmRNA in S. coelicolor. Using a temperature sensitive replicon, we found that the ssrA gene could be disrupted only in cells with an extra-copy wild type gene but not in wild type cells or cells with an extra-copy mutant tmRNA (tmRNA(DD)) encoding a degradation-resistant tag. A cosmid-based gene replacement method that does not include a high temperature step enabled us to disrupt both the ssrA and smpB genes separately and at the same time suggesting that the tmRNA tagging system may be required for cell survival under high temperature. Indeed, mutant cells show growth and sporulation defects at high temperature and under optimal culture conditions. Interestingly, even though these defects can be completely restored by wild type genes, the DeltassrA strain was only partially corrected by tmRNA(DD). In addition, wildtype tmRNA can restore the hygromycin-resistance to DeltassrA cells while tmRNA(DD) failed to do so suggesting that degradation of aberrant peptides is important for antibiotic resistance. Overall, these results suggest that the tmRNA tagging system plays important roles during Streptomyces growth and sporulation under both normal and stress conditions.

  9. The SmpB-tmRNA Tagging System Plays Important Roles in Streptomyces coelicolor Growth and Development

    PubMed Central

    Yang, Chunzhong; Glover, John R.

    2009-01-01

    The ssrA gene encodes tmRNA that, together with a specialized tmRNA-binding protein, SmpB, forms part of a ribonucleoprotein complex, provides a template for the resumption of translation elongation, subsequent termination and recycling of stalled ribosomes. In addition, the mRNA-like domain of tmRNA encodes a peptide that tags polypeptides derived from stalled ribosomes for degradation. Streptomyces are unique bacteria that undergo a developmental cycle culminating at sporulation that is at least partly controlled at the level of translation elongation by the abundance of a rare tRNA that decodes UUA codons found in a relatively small number of open reading frames prompting us to examine the role of tmRNA in S. coelicolor. Using a temperature sensitive replicon, we found that the ssrA gene could be disrupted only in cells with an extra-copy wild type gene but not in wild type cells or cells with an extra-copy mutant tmRNA (tmRNADD) encoding a degradation-resistant tag. A cosmid-based gene replacement method that does not include a high temperature step enabled us to disrupt both the ssrA and smpB genes separately and at the same time suggesting that the tmRNA tagging system may be required for cell survival under high temperature. Indeed, mutant cells show growth and sporulation defects at high temperature and under optimal culture conditions. Interestingly, even though these defects can be completely restored by wild type genes, the ΔssrA strain was only partially corrected by tmRNADD. In addition, wildtype tmRNA can restore the hygromycin-resistance to ΔssrA cells while tmRNADD failed to do so suggesting that degradation of aberrant peptides is important for antibiotic resistance. Overall, these results suggest that the tmRNA tagging system plays important roles during Streptomyces growth and sporulation under both normal and stress conditions. PMID:19212432

  10. The importance of job autonomy, cognitive ability, and job-related skill for predicting role breadth and job performance.

    PubMed

    Morgeson, Frederick P; Delaney-Klinger, Kelly; Hemingway, Monica A

    2005-03-01

    Role theory suggests and empirical research has found that there is considerable variation in how broadly individuals define their jobs. We investigated the theoretically meaningful yet infrequently studied relationships between incumbent job autonomy, cognitive ability, job-related skill, role breadth, and job performance. Using multiple data sources and multiple measurement occasions in a field setting, we found that job autonomy, cognitive ability, and job-related skill were positively related to role breadth, accounting for 23% of the variance in role breadth. In addition, role breadth was positively related to job performance and was found to mediate the relationship between job autonomy, cognitive ability, job-related skill, and job performance. These results add to our understanding of the factors that predict role breadth, as well as having implications for how job aspects and individual characteristics are translated into performance outcomes and the treatment of variability in incumbent reports of job tasks.

  11. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening.

    PubMed

    Kou, Xiaohong; Liu, Chen; Han, Lihua; Wang, Shuang; Xue, Zhaohui

    2016-06-01

    NAC proteins comprise a large family of transcription factors that play important roles in diverse physiological processes during development. To explore the role of NAC transcription factors in the ripening of fruits, we predicted the secondary and tertiary structure as well as regulative function of the SNAC4 (SlNAC48, Accession number: NM 001279348.2) and SNAC9 (SlNAC19, Accession number: XM 004236996.2) transcription factors in tomato. We found that the tertiary structure of SNAC9 was similar to that of ATNAP, which played an important role in the fruit senescence and was required for ethylene stimulation. Likewise, the bio-function prediction results indicated that SNAC4 and SNAC9 participated in various plant hormone signaling and senescence processes. More information about SNACs was obtained by the application of VIGS (virus-induced gene silencing). The silencing of SNAC4 and SNAC9 dramatically repressed the LeACS2, LeACS4 and LeACO1 expression, which consequently led to the inhibition of the ripening process. The silencing of SNACs down-regulated the mRNA levels of the ethylene perception genes and, at the same time, suppressed the expression of ethylene signaling-related genes except for LeERF2 which was induced by the silencing of SNAC4. The expressions of LeRIN were different in two silenced fruits. In addition, the silencing of SNAC4 reduced its mRNA level, while the silencing of SNAC9 induced its expression. Furthermore, the silencing of LeACS4, LeACO1 and LeERF2 reduced the expression of SNAC4 and SNAC9, while the silencing of NR induced the expression of all of them. In particular, these results indicate that SNAC transcription factors bind to the promoter of the ethylene synthesis genes in vitro. This experimental evidence demonstrates that SNAC4 and SNAC9 could positively regulate the tomato fruit ripening process by functioning upstream of ethylene synthesis genes. These outcomes will be helpful to provide a theoretical foundation for further

  12. Indirect role of microRNAs and transcription factors in the regulation of important cancer genes: A network biology approach.

    PubMed

    Ahmadi, M; Jafari, R; Marashi, S A; Farazmand, A

    2015-10-30

    Cancer is one of the leading causes of death worldwide. Although the mechanisms of gene regulation in cancer have been the subject of intense investigation during the last decades, the precise role of regulatory processes in cancer is largely unknown. More specifically, it is not completely understood how microRNAs and transcription factors regulate and influence the cancer-related processes. In the present study, using cancer-specific biological networks we examine the role of microRNAs and transcription factors (TFs) in regulation of important cancer genes. The importance measures which are used in this study consider both network structure information and biological data on miRNA- and TF-based gene regulation. By analyzing cancer-specific PPI, signaling and metabolic networks, it was shown that microRNAs and transcription factors tend to regulate those genes which are in the neighborhood of important components of cancer-specific PPI, signaling, and metabolic networks. The role of microRNAs was found to be particularly important, which confirms our previously-published results on the importance of microRNAs in detecting important network components. Moreover, we highlight that the miRNAs appear to apply their function via regulating the "neighbors" of important cancer genes, which implies their indirect role in cancer, and presumably, in fine-tuning the effect of other cancer-related genes.

  13. Effect on Public Policy from Macro to Nano Aspects of the Deadliest Illness of Mankind: Important Role of Physics

    NASA Astrophysics Data System (ADS)

    Saxena, Arjun

    2013-04-01

    The effect on public policy of macro to nano aspects of the deadliest Illness known to mankind is given. The focus is on the important role of physics which has been ignored so far to solve its problems. It is now acknowledged that the deadliest illness is actually a group of illnesses which are lumped together as mental illnesses. They are the most widespread and damaging illnesses in the world. Their impact on the entire society globally is huge because they afflict majority of the people irrespective of race, religion, sex, age, education and economic status. In USA alone, the number afflicted according to the official count is about 80 million (out of a total population of 315 million), and it is projected to increase to about 25 to 30% of the population within two decades. A model is given in this paper to address some of the key issues from macro to nano aspects of the deadliest illness. The information given in this paper is scientific though easy to understand. It will help the elected policy makers, public, physicists, neuroscientists, doctors, and care giving personnel world wide. The model explains the missing links in the diagnosis and treatment of mental illnesses. Additional evidence from other recent studies shall also be given.

  14. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport.

    PubMed

    Aoi, Wataru; Marunaka, Yoshinori

    2014-01-01

    Protons dissociated from organic acids in cells are partly buffered. If not, they are transported to the extracellular fluid through the plasma membrane and buffered in circulation or excreted in urine and expiration gas. Several transporters including monocarboxylate transporters and Na(+)/H(+) exchanger play an important role in uptake and output of protons across plasma membranes in cells of metabolic tissues including skeletal muscle and the liver. They also contribute to maintenance of the physiological pH of body fluid. Therefore, impairment of these transporters causes dysfunction of cells, diseases, and a decrease in physical performance associated with abnormal pH. Additionally, it is known that fluid pH in the interstitial space of metabolic tissues is easily changed due to little pH buffering capacitance in interstitial fluids and a reduction in the interstitial fluid pH may mediate the onset of insulin resistance unlike blood containing pH buffers such as Hb (hemoglobin) and albumin. In contrast, habitual exercise and dietary intervention regulate expression/activity of transporters and maintain body fluid pH, which could partly explain the positive effect of healthy lifestyle on disease prognosis.

  15. Role and importance of polymorphisms with respect to DNA methylation for the expression of CYP2E1 enzyme.

    PubMed

    Naselli, Flores; Catanzaro, Irene; Bellavia, Daniele; Perez, Alessandro; Sposito, Laura; Caradonna, Fabio

    2014-02-15

    Different individuals possess slightly different genetic information and show genetically-determined differences in several enzyme activities due to genetic variability. Following an integrated approach, we studied the polymorphisms and methylation of sites contained in the 5' flanking region of the metabolizing enzyme CYP2E1 in correlation to its expression in both tumor and non-neoplastic liver cell lines, since to date little is known about the influence of these (epi)genetic elements in basal conditions and under induction by the specific inductor and a demethylating agent. In treated cells, reduced DNA methylation, assessed both at genomic and gene level, was not consistently associated with the increase of enzyme expression. Interestingly, the Rsa/Pst haplotype differentially influenced CYP2E1 enzyme expression. In addition, regarding the Variable Number of Tandem Repeats polymorphism, cells with A4/A4 genotype showed a greater expression inhibition (ranging from 20% to 30%) compared with others carrying the A2/A2 one, while those cells bringing A2/A3 genotype showed an increase of expression (of 25%, about). Finally, we demonstrated for the first time that the A2 and A3 CYP2E1 alleles play a more important role in the expression of the enzyme, compared with other (epi)genetic factors, since they are binding sites for trans-acting proteins.

  16. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  17. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival

    PubMed Central

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  18. Role of Academic Self-Efficacy in Moderating the Relation between Task Importance and Test Anxiety

    ERIC Educational Resources Information Center

    Nie, Youyan; Lau, Shun; Liau, Albert K.

    2011-01-01

    Emphasizing task importance, which is regarded as a way of motivating engaged behavior, may increase an individual's anxiety. The present research investigated whether academic self-efficacy could moderate the maladaptive relation between task importance and test anxiety. 1978 and 1670 Grade 9 Singaporean students participated in a survey related…

  19. The Role of Goal Importance in Predicting University Students' High Academic Performance

    ERIC Educational Resources Information Center

    Kyle, Vanessa A.; White, Katherine M.; Hyde, Melissa K.; Occhipinti, Stefano

    2014-01-01

    We examined goal importance, focusing on high, but not exclusive priority goals, in the theory of planned behaviour (TPB) to predict students' academic performance. At the beginning of semester, students in a psychology subject (N = 197) completed TPB and goal importance items for achieving a high grade. Regression analyses revealed partial…

  20. The Importance of a Role-Specific, In-Hospital Ward Clerk Education Program.

    PubMed

    Kennedy, Maggie

    2016-01-01

    Ward clerks are essential members of the healthcare team, providing administrative and organizational support to acute care units and clinics. This role influences such matters as nurses' direct patient-care time, timeliness of patient discharges, and patient safety. To support ward clerks in the varying responsibilities and complex scope of this role, a formal orientation and ongoing education program is imperative. Whereas corporate orientation informs new employees of overall organizational processes, a ward clerk-specific workplace education program prepares individuals for the demands of the position, ultimately supporting the healthcare team and patient safety.

  1. [Biological role and importance in the skin metabolism of vitamin C].

    PubMed

    Kleszczewska, Ewa

    2007-12-01

    Vitamins are a group of compounds indispensable for the development, normal growth and functioning of the human body. Lack of vitamins causes serious diseases for human, even though small amounts of them are required to maintain good health. Therefore there is growing interest conceding the role of vitamin C in biochemical-physiological conditions. This article reviews the role of water--soluble vitamin C in metabolic processes and discusses criteria used for recommended ingestion and presents recommendations for vitamin C intake. In the paper is discussed in detail the influence of level vitamin C (physico-chemical aspects) on the metabolism in skin.

  2. The Importance of Minority Role Models in Higher Education Mass Communication Curriculum.

    ERIC Educational Resources Information Center

    Reppert, James E.

    The broadcast journalism sequence at Southern Arkansas University allows African-American students as many opportunities as possible to review role models from different perspectives. The school has an enrollment of 18% Black students. Each area studied in the introduction to mass media course involves sections dealing with multicultural and…

  3. Effects of the Interparental Relationship on Adolescents' Emotional Security and Adjustment: The Important Role of Fathers

    ERIC Educational Resources Information Center

    Suh, Go Woon; Fabricius, William V.; Stevenson, Matthew M.; Parke, Ross D.; Cookston, Jeffrey T.; Braver, Sanford L.; Saenz, Delia S.

    2016-01-01

    We examined the mediational roles of multiple types of adolescents' emotional security in relations between multiple aspects of the interparental relationship and adolescents' mental health from ages 13 to 16 (N = 392). General marital quality, nonviolent parent conflict, and physical intimate partner violence independently predicted mental…

  4. Interleukin-13 as an important cytokine: A review on its roles in some human diseases.

    PubMed

    Seyfizadeh, Narges; Seyfizadeh, Nayer; Gharibi, Tohid; Babaloo, Zohreh

    2015-12-01

    Interleukin-13 (IL-13) as a pleiotropic cytokine acts through the IL-13Ra1/IL-4Ra complex to induce activation responses which contribute to the inflammatory diseases. Genetic polymorphisms in IL-13 and its receptor components have been proved to be associated with higher disease prevalence rates. Animal models such as in IL-13 deficient mice and transgenic animals also have been confirmed the critical role of this cytokine in the immune responses, mostly by IL-13 neutralization and IL-13/IL-4 dual neutralization strategies. This review highlights IL-13 structure as well as its pivotal roles in the normal physiologic and pathologic states. It is followed by a section on the recent findings on IL-13 receptors and signalling mechanisms to briefly summarize its functions in the immune systems. IL-13 roles in the human diseases such as asthma, systematic sclerosis, and some inflammatory diseases are described concisely. Finally some of the ongoing therapeutic applications are presented to comprehensively review IL-13 mediator roles.

  5. Adolescent Psychosocial Competence: The Importance and Role of Regard for Parents.

    ERIC Educational Resources Information Center

    Sim, Tick N.

    2000-01-01

    Examined the role of regard for parents in Singapore adolescents' psychosocial competence, as indicated by self-esteem and susceptibility to antisocial peer pressure. Found that regard for parents was positively related to self-esteem and negatively associated with antisocial susceptibility. Regard for parents moderated the relation between…

  6. Does Morphology Play an Important Role in L2 Chinese Vocabulary Acquisition?

    ERIC Educational Resources Information Center

    Zhang, Haomin

    2016-01-01

    The present study examined the role of morphological awareness in second language (L2) Chinese vocabulary acquisition through an investigation of linguistic universality and specificity underlying morphological awareness. Morphological awareness in this study was conceptualized as a universal and sharable cognitive resource as well as a…

  7. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Shiun; Hu, Chi-Chang; Li, Yuan-Yao

    In this work, the rate of heat generation in the overcharge period for 103450 prismatic lithium ion batteries (LIBs) of the LiCoO 2-graphite jellyroll type with a basic electrolyte consisting of 1 M LiPF 6-PC/EC/EMC (1/3/5 in weight ratio) has been found to be more important than the gas evolution which was traditionally considered as the main reason in the overcharge protection mechanism. The cell voltage, charge current, and skin temperature were monitored during the charge process. For a single battery or batteries in parallel, LIBs without any additives is an acceptable design if the cell voltage is not charged above 4.55 V under the common charge program. The rate of heat generation from the polymerization of 3 wt% cyclohexyl benzene (CHB) is high enough to cause the explosion or thermal runaway of a battery, which is not found for an LIB containing 2 wt% CHB + 1 wt% tert-amyl benzene (TAB). In the 12 V overcharge test at 1C, the thermal fuse was broken by the high skin temperature (ca. 80 °C) due to the polymerization of 3 wt% CHB, which was also the case for LIBs containing 2 wt% CHB + 1 wt% TAB. The disconnection of the thermal fuse, however, did not interrupt the thermal runaway of LIBs without any additives because the battery voltage was too high (ca. 4.9 V). The influence of specific surface area of active materials in the anode on the polymerization kinetics of additives has to be carefully considered in order to add correct amount of overcharge protection agents.

  8. Why are we weighting? The role of importance ratings in quality of life measurement.

    PubMed

    Trauer, T; Mackinnon, A

    2001-01-01

    Many Quality of Life (QoL) instruments ask respondents to rate a number of life domains in terms of satisfaction and personal importance, and derive weighted satisfaction scores by multiplying the two ratings. This paper demonstrates that this practice is both undesirable and unnecessary. QoL domains are selected on the basis of their inherent importance, rendering separate importance rating partially redundant. Weighted scores present difficulties in interpretation. Further, we show that multiplicative composites have undesirable psychometric properties. There is evidence that multiplicative composites have little or no advantage over unweighted ratings in correlational or predictive studies. Apart from the face validity and the intuitive appeal of multiplying satisfaction ratings by importance ratings, there appear to be no sound reasons for doing so, and several good reasons not to do so.

  9. Neutrophil extracellular Taps play an important role in clearance of Streptococcus suis in vivo.

    PubMed

    Zhao, Jianqing; Lin, Lan; Fu, Lei; Han, Li; Zhang, Anding

    2016-04-01

    Streptococcus suis infection induces formation of neutrophil extracellular traps (NETs) in vitro; however, the contribution of NETs-mediated killing to the pathogenesis of S. suis in vivo is yet to be elicited. The findings of the present study indicated that extracellular DNA fiber can be induced in a murine model in response to S. suis infection. A nuclease that destroys their structure was used to evaluate the role of NETs on S. suis infection. Treatment with nuclease resulted in a greater bacteria load and higher serum TNF-α concentrations in response to S. suis infection, indicating that NETs structure played an essential role in S. suis clearance and inflammation. Furthermore, nuclease treatment resulted in more severe clinical signs during and higher mortality from S. suis infection. These findings indicated that NETs structure contributes to protection against S. suis infection.

  10. Role of Y{sub 2}O{sub 3}, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    SciTech Connect

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-23

    Zirconia mullite (MUZ), Y{sub 2}O{sub 3}-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y{sub 2}O{sub 3}, CaO, MgO added MUZ composites. The Y{sub 2}O{sub 3}, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  11. Mesoporous Titania Powders: The Role of Precursors, Ligand Addition and Calcination Rate on Their Morphology, Crystalline Structure and Photocatalytic Activity

    PubMed Central

    Masolo, Elisabetta; Meloni, Manuela; Garroni, Sebastiano; Mulas, Gabriele; Enzo, Stefano; Baró, Maria Dolors; Rossinyol, Emma; Rzeszutek, Agnieszka; Herrmann-Geppert, Iris; Pilo, Maria

    2014-01-01

    We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25. PMID:28344237

  12. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli

    PubMed Central

    Chonoles Imlay, Karin R.; Korshunov, Sergey

    2015-01-01

    ABSTRACT When cystine is added to Escherichia coli, the bacterium becomes remarkably sensitive to hydrogen peroxide. This effect is due to enlarged intracellular pools of cysteine, which can drive Fenton chemistry. Genetic analysis linked the sensitivity to YdjN, a secondary transporter that along with the FliY-YecSC ABC system is responsible for cystine uptake. FliY-YecSC has a nanomolar Km and is essential for import of trace cystine, whereas YdjN has a micromolar Km and is the predominant importer when cystine is more abundant. Oddly, both systems are strongly induced by the CysB response to sulfur scarcity. The FliY-YecSC system can import a variety of biomolecules, including diaminopimelate; it is therefore vulnerable to competitive inhibition, presumably warranting YdjN induction under low-sulfur conditions. But the consequence is that if micromolar cystine then becomes available, the abundant YdjN massively overimports it, at >30 times the total sulfur demand of the cell. The imported cystine is rapidly reduced to cysteine in a glutathione-dependent process. This action avoids the hazard of disulfide stress, but it precludes feedback inhibition of YdjN by cystine. We conjecture that YdjN possesses no cysteine allosteric site because the isostructural amino acid serine might inappropriately bind in its place. Instead, the cell partially resolves the overaccumulation of cysteine by immediately excreting it, completing a futile import/reduction/export cycle that consumes a large amount of cellular energy. These unique, wasteful, and dangerous features of cystine metabolism are reproduced by other bacteria. We propose to rename ydjN as tcyP and fliY-yecSC as tcyJLN. IMPORTANCE In general, intracellular metabolite pools are kept at steady, nontoxic levels by a sophisticated combination of transcriptional and allosteric controls. Surprisingly, in E. coli allosteric control is utterly absent from the primary importer of cystine. This flaw allows massive overimport

  13. Rice WRKY45 plays important roles in fungal and bacterial disease resistance.

    PubMed

    Shimono, Masaki; Koga, Hironori; Akagi, Aya; Hayashi, Nagao; Goto, Shingo; Sawada, Miyuki; Kurihara, Takayuki; Matsushita, Akane; Sugano, Shoji; Jiang, Chang-Jie; Kaku, Hisatoshi; Inoue, Haruhiko; Takatsuji, Hiroshi

    2012-01-01

    Plant 'activators', such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene.

  14. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer.

    PubMed

    O'Bryan, Samia; Dong, Shengli; Mathis, J Michael; Alahari, Suresh K

    2017-02-01

    Since the discovery of tumour suppressive miRNA in 2002, the dysregulation of miRNAs was implicated in many cancers, exhibiting both tumour suppressive and oncogenic roles. Dysregulation of miRNAs was found to be involved in the initiation of oncogenesis, as well as the progression, invasion and metastasis of cancers. While normal miRNA inhibitory functions help regulate gene expression in the cell, oncogenic miRNA, when dysregulated can lead to suppression of critical pathways that control apoptosis, cell cycle progression, growth and proliferation. This suppression allows for the upregulation of pro-oncogenic factors that drive cell survival, growth and proliferation. Due to emerging discoveries, oncogenic miRNAs are proving to be a critical component in cancers, such as breast cancer, and may provide novel avenues for cancer treatment. In this article, we discuss the roles of the most studied oncogenic miRNAs in breast cancer including clusters and families involved as well as the less studied and recently discovered oncogenic miRNAs. These miRNAs provide valuable information into the complexity of regulatory elements affected by their overexpression and the overall impact in the progression of breast cancer. Also, identifying miRNAs causing or leading to resistance or sensitivity to current anti-cancer drugs prior to treatment may lead to an improvement in treatment selection and overall patient response. This review summarizes known and recently discovered miRNAs in literature found to have oncogenic roles in breast cancer initiation and the progression, invasion and metastasis of the disease.

  15. Activin receptor-like kinases: a diverse family playing an important role in cancer

    PubMed Central

    Loomans, Holli A; Andl, Claudia D

    2016-01-01

    The role and function of the members of the TGFβ superfamily has been a substantial area of research focus for the last several decades. During that time, it has become apparent that aberrations in TGFβ family signaling, whether through the BMP, Activin, or TGFβ arms of the pathway, can result in tumorigenesis or contribute to its progression. Downstream signaling regulates cellular growth under normal physiological conditions yet induces diverse processes during carcinogenesis, ranging from epithelial- to-mesenchymal transition to cell migration and invasion to angiogenesis. Due to these observations, the question has been raised how to utilize and target components of these signaling pathways in cancer therapy. Given that these cascades include both ligands and receptors, there are multiple levels at which to interfere. Activin receptor-like kinases (ALKs) are a group of seven type I receptors responsible for TGFβ family signal transduction and are utilized by many ligands within the superfamily. The challenge lies in specifically targeting the often-overlapping functional effects of BMP, Activin, or TGFβ signaling during cancer progression. This review focuses on the characteristic function of the individual receptors within each subfamily and their recognized roles in cancer. We next explore the clinical utility of therapeutically targeting ALKs as some have shown partial responses in Phase I clinical trials but disappointing outcomes when used in Phase II studies. Finally, we discuss the challenges and future directions of this body of work. PMID:27904762

  16. Myocardin marks the earliest cardiac gene expression and plays an important role in heart development.

    PubMed

    Chen, Jian-Fu; Wang, Shusheng; Wu, Qiulian; Cao, Dongsun; Nguyen, Thiha; Chen, Yiping; Wang, Da-Zhi

    2008-10-01

    Myocardin belongs to the SAP domain family of transcription factors and is expressed specifically in cardiac and smooth muscle during embryogenesis and in adulthood. Myocardin functions as a transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. However, the in vivo function of myocardin during cardiogenesis is not completely understood. Here we clone myocardin from chick embryonic hearts and show that myocardin protein sequences are highly conserved cross species. Detailed studies of chick myocardin expression reveal that myocardin is expressed in cardiac and smooth muscle lineage during early embryogenesis, similar to that found in mouse. Interestingly, the expression of myocardin in the heart was found enriched in the outflow tract and the sinoatrial segments shortly after the formation of linear heart tube. Such expression pattern is also maintained in later developing embryos, suggesting that myocardin may play a unique role in the formation of those cardiac modules. Similar to its mouse counterpart, chick myocardin is able to activate cardiac and smooth muscle promoter reporter genes and induce smooth muscle gene expression in nonmuscle cells. Ectopic overexpression of myocardin enlarged the embryonic chick heart. Conversely, repression of the endogenous chick myocardin using antisense oligonucleotides or a dominant negative mutant form of myocardin inhibited cardiogenesis. Together, our data place myocardin as one of the earliest cardiac marker genes for cardiogenesis and support the idea that myocardin plays an essential role in cardiac gene expression and cardiogenesis.

  17. Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes.

    PubMed

    Lee, Sun-Min; Lee, Jungwoo; Noh, Kyung-Min; Choi, Won-Young; Jeon, Sejin; Oh, Goo Taeg; Kim-Ha, Jeongsil; Jin, Yoonhee; Cho, Seung-Woo; Kim, Young-Joon

    2017-03-07

    CpG, 5'-C-phosphate-G-3', islands (CGIs) have long been known for their association with enhancers, silencers, and promoters, and for their epigenetic signatures. They are maintained in embryonic stem cells (ESCs) in a poised but inactive state via the formation of bivalent chromatin containing both active and repressive marks. CGIs also occur within coding sequences, where their functional role has remained obscure. Intragenic CGIs (iCGIs) are largely absent from housekeeping genes, but they are found in all genes associated with organ development and cell lineage control. In this paper, we investigated the epigenetic status of iCGIs and found that they too reside in bivalent chromatin in ESCs. Cell type-specific DNA methylation of iCGIs in differentiated cells was linked to the loss of both the H3K4me3 and H3K27me3 marks, and disruption of physical interaction with promoter regions, resulting in transcriptional activation of key regulators of differentiation such as PAXs, HOXs, and WNTs. The differential epigenetic modification of iCGIs appears to be mediated by cell type-specific transcription factors distinct from those bound by promoter, and these transcription factors may be involved in the hypermethylation of iCGIs upon cell differentiation. iCGIs thus play a key role in the cell type-specific regulation of transcription.

  18. What Is the Role and Importance of the Revised AERA, APA, NCME "Standards for Educational and Psychological Testing"?

    ERIC Educational Resources Information Center

    Plake, Barbara S.; Wise, Lauress L.

    2014-01-01

    With the 2014 publication of the 5th revision of the "Standards for Educational and Psychological Testing," the cochairs of the Joint Committee for the revision process were asked to consider the role and importance of the "Standards" for the educational testing community, and in particular for members of the National Council…

  19. Teachers' Occupational Well-Being and Quality of Instruction: The Important Role of Self-Regulatory Patterns

    ERIC Educational Resources Information Center

    Klussman, Uta; Kunter, Mareike; Trautwein, Ulrich; Ludtke, Oliver; Baumert, Jurgen

    2008-01-01

    Teachers' occupational well-being (level of emotional exhaustion and job satisfaction) and quality of instruction are two key aspects of research on teaching that have rarely been studied together. The role of occupational engagement and resilience as two important work-related self-regulatory dimensions that predict occupational well-being and…

  20. The Role of Religious Beliefs and Practices on Emerging Adults' Perceived Competencies, Perceived Importance Ratings, and Global Self-Worth

    ERIC Educational Resources Information Center

    Barry, Carolyn McNamara; Nelson, Larry J.

    2008-01-01

    Although religious participation declines during emerging adulthood (18 years through middle 20s), most emerging adults still claim that their religious beliefs are important to them. However, little research has been conducted to examine the role that religious beliefs and practices may play in the development of self-perceptions during emerging…

  1. The Role of Beliefs about the Importance of Social Skills in Elementary Children's Social Behaviors and School Attitudes

    ERIC Educational Resources Information Center

    Kwon, Kyongboon; Kim, Elizabeth Moorman; Sheridan, Susan M.

    2014-01-01

    Background: Positive attitudes toward school have been suggested as a meaningful indicator of school engagement among elementary children. The current study was guided by a social cognitive developmental perspective which suggests that social cognitions, including beliefs, play an important role in children's adjustment outcomes. Objective: The…

  2. Paget Schroetter Syndrome: A case study of the chiropractor’s role in recognizing and comanaging an important condition

    PubMed Central

    Rowan, Tracy L.; Kazemi, Mohsen

    2012-01-01

    Objective: To emphasize the importance for health care professionals to be knowledgeable of a relatively rare form of thoracic outlet syndrome, known as Paget Schroetter syndrome. The etiology, key signs and symptoms, and the importance of immediate referral are highlighted and an introduction to manual therapists’ role within a multidisciplinary team is provided. Clinical Features: Healthy athletes aged 15–30 are most commonly affected with 60–80% of patients reporting a history of repetitive or vigorous overhead activity prior to symptom onset. Intervention and Outcome: Manual therapists have a role in recognizing, referring, and providing symptomatic relief with soft tissue therapy, correcting abnormal biomechanics, manipulations, mobilizations, and a rehabilitative program, as seen in this case report. Conclusion: Early recognition and referral of Paget Schroetter syndrome are essential for optimal recovery. Manual therapists may prove to have a role in decreasing the need for surgical decompression and accelerating resumption of regular activities. PMID:23204568

  3. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro.

    PubMed

    Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K

    2015-01-01

    In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.

  4. Oxidative addition of Pd to C-H, C-C and C-Cl bonds: Importance of relativistic effects in DFT calculations

    NASA Astrophysics Data System (ADS)

    Diefenbach, Axel; Bickelhaupt, F. Matthias

    2001-09-01

    To assess the importance of relativistic effects for the quantum chemical description of oxidative addition reactions of palladium to C-H, C-C and C-Cl bonds, we have carried out a systematic study of the corresponding reactions of CH4, C2H6 and CH3Cl with Pd-d10 using nonrelativistic (NR), quasirelativistic (QR), and zeroth-order regularly approximated (ZORA) relativistic density functional theory (DFT) at the BP86/TZ(2)P level. Relativistic effects are important according to both QR and ZORA, the former yielding similar but somewhat more pronounced effects than the latter, more reliable method: activation barriers are reduced by 6-14 kcal/mol and reaction enthalpies become 15-20 kcal/mol more exothermic if one goes from NR to ZORA. This yields, for example, 298 K activation enthalpies ΔH298≠ of -5.0 (C-H), 9.6 (C-C) and -6.0 kcal/mol (C-Cl) relative to the separate reactants at ZORA-BP86/TZ(2)P. In accordance with gas-phase experiments on reactions of Pd with alkanes, we find reaction profiles with pronounced potential wells for reactant complexes (collisionally stabilized and observed in experiments for alkanes larger than CH4) at -11.4 (CH4), -11.6 (C2H6) and -15.6 kcal/mol (CH3Cl) relative to separated reactants [ZORA-BP86/TZ(2)P]. Furthermore, we analyze the height of and the relativistic effects on the activation energies ΔE≠ in terms of the activation strain ΔEstrain≠ of and the transition-state interaction ΔEint≠ between the reactants in the activated complex, with ΔE≠=ΔEstrain≠+ΔEint≠.

  5. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae

    SciTech Connect

    Thepnok, Piyasuda; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa

    2014-08-08

    Highlights: • TOG1 deletion results in defective growth on non-fermentable carbon sources. • Removal of TOG1 sensitizes cells to oxidative stress. • Tog1 directly binds and activates expression of oleate utilizing genes. • The Δtog1 cells display reduced peroxisomal content in oleate culture. • S. cerevisiae zinc cluster Tog1 is a novel activator of oleate utilization. - Abstract: Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose–oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomycescerevisiae.

  6. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1.

    PubMed

    Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K

    2013-12-01

    Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1(+/+)) mice, Tph1(-/-) animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1(+/+) colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1(+/+)); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1(-/-) colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1(+/+) mice, failed to alter CMMCs in Tph1(-/-) animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon.

  7. Opportunities for translational epidemiology: The important role of observational studies to advance precision oncology

    PubMed Central

    Marrone, Michael; Schilsky, Richard L.; Liu, Geoff; Khoury, Muin J.; Freedman, Andrew N

    2015-01-01

    Within current oncology practice several genomic applications are being use to inform treatment decisions with molecularly targeted therapies in breast, lung, colorectal, melanoma and other cancers. This commentary introduces a conceptual framework connecting the full spectrum of biomedical research disciplines, including fundamental laboratory research, clinical trials, and observational studies in the translation of genomic applications into clinical practice. The conceptual framework illustrates the contribution that well-designed observational epidemiological studies provide to the successful translation of these applications, and characterizes the role observational epidemiology plays in driving the dynamic and iterative bench-to-bedside, and bedside-to-bench translation continuum. We also discuss how the principles of this conceptual model, emphasizing integration of multidisciplinary research, can be applied to the evolving paradigm in “precision oncology” focusing on multiplex tumor sequencing, and we identify opportunities for observational studies to contribute to the successful and efficient translation of this paradigm. PMID:25750251

  8. Dysregulation of JAM-A plays an important role in human tumor progression.

    PubMed

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described.

  9. Role of environmental factors in autoantibody production - importance of a detailed analysis in a small cohort

    PubMed Central

    2012-01-01

    In the previous issue of Arthritis Research & Therapy, Muro and colleagues reported a detailed epidemiologic analysis in central Japan on one of the new myositis-specific autoantibodies to MDA-5 (melanoma differentiation-associated gene 5), which is associated with clinically amyopathic dermatomyositis accompanying interstitial lung disease. The increasing prevalence of anti-MDA-5, higher prevalence in small rural towns, and geographical clustering in two areas along the Kiso River suggest a role of environmental factors associated with rural communities or the river/water system or both. A detailed analysis of a small cohort may offer clues, which is ignored in multi-center studies, to the pathogenesis of systemic rheumatic diseases and autoantibody production. PMID:22380573

  10. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    SciTech Connect

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji; Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji; Ikeda, Takayuki; Sugihara, Kazushi; Asano, Masahide; Yoshikawa, Takeo; Yamauchi, Akiyo; Shervani, Nausheen Jamal; Uruno, Akira; Kato, Ichiro; Unno, Michiaki; Sugahara, Kazuyuki; Takasawa, Shin; and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  11. Neprilysins: an evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila.

    PubMed

    Sitnik, Jessica L; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F; Callaerts, Patrick

    2014-03-01

    Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family's function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates.

  12. Role for Microglia in Sex Differences after ischemic stroke: Importance of M2

    PubMed Central

    Bodhankar, Sheetal; Lapato, Andrew; Chen, Yingxin; Vandenbark, Arthur A.; Saugstad, Julie A.; Offner, Halina

    2015-01-01

    Inflammation plays a critical role in the pathogenesis of ischemic stroke. This process depends, in part, upon proinflammatory factors released by activated resident central nervous system (CNS) microglia (MG). Previous studies demonstrated that transfer of IL-10+ B-cells reduced infarct volumes in male C57BL/6J recipient mice when given 24 h prior to or therapeutically at 4 h or 24 h after experimental stroke induced by 60 min middle cerebral artery occlusion (MCAO). The present study assesses possible sex differences in immunoregulation by IL-10+ B-cells on primary male vs. female MG cultured from naïve and ischemic stroke-induced mice. Thus, MG cultures were treated with recombinant (r)IL-10, rIL-4 or IL-10+ B-cells after lipopolysaccharide (LPS) activation and evaluated by flow cytometry for production of proinflammatory and anti-inflammatory factors. We found that IL-10+ B-cells significantly reduced MG production of TNF-α, IL-1β and CCL3 post-MCAO and increased their expression of the anti-inflammatory M2 marker, CD206, by cell-cell interactions. Moreover, MG from female vs. male mice had higher expression of IL-4 and IL-10 receptors and increased production of IL-4, especially after treatment with IL-10+ B-cells. These findings indicate that IL-10-producing B-cells play a crucial role in regulating MG activation, proinflammatory cytokine release and M2 phenotype induction, post-MCAO, with heightened sensitivity of female MG to IL-4 and IL-10. This study, coupled with our previous demonstration of increased numbers of transferred IL-10+ B-cells in the ischemic hemisphere, provide a mechanistic basis for local regulation by secreted IL-10 and IL-4 as well as direct B-cell/MG interactions that promote M2+-MG. PMID:26246072

  13. Pectin plays an important role on the kinetics properties of polyphenol oxidase from honeydew peach.

    PubMed

    Liu, Liang; Cao, Shaoqian; Yang, Hua; Qi, Xiangyang

    2015-02-01

    Polyphenol oxidase (PPO) was purified from peach pulp by a three-step column chromatographic procedure. The kinetics properties of the PPO fractions obtained from different purification steps were compared. All the fractions showed high affinities for (+)-catechin and (-)-epicatechin. The optimum pHs and optimum temperatures for all the fractions were the same. However, the fraction that contained pectin was more sensitive to the change of pH, and it had a lower affinity for the substrates and a higher thermostability than the fractions without pectin. In addition, the protein impurities in PPO fractions might have no effect on the properties of PPO. l-Cysteine and glutathione were effective for the inhibition of all the PPO fractions, while NaF inhibited moderately. However, the pectin could reduce the inhibition effects of those inhibitors.

  14. Evidence for an important social role of allogrooming in a platyrrhine primate

    PubMed

    Di bitetti MS

    1997-07-01

    Allogrooming behaviour was analysed in a wild group of tufted capuchin monkeys, Cebus apellain Iguazu National Park, Argentina. Evidence is provided that allogrooming in this platyrrhine species serves an important social function, as has been demonstrated for catarrhine primates. Using ad libitum sampling, 654 grooming sessions were recorded during 740 contact hours with one group. Seasonal variation was found in daily time allocation to allogrooming and the mean duration and reciprocity of sessions. Individual dominance rank was an important determinant of grooming relationships. The dominant male and female were the most actively involved in grooming. Among adults, dominant individuals were involved in more sessions than were subordinate individuals. The females maintained strong grooming relationships with each other and tended to reciprocate more within sessions than did males. Oestrous females engaged in more grooming bouts with adult males than did non-oestrous females. Females with newborn infants were attractive social partners for the remaining members of the group. A social function for allogrooming in Cebus is indicated by the close relationship between allogrooming, the social system and coalition formation, and by the changes in quantity and direction of grooming in response to oestrous behaviour and to the birth of infants.

  15. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria.

    PubMed

    Sponaas, Anne-Marit; Freitas do Rosario, Ana Paula; Voisine, Cecile; Mastelic, Beatris; Thompson, Joanne; Koernig, Sandra; Jarra, William; Renia, Laurent; Mauduit, Marjorie; Potocnik, Alexandre J; Langhorne, Jean

    2009-12-24

    Host responses controlling blood-stage malaria include both innate and acquired immune effector mechanisms. During Plasmodium chabaudi infection in mice, a population of CD11b(high)Ly6C(+) monocytes are generated in bone marrow, most of which depend on the chemokine receptor CCR2 for migration from bone marrow to the spleen. In the absence of this receptor mice harbor higher parasitemias. Most importantly, splenic CD11b(high)Ly6C(+) cells from P chabaudi-infected wild-type mice significantly reduce acute-stage parasitemia in CCR2(-/-) mice. The CD11b(high)Ly6C(+) cells in this malaria infection display effector functions such as production of inducible nitric oxide synthase and reactive oxygen intermediates, and phagocytose P chabaudi parasites in vitro, and in a proportion of the cells, in vivo in the spleen, suggesting possible mechanisms of parasite killing. In contrast to monocyte-derived dendritic cells, CD11b(high)Ly6C(+) cells isolated from malaria-infected mice express low levels of major histocompatibility complex II and have limited ability to present the P chabaudi antigen, merozoite surface protein-1, to specific T-cell receptor transgenic CD4 T cells and fail to activate these T cells. We propose that these monocytes, which are rapidly produced in the bone marrow as part of the early defense mechanism against invading pathogens, are important for controlling blood-stage malaria parasites.

  16. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  17. Important role of translational science in rare disease innovation, discovery, and drug development.

    PubMed

    Pariser, Anne R; Gahl, William A

    2014-08-01

    Rare diseases play a leading role in innovation and the advancement of medical and pharmaceutical science. Most rare diseases are genetic disorders or atypical manifestations of infectious, immunologic, or oncologic diseases; they all provide opportunities to study extremes of human pathology and provide insight into both normal and aberrant physiology. Recently, drug development has become increasingly focused on classifying diseases largely on genetic grounds; this has allowed the identification of molecularly defined targets and the development of targeted therapies. Clinical trials are now focusing on progressively smaller subgroups within both common and rare disease populations, often based on genetic tests or biomarkers. Drug developers, researchers, and regulatory agencies face a variety of challenges throughout the life cycle of drug research and development for rare diseases. These include the small numbers of patients available for study, lack of knowledge of the disease's natural history, incomplete understanding of the basic mechanisms causing the disorder, and variability in disease severity, expression, and course. Traditional approaches to rare disease clinical research have not kept pace with advances in basic science, and increased attention to translational science is needed to address these challenges, especially diagnostic testing, registries, and novel trial designs.

  18. Did large animals play an important role in global biogeochemical cycling in the past?

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2014-12-01

    In the late Pleistocene (~50-10,000 years ago), ninety-seven genera of large animals (>44kg) (megafauna) went extinct, concentrated in the Americas and Australia. The loss of megafauna had major effects on ecosystem structure, seed dispersal and land surface albedo. However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we explore these nutrient impacts using a novel mathematical framework that analyses this lateral transport as a diffusion-like process and demonstrates that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna led to a >98% reduction in the lateral transfer flux of the limiting nutrient phosphorus (P) with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in Eastern Amazonia away from fertile floodplains, a decline which may still be ongoing, and current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectedness it once had. More broadly, the Pleistocene megafaunal extinctions resulted in major and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.

  19. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors.

  20. Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice.

    PubMed

    Sadighi Akha, Amir A; McDermott, Andrew J; Theriot, Casey M; Carlson, Paul E; Frank, Charles R; McDonald, Roderick A; Falkowski, Nicole R; Bergin, Ingrid L; Young, Vincent B; Huffnagle, Gary B

    2015-04-01

    Our previous work has shown the significant up-regulation of Il22 and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) as part of the mucosal inflammatory response to Clostridium difficile infection in mice. Others have shown that phosphorylation of STAT3 at mucosal surfaces includes interleukin-22 (IL-22) and CD160-mediated components. The current study sought to determine the potential role(s) of IL-22 and/or CD160 in the mucosal response to C. difficile infection. Clostridium difficile-infected mice treated with anti-IL-22, anti-CD160 or a combination of the two showed significantly reduced STAT3 phosphorylation in comparison to C. difficile-infected mice that had not received either antibody. In addition, C. difficile-infected mice treated with anti-IL-22/CD160 induced a smaller set of genes, and at significantly lower levels than the untreated C. difficile-infected mice. The affected genes included pro-inflammatory chemokines and cytokines, and anti-microbial peptides. Furthermore, histopathological and flow cytometric assessments both showed a significantly reduced influx of neutrophils in C. difficile-infected mice treated with anti-IL-22/CD160. These data demonstrate that IL-22 and CD160 are together responsible for a significant fraction of the colonic STAT3 phosphorylation in C. difficile infection. They also underscore the additive effects of IL-22 and CD160 in mediating both the pro-inflammatory and pro-survival aspects of the host mucosal response in this infection.

  1. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    PubMed

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling.

  2. The important role of interdisciplinary collaboration in the management of a melanocytic skin lesion

    PubMed Central

    Balato, Anna; Raimondo, Annunziata; Cantelli, Mariateresa; Siano, Maria; Lembo, Serena; Scalvenzi, Massimiliano; Balato, Nicola

    2011-01-01

    One of the most confounding characteristics, commonly seen in malignant, but even in benign melanocytic nevi, is represented by the regression phenomenon. The identification of regression, through dermoscopical observation, can be predictive of a tricky histopathological examination. Therefore, this feature should be an alert to a meticulous clinical, dermoscopical and histopathological correlation for correct analysis of melanocytic skin lesions. A 26-year-old man was referred to our department for a pigmented skin lesion localized on his trunk. It was clinically and dermoscopically diagnosed as atypical melanocytic nevus with central regression. After 1 year the lesion underwent considerable changes, leading to a nearly complete regression. The lesion was excised and, on the basis of clinical, dermoscopical and histopathological correlation, was interpreted as a junctional melanocytic nevus with regression. In our case the association of clinical, dermoscopical and histopathological experience, resulted an important and useful method, in order to proper interpret and correctly diagnose an atypical melanocytic skin lesion. PMID:25386254

  3. The importance of Good Clinical Practice guidelines and its role in clinical trials

    PubMed Central

    Vijayananthan, A; Nawawi, O

    2008-01-01

    Good Clinical Practice (GCP) is an international ethical and scientific quality standard for the design, conduct, performance, monitoring, auditing, recording, analyses and reporting of clinical trials. It also serves to protect the rights, integrity and confidentiality of trial subjects. It is very important to understand the background of the formation of the ICH-GCP guidelines as this, in itself, explains the reasons and the need for doing so. In this paper, we address the historical background and the events that led up to the formation of these guidelines. Today, the ICH-GCP guidelines are used in clinical trials throughout the globe with the main aim of protecting and preserving human rights. PMID:21614316

  4. Home- and Hospital-Based Cardiac Rehabilitation Exercise: The Important Role of Physician Recommendation.

    PubMed

    Dunn, Susan L; Dunn, L Maureen; Buursma, Madison P; Clark, Jacob A; Vander Berg, Lucas; DeVon, Holli A; Tintle, Nathan L

    2016-09-02

    Exercise reduces morbidity and mortality for patients with heart disease. Despite clear guidelines and known benefits, most cardiac patients do not meet current exercise recommendations. Physician endorsement positively affects patient participation in hospital-based Phase II cardiac rehabilitation programs, yet the importance of physician recommendation for home-based cardiac rehabilitation exercise is unknown. A prospective observational design was used to examine predictors of both home-based and Phase II rehabilitation exercise in a sample of 251 patients with coronary heart disease. Regression analyses were done to examine demographic and clinical characteristics, physical functioning, and patient's report of physician recommendation for exercise. Patients with a strong physician referral, who were married and older, were more likely to participate in Phase II exercise. Increased strength of physician recommendation was the unique predictor of home-based exercise. Further research is needed to examine how health professionals can motivate cardiac patients to exercise in home and outpatient settings.

  5. [Importance of the school nurse's role in the Canary Islands schools].

    PubMed

    Araujo, Pedro Jorge

    2013-01-01

    Today there are more and more children with chronic diseases or physical conditions that regularly attend schools. This study aims to identify the importance of school centers' directors attribute to the school nurse. It has been decided to make a cross-sectional study. So, it has been to sent by e-mail a questionnaire of 20 questions to 635 schools, receiving 209 completed. 65.6% of children in schools have required drugs administration. In 59.3% of schools, teachers have attended at one time any health problems (acute or chronic) of children. 98.1% of schools know the health problems of the students who is in charge. The most common health problem among children in schools were food allergies, followed by asthma, diabetes and epilepsy. 67% of school centers' directors know the guide attention to health emergencies in schools.

  6. The role and importance of porosity in the deflagration rates of HMX-based materials

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K

    2011-03-15

    The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate that the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.

  7. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome.

    PubMed

    Santana-Gálvez, Jesús; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-02-26

    Chlorogenic acid (5-O-caffeoylquinic acid) is a phenolic compound from thehydroxycinnamic acid family. This polyphenol possesses many health-promoting properties, mostof them related to the treatment of metabolic syndrome, including anti-oxidant, anti-inflammatory,antilipidemic, antidiabetic, and antihypertensive activities. The first part of this review will discussthe role of chlorogenic acid as a nutraceutical for the prevention and treatment of metabolicsyndrome and associated disorders, including in vivo studies, clinical trials, and mechanisms ofaction. The second part of the review will be dealing with the role of chlorogenic acid as a foodadditive. Chlorogenic acid has shown antimicrobial activity against a wide range of organisms,including bacteria, yeasts, molds, viruses, and amoebas. These antimicrobial properties can beuseful for the food industry in its constant search for new and natural molecules for thepreservation of food products. In addition, chlorogenic acid has antioxidant activity, particularlyagainst lipid oxidation; protective properties against degradation of other bioactive compoundspresent in food, and prebiotic activity. The combination of these properties makes chlorogenic acidan excellent candidate for the formulation of dietary supplements and functional foods.

  8. Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion

    PubMed Central

    Heart, Emma; Cline, Gary W.; Collis, Leon P.; Pongratz, Rebecca L.; Gray, Joshua P.; Smith, Peter J. S.

    2009-01-01

    Pyruvate cycling has been implicated in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. The operation of some pyruvate cycling pathways is proposed to necessitate malate export from the mitochondria and NADP+-dependent decarboxylation of malate to pyruvate by cytosolic malic enzyme (ME1). Evidence in favor of and against a role of ME1 in GSIS has been presented by others using small interfering RNA-mediated suppression of ME1. ME1 was also proposed to account for methyl succinate-stimulated insulin secretion (MSSIS), which has been hypothesized to occur via succinate entry into the mitochondria in exchange for malate and subsequent malate conversion to pyruvate. In contrast to rat, mouse β-cells lack ME1 activity, which was suggested to explain their lack of MSSIS. However, this hypothesis was not tested. In this report, we demonstrate that although adenoviral-mediated overexpression of ME1 greatly augments GSIS in rat insulinoma INS-1 832/13 cells, it does not restore MSSIS, nor does it significantly affect GSIS in mouse islets. The increase in GSIS following ME1 overexpression in INS-1 832/13 cells did not alter the ATP-to-ADP ratio but was accompanied by increases in malate and citrate levels. Increased malate and citrate levels were also observed after INS-1 832/13 cells were treated with the malate-permeable analog dimethyl malate. These data suggest that although ME1 overexpression augments anaplerosis and GSIS in INS-1 832/13 cells, it is not likely involved in MSSIS and GSIS in pancreatic islets. PMID:19293334

  9. Evaluation of liver fibrosis in patients with thalassemia: the important role of hyaluronic acid.

    PubMed

    Papastamataki, Maria; Delaporta, Polyxeni; Premetis, Evangelos; Kattamis, Antonios; Ladis, Vassilios; Papassotiriou, Ioannis

    2010-10-15

    Patients with transfusion-dependent thalassemia major often develop liver fibrosis due to liver iron overload and/or hepatitis virus C (HCV) infection. Hyaluronic acid (HA) plays a prominent role in the pathogenesis of liver fibrosis and the elevation of serum HA concentration is due to either increased synthesis by inflammatory cells and hepatic stellate cells or impaired degradation by sinusoidal endothelial cells (SECs) and thus is proposed as a non-invasive biomarker of liver fibrosis either by itself and/or included in the Hepascore formula. In this study we evaluated prospectively a screening of liver fibrosis in 201 adult patients aged 19-54 years with transfusion-dependent thalassemia major, based on HA measurements. 41/201 patients were HCV-RNA (+). HA was measured with a turbidimetric assay applied on a clinical chemistry analyzer. The Hepascore was computed from the results by using the model previously published. The main results of the study showed that: a) HA levels were increased in 110/201 (55%) thalassemia patients 85.0 ± 10.3 ng/ml, ranged from 15.0 to 1495.0 μg/l, compared to 20.8 ± 7.4 μg/l reference laboratory values, p<0.001, b) HA levels were significantly higher in HCV-RNA(+) compared to HCV-RNA(-) patients, 171.6 ± 202 vs 53.8 ± 35.5 μg/l, p<0.0001 c) no significant correlations were found between HA levels and/or Hepascore with ferritin and liver iron content (LIC) assessed with MRI (p>0.324 and p>0.270, respectively). Our findings indicate that hyaluronic acid measurements contribute to the assessment of liver fibrosis in patients with thalassemia and might be helpful for further evaluation of patients with liver biopsy if this is truly needed. Furthermore, liver fibrosis in thalassemia seems to be independent from liver siderosis.

  10. IL-1 Inhibition May Have an Important Role in Treating Refractory Kawasaki Disease

    PubMed Central

    Dusser, Perrine; Koné-Paut, Isabelle

    2017-01-01

    Kawasaki disease (KD) is an acute inflammatory vasculitis occurring in young children before 5 years and representing at this age, the main cause of acquired heart disease. A single infusion of 2 g/kg of intravenous immunoglobulins along with aspirin has reduced the frequency of coronary artery aneurysms from 25 to 5%. However, 10–20% of patients do not respond to standard treatment and have an increased risk of cardiac complications and death. The development of more potent therapeutic approaches of KD is an urgent need. Phenotypical and immunological similarities between KD and systemic juvenile idiopathic arthritis led to the hypothesis that KD could be considered as an autoinflammatory disease. New insights regarding KD’s pathogenesis have merged from the combination of genetic and transcriptomic data revealing the key role of interleukin-1 (IL-1) signaling in the pathogenesis of the vasculitis. Once activated, IL-1α and IL-1β trigger a local proinflammatory environment-inducing vasodilatation and attracting monocytes and neutrophils to sites causing tissue damage and stress. Both IL-1α and IL-1β have been shown to induce myocarditis and aneurysm formation in Lactobacillus casei cell-wall extract mouse model of KD; both being successfully improved with IL-1 blockade treatment such as anakinra. Treatment failure in patients with the high-risk inositol-triphosphate 3-kinase C genotype was associated with highest basal and stimulated intracellular calcium levels, increased cellular production of IL-1β, and IL-18, and higher circulating levels of both cytokines. Three clinical trials of IL-1 blockade enrolling KD patients are currently being conducted in Western Europe and in USA, they could change KD outcome.

  11. Excitons in van der Waals heterostructures: The important role of dielectric screening

    NASA Astrophysics Data System (ADS)

    Latini, S.; Olsen, T.; Thygesen, K. S.

    2015-12-01

    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on two-dimensional (2D) excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model, which assumes a dielectric function of the form ɛ (q )=1 +2 π α q , and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges with a finite extension in the perpendicular direction, and their interaction is screened by a dielectric function with a nonlinear q dependence which is computed ab initio. The screened interaction is used in a generalized Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model, and both are in good agreement with ab initio many-body calculations. On the other hand, for more complex structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton in reciprocal space extends well beyond the linear regime of the dielectric function, and a quasi-2D description has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D materials or van der Waals heterostructures.

  12. An important role of carotenoids in protection of photosynthetic apparatus under VAM inoculation on Momordica charantia.

    PubMed

    Azmat, Rafia

    2013-01-01

    The effect of mixed inoculums of VAM (Vesicular Arbuscular Mycorrhizas) fungi on seed growth and photosynthetic apparatus in green house was monitored. The plants were watered daily with tap water. Plants were cultivated in natural environment in mid of March (2011). A direct relation between root length and water contents suggests a defense mechanism of MP (microrihzal plants) against the fungal stress. It was also supported by the fact that the leaf area of MP was much greater as compared to the NMP (non microrihzal plants) with elevated concentration of all chlorophyllus pigments in 30 days. An increase in the surface area of the leaf and concentration of the pigments, may be for an acceleration in absorption of CO₂ for reduction of it into glucose through oxidation of water molecule. The non-significant decline in glucose contents support the above hypothesis of rapid redox reaction mechanism which was established to overcome the stress. The positive effects of mycorrhizal which were already mentioned in the literature were reported in this article in relations of survival strategies of the plant, adapted in stress conditions. An increase in the chlorophyll contents (30 d) and leaf area of plants possibly attributed with absorption of solar radiation for the protection of plants. It was also supported by the higher concentration of carotenoids (30 d) that may have an additional function of regulation of certain developmental responses and screening of light to save the plants from stress conditions.

  13. Ribosome profiling reveals an important role for translational control in circadian gene expression

    PubMed Central

    Jang, Christopher; Lahens, Nicholas F.; Hogenesch, John B.; Sehgal, Amita

    2015-01-01

    Physiological and behavioral circadian rhythms are driven by a conserved transcriptional/translational negative feedback loop in mammals. Although most core clock factors are transcription factors, post-transcriptional control introduces delays that are critical for circadian oscillations. Little work has been done on circadian regulation of translation, so to address this deficit we conducted ribosome profiling experiments in a human cell model for an autonomous clock. We found that most rhythmic gene expression occurs with little delay between transcription and translation, suggesting that the lag in the accumulation of some clock proteins relative to their mRNAs does not arise from regulated translation. Nevertheless, we found that translation occurs in a circadian fashion for many genes, sometimes imposing an additional level of control on rhythmically expressed mRNAs and, in other cases, conferring rhythms on noncycling mRNAs. Most cyclically transcribed RNAs are translated at one of two major times in a 24-h day, while rhythmic translation of most noncyclic RNAs is phased to a single time of day. Unexpectedly, we found that the clock also regulates the formation of cytoplasmic processing (P) bodies, which control the fate of mRNAs, suggesting circadian coordination of mRNA metabolism and translation. PMID:26338483

  14. Humidity plays an important role in the PM₂.₅ pollution in Beijing.

    PubMed

    Cheng, Yuan; He, Ke-bin; Du, Zhen-yu; Zheng, Mei; Duan, Feng-kui; Ma, Yong-liang

    2015-02-01

    Heavily-polluted PM₂.₅ (fine particulate matter) episodes frequently impacting Beijing, especially during winter, have become a substantial concern. We found that during winter, the daily variation of PM2.5 in Beijing tracked the pattern of relative humidity (RH). With the increase of PM₂.₅ (or RH), water-soluble components (especially inorganic ions) became more abundant, and the water-soluble organic carbon to organic carbon ratios increased. The nitrate to sulfate ratios also exhibited dependence on RH, and were higher than those measured about a decade ago, consistent with the increasing trend of nitrogen oxides emissions. Surprisingly, the ratios of water-insoluble organic carbon to elemental carbon showed significant increase at high RH levels, presumably indicating the formation of secondary organic aerosol that is not soluble in water. In addition, humid winters were occasionally identified during 1996-2013 which are expected to be favorable for the formation of air pollution episodes with high PM₂.₅ concentrations.

  15. Andrographolide plays an important role in bleomycin-induced pulmonary fibrosis treatment

    PubMed Central

    Yin, Jia-Ning; Li, Ya-Nan; Gao, Yang; Li, Shi-Bo; Li, Jian-Dong

    2015-01-01

    Pulmonary fibrosis (PF) leads to chronic inflammation and accumulation of macrophages, neutrophils, and lymphocytes in the alveoli. The factors involved in the development of PF include reactive oxygen species and tissue remodelling regulators. The present study demonstrates the effect of andrographolide on bleomycin (BLM)-induced PF in Sprague-Dawley rats. We investigated the total bronchoalveolar lavage fluid protein (BALF) and hydroxyproline (HYP) content along with the level of oxidative stress markers like malondialdehyde (MDA) and GSH/GSSG ratio. In addition, the levels of MMP-1 and TIMP-1 were also analysed. The results revealed an increase in BALF protein, HYP, and MDA contents and decrease in GSH/GSSG ratio of the lungs in animals treated with BLM. However, andrographolide treatment caused a reversal of the BLM induced changes after 20 or 40 days. Treatment with andrographolide suppressed oxidative stress with the decrease of MDA and the increase of the GSH/GSSG ratio. Andrographolide also improved the BLM mediated changes in the MMP-1/TIMP-1 ratio. Therefore, andrographolide has a potential therapeutic effect in the prevention of PF. PMID:26550147

  16. Cysteine desulphurase plays an important role in environmental adaptation of the hyperthermophilic archaeon Thermococcus kodakarensis.

    PubMed

    Hidese, Ryota; Inoue, Takahiro; Imanaka, Tadayuki; Fujiwara, Shinsuke

    2014-07-01

    The sulphur atoms of sulphur-containing cofactors that are essential for numerous cellular functions in living organisms originate from L-cysteine via cysteine desulphurase (CSD) activity. However, many (hyper)thermophilic archaea, which thrive in solfataric fields and are positioned near the root of the evolutionary tree of life, lack CSD orthologues. The existence of CSD orthologues in a subset of (hyper)thermophilic archaea is of interest with respect to the evolution of sulphur-trafficking systems for the cofactors. This study demonstrates that the disruption of the csd gene of Thermococcus kodakarensis, a facultative elemental sulphur (S(0))-reducing hyperthermophilic archaeon, encoding Tk-CSD, conferred a growth defect evident only in the absence of S(0), and that growth can be restored by the addition of S(0), but not sulphide. We show that the csd gene is not required for biosynthesis of thiamine pyrophosphate or molybdopterin, irrespective of the presence or absence of S(0), but is necessary for iron-sulphur cluster biosynthesis in the absence of S(0). Recombinant form of Tk-CSD expressed in Escherichia coli was obtained and it was found to catalyse the desulphuration of L-cysteine. The obtained data suggest that hyperthermophiles might benefit from a capacity for CSD-dependent iron-sulphur cluster biogenesis, which allows them to thrive outside solfataric environments.

  17. Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters.

    PubMed

    Hu, Wei; Philips, Alana S; Kwok, Juliana C; Eisbacher, Michael; Chong, Beng H

    2005-04-01

    The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.

  18. Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia

    PubMed Central

    Kannengiesser, Caroline; Sanchez, Mayka; Sweeney, Marion; Hetet, Gilles; Kerr, Briedgeen; Moran, Erica; Fuster Soler, Jose L.; Maloum, Karim; Matthes, Thomas; Oudot, Caroline; Lascaux, Axelle; Pondarré, Corinne; Sevilla Navarro, Julian; Vidyatilake, Sudharma; Beaumont, Carole; Grandchamp, Bernard; May, Alison

    2011-01-01

    Background Congenital sideroblastic anemias are rare disorders with several genetic causes; they are characterized by erythroblast mitochondrial iron overload, differ greatly in severity and some occur within a syndrome. The most common cause of non-syndromic, microcytic sideroblastic anemia is a defect in the X-linked 5-aminolevulinate synthase 2 gene but this is not always present. Recently, variations in the gene for the mitochondrial carrier SLC25A38 were reported to cause a non-syndromic, severe type of autosomal-recessive sideroblastic anemia. Further evaluation of the importance of this gene was required to estimate the proportion of patients affected and to gain further insight into the range and types of variations involved. Design and Methods In three European diagnostic laboratories sequence analysis of SLC25A38 was performed on DNA from patients affected by congenital sideroblastic anemia of a non-syndromic nature not caused by variations in the 5-aminolevulinate synthase 2 gene. Results Eleven patients whose ancestral origins spread across several continents were homozygous or compound heterozygous for ten different SLC25A38 variations causing premature termination of translation (p.Arg117X, p.Tyr109LeufsX43), predicted splicing alteration (c.625G>C; p.Asp209His) or missense substitution (p.Gln56Lys, p.Arg134Cys, p.Ile147Asn, p.Arg187Gln, p.Pro190Arg, p.Gly228Val, p.Arg278Gly). Only three of these variations have been described previously (p.Arg117X, p.Tyr109LeufsX43 and p.Asp209His). All new variants reported here are missense and affect conserved amino acids. Structure modeling suggests that these variants may influence different aspects of transport as described for mutations in other mitochondrial carrier disorders. Conclusions Mutations in the SLC25A38 gene cause severe, non-syndromic, microcytic/hypochromic sideroblastic anemia in many populations. Missense mutations are shown to be of importance as are mutations that affect protein production

  19. Platelets play an important role in TNF-induced microvascular endothelial cell pathology.

    PubMed Central

    Lou, J.; Donati, Y. R.; Juillard, P.; Giroud, C.; Vesin, C.; Mili, N.; Grau, G. E.

    1997-01-01

    Tumor necrosis factor-alpha (TNF) is known to be an important mediator in the pathogenesis of several inflammatory diseases. Vascular endothelial cells represent a major target of TNF effects. Platelet sequestration has been found in brain microvessels during experimental cerebral malaria and lung in experimental pulmonary fibrosis, implying that it may participate in TNF-dependent microvascular pathology. In this study, we investigated the mechanisms of platelet-endothelial interaction, using co-cultures between platelets and TNF-activated mouse brain microvascular endothelial cells (MVECs). Adhesion and fusion of platelets to MVECs was evidenced by electron microscopy, dye transfer, and flow cytometry. It was induced by TNF and interferon-gamma and depended on LFA-1 expressed on the platelet surface and ICAM-1 expressed on MVECs. The adhesion and fusion also led to the transfer of platelet markers on the MVEC surface, rendering these more adherent for leukocytes, and to an enhanced MVEC sensitivity to TNF-induced injury. These results suggest that platelets can participate in TNF-induced microvascular pathology. Images Figure 2 Figure 3 Figure 6 PMID:9358766

  20. The importance of mutual positive expressivity in social adjustment: understanding the role of peers and gender.

    PubMed

    Sallquist, Julie; DiDonato, Matthew D; Hanish, Laura D; Martin, Carol Lynn; Fabes, Richard A

    2012-04-01

    The relations between young children's mutual (reciprocated) and overall positive emotion (PE) with same- and other-gender peers and their social adjustment were explored. Children's PE and peers' PE were observed across the preschool year during peer interactions (N = 166; 46% girls; M age = 52 months). Results revealed that girls and boys had similar frequencies of overall PE and mutual PE when interacting with same-gender peers, but girls were marginally higher compared with boys in overall and mutual PE when interacting with other-gender peers. Girls and boys did not have greater rates of either type of PE after controlling for gender segregation during same- or other-gender interactions. Using structural equation modeling, children's mutual PE, regardless of their gender, positively predicted indicators of positive adjustment (e.g., prosocial behavior, cooperation) and negatively predicted indicators of negative adjustment (e.g., hyperactivity, disruption, exclusion by peers). Children's overall PE did not predict either type of adjustment. Findings support the importance of mutual PE for children's development.

  1. The Disconnect Between Journalism and Science and its Role in Public Misunderstanding of Important Scientific Issues

    NASA Astrophysics Data System (ADS)

    Yulsman, T.

    2006-12-01

    Research shows that Americans' knowledge of science is sorely inaccurate. U.S. adults get most of their knowledge from the popular media, so it has been claimed that problems with media coverage of science are to blame. But this is a simplistic analysis. At their roots, scientific and journalistic modes of inquiry actually share two important normative standards: empiricism and skepticism. On the other hand, news and new scientific knowledge are two very different things. News gathering is guided in large measure by criteria that help journalists decide what is worth covering, as well as by standards of fairness and balance. The overarching goal is to report on things considered newsworthy in a neutral manner. In science, the goal is to ruthlessly discard incorrect ideas to get at the truth about nature. This talk will examine the "good" -- the normative standards that journalists and scientists share, as well as the "bad" -- how the significant disconnects between science and journalism may be contributing to a lack of public understanding of critical scientific issues such as climate change. Among the questions that will be addressed: How do journalists decide what is news? How does science fare when these newsworthiness standards are applied to it? How does the journalistic standard of balance result in inaccurate reporting on climate change? And how might we improve the situation by enhancing communication between scientists and journalist?

  2. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration

    PubMed Central

    Li, Bo; Su, Yi-Jun; Zheng, Xin-Feng; Yang, Yue-Hua; Jiang, Sheng-Dan

    2015-01-01

    Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of

  3. [Surveillance and control of imported animal diseases. Role of the OIE and veterinary services].

    PubMed

    Angot, Jean-Luc

    2009-11-01

    Many animal diseases have received major media attention in recent years, including foot-and-mouth disease, bovine spongiform encephalopathy (BSE), and avian influenza. Epizootics are on the increase, notably owing to globalization, ecological upheavals, and global warming. It is estimated that three-quarters of emerging and re-emerging diseases are zoonoses, i.e. diseases that can be transmitted from animals to humans. Changes in eating habits, along with population growth and increasingly large populations at risk have all contributed to the upsurge of zoonoses. The fight against animal diseases is a major issue not only for animal health but also for human health, economics and politics. Veterinary services, whose work is recognized as an "international public good" by the World Bank, must be considered in terms of all those involved in animal health, including formal services, veterinarians and their assistants and organized livestock farmers, working together in close partnership. When veterinary services fail in a single country, it is the entire world that is threatened. Animal disease outbreaks are even more of a problem when they occur in countries that have no effective surveillance and preventive animal health network. Veterinary Services are an important instrument of public health and are necessary to protect the livestock economy. Industrialized countries must therefore help developing countries to eradicate their animal diseases, and countries with efficient veterinary infrastructures must encourage failing countries to adopt an effective early detection and rapid response system. OIE, the World Organization for Animal Health, has developed quality standards and norms for evaluating veterinary services, and provides an interactive tool (PVS, Performance of Veterinary Services) designed to facilitate their implementation. Assessments conducted by specifically trained experts allow international donors such as the World Bank to target investments where

  4. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    PubMed

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  5. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle.

    PubMed

    Zhang, Yuan; Iqbal, Sobia; O'Leary, Michael F N; Menzies, Keir J; Saleem, Ayesha; Ding, Shuzhe; Hood, David A

    2013-09-01

    The function Bax and/or Bak in constituting a gateway for mitochondrial apoptosis in response to apoptotic stimuli has been unequivocally demonstrated. However, recent work has suggested that Bax/Bak may have unrecognized nonapoptotic functions related to mitochondrial function in nonstressful environments. Wild-type (WT) and Bax/Bak double knockout (DKO) mice were used to determine alternative roles for Bax and Bak in mitochondrial morphology and protein import in skeletal muscle. The absence of Bax and/or Bak altered mitochondrial dynamics by regulating protein components of the organelle fission and fusion machinery. Moreover, DKO mice exhibited defective mitochondrial protein import, both into the matrix and outer membrane compartments, which was consistent with our observations of impaired membrane potential and attenuated expression of protein import machinery (PIM) components in intermyofibrillar mitochondria. Furthermore, the cytosolic chaperones heat-shock protein 90 (Hsp90) and binding immunoglobulin protein (BiP) were markedly increased with the deletion of Bax/Bak, indicating that the cytosolic environment related to protein folding may be changed in DKO mice. Interestingly, endurance training fully restored the deficiency of protein import in DKO mice, likely via the upregulation of PIM components and through improved cytosolic chaperone protein expression. Thus our results emphasize novel roles for Bax and/or Bak in mitochondrial function and provide evidence, for the first time, of a curative function of exercise training in ameliorating a condition of defective mitochondrial protein import.

  6. Role of the epistemic subject in Piaget's genetic epistemology and its importance for science education

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor

    , attempts to build a general model applicable across types of situations/subjects. The distinction between the epistemic and the psychological subjects is important not for defending Piaget's theory (which has serious theoretical flaws) but to understand epistemic transitions, for example, the one between Piaget's epistemic subject and Pascual-Leone's metasubject. It is concluded that failure to understand the distinction between the epistemic and the psychological subjects would lead to misconstruing the significance of our research findings and, what is more serious, to a lack of a historical perspective.

  7. Cytosolic Delivery of Granzyme B by Bacterial Toxins: Evidence that Endosomal Disruption, in Addition to Transmembrane Pore Formation, Is an Important Function of Perforin

    PubMed Central

    Browne, Kylie A.; Blink, Elizabeth; Sutton, Vivien R.; Froelich, Christopher J.; Jans, David A.; Trapani, Joseph A.

    1999-01-01

    Granule-mediated cell killing by cytotoxic lymphocytes requires the combined actions of a membranolytic protein, perforin, and granule-associated granzymes, but the mechanism by which they jointly kill cells is poorly understood. We have tested a series of membrane-disruptive agents including bacterial pore-forming toxins and hemolytic complement for their ability to replace perforin in facilitating granzyme B-mediated cell death. As with perforin, low concentrations of streptolysin O and pneumolysin (causing <10% 51Cr release) permitted granzyme B-dependent apoptosis of Jurkat and Yac-1 cells, but staphylococcal alpha-toxin and complement were ineffective, regardless of concentration. The ensuing nuclear apoptotic damage was caspase dependent and included cleavage of poly(ADP-ribose) polymerase, suggesting a mode of action similar to that of perforin. The plasma membrane lesions formed at low dose by perforin, pneumolysin, and streptolysin did not permit diffusion of fluorescein-labeled proteins as small as 8 kDa into the cell, indicating that large membrane defects are not necessary for granzymes (32 to 65 kDa) to enter the cytosol and induce apoptosis. The endosomolytic toxin, listeriolysin O, also effected granzyme B-mediated cell death at concentrations which produced no appreciable cell membrane damage. Cells pretreated with inhibitors of endosomal trafficking such as brefeldin A took up granzyme B normally but demonstrated seriously impaired nuclear targeting of granzyme B when perforin was also added, indicating that an important role of perforin is to disrupt vesicular protein trafficking. Surprisingly, cells exposed to granzyme B with perforin concentrations that produced nearly maximal 51Cr release (1,600 U/ml) also underwent apoptosis despite excluding a 8-kDa fluorescein-labeled protein marker. Only at concentrations of >4,000 U/ml were perforin pores demonstrably large enough to account for transmembrane diffusion of granzyme B. We conclude that pore

  8. Oxidized phospholipids and lipoprotein-associated phospholipase A2 as important determinants of Lp(a) functionality and pathophysiological role.

    PubMed

    Tselepis, Alexandros D

    2016-04-02

    Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein (LDL)-like particle to which apolipoprotein (a) [apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease (CVD) and calcific aortic valve stenosis (CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genomewide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids (OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins, are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content. An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA2 associated with Lp(a).

  9. The role of syntax in complex networks: Local and global importance of verbs in a syntactic dependency network

    NASA Astrophysics Data System (ADS)

    Čech, Radek; Mačutek, Ján; Žabokrtský, Zdeněk

    2011-10-01

    Syntax of natural language has been the focus of linguistics for decades. The complex network theory, being one of new research tools, opens new perspectives on syntax properties of the language. Despite numerous partial achievements, some fundamental problems remain unsolved. Specifically, although statistical properties typical for complex networks can be observed in all syntactic networks, the impact of syntax itself on these properties is still unclear. The aim of the present study is to shed more light on the role of syntax in the syntactic network structure. In particular, we concentrate on the impact of the syntactic function of a verb in the sentence on the complex network structure. Verbs play the decisive role in the sentence structure (“local” importance). From this fact we hypothesize the importance of verbs in the complex network (“global” importance). The importance of verb in the complex network is assessed by the number of links which are directed from the node representing verb to other nodes in the network. Six languages (Catalan, Czech, Dutch, Hungarian, Italian, Portuguese) were used for testing the hypothesis.

  10. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.

    PubMed

    Ambrosio, Linda; Morriss, Stephanie; Riaz, Ayesha; Bailey, Ryan; Ding, Jian; MacIntosh, Gustavo C

    2014-01-01

    Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins.

  11. The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Self, Julian; Hall, David S.; Madec, Lénaïc; Dahn, J. R.

    2015-12-01

    Density functional theory (DFT) is used in conjunction with experimental results to propose decomposition pathways that describe the role and ultimate fate of the PES additive in Li-ion batteries. Oxidation of PES produces carbonyl sulfide gas and ethene at the positive electrode, both experimentally observed byproducts. However, the calculated standard potential for simple PES oxidation, E0ox ∼ 6.7 V vs. Li/Li+, is quite high, suggesting this pathway is unlikely. A "reactive electrode model" is presented, in which the positive electrode material is a reagent in the pseudo-combustion of PES (and other solvents). This spontaneous process produces carbonyl sulfide, carbon dioxide, and a rock salt surface layer, all of which are experimentally observed. At the negative electrode, the reduction of PES occurs via two one-electron steps, where E0red,1 = 0.9 V and E0red,2 = 4.3 V. The reduced species, Li2PES, can react with hydrogen and methyl radicals to produce propene, methylpropene, propane and lithium sulfite. Nucleophilic Li2PES can also react with electrophilic PES, ethylene carbonate, or ethyl methyl carbonate. Eighteen possible organic sulphate 'building blocks' for the solid-electrolyte interphase (SEI) are presented. X-ray photoelectron spectroscopy (XPS) measurements demonstrate that PES reduction indeed results in both lithium sulfite and organic sulphate SEI components.

  12. The sintering of uranium carbide and of uranium-plutonium carbide, and the role of nickel as a sintering additive

    NASA Astrophysics Data System (ADS)

    Pickles, S.; Yates, G.; Bramman, J. I.; Finlayson, Moira B.

    1980-04-01

    A comparison of the experimentally determined sintering kinetics for uranium and uranium-plutonium carbides of different stoichiometries with calculations for various theoretical models has been used to indicate probable sintering mechanisms. A bulk diffusion model with activation energies approximating to those for chemical diffusion under a concentration gradient is thought to apply. Ceramography has been used to study the influence of changes in composition and sintering atmosphere on grain size and microstructure, with the conclusion that grain growth is impeded by the presence of a grain-boundary second phase. The role of nickel as a sintering aid has also been investigated using, in addition to the above techniques, electron microprobe analysis and X-ray diffraction for chemical identification of phases. It is concluded that the first stage of sintering is one of particle rearrangement in a binary metallic liquid phase (U-Ni), followed by a solution-precipitation process. On prolonged annealing ternary U-C-Ni phases are produced, dominated by the composition U 2NiC 3.

  13. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

    PubMed

    Zhu, Chang; Yao, Wen-Long; Tan, Wei; Zhang, Chuan-Han

    2017-02-15

    Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

  14. The degradation of linear alkylbenzene sulfonate (LAS) in the presence of light and natural biofilms: the important role of photosynthesis.

    PubMed

    Hua, Xiuyi; Li, Ming; Su, Yulong; Dong, Deming; Guo, Zhiyong; Liang, Dapeng

    2012-08-30

    Photosynthesis of algae usually changes the chemical conditions of microenvironment in natural waters. However, few studies have been carried out to examine the effects of diurnal variation and photosynthesis on behavior of organic pollutants in aquatic environments. In this study, linear alkylbenzene sulfonate (LAS) was selected as a representative of non-persistent organic pollutants to investigate the degradation of this type of pollutants in the presence of light and natural biofilms by laboratory batch experiments, with special emphasis on the effect of photosynthesis of the biofilms. The maximum decrease of LAS was observed in the coexistence of both illumination and fully active biofilms, and about 75% of the LAS were removed after a 36-h degradation experiment. The removal of LAS was found to be dominated by photosynthesis of the biofilms, with lesser roles attributed to biodegradation and adsorption by the biofilms, and the role of direct photolysis was negligible. The production of some reactive oxygen species might account for the role of photosynthesis in decomposing the LAS. The study confirms the important roles of algae biofilms and their photosynthesis in determining the fate of organic pollutants in aquatic environments.

  15. Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway

    PubMed Central

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Alsabeh, Randa; Slepenkin, Anatoly V.; Peterson, Ellena; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    Mast cells are known as central players in allergy and anaphylaxis, and play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae (Cpn) is an important human pathogen, but it is unclear what role mast cells play during Cpn infection. We infected C57BL/6 (WT) and mast cell-deficient mice, Kitw-sh/w-sh (Wsh), with Cpn. Wsh mice showed improved survival than WT, with fewer cells in Wsh BALF despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT. Cromolyn, a mast cell stabilizer, reduced BAL cells and bacterial burden similar to Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BAL cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation while Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of MMP-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during Cpn infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for Cpn. PMID:25754739

  16. Functional Roles of microRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection

    PubMed Central

    Djami-Tchatchou, Arnaud T.; Sanan-Mishra, Neeti; Ntushelo, Khayalethu; Dubery, Ian A.

    2017-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic—or abiotic origin. PMID:28382044

  17. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection.

    PubMed

    Djami-Tchatchou, Arnaud T; Sanan-Mishra, Neeti; Ntushelo, Khayalethu; Dubery, Ian A

    2017-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.

  18. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  19. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  20. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R

  1. Polyamine biosynthesis regulated by StARD expression plays an important role in potato wound periderm formation.

    PubMed

    Kim, Jae Hyun; Kim, Hyun Soon; Lee, Yong Hwa; Kim, Yoon Sik; Oh, Hyun Woo; Joung, Hyouk; Chae, Suhn Kee; Suh, Kyong Hoon; Jeon, Jae Heung

    2008-10-01

    An acireductone dioxygenase (ARD) gene of potatoes was isolated from the expressed sequence tags (ESTs) of potato post-suberization cDNA libraries. The highest expression levels of the StARD gene and the protein appeared 36 h after suberization. An approximate 9-fold increase in ARD activity was detected at 36 h after wounding. Real-time reverse transcription-PCR (RT-PCR) analysis and immunolocalization studies revealed that StARD transcripts increase at the wound surface of potato tubers. The polyamine (PA) contents increased significantly after wounding at the wound surface. The increased PA content and ARD activity may play an important role in wound periderm formation.

  2. A dominant role of oxygen additive on cold atmospheric-pressure He + O{sub 2} plasmas

    SciTech Connect

    Yang, Aijun; Liu, Dingxin E-mail: xhw@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Xiaohua E-mail: xhw@mail.xjtu.edu.cn; Kong, Michael G.

    2014-08-15

    We present in this paper how oxygen additive impacts on the cold atmospheric-pressure helium plasmas by means of a one-dimensional fluid model. For the oxygen concentration [O{sub 2}] > ∼0.1%, the influence of oxygen on the electron characteristics and the power dissipation becomes important, e.g., the electron density, the electron temperature in sheath, the electron-coupling power, and the sheath width decreasing by 1.6 to 16 folds with a two-log increase in [O{sub 2}] from 0.1% to 10%. Also the discharge mode evolves from the γ mode to the α mode. The reactive oxygen species are found to peak in the narrow range of [O{sub 2}] = 0.4%–0.9% in the plasmas, similar to their power-coupling values. This applies to their wall fluxes except for those of O* and O{sub 2}{sup −}. These two species have very short lifetimes, thus only when generated in boundary layers within several micrometers next to the electrode can contribute to the fluxes. The dominant reactive oxygen species and the corresponding main reactions are schematically presented, and their relations are quantified for selected applications.

  3. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase

    PubMed Central

    Demishtein-Zohary, Keren; Günsel, Umut; Marom, Milit; Banerjee, Rupa; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2017-01-01

    The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase; however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase. DOI: http://dx.doi.org/10.7554/eLife.22696.001 PMID:28165323

  4. Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice

    PubMed Central

    Yamada, Hiroshi Y.; Zhang, Yuting; Reddy, Arun; Mohammed, Altaf; Lightfoot, Stan; Dai, Wei

    2015-01-01

    A major etiological risk factor for hepatocellular carcinoma (HCC) is infection by Hepatitis viruses, especially hepatitis B virus and hepatitis C virus. Hepatitis B virus and hepatitis C virus do not cause aggressive activation of an oncogenic pathway, but they transactivate a broad array of genes, cause chronic inflammation, and, through interference with mitotic processes, lead to mitotic error-induced chromosome instability (ME-CIN). However, how ME-CIN is involved in the development of HCC remains unclear. Delineating the effect of ME-CIN on HCC development should help in identifying measures to combat HCC. In this study, we used ME-CIN model mice haploinsufficient in Shugoshin 1 (Sgo1−/+) to assess the role of ME-CIN in HCC development. Treatment with the carcinogen azoxymethane caused Sgo1−/+ ME-CIN model mice to develop HCCs within 6 months, whereas control mice developed no HCC (P < 0.003). The HCC development was associated with expression of early HCC markers (glutamine synthetase, glypican 3, heat shock protein 70, and the serum marker alpha fetoprotein), although without fibrosis. ME-CIN preceded the expression of HCC markers, suggesting that ME-CIN is an important early event in HCC development. In 12-month-old untreated Sgo1 mice, persistent DNA damage, altered gene expression, and spontaneous HCCs were observed. Sgo1 protein accumulated in response to DNA damage in vitro. Overall, Sgo1−/+-mediated ME-CIN strongly promoted/progressed development of HCC in the presence of an initiator carcinogen, and it had a mild initiator effect by itself. Use of the ME-CIN model mice should help in identifying drugs to counteract the effects of ME-CIN and should accelerate anti-HCC drug development. PMID:25740822

  5. The cyclin-dependent kinase inhibitor Orysa;KRP1 plays an important role in seed development of rice.

    PubMed

    Barrôco, Rosa Maria; Peres, Adrian; Droual, Anne-Marie; De Veylder, Lieven; Nguyen, Le Son Long; De Wolf, Joris; Mironov, Vladimir; Peerbolte, Rindert; Beemster, Gerrit T S; Inzé, Dirk; Broekaert, Willem F; Frankard, Valerie

    2006-11-01

    Kip-related proteins (KRPs) play a major role in the regulation of the plant cell cycle. We report the identification of five putative rice (Oryza sativa) proteins that share characteristic motifs with previously described plant KRPs. To investigate the function of KRPs in rice development, we generated transgenic plants overexpressing the Orysa;KRP1 gene. Phenotypic analysis revealed that overexpressed KRP1 reduced cell production during leaf development. The reduced cell production in the leaf meristem was partly compensated by an increased cell size, demonstrating the existence of a compensatory mechanism in monocot species by which growth rate is less reduced than cell production, through cell expansion. Furthermore, Orysa;KRP1 overexpression dramatically reduced seed filling. Sectioning through the overexpressed KRP1 seeds showed that KRP overproduction disturbed the production of endosperm cells. The decrease in the number of fully formed seeds was accompanied by a drop in the endoreduplication of endosperm cells, pointing toward a role of KRP1 in connecting endocycle with endosperm development. Also, spatial and temporal transcript detection in developing seeds suggests that Orysa;KRP1 plays an important role in the exit from the mitotic cell cycle during rice grain formation.

  6. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    SciTech Connect

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  7. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.

    PubMed

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Crother, Timothy R; Arditi, Moshe

    2015-04-15

    Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.

  8. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.

  9. The Photographic History of Greenland's Glaciers - and how the historical data plays an important role in today's glacier research

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Korsgaard, N. J.; Aagaard, S.; Andresen, C. S.; Bamber, J. L.; van den Broeke, M.; Colgan, W. T.; Funder, S.; Khan, S. A.; Larsen, N. K.; Machguth, H.; Nuth, C.; Schomacker, A.; Kjaer, K. H.

    2015-12-01

    As the Greenland Ice Sheet and Greenland's glaciers are continuing to loss mass at high rates, knowledge of their past response to climatic changes is ever important. By harvesting the archives for images, both terrestrial and airborne, we are able to expand the record of glacier observation by several decades, thus supplying crucial knowledge on glacier behavior to important climatic transitions such as the end of the Little Ice Age and the early 20th Century warming. Here we show how a large collection of historical aerial images portray the glacial response to the Little Ice Age deglaciation in Greenland and document frontal change throughout the 20th Century. A detailed story of the LIA-deglaciation is told by supplementing with terrestrial photos that capture the onset of retreat and high resolution aerial images that portray geomorphological evidence of the Little Ice Age maximum extent. This work is the result of several generations of Greenland researches and their efforts to portray and document the state of the glaciers, and highlights that while interpretations and conclusions may be challenged and changed through time, the raw observations remain extremely valuable. Finally, we also show how archival data besides photos may play an important role in future glacier research in Greenland.

  10. Toward Additive-Free Small-Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics.

    PubMed

    Abdelsamie, Maged; Treat, Neil D; Zhao, Kui; McDowell, Caitlin; Burgers, Mark A; Li, Ruipeng; Smilgies, Detlef-M; Stingelin, Natalie; Bazan, Guillermo C; Amassian, Aram

    2015-12-02

    The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%.

  11. The importance of familia for Latina/o college students: examining the role of familial support in intragroup marginalization.

    PubMed

    Llamas, Jasmín D; Morgan Consoli, Melissa

    2012-10-01

    Intragroup marginalization refers to the perceived interpersonal distancing by members of the heritage culture when an individual exhibits cultural characteristics of the dominant group. This study expands understanding of the college experience of Latina/o students by examining relationships between intragroup marginalization, college adjustment, resilience, and thriving in a sample of 181 Latina/o college students, ranging from freshman to graduate students. In addition, the role of familial social support is explored to determine any possible mediating effects on the relationship between intragroup marginalization, college adjustment, resilience, and thriving. Findings revealed that intragroup marginalization predicted college adjustment, resilience, and thriving. Familial social support was found to mediate the relationship between intragroup marginalization and thriving. This research highlights the negative impact of intragroup marginalization for Latina/o students, as well as the role of familial support in thriving. The results also shed light on the Latina/o college experience as a means to improving Latina/o students' college outcomes. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  12. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA

    PubMed Central

    Choudhury, Swarup Roy; Pandey, Sona

    2013-01-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling. PMID:23569109

  13. A unique gender difference in early onset melanoma implies that in addition to ultraviolet light exposure other causative factors are important

    PubMed Central

    Liu, Feng; Bessonova, Leona; Taylor, Thomas H.; Ziogas, Argyrios; Meyskens, Frank L.; Anton-Culver, Hoda

    2014-01-01

    Summary Using US SEER17 Registry data, age-specific melanoma incidence rates were calculated and comparisons were made between males and females. Relative Risk (RR) for males and females in each age group was computed and compared with that from Nordic Cancer Registry data set and to that for non-melanoma skin cancer (NMSC). For age groups 44 and younger, females showed higher incidence rates, with a peak difference at age 20–24 (RR = 2.01, 95% CI = 1.21–3.33). Males exhibited higher incidence rates after age 44. The same bimodal gender difference was confirmed by the Nordic Cancer Registry data set, but it was not observed for NMSC, which is known to be strongly associated with cumulative exposure to solar UV radiation. We conclude that exposure to solar ultraviolet (UV) radiation is the major causative factor for melanoma at older age (>44 yr), but that other factors may play a role in early onset melanomas, particularly in females. PMID:23095171

  14. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  15. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control.

    PubMed

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine.

  16. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control

    PubMed Central

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine. PMID:25949219

  17. An Important Role of Prostanoid Receptor EP2 in Host Resistance to Mycobacterium tuberculosis Infection in Mice

    PubMed Central

    Kaul, Vandana; Bhattacharya, Debapriya; Singh, Yogesh; Van Kaer, Luc; Peters-Golden, Marc; Bishai, William R; Das, Gobardhan

    2012-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, resides and replicates within susceptible hosts by inhibiting host antimicrobial mechanisms. Prostaglandin E2 (PGE2), produced by M. tuberculosis–infected macrophages, exerts a variety of immunomodulatory functions via 4 receptors (EP1–EP4), each mediating distinct PGE2 functions. Here, we show that M. tuberculosis infection selectively upregulates EP2 messenger RNA expression in CD4+ T cells. We found that EP2 deficiency in mice increases susceptibility to M. tuberculosis infection, which correlated with reduced antigen-specific T-cell responses and increased levels of CD4+CD25+Foxp3+ T-regulatory cells. These findings have revealed an important role for EP2 in host immune defense against tuberculosis. As a G protein-coupled receptor, EP2 could serve as a target for immunotherapy of tuberculosis. PMID:23033144

  18. An important role of prostanoid receptor EP2 in host resistance to Mycobacterium tuberculosis infection in mice.

    PubMed

    Kaul, Vandana; Bhattacharya, Debapriya; Singh, Yogesh; Van Kaer, Luc; Peters-Golden, Marc; Bishai, William R; Das, Gobardhan

    2012-12-15

    Mycobacterium tuberculosis, the causative agent of tuberculosis, resides and replicates within susceptible hosts by inhibiting host antimicrobial mechanisms. Prostaglandin E(2) (PGE(2)), produced by M. tuberculosis-infected macrophages, exerts a variety of immunomodulatory functions via 4 receptors (EP1-EP4), each mediating distinct PGE(2) functions. Here, we show that M. tuberculosis infection selectively upregulates EP2 messenger RNA expression in CD4(+) T cells. We found that EP2 deficiency in mice increases susceptibility to M. tuberculosis infection, which correlated with reduced antigen-specific T-cell responses and increased levels of CD4(+)CD25(+)Foxp3(+) T-regulatory cells. These findings have revealed an important role for EP2 in host immune defense against tuberculosis. As a G protein-coupled receptor, EP2 could serve as a target for immunotherapy of tuberculosis.

  19. Geographic location, sex and nutritional status play an important role in body image concerns among Brazilian adolescents.

    PubMed

    Laus, Maria Fernanda; Miranda, Valter Paulo Neves; Almeida, Sebastião Sousa; Braga Costa, Telma Maria; Ferreira, Maria Elisa Caputo

    2013-03-01

    This study compared body image concerns among adolescents from different geographic locations in Brazil, and the influence of sex and nutritional status. Seven hundred eighty-eight adolescents completed the Body Shape Questionnaire (BSQ) and had their weight and height measured. There were significant cross-regional differences in BSQ scores. Also, body image concerns were more prevalent among girls and among overweight adolescents. It is suggested that sex and nutritional status may play an important role in body image concerns, which is more common between adolescents from urban areas. Furthermore, our findings contribute to the literature by examining patterns of body image concerns within subgroups of adolescents who have received little research attention on these issues.

  20. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair.

    PubMed

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  1. Role of import and export regulatory animal health officials in international control and surveillance for animal diseases.

    PubMed

    Bokma, Bob H

    2006-10-01

    The challenges to those who regulate the import and export of animals and animal products are escalating, due to the evolving nature of animal and human disease agents. The diseases and agents of interest may include low pathogenic avian influenza, bluetongue, bovine spongiform encephalopathy, and foot-and-mouth disease. Fear of an incursion of an unknown or incompletely understood threat can significantly limit risk tolerance. The fear may be that an incursion will affect export trade or tourism. An incomplete knowledge of the animal health situation in the exporting country, due to insufficient surveillance for the disease agent of concern, may limit the application of science in import decisions. In addition, the disease agent may be inappropriately considered exotic if it has not been described. As a result, excessive safeguards for disease agents that do not present any new threat may be employed. To confront these challenges, we are striving toward transparency in international reporting. Moreover, regulatory import decisions exceeding the recommendations of the Terrestrial Animal Health Code and the Aquatic Animal Health Code of the World Organization for Animal Health must be fair and science-based.

  2. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses.

    PubMed

    Zhao, Yang; Wei, Tong; Yin, Kang-Quan; Chen, Zhangliang; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2012-07-01

    • Ethylene plays a crucial role in plant resistance to necrotrophic pathogens, in which ETHYLENE RESPONSE FACTORs (ERFs) are often involved. • Here, we evaluated the role of an ERF transcription factor, RELATED TO AP2 2 (RAP2.2), in Botrytis resistance and ethylene responses in Arabidopsis. We analyzed the resistance of transgenic plants overexpressing RAP2.2 and the T-DNA insertion mutant to Botrytis cinerea. We assessed its role in the ethylene signaling pathway by molecular and genetic approaches. • RAP2.2-overexpressing transgenic plants showed increased resistance to B. cinerea, whereas its T-DNA insertion mutant rap2.2-3 showed decreased resistance. Overexpression of RAP2.2 in ethylene insensitive 2 (ein2) and ein3 ein3-like 1 (eil1) mutants restored their resistance to B. cinerea. Both ethylene and Botrytis infection induced the expression of RAP2.2 and the induction was disrupted in ein2 and ein3 eil1 mutants. We identified rap2.12-1 as a T-DNA insertion mutant of RAP2.12, the closest homolog of RAP2.2. The hypocotyls of rap2.2-3 rap2.12-1 double mutants showed ethylene insensitivity. The constitutive triple response in constitutive triple response1 (ctr1) was partially released in the rap2.2-3 rap2.12-1 ctr1 triple mutants. • Our findings demonstrate that RAP2.2 functions as an important regulator in Botrytis resistance and ethylene responses.

  3. Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition

    PubMed Central

    Yang, Su Jung; Hruby, Dennis E

    2007-01-01

    Like the major vaccinia virus (VV) core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K) is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both of the A12L proteins may be required for virus assembly. Here, in order to test the requirement of the A12L protein and its proteolysis in viral replication, a conditional lethal mutant virus (vvtetOA12L) was constructed to regulate A12L expression by the presence or absence of an inducer, tetracycline. In the absence of tetracycline, replication of vvtetOA12L was inhibited by 80% and this inhibition could be overcome by transient expression of the wild-type copy of the A12L gene. In contrast, mutation of the AG/A site abrogated the ability of the transfected A12L gene to rescue, indicating that A12L proteolysis plays an important role in viral replication. Electron microscopy analysis of the A12L deficient virus demonstrated the aberrant virus particles, which were displayed by the AG/A site mutation. Thus, we concluded that the not only A12L protein but also its cleavage processing plays an essential role in virus morphogenic transition. PMID:17625005

  4. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  5. Toward understanding allosteric activation of thrombin: a conjecture for important roles of unbound Na(+) molecules around thrombin.

    PubMed

    Kurisaki, Ikuo; Takayanagi, Masayoshi; Nagaoka, Masataka

    2015-03-05

    We shed light on important roles of unbound Na(+) molecules in enzymatic activation of thrombin. Molecular mechanism of Na(+)-activation of thrombin has been discussed in the context of allostery. However, the recent challenge to redesign K(+)-activated thrombin revealed that the allosteric interaction is insufficient to explain the mechanism. Under these circumstances, we have examined the roles of unbound Na(+) molecule in maximization of thrombin-substrate association reaction rate. We performed all-atomic molecular dynamics (MD) simulations of thrombin in the presence of three different cations; Li(+), Na(+), and Cs(+). Although these cations are commonly observed in the vicinity of the S1-pocket of thrombin, smaller cations are distributed more densely and extensively than larger ones. This suggests the two observation rules: (i) thrombin surrounded by Na(+) is at an advantage in the initial step of association reaction, namely, the formation of an encounter complex ensemble, and (ii) the presence of Na(+) molecules does not necessarily have an advantage in the final step of association reaction, namely, the formation of the stereospecific complex. In conclusion, we propose a conjecture that unbound Na(+) molecules also affect the maximization of rate constant of thrombin-substrate association reaction through optimally forming an encounter complex ensemble.

  6. Interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration in differentiation syndrome.

    PubMed

    Zhou, Jin; Hu, Longhu; Cui, Zhe; Jiang, Xian; Wang, Guifang; Krissansen, Geoffrey W; Sun, Xueying

    2010-03-01

    This study aims to investigate the role of stromal cell-derived factor 1alpha (SDF-1alpha) and its receptor CXCR4 in cellular infiltration of the lung in differentiation syndrome (DS). The acute promyelocytic leukemia (APL) NB4 cells and freshly prepared APL cells from the patients were differentiated by all-trans retinoic acid (ATRA). The expression of SDF-1alpha in human lung tissues was examined by RT-PCR and Western blot analysis. The cells were subjected to adhesion, migration or invasion assays, and co-cultured with human lung tissues in a microgravity rotary cell culture system to examine cellular infiltration in situ. ATRA-differentiated cells expressed high levels of CXCR4, and adhered more strongly to matrigel. Their ability to migrate and invade was enhanced by SDF-1alpha and lung homogenate, and diminished by pre-treatment with an anti-CXCR4 blocking antibody. SDF-1alpha was expressed in the lung tissues of all seven human donors. ATRA-differentiated NB4 cells infiltrated into lung tissues, and this was reduced by pre-treatment with an anti-CXCR4 blocking antibody. The interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration during DS, suggesting that targeting SDF-1alpha and CXCR4 may provide the basis for potential treatments in the management of DS.

  7. The current status of prosthodontic specialists in Japan--the Japan Prosthodontic Society has played an important role in certification of prosthodontic specialists.

    PubMed

    Sato, Hironobu

    2014-07-01

    A board certification system for prosthodontic specialists was established in 2005 by the Japan Prosthodontic Society (JPS), significantly later than the system established by the American Board of Prosthodontics in 1947. The purpose of this study is to outline the certification system for prosthodontic specialists in Japan and discuss and evaluate its current status. In 2012, the number of board certified prosthodontic specialists was 1150 and that of mentorial specialists was 693. The number of board certified institutions was 78 and that of certified adjunct institutions was 23. Although the history of the certification system is not very long, we conclude that a well-organized system has been developed. In addition, prosthodontic departments of dental schools also play an important role in the certification system for prosthodontic specialists.

  8. Sumoylation of the P protein at K254 plays an important role in growth of parainfluenza virus 5.

    PubMed

    Sun, Dengyun; Xu, Pei; He, Biao

    2011-10-01

    The P protein of parainfluenza virus 5 (PIV5) is an essential cofactor of the viral RNA-dependent RNA polymerase. Phosphorylation of the P protein can positively or negatively regulate viral gene expression, depending on the precise phosphorylation sites. Sumoylation, a process of adding small ubiquitin-like modifier (SUMO) to proteins posttranslationally, plays an important role in regulating protein function. In this study, we have found that the P protein of PIV5 was sumoylated with SUMO1 in both transfected and infected cells. The K254 residue of the P protein is within a consensus sumoylation motif. Mutation of the P protein at K254 to arginine (P-K254R) reduced PIV5 minigenome activity, as well as the sumoylation level of the P protein. Incorporation of K254R into a recombinant PIV5 (rPIV5-P-K254R) resulted in a virus that grew to a lower titer and had lower levels of viral RNA synthesis and protein expression than wild-type PIV5, suggesting that sumoylation of the P protein at K254 is important for PIV5 growth. Biochemical studies did not reveal any defect of P-K254R in its interactions with viral proteins NP and L or formation of homotetramers. We propose that sumoylation of the P protein at K254 regulates PIV5 gene expression through a host protein.

  9. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress.

    PubMed

    Zhang, Huan; Zhang, Qian; Zhai, Hong; Li, Yan; Wang, Xiangfeng; Liu, Qingchang; He, Shaozhen

    2017-01-13

    Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na(+) were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato.

  10. Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening

    PubMed Central

    Wang, Qing-Hua; Zhao, Cheng; Zhang, Miao; Li, Yu-Zhong; Shen, Yuan-Yue; Guo, Jia-Xuan

    2017-01-01

    Although much progress has been made towards understanding the ripening of non-climacteric fruit using the strawberry as a model plant, the defined molecular mechanisms remain unclear. Here, RNA-sequencing was performed using four cDNA libraries around the onset of ripening, and a total of 31,793 unigenes and 335 pathways were annotated including the top five pathways, which were involved in ribosome, spliceosome, protein processing, plant-pathogen interaction and plant hormone signaling, and the important DEGs related to ripening were annotated to be mainly involved in protein translation and processing, sugar metabolism, energy metabolism, phytohormones, antioxidation, pigment and softening, especially finding a decreased trend of oxidative phosphorylation during red-coloring. VIGS-mediated downregulation of the pyruvate dehydrogenase gene PDHE1α, a key gene for glycolysis-derived oxidative phosphorylation, could inhibit respiration and ATP biosynthesis, whilst promote the accumulation of sugar, ABA, ETH, and PA, ultimately accelerating the ripening. In conclusion, our results demonstrate that a set of metabolism transition occurred during green-to-white-to-red stages that are coupled with more-to-less DEGs, and the oxidative phosphorylation plays an important role in the regulation of ripening. On the basis of our results, we discuss an oxidative phosphorylation-based model underlying strawberry fruit ripening. PMID:28195221

  11. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress

    PubMed Central

    Zhang, Huan; Zhang, Qian; Zhai, Hong; Li, Yan; Wang, Xiangfeng; Liu, Qingchang; He, Shaozhen

    2017-01-01

    Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na+ were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato. PMID:28084460

  12. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress.

    PubMed

    Huang, Wei; Yang, Shi-Jian; Zhang, Shi-Bao; Zhang, Jiao-Lin; Cao, Kun-Fang

    2012-04-01

    Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 μmol m⁻² s⁻¹ in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.

  13. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  14. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment.

  15. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    PubMed

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  16. Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation.

    PubMed

    Srinivasu, P D N; Prasad, B S R V

    2011-10-01

    Necessity to understand the role of additional food as a tool in biological control programs is being increasingly felt, particularly due to its eco-friendly nature. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator-prey systems. In this article controllability of the additional food--provided predator-prey system is studied from perspectives of pest eradication and biological conservation. Time optimal paths have been constructed to drive the state of the system to a desired terminal state by choosing quantity of the additional food as control variable. The theory developed in this article has been illustrated by solving problems related to pest eradication and biological conservation.

  17. RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation

    PubMed Central

    2012-01-01

    Introduction In response to gamma-irradiation (IR)-induced double-strand DNA breaks, cells undergo cell-cycle arrest, allowing time for DNA repair before reentering the cell cycle. G2/M checkpoint activation involves activation of ataxia telangiectasia mutated (ATM)/ATM- and rad3-related (ATR) kinases and inhibition of Cdc25 phosphatases, resulting in inhibition of Cdc2 kinase and subsequent G2/M cell-cycle arrest. Previous studies from our laboratory showed that the G2/M checkpoint activation after IR exposure of MCF-7 breast cancer cells is dependent on the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signaling. In the present studies, we investigated the role of Ras-related C3 botulinum toxin substrate 1 (Rac1) guanosine triphosphatase (GTPase) in IR-induced G2/M checkpoint response and ERK1/2 activation, as well as in cell survival after IR. Methods With Rac1-specific inhibitor, dominant negative mutant Rac1 (N17Rac1) and specific small interfering RNA, the effect of Rac1 on IR-induced G2/M checkpoint response and ERK1/2 activation was examined in human breast cancer cells. In addition, the effect of Rac1 on cell survival after irradiation was assessed by using Rac1-specific inhibitor. Results IR exposure of MCF-7 breast cancer cells was associated with a marked activation of Rac1 GTPase. Furthermore, inhibition of Rac1 by using specific inhibitor, dominant-negative Rac1 mutant, or specific siRNA resulted in attenuation of IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ATM, ATR, Chk1, and Chk2 kinases, as well as phosphorylation of Cdc2-Tyr15. Moreover, Rac1 inhibition or decreased Rac1 expression also abrogated IR-induced phosphorylation of mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) and ERK1/2. Ultimately, inhibition of Rac1 markedly increased cellular sensitivity to IR exposure, which involves induction of apoptosis. Conclusion Studies in this report suggest that Rac1 GTPase plays an

  18. The role of organic compounds in cloud formation: Relative importance of entrainment, co-condensation and particle-phase properties

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel; Topping, David; Riipinen, Ilona

    2016-04-01

    The organic fraction of atmospheric aerosols is widely acknowledged to affect the cloud nucleating potential of aerosols. Cloud droplet formation through activation of non-volatile CCN is considered to be relatively well understood, however, there are fewer systematic studies on the activation of aerosols containing semi-volatile organic compounds that co-condense alongside water vapour, thus enhancing CCN activity. Although the significance of co-condensation of organic vapours for cloud droplet number concentration predictions has recently been identified, it remains uncertain how this process may interact with atmospheric dynamics. In addition to co-condensation of existing in-cloud material, additional semi-volatile mass can be entrained from the surrounding environment. Reduced cloud droplet number concentrations are expected as the parcel is diluted with clean air; however, additional soluble mass in the particle phase promotes droplet activation. The extent of increased droplet activation due to co-condensation relies also on the physiochemical properties of the organic compounds, as seen in several other phase partitioning sensitivity studies. In this work we study the simultaneous impact of entrainment and co-condensation, the relative importance of these two processes at different atmospheric conditions, their interactions with each other, and the particle-phase chemistry in terms of cloud microphysical properties and their parametric sensitivities. To assess the importance of the entrainment of semi-volatile materials as compared with their co-condensation and chemical properties, a pseudo-adiabatic cloud parcel model with a detailed description of bin microphysics is employed. We have added the co-condensation process to the model such that it is coupled with the parametric entrainment representation. The effects of entrainment and co-condensation are benchmarked independently and simultaneously against a control simulation. Furthermore, we probe the

  19. Cyclooxygenase (COX)-1 and COX-2 both play an important role in the protection of the duodenal mucosa in cats.

    PubMed

    Satoh, Hiroshi; Amagase, Kikuko; Ebara, Satomi; Akiba, Yasutada; Takeuchi, Koji

    2013-01-01

    Although nonsteroidal anti-inflammatory drugs often cause ulcers in the duodenum in humans, the role of cyclooxygenase (COX) isoforms in the pathogenesis of duodenal ulcers has not been fully elucidated. We examined in cats the 1) ulcerogenic effects of selective COX-1 (SC-560, ketorolac) and COX-2 (celecoxib, meloxicam) inhibitors on the gastrointestinal mucosa, 2) effect of feeding and cimetidine on the expression of COX isoforms and prostaglandin E(2) (PGE(2)) level in the duodenum, and 3) localization of COX isoforms in the duodenum. COX inhibitors were administered after the morning meal in cats once daily for 3 days. Gastrointestinal lesions were examined on day 4. Localization and expression of COX isoforms (by immunohistochemistry, Western blot) and PGE(2) level (by enzyme immunoassay) were examined. Results were as follows. First, selective COX-1 or COX-2 inhibitors alone produced marked ulcers in the duodenum but did not cause obvious lesions in the small intestine. Coadministration of SC-560 and celecoxib produced marked lesions in the small intestine. Second, feeding increased both the expression of COX isoforms and PGE(2) level in the duodenum, and the effects were markedly inhibited by pretreatment with cimetidine. Third, COX-1 was localized in goblet and Brunner's gland cells, Meissner's and Auerbach's plexus, smooth muscle cells, and arterioles; and COX-2 was observed in capillaries, venules, and basal granulated cells. The expression of COX isoforms in the duodenum is up-regulated by feeding, and inhibition of either COX-1 or COX-2 causes ulcers in the duodenum, suggesting that both isoforms play an important role in the protection of the duodenal mucosa.

  20. Ruminal Prevotella spp. May Play an Important Role in the Conversion of Plant Lignans into Human Health Beneficial Antioxidants

    PubMed Central

    Schogor, Ana L. B.; Huws, Sharon A.; Santos, Geraldo T. D.; Scollan, Nigel D.; Hauck, Barbara D.; Winters, Ana L.; Kim, Eun J.; Petit, Hélène V.

    2014-01-01

    Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4×4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen. PMID:24709940

  1. New aspects of the role of histamine in cardiovascular function: identification, characterization, and potential pathophysiological importance of H3 receptors.

    PubMed

    Göthert, M; Garbarg, M; Hey, J A; Schlicker, E; Schwartz, J C; Levi, R

    1995-05-01

    As a result of intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1 and H2 receptors are well known, whereas reports on the occurrence and function of H3 receptors in blood vessels and the heart have not become available before the last 7 years (i.e., 4 years after the first description of these receptors in the central nervous system in 1983). The development of selective and potent H3 receptor agonists and antagonists was a prerequisite for convenient investigations of cardiovascular H3 receptors, which like H1 and H2 receptors are G-protein coupled but unlike them have not yet been cloned. Both in blood vessels and the heart, H3 receptors are located on noradrenergic nerve endings and upon stimulation mediate an inhibition of noradrenaline release. Whereas it remains to be clarified under which conditions the vascular H3 receptors may be stimulated by endogenous histamine, those in the heart become activated in the early phases of myocardial ischemia characterized by an increased histamine spillover. The H3 receptors in the central nervous system also appear to be of importance for the control of vascular function. Inhibitory presynaptic H3 receptors occur on trigeminal sensory C fibres supplying blood vessels in the dura mater. Release of neuropeptides from these fibres induces a neurogenic inflammation, which has been suggested to be involved in the pathogenesis of migraine. An interaction, involving presynaptic H3 receptors, between sensory C fibres and mast cells in close apposition to these fibres plays a role in the control of histamine synthesis in the dura mater.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The Role of Atmospheric Instability and Importance of Wind Shear Exponent on Wind and Solar Energy Potential

    NASA Astrophysics Data System (ADS)

    Pamuk, Onur; Akyol, Altan; Aslan, Zafer

    2013-04-01

    Spatial and temporal distributions of wind and solar energy potential are function of atmospheric stability, wind shear exponent, aerosol contents, heat fluxes etc. Richardson number is one of the indicators of the evolution of atmospheric instability. It is a function of the static stability and wind shear exponent. The logarithmic wind profile is commonly used for wind energy evaluation processes in the atmospheric surface layer. Definition of the vertical variation of horizontal wind speeds above the ground by logarithmic profile is limited by 100 meters. The main objective of this study is to take into account atmospheric instability and wind shear exponent in wind power assessment. In the first part of this paper, stability parameters and wind shear exponent have been calculated by using radiosonde data and the wind measuring system for the local area of Istanbul; northwestern part of Turkey between 2011 and 2012. These data were analyzed to define hourly, daily, monthly and seasonal variations of the Richardson number and wind shear exponent. Analyses of early morning soundings produced negative skewwness and afternoon soundings produced a positive skewwness for Ri numbers. The larger negative values of Ri numbers (extremely unstable conditions) have been observed in early morning in winter at the lower levels of atmosphere. The second part of this study covers temporal variations of wind speed and daily total radiation in Istanbul. By using time series and wavelet techniques, small, meso and large scale factors and their roles on wind speed and total daily solar radiation variations have been analyzed. The second part of the paper underlines the role of atmospheric stability and importance of wind shear exponent on variations of wind and solar energy potential. The results of this study would be applicable in the field of wind and solar combined energy systems. Keywords: Wind shear exponent, total daily radiation, wavelet wind and solar energy. Corresponding

  3. Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology

    PubMed Central

    Haj-Yahya, Mahmood; Fauvet, Bruno; Herman-Bachinsky, Yifat; Hejjaoui, Mirva; Bavikar, Sudhir N.; Karthikeyan, Subramanian Vedhanarayanan; Ciechanover, Aaron; Lashuel, Hilal A.; Brik, Ashraf

    2013-01-01

    Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications. PMID:24043770

  4. Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology.

    PubMed

    Haj-Yahya, Mahmood; Fauvet, Bruno; Herman-Bachinsky, Yifat; Hejjaoui, Mirva; Bavikar, Sudhir N; Karthikeyan, Subramanian Vedhanarayanan; Ciechanover, Aaron; Lashuel, Hilal A; Brik, Ashraf

    2013-10-29

    Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications.

  5. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  6. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells.

    PubMed

    Cho, Shinuk; Kim, Kwang-Dae; Heo, Jinhee; Lee, Joo Yul; Cha, Gihoon; Seo, Bo Yeol; Kim, Young Dok; Kim, Yong Soo; Choi, Si-young; Lim, Dong Chan

    2014-03-07

    In order to induce greater light absorption, nano-patterning is often applied to the metal-oxide buffer layer in inverted bulk-heterojunction(BHJ) solar cells. However, current homogeneity was significantly disturbed at the interface, leading to an efficiency that was not fully optimized. In this work, an additional PC61BM layer was inserted between the ZnO ripple and the photoactive layer to enhance the electron extraction. The insertion of additional PC61BM layer provided substantial advantages in the operation of inverted BHJ solar cells; specifically, it enhanced current homogeneity and lowered accumulation and trapping of photogenerated charges at the ZnO interface. Inclusion of the additional PC61BM layer led to effective quenching of electron-hole recombination by a reduction in the number of accumulated charges at the surface of ZnO ripples. This resulted in a 16% increase in the efficiency of inverted BHJ solar cells to 7.7%, compared to solar cells without the additional PC61BM layer.

  7. Re(de)fining the Orthographic Neighborhood: The Role of Addition and Deletion Neighbors in Lexical Decision and Reading

    ERIC Educational Resources Information Center

    Davis, Colin J.; Perea, Manuel; Acha, Joana

    2009-01-01

    The influence of addition and deletion neighbors on visual word identification was investigated in four experiments. Experiments 1 and 2 used Spanish stimuli. In Experiment 1, lexical decision latencies were slower and less accurate for words and nonwords with higher-frequency deletion neighbors (e.g., "jugar" in "juzgar"),…

  8. Understanding the Role of Additives in Improving the Performance of Polymer:Fullerene Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2014-03-01

    Solar cells based on the polymer:fullerene bulk heterojunction (BHJ) represent one of the most promising technologies for next-generation solar energy conversion due to their low-cost and scalability. In the last fifteen years, research efforts have led to organic photovoltaic (OPV) devices with power conversion efficiencies (PCEs) ~ 12%, but these values are still insufficient for the devices to become widely marketable. To further improve solar cell performance, a thorough understanding of the complex processing-structure-performance relationships in OPV devices is required. Recently, the use of processing additives have been proved to be one of the most effective methods to tune the nanomorphology of polymer:fullerene active layer, as the incorporation of a small percentage of solvent additives results in a nearly doubling of device efficiency. However, the physics behind these improved performances by processing additives still remains unclear. In this work, by taking advantage of resonant soft x-ray scattering (RSoXS) and energy-filtered transmission electron microscopy (EFTEM), we have determined that the solvent additives induce the change in the formation mechanism of polymer:fullerene nanomorphologies in the process of film casting. Progress established in the course of these studies on structural and morphological characterizations will serve as the foundation for further improving the efficiency of polymer solar cells to realize their large-scale commercial use.

  9. Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX.

    PubMed

    Dinakar, Challabathula; Raghavendra, Agepati S; Padmasree, Kollipara

    2010-05-01

    The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O(2) evolution and O(2) uptake in mesophyll protoplasts of pea pre-incubated under different light intensities. Under HL (3000 micromol m(-2) s(-1)), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO(3)-dependent O(2) evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O(2) uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO(3)-dependent O(2) evolution or p-benzoquinone (BQ)-dependent O(2) evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model.

  10. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis

    PubMed Central

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  11. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis.

    PubMed

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  12. The Role of Important Non-Parental Adults (VIPs) in the Lives of Older Adolescents: A Comparison of Three Ethnic Groups

    ERIC Educational Resources Information Center

    Haddad, Eileen; Chen, Chuansheng; Greenberger, Ellen

    2011-01-01

    Previous research has consistently documented the importance of VIPs (mentors or important non-parental adults) in the lives of adolescents. Little is known, however, about whether VIPs play the same important roles across ethnic groups and whether VIPs remain influential when adolescents are older and involved in romantic relationships. The…

  13. Protein thiol modification by 15-deoxy-Delta12,14-prostaglandin J2 addition in mesangial cells: role in the inhibition of pro-inflammatory genes.

    PubMed

    Sánchez-Gómez, Francisco J; Cernuda-Morollón, Eva; Stamatakis, Konstantinos; Pérez-Sala, Dolores

    2004-11-01

    The cyclopentenone prostaglandin and PPARgamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) displays anti-inflammatory effects in several experimental models. Direct modification of protein thiols is arising as an important mechanism of cyclopentenone prostaglandin action. However, little is known about the extent or specificity of this process. Mesangial cells (MC) play a key role in glomerulonephritis. In this work, we have studied the selectivity of protein modification by 15d-PGJ(2) in MC, and the correlation with the modulation of several proinflammatory genes. MC incubation with biotinylated 15d-PGJ(2) results in the labeling of a distinct set of proteins as evidenced by two-dimensional electrophoresis. 15d-PGJ(2) binds to nuclear and cytosolic targets as detected by fluorescence microscopy and subcellular fractionation. The pattern of biotinylated 15d-PGJ(2)-modified polypeptides is readily distinguishable from that of total protein staining or labeling with biotinylated iodoacetamide. 15d-PGJ(2) addition requires the double bond in the cyclopentane ring. 9,10-Dihydro-15d-PGJ(2), a 15d-PGJ(2) analog that shows the same potency as peroxisome proliferator-activated receptor (PPAR) agonist in MC but lacks the cyclopentenone moiety, displays reduced ability to modify proteins and to block 15d-PGJ(2) binding. Micromolar concentrations of 15d-PGJ(2) inhibit cytokine-elicited levels of inducible nitricoxide synthase, cyclooxygenase-2, and intercellular adhesion molecule-1 in MC. In contrast, 9,10-dihydro-15d-PGJ(2) does not reproduce this inhibition. 15d-PGJ(2) effect is not blocked by the PPARgamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Moreover, compounds possessing an alpha,beta-unsaturated carbonyl group, like 2-cyclopenten-1-one and 2-cyclohexen-1-one, reduce pro-inflammatory gene expression. These observations indicate that covalent modification of cellular thiols by 15d-PGJ(2) is a selective process that plays an important

  14. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?

    PubMed

    Wu, Fan; Wang, Jun-Tao; Yang, Jun; Li, Jing; Zheng, Yuan-Ming

    2016-06-01

    Arsenic (As) can cause serious hazards to human health, especially in mining areas. Soil bacterial communities, which are critical parts of the soil ecosystem, were analyzed directly for soil environmental factors. As a consequence, it is of great significance to understand the ecological risk of arsenic contamination on bacteria, especially at the local scale. In this study, 33 pairs of soil and grain samples were collected from the corn and paddy fields around an arsenic mining area in Shimen County in Hunan Province, China. Significant differences were found between the soil nitrogen, As concentrations, and bacteria activities among these two types of land use. According to the structural equation model (SEM) analysis, compared with other environmental factors, soil As was not the key factor affecting the bacterial community, even when grain As was beyond the threshold of the national food hygiene standards of China. In the corn field, soil pH was the main factor dominating the bacterial richness, composition and grain As. Meanwhile, in the paddy field the soil total nitrogen (TN) and total carbon (TC) were the main factors impacting the bacterial richness, and the bacterial community composition was mainly affected by pH. The interactions between grain As and soil As were weak in the corn field. The bacterial communities played important roles in the food chain risk of As. The local policy of transforming paddy soil to dry land could greatly reduce the health risk of As through the food chain.

  15. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation.

    PubMed

    Yong-Villalobos, Lenin; González-Morales, Sandra Isabel; Wrobel, Kazimierz; Gutiérrez-Alanis, Dolores; Cervantes-Peréz, Sergio Alan; Hayano-Kanashiro, Corina; Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Martínez, Octavio; Herrera-Estrella, Luis

    2015-12-29

    Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation-responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.

  16. The importance of serial measurements of cytokine levels for the evaluation of their role in pathogenesis in familial Mediterraean fever.

    PubMed

    Akcan, Y; Bayraktar, Y; Arslan, S; Van Thiel, D H; Zerrin, B C K; Yildiz, O

    2003-07-31

    Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by recurrent fever of unknown origin, renal amyloidosis, peritonitis, pleuritis and/or synovitis. There have been many studies to elucidate the etiopathogenesis of FMF. IL-6 is a cytokine that can induce the formation of serum amyloid A and C-reactive protein, both of which are important in development of amyloidosis. IL-6 was determined to be strongly associated in the etiopathogenesis of periodic fever in Chinese-pei dogs. The dogs with this syndrome experience periodic fever, arthritis, renal amyloidosis, a clinical picture very alike of human FMF. Here, we aimed to study mainly whether IL-6 had a similar etiopathogenetic role in human FMF as in Chinese-pei dogs syndrome. The median IL-6 blood levels were found to be higher in patients with acute (n=8) FMF attack (1.85 U/ml) compared to those (n=33) with asymptomatic ones (1.0 U/ml) (p=0.16). There are mainly two results: first; the study should be designed with a larger sample size of patients with acute attack in order to alleviate underestimation of significance, second; sampling time may give various results because of dynamic changes of cytokine levels during acute attack period.

  17. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation

    PubMed Central

    Yong-Villalobos, Lenin; González-Morales, Sandra Isabel; Wrobel, Kazimierz; Gutiérrez-Alanis, Dolores; Cervantes-Peréz, Sergio Alan; Hayano-Kanashiro, Corina; Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Martínez, Octavio; Herrera-Estrella, Luis

    2015-01-01

    Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation–responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses. PMID:26668375

  18. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.

  19. Rho-Associated Protein Kinases Play an Important Role in the Differentiation of Rat Adipose-Derived Stromal Cells into Cardiomyocytes In Vitro

    PubMed Central

    Zhao, Lili; Yang, Gongshe; Zhao, Xin

    2014-01-01

    Adipose-derived stromal cells (ADSCs) represent a readily available abundant supply of mesenchymal stem cells and have the ability to differentiate into cardiomyocytes in mice and human, making ADSCs a promising source of cardiomyocytes for transplantation. However, there has been no report of differentiation of rat ADSCs into cardiomyocytes. In addition, signaling pathways in the differentiation process from ADSCs to cardiomyocytes are unknown. In this study, we first demonstrated that rat ADSCs spontaneously differentiated into cardiomyocytes in vitro, when cultured on a complete medium formulation MethoCult GF M3534. These differentiated cells possessed cardiomyocyte phenotype and expressed cardiac markers. Moreover, these cells showed open excitation-contracting coupling and Ca2+ transient and contracted spontaneously. The role of Rho-associated protein kinases (ROCKs) in the differentiation process was then studied by using ROCK-specific inhibitor Y-27632 and ROCK siRNAs. These agents changed the arrangement of cytoskeleton and diminished appearance of cardiomyocyte phenotype, accompanied by inhibition of c-Jun N-terminal kinase (JNK) phosphorylation and promotion of Akt phosphorylation. Collectively, this is the first study to demonstrate that rat ADSCs could spontaneously differentiate into cardiomyocytes in vitro and ROCKs play an important role in the differentiation of ADSCs into beating cardiomyocytes in conjunction of the PI3K/Akt pathway and the JNK pathway. PMID:25522345

  20. In situ Raman and electrochemical characterization of the role of electrolyte additives in Li/SOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Milicev, S.; Kovac, A.; Pejovnik, S.

    1995-05-01

    A simple glass cell has been constructed for in situ Raman characterization of discharge products in Li/SOCl2 batteries with polyvinyl chloride (PVC) and LiAl(SO3Cl4) additives. The assembly enables the characterization of catholyte-soluble discharge products in the electrolyte as well as products on the lithium and carbon electrode surfaces. The effect of the additives was also examined by scanning electron microscopy/energy dispersive spectroscopy and impedance spectroscopy and correlated to the voltage delay in batteries. The best results, as regards to the elimination of the delay effect, were obtained with a new electrolyte consisting of LiAlCl4/SOCl2 with an admixture of PVC and LiAl(SO3Cl4).

  1. [Asymmetric effects of addition versus deletion on change detection task: the role of feeling of something strange].

    PubMed

    Uchino, Yashio; Hakoda, Yuji; Shibata, Mariko

    2005-06-01

    Two experiments were conducted to examine the asymmetric effect of alterations (i.e., addition versus deletion) on recognition memory. In Experiment 1, a scale for measuring the FSS (Feeling of Something Strange) was developed (n=50) using added or deleted pictures from previous research (e.g., Uchino, Hakoda, & Yamada, 2000). Result showed that altered pictures were evaluated by "pleasant" and "odd" factors. In Experiment 2, 80 participants observed 20 pictures, and then they answered whether each test picture was altered or not. Test pictures varied in significance of the objects added or deleted on a scene. Additions were detected more easily than deletions only when added object was unexpected or unusual, while deleted object was essential to a scene (TD: typicality-disrupted condition). Then, 60 participants rated the FSS scale for test pictures. Ratings of odd factor for added pictures were higher than deleted pictures presented in the TD condition. These results suggest that superiority of addition over deletion might be due to their different effect on FSS.

  2. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    PubMed

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  3. Complement and the Alternative Pathway Play an Important Role in LPS/D-GalN-Induced Fulminant Hepatic Failure

    PubMed Central

    Zhao, Guangyu; Zhou, Xiaojun; Li, Junfeng; Hu, Jingya; Yu, Hong; Chen, Yu; Song, Hongbin; Qiao, Fei; Xu, Guilian; Yang, Fei; Wu, Yuzhang; Tomlinson, Stephen; Duan, Zhongping; Zhou, Yusen

    2011-01-01

    Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3−/− mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3−/− mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure. PMID:22069473

  4. CH4 combustion cycles at Pd/Al2O3--important role of support and oxygen access.

    PubMed

    Czekaj, Izabela; Kacprzak, Katarzyna A; Mantzaras, John

    2013-07-21

    This research is focused on the analysis of adsorbed CH4 intermediates at oxidized Pd9 nanoparticles supported on γ-alumina. From first-principle density functional theory calculations, several configurations, charge transfer and electronic density of states have been analyzed in order to determine feasible paths for the oxidation process. Methane oxidation cycles have been considered as a further step at differently oxidized Pd nanoparticles. For low oxidized Pd nanoparticles, activation of methane is observed, whereby hydrogen from methane is adsorbed at one oxygen atom. This reaction is exothermic with adsorption energy equal to -0.38 eV. In a subsequent step, desorption of two water molecules is observed. Additionally, a very interesting structural effect is evident, mainly Pd-carbide formation, which is also an exothermic reaction with an energy of -0.65 eV. Furthermore, oxidation of such carbidized Pd nanoparticles leads to CO2 formation, which is an endothermic reaction. Important result is that the support is involved in CO2 formation. A different mechanism of methane oxidation has been found for highly oxidized Pd nanoparticles. When the Pd nanoparticle is more strongly exposed to oxidative conditions, adsorption of methane is also possible, but it will proceed with carbonic acid production at the interface between Pd nanoparticles and support. However, this step is endothermic.

  5. The Role of Skin Care as an Integral Component in the Management of Acne Vulgaris: Part 1: The Importance of Cleanser and Moisturizer Ingredients, Design, and Product Selection

    PubMed Central

    Del Rosso, James Q.

    2013-01-01

    Acne vulgaris is a very common facial skin disorder accounting for approximately 10 percent of all visits to ambulatory dermatology practices across the United States annually. Over time, greater attention has been directed to the roles of multiple epidermal barrier functions in various dermatological disorders, especially the stratum corneum permeability barrier and antimicrobial barrier. As a result, it has become readily apparent that professional direction of skin care is very important in the overall management of acne vulgaris. This article discusses several reasons that support the importance of incorporating specified skin care recommendations and instructions into the overall management plan for acne vulgaris. In addition, the article reviews formulation characteristics and some of the scientific data on two commercially available products that are recommended for use as a skin care regimen in patients with acne-prone and acne-affected skin, a foam wash and a moisturizer with a sun protection factor 30 broad spectrum photoprotection rating. The rationale for inclusion of specific ingredients are discussed along with an overview of research results including use in patients with acne vulgaris. PMID:24765221

  6. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  7. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance.

    PubMed

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-06-04

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth.

  8. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein

    PubMed Central

    Chen, I-Jung; Yuann, Jeu-Ming P.; Chang, Yu-Ming; Lin, Shing-Yen; Zhao, Jincun; Perlman, Stanley; Shen, Yo-Yu; Huang, Tai-Huang; Hou, Ming-Hon

    2013-01-01

    Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication. PMID:23501675

  9. High quality Y3Al5O12 doped transparent ceramics for laser applications, role of sintering additives

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Balashov, V. V.; Cheshev, E. A.; Kopylov, Yu L.; Koromyslov, A. L.; Krokhin, O. N.; Kravchenko, V. B.; Lopukhin, K. V.; Shemet, V. V.; Tupitsyn, I. M.

    2016-08-01

    SiO2, ZrO2, B2O3 and MgO oxides and their combinations were used as sintering aids for preparation of yttrium aluminum garnet (YAG) ceramics doped by Nd2O3, Er2O3, Ho2O3, Tm2O3 and Yb2O3. The influence of these additives on optimal sintering temperature, grain growth, volume of residual pores and optical quality of the ceramics were investigated. The best combination of the sintering additives was found and high quality samples of YAG:Nd (1 at.%) ceramics were obtained. The original method of laser optical quality characterization of ceramics was developed and tested. The main laser parameters of YAG:Nd (1 at.%) ceramics samples are measured and compared with the best well known laser ceramics. The samples of YAG:RE (RE- Er2O3, Ho2O3, Tm2O3 and Yb2O3) ceramics are obtained, and their optical transmittance spectra are measured. Composite structures of YAG:Yb (5 at.%) - YAG were obtained by the simplest method of successive joint compaction of different composition layers.

  10. Understanding the role of multifunctional nanoengineered particulate additives on supercritical pyrolysis and combustion of hydrocarbon fuels/propellants

    NASA Astrophysics Data System (ADS)

    Sim, Hyung Sub

    This dissertation aims to understand the fundamental effects of colloidal nanostructured materials on the supercritical pyrolysis, injection, ignition, and combustion of hydrocarbon fuels/propellants. As a fuel additive, functionalized graphene sheets (FGS) without or with the decoration of metal catalysts, such as platinum (Pt) or polyoxometalates (POM) nanoparticles, were examined against conventional materials including nanometer sized fumed silica and aluminum particles. Supercritical pyrolysis experiments were performed as a function of temperature, residence time, and particle type, using a high pressure and temperature flow reactor designed to provide isothermal and isobaric flow conditions. Supercritical pyrolysis results showed that the addition of FGS-based particles at a loading concentration of 50 ppmw increased the conversion rates and reduced apparent activation energies for methylcyclohexane (MCH) and n-dodecane (n-C12H26) fuels. For example, conversion rates, and formations of C1-C5 n-alkanes and C2-C6 1-alkenes were significantly increased by 43.5 %, 59.1 %, and 50.0 % for MCH decomposition using FGS 19 (50 ppmw) at a temperature of 820 K and reduced pressure of 1.36. In addition, FGS decorated with 20 wt % Pt (20wt%Pt FGS) at a loading concentration of 50 ppmw exhibited additional enhancement in the conversion rate of n-C12H26 by up to 24.0 % compared to FGS. Especially, FGS-based particles seem to alter initiation mechanisms, which could result in higher hydrogen formation. Hydrogen selectivities for both MCH and n-C12H26 decompositions were observed to increase by nearly a factor of 2 and 10, respectively. Supercritical injection and combustion experiments were conducted using a high pressure and temperature windowed combustion chamber coupled to the flow reactor through a feed system. Supercritical injection/combustion experiments indicated that the presence of a small amount of particles (100 ppmw) in the fuel affected the injection, ignition

  11. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage.

    PubMed

    de Haas, Thomas W; Fadaei, Hossein; Guerrero, Uriel; Sinton, David

    2013-10-07

    We present a lab-on-a-chip approach to informing thermal oil recovery processes. Bitumen - a major global resource - is an extremely viscous oil which is extracted by injecting steam underground in a process known as Steam Assisted Gravity Drainage (SAGD). Here, a microfluidic network saturated with bitumen provides a physical model of the SAGD reservoir; steam is injected into the chip, and the oil recovery dynamics are visualized and quantified in real-time. The unique advantage of this approach is the pore-scale quantification of fluid phase dynamics under relevant reservoir conditions and pore sizes. High resolution is achieved by leveraging the inherent fluorescence of the native bitumen. The approach is applied to quantify the efficacy of an alkaline steam additive. With the additive, the mean characteristic size of oil-in-water emulsions formed during SAGD is reduced from 150 μm to 6 μm, and the corresponding recovery effectiveness is improved by ~50%. These results demonstrate that pore-scale process quantification enabled by lab-on-a-chip methods can improve the efficacy, and the associated carbon footprint, of energy intensive thermal oil recovery processes.

  12. Can Brazil play a more important role in global tuberculosis drug production? An assessment of current capacity and challenges

    PubMed Central

    2013-01-01

    Background Despite the existence of effective treatment, tuberculosis is still a global public health issue. The World Health Organization recommends a six-month four-drug regimen in fixed-dose combination formulation to treat drug sensitive tuberculosis, and long course regimens with several second-line drugs to treat multi-drug resistant tuberculosis. To achieve the projected tuberculosis elimination goal by 2050, it will be essential to ensure a non-interrupted supply of quality-assured tuberculosis drugs. However, quality and affordable tuberculosis drug supply is still a significant challenge for National Tuberculosis Programs. Discussion Quality drug production requires a combination of complex steps. The first challenge is to guarantee the quality of tuberculosis active pharmaceutical ingredients, then ensure an adequate manufacturing process, according to international standards, to guarantee final product´s safety, efficacy and quality. Good practices for storage, transport, distribution and quality control procedures must follow. In contrast to other high-burden countries, Brazil produces tuberculosis drugs through a strong network of public sector drug manufacturers regulated by a World Health Organization-certified national sanitary authority. The installed capacity for production surpasses the 71,000 needed treatments in the country. However, in order to be prepared to act as a global supplier, important bottlenecks are to be overcome. This article presents an in-depth analysis of the current status of production of tuberculosis drugs in Brazil and the bottlenecks and opportunities for the country to sustain national demand and play a role as a potential global supplier. Raw material and drug production, quality control, international certification and pre-qualification, political commitment and regulatory aspects are discussed, as well recommendations for tackling these bottlenecks. This discussion becomes more important as new drugs and regimens to

  13. Clinical and molecular epidemiologic trends reveal the important role of rotavirus in adult infectious gastroenteritis, in Shanghai, China.

    PubMed

    Wang, Yan; Zhang, Jinan; Liu, Pengbo

    2017-01-01

    As a leading cause of severe diarrhea in children, the pathogenic role of rotavirus in adults has been underestimated for a long time. A hospital-based prospective clinical and molecular epidemiologic study of rotavirus infections in adults was performed between April 2014 and March 2015 in Shanghai, China. Overall, rotavirus was detected in 48 of 441 (10.9%) specimens with prevalence peaking in December (33.3%) and January (27.9%), whereas bacteria were identified in 45 of 846 (5.3%) samples (p<0.01). The rotavirus winter-spring seasonality (November - March) contrasts with the marked summer-fall seasonality (April - October) of bacterial pathogens (p<0.01). Compared with bacterial pathogens, rotavirus infection from child-to-adult transmission (29.8%, p<0.01) was the most important epidemiologic setting generating a major impact on public health, i.e. increased adult burden of infectious gastroenteritis and genetic diversity of circulating rotaviruses; adults infected with rotavirus developed more severe gastroenteritis symptoms (p<0.01) accompanied with mild intestinal and blood inflammations. Thirty-three G9 (lineages VIe and IIId), seven G2 (lineages IVa-1, IVa-3, and V) and two G1 (lineage Va) strains, together with thirty-eight P[8]-III and eight P[4]-V strains, were identified in this study with multiple amino acid differences observed between sample strains and homotypic vaccines. G9P[8] was the predominant genotype (66.7%), followed by G2P[4] (14.6%) and G1P[8] (4.2%). Eight conserved amino acid substitutions in prototype strain K-1, especially A212T in antigenic region C, formed a novel G9-lineage VIe variant that has emerged worldwide since 2010. Our results indicated that emerging rotavirus G9-VIeP[8]-III predominated over all the genotypes with a short time window in adults in Shanghai, China, and caused a local epidemic during the 2014-2015 rotavirus season. These findings reinforce the importance for inclusion of rotavirus in routine clinical

  14. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    SciTech Connect

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-10-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  15. Nitrite Reductase NirBD Is Induced and Plays an Important Role during In Vitro Dormancy of Mycobacterium tuberculosis

    PubMed Central

    Akhtar, Shamim; Khan, Arshad; Sohaskey, Charles D.; Jagannath, Chinnaswamy

    2013-01-01

    Mycobacterium tuberculosis is one of the strongest reducers of nitrate among all mycobacteria. Reduction of nitrate to nitrite, mediated by nitrate reductase (NarGHJI) of M. tuberculosis, is induced during the dormant stage, and the enzyme has a respiratory function in the absence of oxygen. Nitrite reductase (NirBD) is also functional during aerobic growth when nitrite is the sole nitrogen source. However, the role of NirBD-mediated nitrite reduction during the dormancy is not yet characterized. Here, we analyzed nitrite reduction during aerobic growth as well as in a hypoxic dormancy model of M. tuberculosis in vitro. When nitrite was used as the sole nitrogen source in the medium, the organism grew and the reduction of nitrite was evident in both hypoxic and aerobic cultures of M. tuberculosis. Remarkably, the hypoxic culture of M. tuberculosis, compared to the aerobic culture, showed 32- and 4-fold-increased expression of nitrite reductase (NirBD) at the transcription and protein levels, respectively. More importantly, a nirBD mutant of M. tuberculosis was unable to reduce nitrite and compared to the wild-type (WT) strain had a >2-log reduction in viability after 240 h in the Wayne model of hypoxic dormancy. Dependence of M. tuberculosis on nitrite reductase (NirBD) was also seen in a human macrophage-based dormancy model where the nirBD mutant was impaired for survival compared to the WT strain. Overall, the increased expression and essentiality of nitrite reductase in the in vitro dormancy models suggested that NirBD-mediated nitrite reduction could be critical during the persistent stage of M. tuberculosis. PMID:23935045

  16. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    PubMed

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

  17. Transcription Factor Sp1 Plays an Important Role in the Regulation of Copper Homeostasis in Mammalian Cells

    PubMed Central

    Song, Im-Sook; Chen, Helen H. W.; Aiba, Isamu; Hossain, Anwar; Liang, Zheng D.; Klomp, Leo W. J.; Kuo, Macus Tien

    2008-01-01

    Copper is an essential metal nutrient, yet Cu overload is toxic. Here, we report that human copper transporter 1 (hCtr1) plays an important role in the maintenance of Cu homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under Cu-depleted conditions and down-regulated under Cu-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N-terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular Cu contents down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1-binding sites are involved in the basal and Cu concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that zinc finger domain of Sp1 functions as a sensor of Cu that regulates hCtr1 up-and-down in response to Cu concentration variations. Our results demonstrate that mammalian Cu homeostasis is maintained at the hCtr1 mRNA level which is regulated by the Sp1 transcription factor. PMID:18483225

  18. How Important Are Roles/Functions of School Psychologists and Who Should Substitute for Them in Their Absence? Comparing Thai and American Students' Perceptions

    ERIC Educational Resources Information Center

    Archwamety, Teara; McFarland, Max; Tangdhanakanond, Kamonwan

    2009-01-01

    The purpose of this study was to compare Thai and American college students on their perception of the importance of the various roles and functions of school psychologists, and who should assume those roles and functions in the absence of school psychologists. One hundred and eighty-one Thai college students and their 168 US counterparts…

  19. The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing - Enabling Circular Economy

    NASA Astrophysics Data System (ADS)

    Leino, Maija; Pekkarinen, Joonas; Soukka, Risto

    Circular economy is an economy model where products, components, and materials are aimed to be kept at their highest utility and value at all times. Repair, refurbishment and remanufacturing processes are procedures aiming at returning the value of the product during its life cycle. Additive manufacturing (AM) is expected to be an enabling technology in circular economy based business models. One of AM process that enables repair, refurbishment and remanufacturing is Directed Energy Deposition. Respectively Powder Bed Fusion enables manufacturing of replacement components on demand. The aim of this study is to identify the current research findings and state of art of utilizing AM in repair, refurbishment and remanufacturing processes of metallic products. The focus is in identifying possibilities of AM in promotion of circular economy and expected environmental benefits based on the found literature. Results of the study indicate significant potential in utilizing AM in repair, refurbishment and remanufacturing activities.

  20. Role of electrolyte additives on in-vitro electrochemical behavior of micro arc oxidized titania films on Cp Ti

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, K.; Rameshbabu, N.; Sreekanth, D.; Bose, A. C.; Muthupandi, V.; Babu, N. K.; Subramanian, S.

    2012-07-01

    The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)2). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the [1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and

  1. Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation

    PubMed Central

    Kim, Mee J.; Findlay, Gregory M.; Martin, Beth; Zhao, Jingjing; Bell, Robert J. A.; Smith, Robin P.; Ku, Angel A.; Shendure, Jay; Ahituv, Nadav

    2014-01-01

    In addition to their protein coding function, exons can also serve as transcriptional enhancers. Mutations in these exonic-enhancers (eExons) could alter both protein function and transcription. However, the functional consequence of eExon mutations is not well known. Here, using massively parallel reporter assays, we dissect the enhancer activity of three liver eExons (SORL1 exon 17, TRAF3IP2 exon 2, PPARG exon 6) at single nucleotide resolution in the mouse liver. We find that both synonymous and non-synonymous mutations have similar effects on enhancer activity and many of the deleterious mutation clusters overlap known liver-associated transcription factor binding sites. Carrying a similar massively parallel reporter assay in HeLa cells with these three eExons found differences in their mutation profiles compared to the liver, suggesting that enhancers could have distinct operating profiles in different tissues. Our results demonstrate that eExon mutations could lead to multiple phenotypes by disrupting both the protein sequence and enhancer activity and that enhancers can have distinct mutation profiles in different cell types. PMID:25340400

  2. The importance of having zinc during in vitro maturation of cattle cumulus-oocyte complex: role of cumulus cells.

    PubMed

    Anchordoquy, J M; Anchordoquy, J P; Sirini, M A; Picco, S J; Peral-García, P; Furnus, C C

    2014-10-01

    The aim of this study was to investigate the influence of zinc (Zn) on the health of cumulus-oocyte complex (COC) during in vitro maturation (IVM). Experiments were designed to evaluate the effect of Zn added to IVM medium on: DNA integrity, apoptosis, cumulus expansion and superoxide dismutase (SOD) activity of cumulus cells (CC). Also, role of CC on Zn transport during IVM was evaluated on oocyte developmental capacity. DNA damage and early apoptosis were higher in CC matured with 0 μg/ml Zn compared with 0.7, 1.1 and 1.5 μg/ml Zn (p < 0.05). Cumulus expansion did not show differences in COC matured with or without Zn supplementation (p > 0.05). Superoxide dismutase activity was higher in COC matured with 1.5 μg/ml Zn than with 0 μg/ml Zn (p < 0.05). Cleavage and blastocyst rates were recorded after IVM in three maturation systems: intact COCs, denuded oocytes with cumulus cells monolayer (DO + CC) and denuded oocytes (DO). Cleavage rates were similar when COC, DO + CC or DO were matured with 1.5 μg/ml Zn compared with control group (p > 0.05). Blastocyst rates were significantly higher in COC than in DO + CC and DO with the addition of 1.5 μg/ml Zn during IVM (p < 0.01). Blastocyst quality was enhanced in COC and DO + CC compared with DO when Zn was added to IVM medium (p < 0.001). The results of this study indicate that Zn supplementation to IVM medium (i) decreased DNA damage and apoptosis in CC; (ii) increased SOD activity in CC; (iii) did not modify cumulus expansion and cleavage rates after in vitro fertilization; (iv) improved subsequent embryo development up to blastocyst stage; and (v) enhanced blastocyst quality when CC were present either in intact COC or in coculture during IVM.

  3. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.

    PubMed

    Deng, Wei; Yan, Fang; Zhang, Xiaolan; Tang, Yuwei; Yuan, Yujin

    2015-08-01

    Canola is an important vegetable oil crop globally, and the understanding of the molecular mechanism underlying fatty acids biosynthesis during seed embryo development is an important research goal. Here we report the transcriptional profiling analysis of developing canola embryos using RNA-sequencing (RNA-Seq) method. RNA-Seq analysis generated 58,579,451 sequence reads aligned with 32,243 genes. It was found that a total of 55 differential expression genes (DEGs) encoding 28 enzymes function in carbon flow to fatty acids of storage TAG. Most of the DEGs encoding above enzymes showed similar expression pattern, indicating the DEGs are cooperatively involved in carbon flow into fatty acids. In addition, 41 DEGs associated with signal transductions, transport and metabolic processing of auxin, gibberellin, abscisic acid, cytokinin and salicylic acids were found in the RNA-Seq database, which indicates the important roles of the phytohormones in controlling embryo development and fatty acids synthesis. 122 DEGs encoding transcriptional factor family members were found in developing canola embryos. Furthermore, BnDOF5.6, a zinc finger transcriptional factor gene, found in RNA-Seq database was down-regulated in developing canola embryos. The transgenic plants displayed reduced embryo sizes, decreased fatty acids contents and altered seed fatty acids composition in canola. Down-regulated of BnDof5.6 also changed the expression levels of genes involved in fatty acids synthesis and desaturation. Our results indicate that BnDof5.6 is required for embryo development and fatty acids synthesis in canola. Overall this study presents new information on the global expression patterns of genes during embryo development and will expand our understanding of the complex molecular mechanism of carbon flow into fatty acids and embryo development in canola.

  4. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    transfer rate F and for all four types of D-A pair. Comparison of the calculated D and A fluorescence trajectories with those measured by Weiss and co-workers proves the important role of triplet levels in energy transfer via singlet levels.

  5. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid*

    PubMed Central

    Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean

    2016-01-01

    Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51–64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic. PMID:26499837

  6. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid.

    PubMed

    Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean

    2016-01-01

    Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51-64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic.

  7. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization.

    PubMed Central

    Steingrímsson, E; Nii, A; Fisher, D E; Ferré-D'Amaré, A R; McCormick, R J; Russell, L B; Burley, S K; Ward, J M; Jenkins, N A; Copeland, N G

    1996-01-01

    The mouse microphthalmia (mi) locus encodes a basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor called MITF (microphthalmia transcription factor). Mutations at mi affect the development of several different cell types, including melanocytes, mast cells, osteoclasts and pigmented epithelial cells of the eye. Here we describe the phenotypic and molecular characterization of the semidominant Microphthalmia(brwnish) (Mi(b)) mutation. We show that this mutation primarily affects melanocytes and produces retinal degeneration. The mutation is a G to A transition leading to a Gly244Glu substitution in helix 2 of the HLH dimerization domain. This location is surprising since other semidominant mi mutations characterized to date have been shown to affect DNA binding or transcriptional activation domains of MITF and act as dominant negatives, while mutations that affect MITF dimerization are inherited recessively. Gel retardation assays showed that while the mutant MITF(Mi-b) protein retains its dimerization potential, it is defective in its ability to bind DNA. Computer modeling suggested that the Gly244Glu mutation might disrupt DNA binding by interfering with productive docking of the protein dimer onto DNA. The Mi(b) mutation therefore appears to dissociate a DNA recognition function of the HLH domain from its role in protein dimerization. Images PMID:8947051

  8. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans.

    PubMed

    Hasim, Sahar; Hussin, Nur Ahmad; Alomar, Fadhel; Bidasee, Keshore R; Nickerson, Kenneth W; Wilson, Mark A

    2014-01-17

    Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.

  9. The interleukin-2 receptor α chain (CD25) plays an important role in regulating monocyte-derived CD40 expression during anti-porcine cellular responses.

    PubMed

    Sun, Z-G; Wang, Z; Zhu, L-M; Fang, Y-S; Yu, L-Z; Xu, H

    2012-05-01

    Long-term xenograft survival is limited by delayed xenograft rejection, and monocytes are thought to play an important role in this process. Although typically considered a T cell surface marker, interleukin 2 the receptor chain CD25 is also functional on monocytes. We hypothesized that CD25 expression on monocytes functions to augment monocyte activation in xeno-specific cellular responses. Xenogeneic mixed lymphocyte-endothelial cell reactions were used to study the role of CD25 in facilitating xenogeneic cell-mediated immune responses an in vitro. We also tested the effect of the anti-CD25 antibody daclizumab on monocyte-mediated T cell activation during xeno-specific cellular responses. Co-culture with porcine endothelial cells (PEC) elicited a pronounced proliferative response by human peripheral blood mononuclear cells (PBMC) that was accompanied by upregulation of CD25 and CD40 on CD14(+) monocytes. CD4(+) cells proliferated in response to PEC-conditioned monocytes, while blockade of CD25 with daclizumab reduced CD4(+) cell proliferation in the presence of PEC-conditioned monocytes. In addition, daclizumab inhibited proliferation of PBMC in responses to PEC. Analysis of monocytes from PBMC-PEC cocultures by flow cytometry indicated that daclizumab inhibited CD40 upregulation on PEC-activated monocytes. These data demonstrate that CD25 blockade prevents xenogeneic cellular responses by directly blocking CD25 expression on both activated T cells and monocytes. CD25 blockade on T cells or monocytes may indirectly affect upregulation of CD40 on xenoreactive monocytes. Our data strengthen the rationale for incorporating CD25 directed therapy in discordant xenotransplantation.

  10. S. 1082: This Act may be cited as the Hazardous and Additional Waste Export and Import Act of 1991, introduced in the US Senate, One Hundred Second Congress, First Session, May 15, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US Senate on May 15, 1991 to amend the Solid Waste Disposal Act. This legislation prohibits the export from and import into the United States of Hazardous and additional waste except in compliance with the requirements of this bill. The purpose of this act is to implement the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, done at Basel, Switzerland, March 22, 1989. Key sections of this bill address the following: international shipments of hazardous and additional waste; objectives and national policy; retention of existing authority; and conforming amendments.

  11. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction.

  12. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Bachmann, Olivier

    2014-05-01

    Most magmatism on Earth forms by direct melting of the mantle, generating basalts at the low silica end of the terrestrial compositional spectrum. However, most subduction zone magmas erupted or sampled at the surface are basalt-andesitic to andesitic and hence have higher Si contents. Endmember hypotheses for the origin of andesites are: (1) direct melting of the mantle at water-saturated conditions, (2) partial re-melting of altered basaltic crust, (3) crystal fractionation of arc basalts in crustal magma chambers, and (4) mixing of mafic magmas with high Si crust or magmas, e.g., dacite-rhyolite. Here, we explore the possibility of using Zr and P systematics to evaluate the importance of some of these processes. Direct melting of the mantle generates magmas with low Zr (<50 ppm) and P2O5 (<0.2 wt.%). Crystal-liquid segregation should drive an increase in P and Zr in the residual magma because the magma is initially undersaturated in zircon and apatite. With further cooling and crystallization, apatite followed by zircon will saturate, causing P and Zr to decrease so that most rhyolites and granites will have low P and Zr (high temperature rhyolites may never saturate in zircon and will maintain high Zr contents). Mixing of basalts with rhyolites having low P and Zr should generate coupled decreases in Zr and P with increasing SiO2. Here, we show that Zr (>100 ppm) and P2O5 (>0.2 wt.%) in island- and continental-arc magmas initially increase to levels higher than what can be achieved if andesites form by direct mantle melting. As Si increases, both Zr and P decrease with Zr decreasing at higher Si, and hence lagging the decrease in P. These systematics, particularly the decoupled decrease in Zr and P, cannot be explained by mixing, and instead, are more easily explained if andesites are dominantly formed by crystal-liquid segregation from moderately hydrous basalt, wherein P and Zr are controlled, respectively, by early and later saturation in apatite and zircon

  13. β3GnT8 plays an important role in CD147 signal transduction as an upstream modulator of MMP production in tumor cells.

    PubMed

    Jiang, Zhi; Hu, Shuijun; Hua, Dong; Ni, Jianlong; Xu, Lan; Ge, Yan; Zhou, Yinghui; Cheng, Zhihong; Wu, Shiliang

    2014-09-01

    Aberrant carbohydration by related glycosyl-transferases plays an important role in the progression of cancer. This study focused on the ablity of β-1,3-N-acetyl-glucosaminyltransferase-8 (β3GnT8) to regulate MMP-2 expression through regulation of the CD147 signal transduction pathway in cancer cells. β3GnT8 catalyzes and then extends a polylactosamine chain specifically on β1-6-branched tetraantennary N-glycans. CD147 is a major carrier of β1-6-branched polylactosamine sugars on tumor cells, and the high glycoform of CD147 (HG-CD147) induces matrix metalloproteinase (MMP) production. In the present study, we analyzed β3GnT8 mRNA expression in 6 cancer cell lines (MCF-7, M231, LN229, U87, SGC-7901 and U251). We found that β3GnT8 expression in the LN229, SGC-7901 and U251 cell lines was higher than that in the other cell lines. Therefore, we established β3GnT8-knockdown cell lines derived from the LN229 and SGC-7901 cell lines to examine the level of polylactosamine and CD147 N-glycosylation. In addition, tunicamycin is widely used as an inhibitor of N-linked glycosylation. Hence, various concentrations of tunicamycin were used to treat the cells in order to study its influence on CD147 N-glycosylation and MMP-2 expression. In conclusion, we found that β3GnT8 regulated the level of N-glycans on CD147 and that N-glycosylation of CD147 has an important effect on MMP-2 expression. Our findings suggest that β3GnT8 affects the signal transduction pathway of MMP-2 by altering the N-glycan structure of CD147.

  14. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss.

    PubMed

    Liu, Xin; Dong, Xiufen; Liu, Zihan; Shi, Zihang; Jiang, Yun; Qi, Mingfang; Xu, Tao; Li, Tianlai

    2016-10-01

    Solanum lycopersicum auxin response factor 10 (SlARF10) is post-transcriptionally regulated by Sl-miR160. Overexpression of a Sl-miR160-resistant SlARF10 (mSlARF10) resulted in narrower leaflet blades with larger stomata but lower densities. 35S:mSlARF10-6 plants with narrower excised leaves had greater water loss, which was in contrast to the wild type (WT). Further analysis revealed that the actual water loss was not consistent with the calculated stomatal water loss in 35S:mSlARF10-6 and the WT under the dehydration treatment, indicating that there is a difference in hydraulic conductance. Pretreatment with abscisic acid (ABA) and HgCl2 confirmed higher hydraulic conductance in 35S:mSlARF10, which is related to the larger stomatal size and higher activity of aquaporins (AQPs). Under ABA treatment, 35S:mSlARF10-6 showed greater sensitivity, and the stomata closed rapidly. Screening by RNA sequencing revealed that five AQP-related genes, fourteen ABA biosynthesis/signal genes and three stomatal development genes were significantly altered in 35S:mSlARF10-6 plants, and this result was verified by qRT-PCR. The promoter analysis showed that upregulated AQPs contain AuxRE and ABRE, implying that these elements may be responsible for the high expression levels of AQPs in 35S:mSlARF10-6. The three most upregulated AQPs (SlTIP1-1-like, SlPIP2;4 and SlNIP-type-like) were chosen to confirm AuxRE and ABRE function. Promoters transient expression demonstrated that the SlPIP2;4 and SlNIP-type-like AuxREs and SlPIP2;4 and SlTIP1-1-like ABREs could significantly enhance the expression of the GUS reporter in 35S:mSlARF10-6, confirming that AuxRE and ABRE may be the main factors inducing the expression of AQPs. Additionally, two upregulated transcription factors in 35S:mSlARF10-6, SlARF10 and SlABI5-like were shown to directly bind to those elements in an electromobility shift assay and a yeast one-hybrid assay. Furthermore, transient expression of down-regulated ARF10 or up

  15. When Are Teachers Motivated to Work beyond Retirement Age? The Importance of Support, Change of Work Role and Money

    ERIC Educational Resources Information Center

    Bal, P. Matthijs; Visser, Michel S.

    2011-01-01

    This article investigates the factors influencing the motivation to continue working after retirement among a sample of Dutch teachers. Based on previous research, it was proposed that teachers will be motivated to work after their legal retirement age when organizational support, possibilities to change work roles and financial needs are high.…

  16. The important role of stellar atmosphere spectra for a consistent spectrophotometric calibration from the optical to the infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Decin, L.

    2008-12-01

    We discuss the role of stellar atmosphere models in the spectrophotometric calibration pedigree. It is shown that stellar atmosphere spectra form an essential ingredient for spectrophotometric calibration. Compared with other (infrared) calibration networks currently available, the marcs grid is shown to provide the calibration community with spectral reference energy distributions of higher accuracy improving the spectrophotometric calibration of infrared spectrometers by more than 3%.

  17. Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt

    NASA Astrophysics Data System (ADS)

    Forestier, Coralie; Grugeon, Sylvie; Davoisne, Carine; Lecocq, Amandine; Marlair, Guy; Armand, Michel; Sannier, Lucas; Laruelle, Stephane

    2016-10-01

    The risk of thermal runaway is, for Li-ion batteries, a critical issue for large-scale applications. This results in manufacturers and researchers placing great emphasis on minimizing the heat generation and thereby mitigating safety-related risks through the search for suitable materials or additives. To this end, an in-depth stepwise investigation has been undertaken to provide a better understanding of the exothermic processes that take place at the negative electrode/electrolyte interface as well as an increased visibility of the role of the state-of-the-art electrode binders, additives and lithium salt by means of the classical DSC technique. A reliable experimental set up helped quantify the beneficial or harmful contribution of binder polymers to the exothermic behavior of the CMC/SBR containing graphite electrode film in contact with 1 M LiPF6 in EC:DMC:EMC (1:1:1 v/v/v) electrolyte. Further, the role of the VC, FEC and VEC electrolyte additives (2 wt%) in reinforcing the protective SEI layer towards thermally induced electrolyte reduction is discussed in the light of infrared spectroscopy and transmission electron microscopy analyzes results. Moreover, after a preliminary corrosion study of LiPF6/LiFSI mixtures, we showed that the 0.66/0.33 M composition can be used in commercial NMC-based LiBs with a positive effect on the thermal runaway.

  18. The role of attitude importance in social evaluation: a study of policy preferences, presidential candidate evaluations, and voting behavior.

    PubMed

    Krosnick, J A

    1988-08-01

    According to a number of social psychological theories, attitudes toward government policies that people consider important should have substantial impact on presidential candidate preferences, and unimportant attitudes should have relatively little impact. Surprisingly, the accumulated evidence evaluating this hypothesis offers little support for it. This article reexamines the hypothesis, applying more appropriate analysis methods to data collected during the 1968, 1980, and 1984 American presidential election campaigns. The impact of policy attitudes on candidate preferences was indeed found to depend on the importance of those attitudes, just as theory suggests. The analysis also documented two mechanisms of this increased impact: People for whom a policy attitude is important perceive larger differences between competing candidates' attitudes, and important attitudes appear to be more accessible in memory than unimportant ones.

  19. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes.

    PubMed

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E; Xia, Tian

    2015-05-06

    The purpose of this paper is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species, including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, single-walled carbon nanotubes, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22(phox) -deficient cells. The NADPH oxidase is directly involved in lysosomal damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22(phox) -deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47(phox) -deficient mice. Moreover, p47(phox) -deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine in wild-type animals exposed to MWCNTs.

  20. The cellular immune response plays an important role in protecting against dengue virus in the mouse encephalitis model.

    PubMed

    Gil, Lázaro; López, Carlos; Blanco, Aracelys; Lazo, Laura; Martín, Jorge; Valdés, Iris; Romero, Yaremis; Figueroa, Yassel; Guillén, Gerardo; Hermida, Lisset

    2009-02-01

    For several years, researchers have known that the generation of neutralizing antibodies is a prerequisite for attaining adequate protection against dengue virus. Nevertheless, the cellular immune response is the principal arm of the adaptive immune system against non-cytopathic viruses such as dengue, as once the virus enters into the cell it is necessary to destroy it to eliminate the virus. To define the role of the cellular immune response in the protection against dengue, we selected the mouse encephalitis model. Mice were immunized with a single dose of infective dengue 2 virus and different markers of both branches of the induced adaptive immunity were measured. Animals elicited a broad antibody response against the four dengue virus serotypes, but neutralizing activity was only detected against the homologous serotype. On the other hand, the splenocytes of the infected animals strongly proliferated after in vitro stimulation with the homologous virus, and specifically the CD8 T-cell subset was responsible for the secretion of the cytokine IFN-gamma. Finally, to define the role of T cells in in vivo protection, groups of animals were inoculated with the depleting monoclonal antibodies anti-CD4 or anti-CD8. Only depletion with anti-CD8 decreased to 50% the level of protection reached in the non-depleted mice. The present work constitutes the first report defining the role of the cellular immune response in protection against dengue virus in the mouse model.

  1. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment.

    PubMed

    Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A

    2015-06-04

    Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.

  2. Is there role of additional chemotherapy after definitive local treatment for stage I/II marginal zone lymphoma?: Consortium for Improving Survival of Lymphoma (CISL) study.

    PubMed

    Koh, Myeong Seok; Kim, Won Seog; Kim, Seok Jin; Oh, Sung Yong; Yoon, Dok Hyun; Lee, Soon Il; Hong, Junshik; Song, Moo Kon; Shin, Ho-Jin; Kwon, Jung Hye; Kim, Hyo Jung; Do, Yong Rok; Suh, Cheolwon; Kim, Hyo Jin

    2015-10-01

    Even though local stage (Ann Arbor stage I/II) marginal zone lymphoma (MZL) is well controlled with local treatment-based therapy, no data exist on the role of additional chemotherapy after local treatment for stage I/II MZL. Patients with biopsy-confirmed Ann Arbor stage I/II MZL (n = 210) were included for analysis in this study. Of these, 180 patients (85.7 %) were stage I and 30 (14.3 %) were stage II. Most patients (n = 182, 86.7 %) were treated with a local modality including radiation therapy or surgery and 28 (13.3 %) received additional systemic chemotherapy after local treatment. The overall response rate was 98.3 % (95 % CI 96-100 %), with 187 complete responses and 20 partial responses. In the local treatment group, the mean progression-free survival (PFS) was 147.4 months (95 % CI 126.7-168.1 months) and the overall survival (OS) was 188.2 months (95 % CI 178.8-197.7 months). In the additional chemotherapy group, the mean PFS was 103.4 months (95 % CI 84.9-121.9 months) and the OS was 137.3 months (95 % CI 127.9-146.7 months). There was no difference between the two groups in OS (p = 0.836) and PFS (p = 0.695). Local stage MZL has a good clinical course and is well controlled with a local treatment modality without additional chemotherapy.

  3. Air Force Contract Negotiations: Importance, Roles, and Major Problems in the United States and Four NATO Countries

    DTIC Science & Technology

    1982-06-01

    16/81, 73) notes that "the average negotiated profit rate on defense contracts in fiscal 1979 (the latest index available) was 10.7 percent, almost...were sampled : contract negotiators, managers of contract negotiators, and users of the services of contract negotiators. Interest focused on research...study called for a random sample of approximately one hundred personnel from each of the populations. In addition, the sample design was

  4. mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits.

    PubMed

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; van der Horst, Hilma; Reinders, Margot T M; Broersen, Laus M; Willemsen, Linette E M; Kas, Martien J H; Garssen, Johan; Kraneveld, Aletta D

    2015-10-01

    Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms.

  5. The Role of Social Support for Promoting Quality of Life among Persistently Obese Adolescents: Importance of Support in Schools

    ERIC Educational Resources Information Center

    Wu, Yelena P.; Reiter-Purtill, Jennifer; Zeller, Meg H.

    2014-01-01

    Background: Despite school-based and other interventions for pediatric obesity, many obese youth of the present generation will persist in their obesity into adolescence and adulthood. Thus, understanding not only how better to tailor weight interventions but how to promote overall adjustment for persistently obese youth is of utmost importance.…

  6. Interleukin-6 “Trans-Signaling” and Ischemic Vascular Disease: The Important Role of Soluble gp130

    PubMed Central

    Passaro, Angelina; Zuliani, Giovanni

    2017-01-01

    Inflammation plays a major role in the onset of cardiovascular disease (CVD). Interleukine-6 (IL-6) is a multifunctional cytokine involved both in the beneficial acute inflammatory response and in the detrimental chronic low-grade systemic inflammation. Large genetic human studies, using Mendelian randomization approaches, have clearly showed that IL-6 pathway is causally involved in the onset of myocardial infarction. At the same time, IL-6 pathway is divided into two arms: classic signaling (effective in hepatocytes and leukocytes) and trans-signaling (with ubiquitous activity). Trans-signaling is known to be inhibited by the circulating soluble glycoprotein 130 (sgp130). In animal and in vitro models, trans-signaling inhibition with sgp130 antibody clearly shows a beneficial effect on inflammatory disease and atherosclerosis. Conversely, epidemiological data report inconsistent results between sgp130 levels and CV risk factors as well as CV outcome. We have reviewed the literature to understand the role of sgp130 and to find the evidence in favor of or against a possible clinical application of sgp130 treatment in the prevention of cardiovascular disease. PMID:28250574

  7. Fine needle biopsy with cytology in paediatrics: the importance of a multidisciplinary approach and the role of ancillary techniques.

    PubMed

    Barroca, H; Bom-Sucesso, M

    2014-02-01

    Fine needle biopsy (FNB) with cytology has long been regarded as an excellent technique as the first choice for diagnosing adult tumours. Being an inexpensive minimally invasive technique with high accuracy and diagnostic immediacy through rapid on-site evaluation, it is also ideal for implementation in the paediatric setting, particularly in developing countries. Furthermore, it allows complementary and advanced procedures such as flow cytometry, polymerase chain reaction (PCR) or fluorescence in situ hybridization (FISH), among others, which enhances the diagnostic capacity of this technique and gives it a key role in risk stratification and therapeutic decision-making for several tumours. The advantages of FNB are optimized in the setting of a multidisciplinary team where cytologist, clinician and radiologist play leading roles. Paediatric tumours are rare and most ancillary techniques are cost-effective but complex to be implemented in small centres with limited experience in paediatric pathology. Therefore reference centres are essential, in order to establish teams with extensive experience and expertise. Hence, any child with a suspected malignancy should be directly referred to a paediatric oncology unit. Focusing on a practical approach to the assessment of paediatric lymphadenopathies and non-central nervous system solid tumours we review the effectiveness of FNB as applied concurrently with ancillary techniques in a multidisciplinary approach to the diagnosis, prognosis and therapeutic decisions of paediatric tumours and tumour-like lesions.

  8. Colon cancer and the epidermal growth factor receptor: Current treatment paradigms, the importance of diet, and the role of chemoprevention.

    PubMed

    Pabla, Baldeep; Bissonnette, Marc; Konda, Vani J

    2015-10-10

    Colorectal cancer represents the third most common and the second deadliest type of cancer for both men and women in the United States claiming over 50000 lives in 2014. The 5-year survival rate for patients diagnosed with metastatic colon and rectal cancer is < 15%. Early detection and more effective treatments are urgently needed to reduce morbidity and mortality of patients afflicted with this disease. Here we will review the risk factors and current treatment paradigms for colorectal cancer, with an emphasis on the role of chemoprevention as they relate to epidermal growth factor receptor (EGFR) blockade. We will discuss how various EGFR ligands are upregulated in the presence of Western diets high in saturated and N-6 polyunsaturated fats. We will also outline the various mechanisms of EGFR inhibition that are induced by naturally occurring chemopreventative agents such as ginseng, green tea, and curcumin. Finally, we will discuss the current role of targeted chemotherapy in colon cancer and outline the limitations of our current treatment options, describing mechanisms of resistance and escape.

  9. Important role of surface fluoride in nitrogen-doped TiO2 nanoparticles with visible light photocatalytic activity.

    PubMed

    Brauer, Jonathan I; Szulczewski, Greg

    2014-12-11

    Nitrogen-doped TiO2 nanoparticles have been synthesized using sol-gel methods and subsequently fluorinated at room temperature by aging in acidic solutions of NaF. The nanoparticles were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis, and IR diffuse reflectance spectroscopy. After aging at room temperature in NaF solutions, the Ti-OH groups on the surface of the TiO2 nanoparticles were replaced by Ti-F bonds, which resulted in a decrease of the point of zero charge from pH 5.4 to 2.8. Most importantly, the nitrogen dopants were retained after the fluorination process, and the amorphous nanoparticles were partially converted into the anatase phase. Annealing the photocatalysts resulted in a decrease of both the nitrogen and fluoride atomic concentration. Diffuse reflectance spectra show an increase in absorbance above 400 nm after annealing the F,N-doped TiO2, which suggests the formation of color centers. The photoactivity of the F,N-doped and N-doped TiO2 catalysts were evaluated by monitoring by the decolorization of methylene blue with visible light. Mass spectrometric analysis revealed that methylene blue undergoes successive demethylation, and more importantly, the rate of decolorization depends on the fluoride concentration. These results show the importance of a two-step synthesis method to independently control the nitrogen and fluoride concentration.

  10. hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem.

    PubMed

    Mahanty, Arabinda; Purohit, Gopal Krishna; Yadav, Ravi Prakash; Mohanty, Sasmita; Mohanty, Bimal Prasanna

    2017-02-01

    Changes in the expression of a number of hsp genes in minnow Puntius sophore collected from a hot spring run-off (Atri hot spring in Odisha, India; 20(o)09'N 85(°)18'E, 36-38 °C) were investigated to study the upper thermal acclimation response under heat stress, using same species from aquaculture ponds (water temperature 27 °C) as control. Expression of hsp genes was analyzed in both groups using RT-qPCR, which showed up-regulation of hsp90 (2.1-fold) and hsp47 (2.5-fold) in hot spring run-off fishes, whereas there was no alteration in expression of other hsps. As the fish inhabit the hot spring run-off area for very long duration, they could have adapted to the environment. To test this hypothesis, fishes collected from hot spring run-off were divided into two groups; one was heat-shocked at 41 °C/24 h, and the other was acclimatized at 27 °C/24 h. Up-regulation of all the hsps (except hsp78) was observed in the heat-shocked fishes, whereas expression of all hsps was found to be down-regulated to the basal level in fishes maintained at 27 °C/24 h. Pathway analysis showed that the expressions of all the hsps except hsp90 are regulated by the transcription factor heat shock factor 1 (Hsf1). This study showed that hsp90 and hsp47 play an important role in Puntius sophore for surviving in the high-temperature environment of the hot spring run-off. Additionally, we show that plasticity in hsp gene expression is not lost in the hot spring run-off population.

  11. The role and importance of veterinary laboratories in the prevention and control of infectious diseases of animals.

    PubMed

    Truszczyński, M J

    1998-08-01

    Veterinary laboratories which deal with infectious diseases form three groups according to the tasks for which they are responsible. The first group includes central or national veterinary laboratories, national or international reference laboratories, high-security laboratories, district regional or state veterinary diagnostic laboratories. The major role of these laboratories is to assist national Veterinary Services in diagnosing infectious animal diseases. The second group comprises laboratories that produce veterinary diagnostic kits and those that produce veterinary vaccines. The third group is composed of veterinary research laboratories, which generally concentrate on basic research and do not contribute directly to the diagnosis and control of infectious animal diseases. The author describes the objectives of each of the three groups of laboratories.

  12. The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series).

    PubMed

    Huston, Jessica H; Ryan, John J

    2016-09-01

    Epigenetics is an emerging field of research and clinical trials in cancer therapy that also has applications for pulmonary arterial hypertension (PAH), as there is evidence that epigenetic control of gene expression plays a significant role in PAH. The three types of epigenetic modification include DNA methylation, histone modification, and RNA interference. All three have been shown to be involved in the development of PAH. Currently, the enzymes that perform these modifications are the primary targets of neoplastic therapy. These targets are starting to be explored for therapies in PAH, mostly in animal models. In this review we summarize the basics of each type of epigenetic modification and the known sites and molecules involved in PAH, as well as current targets and prospects for clinical trials.

  13. Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development.

    PubMed

    Diagne, Nathalie; Diouf, Diegane; Svistoonoff, Sergio; Kane, Aboubacry; Noba, Kandioura; Franche, Claudine; Bogusz, Didier; Duponnois, Robin

    2013-10-15

    Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia.

  14. The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series)

    PubMed Central

    Ryan, John J.

    2016-01-01

    Abstract Epigenetics is an emerging field of research and clinical trials in cancer therapy that also has applications for pulmonary arterial hypertension (PAH), as there is evidence that epigenetic control of gene expression plays a significant role in PAH. The three types of epigenetic modification include DNA methylation, histone modification, and RNA interference. All three have been shown to be involved in the development of PAH. Currently, the enzymes that perform these modifications are the primary targets of neoplastic therapy. These targets are starting to be explored for therapies in PAH, mostly in animal models. In this review we summarize the basics of each type of epigenetic modification and the known sites and molecules involved in PAH, as well as current targets and prospects for clinical trials. PMID:27683604

  15. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity.

    PubMed

    Lazer, Galit; Pe'er, Liron; Farago, Marganit; Machida, Kazuya; Mayer, Bruce J; Katzav, Shulamit

    2010-07-23

    The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-gamma associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.

  16. The role of the Sheffield model on the minimum unit pricing of alcohol debate: the importance of a rhetorical perspective.

    PubMed

    Katikireddi, Srinivasa Vittal; Hilton, Shona; Bond, Lyndal

    2016-11-01

    The minimum unit pricing (MUP) alcohol policy debate has been informed by the Sheffield model, a study which predicts impacts of different alcohol pricing policies. This paper explores the Sheffield model's influences on the policy debate by drawing on 36 semi-structured interviews with policy actors who were involved in the policy debate. Although commissioned by policy makers, the model's influence has been far broader than suggested by views of 'rational' policy making. While findings from the Sheffield model have been used in instrumental ways, they have arguably been more important in helping debate competing values underpinning policy goals.

  17. The role of the Sheffield model on the minimum unit pricing of alcohol debate: the importance of a rhetorical perspective

    PubMed Central

    Katikireddi, Srinivasa Vittal; Hilton, Shona; Bond, Lyndal

    2017-01-01

    The minimum unit pricing (MUP) alcohol policy debate has been informed by the Sheffield model, a study which predicts impacts of different alcohol pricing policies. This paper explores the Sheffield model’s influences on the policy debate by drawing on 36 semi-structured interviews with policy actors who were involved in the policy debate. Although commissioned by policy makers, the model’s influence has been far broader than suggested by views of ‘rational’ policy making. While findings from the Sheffield model have been used in instrumental ways, they have arguably been more important in helping debate competing values underpinning policy goals. PMID:28111593

  18. A network-based maximum link approach towards MS identifies potentially important roles for undetected ARRB1/2 and ACTB in liver cancer progression

    PubMed Central

    Goh, Wilson Wen Bin; Lee, Yie Hou; Ramdzan, Zubaidah M.; Chung, Maxey C.M.; Wong, Limsoon; Sergot, Marek J.

    2013-01-01

    Hepatocellular Carcinoma (HCC) ranks among the deadliest of cancers and has a complex etiology. Proteomics analysis using iTRAQ provides a direct way to analyze perturbations in protein expression during HCC progression from early- to late-stage but suffers from consistency and coverage issues. Appropriate use of network-based analytical methods can help to overcome these issues. We built an integrated and comprehensive protein-protein interaction network (PPIN) by merging several major databases. Additionally, the network was filtered for GO coherent edges. Significantly differential genes (seeds) were selected from iTRAQ data and mapped onto this network. Undetected proteins linked to seeds (linked proteins) were identified and functionally characterized. The process of network cleaning provides a list of higher quality linked proteins, which are highly enriched for similar biological process Gene Ontology terms. Linked proteins are also enriched for known cancer genes and are linked to many well-established cancer processes such as apoptosis and immune response. We found that there is an increased propensity for known cancer genes to be found in highly linked proteins. Three highly-linked proteins were identified that may play an important role in driving HCC progression—the G-protein coupled receptor signaling proteins, ARRB1/2 and the structural protein beta-actin, ACTB. Interestingly, both ARRB proteins evaded detection in the iTRAQ screen. ACTB was not detected in the original dataset derived from Mascot but was found to be strongly supported when we re-ran analysis using another protein detection database (Paragon). Identification of linked proteins helps to partially overcome the coverage issue in shotgun proteomics analysis. The set of linked proteins are found to be enriched for cancer-specific processes, and more likely so if they are more highly linked. Additionally, a higher quality linked set is derived if network-cleaning is performed prior. This

  19. Role of thiamine pyrophosphate in oligomerisation, functioning and import of peroxisomal 2-hydroxyacyl-CoA lyase.

    PubMed

    Fraccascia, Patrizia; Casteels, Minne; De Schryver, Evelyn; Van Veldhoven, Paul P

    2011-10-01

    During peroxisomal α-oxidation, the CoA-esters of phytanic acid and 2-hydroxylated straight chain fatty acids are cleaved into a (n-1) fatty aldehyde and formyl-CoA by 2-hydroxyacyl-CoA lyase (HACL1). HACL1 is imported into peroxisomes via the PEX5/PTS1 pathway, and so far, it is the only known peroxisomal TPP-dependent enzyme in mammals. In this study, the effect of mutations in the TPP-binding domain of HACL1 on enzyme activity, subcellular localisation and oligomerisation was investigated. Mutations of the aspartate 455 and serine 456 residues within the TPP binding domain of the human HACL1 did not affect the targeting upon expression in transfected CHO cells, although enzyme activity was abolished. Gel filtration of native and mutated N-His(6)-fusions, expressed in yeast, revealed that the mutations did not influence the oligomerisation of the (apo)enzyme. Subcellular fractionation of yeast cells expressing HACL1 showed that the lyase activity sedimented at high density in a Nycodenz gradient. In these fractions TPP could be measured, but not when mutated HACL1 was expressed, although the recombinant enzyme was still targeted to peroxisomes. These findings indicate that the binding of TPP is not required for peroxisomal targeting and correct folding of HACL1, in contrast to other TPP-dependent enzymes, and suggest that transport of TPP into peroxisomes is dependent on HACL1 import, without requirement of a specific solute transporter.

  20. A monogalactosyldiacylglycerol synthase found in the green sulfur bacterium Chlorobaculum tepidum reveals important roles for galactolipids in photosynthesis.

    PubMed

    Masuda, Shinji; Harada, Jiro; Yokono, Makio; Yuzawa, Yuichi; Shimojima, Mie; Murofushi, Kazuhiro; Tanaka, Hironori; Masuda, Hanako; Murakawa, Masato; Haraguchi, Tsuyoshi; Kondo, Maki; Nishimura, Mikio; Yuasa, Hideya; Noguchi, Masato; Oh-Oka, Hirozo; Tanaka, Ayumi; Tamiaki, Hitoshi; Ohta, Hiroyuki

    2011-07-01

    Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.

  1. Role of Additives in Composite PEI/Oxide CO₂ Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO₂ Capture from Simulated Ambient Air.

    PubMed

    Sakwa-Novak, Miles A; Tan, Shuai; Jones, Christopher W

    2015-11-11

    Supported amines are promising candidate adsorbents for the removal of CO2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive induced heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (∼60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. The strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.

  2. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  3. An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors.

    PubMed

    Arey, R N; Enwright, J F; Spencer, S M; Falcon, E; Ozburn, A R; Ghose, S; Tamminga, C; McClung, C A

    2014-03-01

    Mice with a mutation in the Clock gene (ClockΔ19) have been identified as a model of mania; however, the mechanisms that underlie this phenotype, and the changes in the brain that are necessary for lithium's effectiveness on these mice remain unclear. Here, we find that cholecystokinin (Cck) is a direct transcriptional target of CLOCK and levels of Cck are reduced in the ventral tegmental area (VTA) of ClockΔ19 mice. Selective knockdown of Cck expression via RNA interference in the VTA of wild-type mice produces a manic-like phenotype. Moreover, chronic treatment with lithium restores Cck expression to near wild-type and this increase is necessary for the therapeutic actions of lithium. The decrease in Cck expression in the ClockΔ19 mice appears to be due to a lack of interaction with the histone methyltransferase, MLL1, resulting in decreased histone H3K4me3 and gene transcription, an effect reversed by lithium. Human postmortem tissue from bipolar subjects reveals a similar increase in Cck expression in the VTA with mood stabilizer treatment. These studies identify a key role for Cck in the development and treatment of mania, and describe some of the molecular mechanisms by which lithium may act as an effective antimanic agent.

  4. Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects.

    PubMed

    Hufbauer, R A; Rutschmann, A; Serrate, B; Vermeil de Conchard, H; Facon, B

    2013-08-01

    High propagule pressure is arguably the only consistent predictor of colonization success. More individuals enhance colonization success because they aid in overcoming demographic consequences of small population size (e.g. stochasticity and Allee effects). The number of founders can also have direct genetic effects: with fewer individuals, more inbreeding and thus inbreeding depression will occur, whereas more individuals typically harbour greater genetic variation. Thus, the demographic and genetic components of propagule pressure are interrelated, making it difficult to understand which mechanisms are most important in determining colonization success. We experimentally disentangled the demographic and genetic components of propagule pressure by manipulating the number of founders (fewer or more), and genetic background (inbred or outbred) of individuals released in a series of three complementary experiments. We used Bemisia whiteflies and released them onto either their natal host (benign) or a novel host (challenging). Our experiments revealed that having more founding individuals and those individuals being outbred both increased the number of adults produced, but that only genetic background consistently shaped net reproductive rate of experimental populations. Environment was also important and interacted with propagule size to determine the number of adults produced. Quality of the environment interacted also with genetic background to determine establishment success, with a more pronounced effect of inbreeding depression in harsh environments. This interaction did not hold for the net reproductive rate. These data show that the positive effect of propagule pressure on founding success can be driven as much by underlying genetic processes as by demographics. Genetic effects can be immediate and have sizable effects on fitness.

  5. Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy.

    PubMed

    Rosenthal, Adam Z; Zhang, Xinning; Lucey, Kaitlyn S; Ottesen, Elizabeth A; Trivedi, Vikas; Choi, Harry M T; Pierce, Niles A; Leadbetter, Jared R

    2013-10-01

    Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts. FDH is an essential enzyme of H2 metabolism that is ultimately important for the assimilation of lignocellulose-derived energy by the insect. Second, single-cell PCR analysis revealed that two different bacterial types expressed these two transcripts. The most commonly transcribed FDH in situ is encoded by a previously unappreciated deltaproteobacterium, whereas the other FDH is spirochetal. Third, PCR analysis of fractionated gut contents demonstrated that these bacteria reside in different spatial niches; the spirochete is free-swimming, whereas the deltaproteobacterium associates with particulates. Fourth, the deltaproteobacteria expressing FDH were localized to protozoa via hybridization chain reaction-FISH, an approach for multiplexed, spatial mapping of mRNA and rRNA targets. These results underscore the importance of making direct vs. inference-based gene-species associations, and have implications in higher termites, the most successful termite lineage, in which protozoa have been lost from the gut community. Contrary to expectations, in higher termites, FDH genes related to those from the protozoan symbiont dominate, whereas most others were absent, suggesting that a successful gene variant can persist and flourish after a gut perturbation alters a major environmental niche.

  6. New eyes on the first stars: the old bulge component and the important role of PNe in this context

    NASA Astrophysics Data System (ADS)

    Chiappini, Cristina; Cescutti, Gabriele; Barbuy, Beatriz; Meynet, Georges; Hirschi, Raphael

    2015-08-01

    Most of the current observational efforts in finding the chemical imprints left by the first stars have focused on the most metal-poor (and probably oldest) stars found in the MW halo. Very metal-poor stars were also found in ultra-faint dwarf galaxies, which are intriguing dark-matter dominated objects with very low average metallicities. Studies based on the chemical and kinematic properties of stars in the different MW components have shown that not only the halo, but also the bulge is a potential host of some of the oldest stars in our Galaxy. The oldest Globular Cluster of the MW is located in the Bulge (Barbuy et al. 2009), and recently it has been possible to measure ages for microlensed dwarf stars in the Bulge, finding very old objects. These both observational results show that the oldest objects in the Bulge have metallicities around [Fe/H] = -1, hence offering a new window on the First Stars (Chiappini et al. 2011). Indeed, the correspondence between age and metallicity is strongly dependent on the star formation history of the particular studied component, and this suggestion has far reaching implications.What I would like to show in my talk is the importance Planetary Nebulae can play in this hot field. I will show that by studying the PNe metallicity bulge distribution one can highlight the "old Bulge" component. Once this important observational constraint is used to guide chemical evolution models of the oldest bulge population, one can use these models to look for imprints of the first stars in the bulge. A comparison with what we have found so far for the halo, and the new insights we can get by adding the Galactic Bulge in this interesting topic will be shown and discussed.

  7. Reactive oxygen system plays an important role in shrimp Litopenaeus vannamei defense against Vibrio parahaemolyticus and WSSV infection.

    PubMed

    Ji, Pei-Feng; Yao, Cui-Luan; Wang, Zhi-Yong

    2011-08-29

    The present study investigated the in vivo hemocytic and hepatopancreatic response to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) injection in shrimp Litopenaeus vannamei. The proliferation of bacteria and virus in shrimp, animal mortality, total hemocyte counts (THCs), phenoloxidase (PO) activity, respiratory burst, and gene expression of immune factors associated with immune recognition (lectin), prophenoloxidase (proPO) activation, and the anti-microorganism (lysozyme) and active oxygen defense response (including respiratory burst, cytosolic manganese superoxide dismutase [C-MnSOD], and catalase [CAT]) were quantified. Shrimp death rate increased significantly and was time-dependent after V. parahaemolyticus or WSSV injection. The production of superoxide anion, and the gene expression including lectin in hemocytes, proPO in the hepatopancreas, lysozyme, C-MnSOD and CAT could be induced by injection with V parahaemolyticus and WSSV. The highest value of lysozyme was in the hemocytes with 66.59 times (at 3 h) greater expression than in the control group after WSSV injection and 3.69 times (24 h) greater than in the control group after V parahaemolyticus injection. In the hepatopancreas, CAT expression showed a significant increase, with up to 16 times greater expression than in the control group at 6 h postinjection with WSSV and 7.02 times greater expression than in the control group at 48 h postinjection with V parahaemolyticus (p < 0.05). However, significant decreases in PO activity and proPO transcripts in hemocytes and lectin transcripts in the hepatopancreas were detected after V parahaemolyticus and WSSV injection (p < 0.05). The results suggest that lysozyme, the antioxidase system, and reactive oxygen species might play a crucial role in shrimp defense against bacterial and viral infection.

  8. Characterization of γδ T Cells from Zebrafish Provides Insights into Their Important Role in Adaptive Humoral Immunity

    PubMed Central

    Wan, Feng; Hu, Chong-bin; Ma, Jun-xia; Gao, Ke; Xiang, Li-xin; Shao, Jian-zhong

    2017-01-01

    γδ T cells represent an evolutionarily primitive T cell subset characterized by distinct T cell receptors (TCRs) and innate and adaptive immune functions. However, the presence of this T cell subset in ancient vertebrates remains unclear. In this study, γδ T cells from a zebrafish (Danio rerio) model were subjected to molecular and cellular characterizations. The constant regions of zebrafish TCR-γ (DrTRGC) and δ (DrTRDC) were initially identified. Zebrafish γδ T cells accounted for 7.7–20.5% of the total lymphocytes in spleen, head kidney, peripheral blood, skin, gill, and intestine tissues. They possess typical morphological features of lymphocytes with a surface phenotype of γ+δ+CD4−CD8+. Zebrafish γδ T cells functionally showed a potent phagocytic ability to both soluble and particulate antigens. They can also act as an antigen-presenting cell to initiate antigen (KLH)-specific CD4+ TKLH cell activation and to induce B cell proliferation and IgM production. Particularly, zebrafish γδ T cells also play a critical role in antigen-specific IgZ production in intestinal mucus. These findings demonstrated that γδ T cells had been originated as early as teleost fish, which providing valuable insights into the evolutionary history of T cell subset. It is anticipated that this study would be used as a guide to develop a zebrafish model for the cross-species investigation of γδ T cell biology. PMID:28119690

  9. [Current knowledge among students of the Silesian Medical Academy about the importance and role of medical care funds].

    PubMed

    Tyrpień, Mirosław; Jaskólecki, Henryk; Steplewski, Zygmunt; Miarczyńska-Jończyk, Halina; Woźniak, Joanna; Malara, Beata

    2002-01-01

    The purpose of this research was verification and comparison of the present state of knowledge among the students of different departments and years of study. The questions concerned the role of Medical Care Funds in the up-to-now healthcare system and the patient's rights as far as the students' future professions as doctors, dentists, healthcare managers and medical rescuers is concerned. The questionnaire included 15 questions referring to the problem of functioning of the medical care institutions after the reform of healthcare services introduced in 1999. Distinct from most of the published works of this kind, the authors adopted a uniform "assessment" method following the principles of didactic measurement. The researchers calculated: Range, Modal, Mediana, Arithmetic Average, Variance, Standard Deviation, Easiness of the Task, Difficulty of the Task, Skip Fraction, the Task's Differentiating Power, Reliability Coefficient of the Test. The calculation was conducted with the use of the Excel programme modified by the researchers to suit the needs of didactic measurement. The survey included 104 students of the 3rd year of Dental Department, 116 of the students 4th year of Dental Department, 31 students of Bachelor's Medical Rescue Studies by the Medical Department in Zabrze, 18 students of Post-Graduate Management and Administration in Healthcare by the Medical Department in Zabrze and Silesian Technical University, 151 4th year students of the Medical Department in Zabrze and 121 6th year students of the Medical Department in Zabrze. It has been proved that between the particular groups there are significant differences as far as the students' knowledge is concerned ("the healthcare managers" demonstrated quite a high knowledge ratio). And that the questions were at different difficulty levels depending on the branch and year of study represented by the respondents.

  10. Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response

    PubMed Central

    Al-kaabi, M M; Alshareeda, A T; Jerjees, D A; Muftah, A A; Green, A R; Alsubhi, N H; Nolan, C C; Chan, S; Cornford, E; Madhusudan, S; Ellis, I O; Rakha, E A

    2015-01-01

    Background: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC. Method: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200). Result: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy. Conclusions: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function. PMID:25688741

  11. Thermoregulation of individual paper wasps (Polistes dominula) plays an important role in nest defence and dominance battles.

    PubMed

    Höcherl, Nicole; Tautz, Jürgen

    2015-06-01

    Paper wasps, like Polistes dominula, are considered as primitively eusocial. Hence, they are often used as model species for studies about the evolution of eusociality and dominance hierarchies. However, our knowledge about basic physiological processes in these wasps remains limited. In particular, the thermoregulation of individual wasps in their natural habitat has not yet been investigated in detail. We conducted a comprehensive field study to test their ability to respond to external hazards with elevated thorax temperatures. We presented artificial threats by applying smoke or carbon dioxide simulating fire and predator attacks, respectively, and monitored the thorax temperature of wasps on the nest using infrared thermography. We found that P. dominula workers recognized smoke and CO2 and reacted almost instantaneously and simultaneously with an increase of their thorax temperature. The maximal thorax temperature was reached about 65 s after the application of both stressors, but subsequently, the wasps showed a different behaviour pattern. No rise of the thorax temperature was detectable after an air blast was applied or in wasps resting on the nest. These observations provide evidence that P. dominula is able to heat up its thorax and that thermoregulation is employed in escape and defence reactions. Additionally, we investigated the thorax temperatures of queens during dominance battles. We found that the thorax temperature of the dominant queens rose up to 5 °C compared to that of subordinate queens that attacked the former, suggesting that the dominant queen defends herself as well as her nest.

  12. Thermoregulation of individual paper wasps ( Polistes dominula) plays an important role in nest defence and dominance battles

    NASA Astrophysics Data System (ADS)

    Höcherl, Nicole; Tautz, Jürgen

    2015-06-01

    Paper wasps, like Polistes dominula, are considered as primitively eusocial. Hence, they are often used as model species for studies about the evolution of eusociality and dominance hierarchies. However, our knowledge about basic physiological processes in these wasps remains limited. In particular, the thermoregulation of individual wasps in their natural habitat has not yet been investigated in detail. We conducted a comprehensive field study to test their ability to respond to external hazards with elevated thorax temperatures. We presented artificial threats by applying smoke or carbon dioxide simulating fire and predator attacks, respectively, and monitored the thorax temperature of wasps on the nest using infrared thermography. We found that P. dominula workers recognized smoke and CO2 and reacted almost instantaneously and simultaneously with an increase of their thorax temperature. The maximal thorax temperature was reached about 65 s after the application of both stressors, but subsequently, the wasps showed a different behaviour pattern. No rise of the thorax temperature was detectable after an air blast was applied or in wasps resting on the nest. These observations provide evidence that P. dominula is able to heat up its thorax and that thermoregulation is employed in escape and defence reactions. Additionally, we investigated the thorax temperatures of queens during dominance battles. We found that the thorax temperature of the dominant queens rose up to 5 °C compared to that of subordinate queens that attacked the former, suggesting that the dominant queen defends herself as well as her nest.

  13. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation.

    PubMed

    Ogawa, Rei; Okai, Kazuhisa; Tokumura, Fumio; Mori, Kazuyuki; Ohmori, Yasutaka; Huang, Chenyu; Hyakusoku, Hiko; Akaishi, Satoshi

    2012-01-01

    Keloids tend to occur on highly mobile sites with high tension. This study was designed to determine whether body surface areas exposed to large strain during normal activities correlate with areas that show high rates of keloid generation after wounding. Eight adult Japanese volunteers were enrolled to study the skin stretching/contraction rates of nine different body sites. Skin stretching/contraction was measured by marking eight points on each region and measuring the change in location of the marked points after typical movements. The distribution of 1,500 keloids on 483 Japanese patients was mapped. The parietal region and anterior lower leg were associated with the least stretching/contraction, while the suprapubic region had the highest stretching/contraction rate. With regard to keloid distribution, there were 733 on the anterior chest region (48.9%) and 403 on the scapular regions (26.9%). No keloids were reported on the scalp or anterior lower leg. Because these sites are rarely subjected to skin stretching/contraction, it appears that mechanical force is an important trigger that drives keloid generation even in patients who are genetically predisposed to keloids. Thus, mechanotransduction studies are useful for developing clinical approaches that reduce the skin tension around wounds or scars for the prevention and treatment of not only keloids but also hypertrophic scars.

  14. Imported Malaria in Portugal 2000–2009: A Role for Hospital Statistics for Better Estimates and Surveillance

    PubMed Central

    Dias, Sara S.; Baptista, João Luis; Torgal, Jorge

    2014-01-01

    Background. Although eradicated in Portugal, malaria keeps taking its toll on travelers and migrants from endemic countries. Disease notification is mandatory but is compromised by underreporting. Methods. A retrospective study on malaria hospitalizations for 10 consecutive years (2000–2009) was conducted. Data on hospitalizations and notifications were obtained from Central Administration of Health System and Health Protection Agency, respectively. For data selection ICD-9 CM and ICD-10 were used: codes 084*, 647.4, and B50–B54. Variables were gender, age, agent and origin of infection, length of stay (LOS), lethality, and comorbidities. Analysis included description, hypothesis testing, and regression. Results. There were 2003 malaria hospitalizations and 480 notified hospitalized cases, mainly in young male adults. P. falciparum was the main agent of infection acquired mainly in sub-Saharan Africa. Lethality was 1.95% and mean LOS was 8.09 days. Older age entailed longer LOS and increased lethality. Discussion. From 2000 to 2009, there were 2003 malaria hospitalizations with decreasing annual incidence, these numbers being remarkably higher than those notified. The national database of diagnosis related groups, reflecting hospitalizations on NHS hospitals, may be an unexplored complementary source for better estimates on imported malaria. PMID:25548715

  15. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots

    PubMed Central

    Cruz-Ramírez, Alfredo; Oropeza-Aburto, Araceli; Razo-Hernández, Francisco; Ramírez-Chávez, Enrique; Herrera-Estrella, Luis

    2006-01-01

    Low phosphate (Pi) availability is one of the major constraints for plant productivity in natural and agricultural ecosystems. Plants have evolved a myriad of developmental and biochemical mechanisms to increase internal Pi uptake and utilization efficiency. One important biochemical pathway leading to an increase in internal Pi availability is the hydrolysis of phospholipids. Hydrolyzed phospholipids are replaced by nonphosphorus lipids such as galactolipids and sulfolipids, which help to maintain the functionality and structure of membrane systems. Here we report that a member of the Arabidopsis phospholipase D gene family (PLDZ2) is gradually induced upon Pi starvation in both shoots and roots. From lipid content analysis we show that an Arabidopsis pldz2 mutant is defective in the hydrolysis of phospholipids and has a reduced capacity to accumulate galactolipids under limiting Pi conditions. Morphological analysis of the pldz2 root system shows a premature change in root architecture in response to Pi starvation. These results show that PLDZ2 is involved in the eukaryotic galactolipid biosynthesis pathway, specifically in hydrolyzing phosphatidylcholine and phosphatidylethanolamine to produce diacylglycerol for digalactosyldiacylglycerol synthesis and free Pi to sustain other Pi-requiring processes. PMID:16617110

  16. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    PubMed

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.

  17. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids

    PubMed Central

    Li, Yueqing; Liu, Xingxue; Cai, Xinquan; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Han, Taotao; Wang, Shucai; Wang, Li; Gao, Xiang

    2017-01-01

    the divergence of the expression patterns for FhDFR genes might be controlled at transcriptional level, as the expression of FhDFR1/FhDFR2 and FhDFR3 was controlled by a potential MBW regulatory complex with different activation efficiencies. Therefore, it can be concluded that the DFR-like genes from F. hybrida have diverged during evolution to play partially overlapping roles in the flavonoid biosynthesis, and the results will contribute to the study of evolution of DFR gene families in angiosperms, especially for monocot plants.

  18. A One Billion Year Martian Climate Model: The Importance of Seasonally Resolved Polar Caps and the Role of Wind

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Leovy, C. B.; Quinn, T. R.; Haberle, R. M.; Schaeffer, J.

    2003-01-01

    is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of high and low obliquity. Finally, using GCM runs at a variety of pressures, we examine the likely role of wind erosion under an early more massive Martian atmosphere.

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    PubMed

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein.

  1. Δ24-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis

    PubMed Central

    Borba-Santos, Luana P.; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M.; de Camargo, Zoilo P.; Lopes-Bezerra, Leila M.; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ24-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  2. Δ(24)-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis.

    PubMed

    Borba-Santos, Luana P; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M; de Camargo, Zoilo P; Lopes-Bezerra, Leila M; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ(24)-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker(®) Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  3. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae*

    PubMed Central

    Effelsberg, Daniel; Cruz-Zaragoza, Luis Daniel; Tonillo, Jason; Schliebs, Wolfgang; Erdmann, Ralf

    2015-01-01

    Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD+ salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions. PMID:26276932

  4. Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi,Pb)-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Ben Azzouz, F.; M'chirgui, A.; Yangui, B.; Boulesteix, C.; Ben Salem, M.

    2001-07-01

    The evolution of the phase formation and microstructure in (Bi,Pb)-Sr-Ca-Cu-O (BPSCCO) superconducting materials have been studied through a two-cycle annealing process by X-ray diffraction and SEM observations. Samples were Pb-doped (part 0.4 of Bi substituted by Pb) during the first thermal cycle. Yet, the synthesizing efficiency of the (Bi,Pb)-2223 phase was found to be greatly re-enhanced during the second thermal cycle by a second and substantial addition of up to 20% excess of PbO in weight. No significant increase of secondary phases was observed. Pb addition was shown to be more effective at the end of a multi-step thermal cycle. Therefore the lack of Pb that arise in BPSCCO system after some heat treatment duration is shown to be one of the most important rate-limiting (Bi,Pb)-2223 transformation. The second sintering duration at 835°C was optimized with respect to the weight percentage of PbO in excess. The present work attempts also to point out the complex mechanisms of the (Bi,Pb)-2223 formation reactions. Some intermediate phases are identified and the liquid phase is suggested to derive from a partial decomposition of the (Bi,Pb)-2212 phase. This decomposition is highly sensitive to Pb addition.

  5. The Role of Patients’ Age on Their Preferences for Choosing Additional Blood Pressure-Lowering Drugs: A Discrete Choice Experiment in Patients with Diabetes

    PubMed Central

    de Vries, Sieta T.; de Vries, Folgerdiena M.; Dekker, Thijs; Haaijer-Ruskamp, Flora M.; de Zeeuw, Dick; Ranchor, Adelita V.; Denig, Petra

    2015-01-01

    Objectives To assess whether patients’ willingness to add a blood pressure-lowering drug and the importance they attach to specific treatment characteristics differ among age groups in patients with type 2 diabetes. Materials and Methods Patients being prescribed at least an oral glucose-lowering and a blood pressure-lowering drug completed a questionnaire including a discrete choice experiment. This experiment contained choice sets with hypothetical blood pressure-lowering drugs and a no additional drug alternative, which differed in their characteristics (i.e. effects and intake moments). Differences in willingness to add a drug were compared between patients <75 years (non-aged) and ≥75 years (aged) using Pearson χ2-tests. Multinomial logit models were used to assess and compare the importance attached to the characteristics. Results Of the 161 patients who completed the questionnaire, 151 (72%) could be included in the analyses (mean age 68 years; 42% female). Aged patients were less willing to add a drug than non-aged patients (67% versus 84% respectively; P = 0.017). In both age groups, the effect on blood pressure was most important for choosing a drug, followed by the risk of adverse drug events and the risk of death. The effect on limitations due to stroke was only significant in the non-aged group. The effect on blood pressure was slightly more important in the non-aged than the aged group (P = 0.043). Conclusions Aged patients appear less willing to add a preventive drug than non-aged patients. The importance attached to various treatment characteristics does not seem to differ much among age groups. PMID:26445349

  6. Effects of C-additions on ecosystem processes in the Serengeti: The role of grazing mammals and implications for global change research

    SciTech Connect

    Wilsey, B.J.; McNaughton, S.J. )

    1994-06-01

    Increases in atmospheric CO[sub 2] are predicted to cause an increase in the C:N ratio of plant substrates entering the soil organic matter pool. We experimentally increased soil C:N ratios by adding 40 g C/m[sup 2] as sucrose (metabolic C) or cellulose (structural C) in short-, mid-, and tall-grass plots in the Serengeti Ecosystem, and measured plant productivity, plant nutrient uptake rates, and mineralization rates. Experimental treatments also included fencing to exclude grazing and additions of 40 g N/m[sup 2] as urea to simulate a urine hit from an average-sized ungulate. Productivity was only 60% of controls in C-addition plots, and was similar for sucrose and cellulose. However, this response was not observed in the short-grass site, an area of relatively low rainfall and high fertility. These results support the role of a plant-microbe negative feedback mechanism on plant growth in which increased C to microbes results in increased immobilization, reduced plant uptake, and lowered plant growth.

  7. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575

  8. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries.

    PubMed

    George, Chandramohan; Morris, Andrew J; Modarres, Mohammad H; De Volder, Michael

    2016-10-25

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li-S systems in high energy-density batteries.

  9. Role of hydrogen abstraction acetylene addition mechanisms in the formation of chlorinated naphthalenes. 2. Kinetic modeling and the detailed mechanism of ring closure.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2014-12-26

    The dominant formation mechanisms of chlorinated phenylacetylenes, naphthalenes, and phenylvinylacetylenes in relatively low pressure and temperature (∼40 Torr and 1000 K) pyrolysis systems are explored. Mechanism elucidation is achieved through a combination of theoretical and experimental techniques, the former employing a novel simplification of kinetic modeling which utilizes rate constants in a probabilistic framework. Contemporary formation schemes of the compounds of interest generally require successive additions of acetylene to phenyl radicals. As such, infrared laser powered homogeneous pyrolyses of dichloro- or trichloroethylene were perturbed with 1,2,4- or 1,2,3-trichlorobenzene. The resulting changes in product identities were compared with the major products expected from conventional pathways, aided by the results of our previous computational work. This analysis suggests that a Bittner-Howard growth mechanism, with a novel amendment to the conventional scheme made just prior to ring closure, describes the major products well. Expected products from a number of other potentially operative channels are shown to be incongruent with experiment, further supporting the role of Bittner-Howard channels as the unique pathway to naphthalene growth. A simple quantitative analysis which performs very well is achieved by considering the reaction scheme as a probability tree, with relative rate constants being cast as branching probabilities. This analysis describes all chlorinated phenylacetylene, naphthalene, and phenylvinylacetylene congeners. The scheme is then tested in a more general system, i.e., not enforcing a hydrogen abstraction/acetylene addition mechanism, by pyrolyzing mixtures of di- and trichloroethylene without the addition of an aromatic precursor. The model indicates that these mechanisms are still likely to be operative.

  10. Hydrophobic interactions and ionic networks play an important role in thermal stability and denaturation mechanism of the porcine odorant-binding protein.

    PubMed

    Stepanenko, Olesya V; Marabotti, Anna; Kuznetsova, Irina M; Turoverov, Konstantin K; Fini, Carlo; Varriale, Antonio; Staiano, Maria; Rossi, Mose'; D'Auria, Sabato

    2008-04-01

    Despite the fact that the porcine odorant-binding protein (pOBP) possesses a single tryptophan residue (Trp 16) that is characterized by a high density microenvironment (80 atoms in a sphere with radius 7 A) with only one polar group (Lys 120) and three bound water molecules, pOBP displayed a red shifted fluorescence emission spectrum (lambda(max) = 340 nm). The protein unfolding in 5M GdnHCl was accompanied by the red shift of the fluorescence emission spectrum (lambda(max) = 353 nm), by the increase of fluorescence quantum yield, and by the decrease of lifetime of the excited state (from 4.25 ns in native state to 3.15 ns in the presence of 5M GdnHCl). Taken together these data indicate the existence of an exciplex complex (Trp 16 with Lys 120 and/or with bound molecules of water) in the protein native state. Heat-induced denaturation of pOBP resulted in significant red shifts of the fluorescence emission spectra: the value of the ratio (I(320)/I(365)) upon excitation at lambda(ex) = 297 nm (parameter A) decreases from 1.07 to 0.64 passing from 60 to 85 degrees C, and the calculated midpoint of transition was centered at 70 degrees C. Interestingly, even at higher temperature, the values of the parameter A both in the absence and in the presence of GdnHCl did not coincide. This suggests that a portion of the protein structure is still preserved upon the temperature-induced denaturation of the protein in the absence of GdnHCl. CD experiments performed on pOBP in the absence and in the presence of GdnHCl and at different temperatures were in agreement with the fluorescence results. In addition, the obtained experimental data were corroborated by the analysis of the 3D structure of pOBP which revealed the amino acid residues that contribute to the protein dynamics and stability. Finally, molecular dynamics simulation experiments pointed out the important role of ion pair interactions as well as the molecular motifs that are responsible for the high thermal stability

  11. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

    PubMed Central

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-01-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review. PMID:26954112

  12. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis.

    PubMed

    Hu, Jian Ming; Liu, Kai; Liu, Ji Hong; Jiang, Xian Li; Wang, Xue Li; Yang, Lan; Chen, Yun Zhao; Liu, Chun Xia; Li, Shu Gang; Cui, Xiao Bin; Zou, Hong; Pang, Li Juan; Zhao, Jin; Qi, Yan; Liang, Wei Hua; Yuan, Xiang Lin; Li, Feng

    2017-02-01

    Tumor associated macrophages (TAMs) play an important role in the growth, progression, and metastasis of tumors. The distribution of TAMs in Kazakh esophageal squamous cell carcinoma (ESCC) is not determined. We aimed to investigate the role of TAMs in the occurrence and progression of Kazakh ESCC. CD163 was used as the TAM marker, and immunohistochemistry (IHC) counts were used to quantify the density of TAMs in tumor nest and surrounding stroma. IHC staining was used to evaluate the expression of vascular endothelial growth factor C (VEGF-C) in Kazakh ESCC and cancer adjacent normal (CAN) tissues. The density of TAMs in Kazakh ESCCs tumor nest and stromal was significantly higher than that in CAN tissues. The increased number of CD163-positive TAMs in tumor nest and tumor stromal was positively associated with Kazakh ESCC lymph node metastasis and clinical stage progression. Meanwhile, the expression of VEGF-C in Kazakh ESCCs was significantly higher than that in CAN tissues. Overexpression of VEGF-C in Kazakh ESCCs was significantly associated with gender, depth of tumor invasion, lymph node metastasis and tumor clinical stage. The increased number of TAMs, either in the tumor nests or tumor stroma was positively correlated with the overexpression of VEGF-C, which may promote lymphangiogenesis and play an important role in the invasion and metastasis of Kazakh ESCC.

  13. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  14. An Important Role for Major Histocompatibility Complex Class I-Restricted T Cells, and a Limited Role for Gamma Interferon, in Protection of Mice against Lethal Herpes Simplex Virus Infection

    PubMed Central

    Holterman, Ai-Xuan; Rogers, Kathleen; Edelmann, Kurt; Koelle, David M.; Corey, Lawrence; Wilson, Christopher B.

    1999-01-01

    Herpes simplex virus (HSV) inhibits major histocompatibility complex (MHC) class I expression in infected cells and does so much more efficiently in human cells than in murine cells. Given this difference, if MHC class I-restricted T cells do not play an important role in protection of mice from HSV, an important role for these cells in humans would be unlikely. However, the contribution of MHC class I-restricted T cells to the control of HSV infection in mice remains unclear. Further, the mechanisms by which these cells may act to control infection, particularly in the nervous system, are not well understood, though a role for gamma interferon (IFN-γ) has been proposed. To address the roles of MHC class I and of IFN-γ, C57BL/6 mice deficient in MHC class I expression (β2 microglobulin knockout [β2KO] mice), in IFN-γ expression (IFN-γKO mice), or in both (IFN-γKO/β2KO mice) were infected with HSV by footpad inoculation. β2KO mice were markedly compromised in their ability to control infection, as indicated by increased lethality and higher concentrations of virus in the feet and spinal ganglia. In contrast, IFN-γ appeared to play at most a limited role in viral clearance. The results suggest that MHC class I-restricted T cells play an important role in protection of mice against neuroinvasive HSV infection and do so largely by mechanisms other than the production of IFN-γ. PMID:9971787

  15. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis.

    PubMed

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A; Yun, Dae-Jin; Hwang, Inhwan

    2012-05-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses.

  16. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins.

    PubMed

    Dasgupta, Twishasri; Ladd, Andrea N

    2012-01-01

    RNA processing is important for generating protein diversity and modulating levels of protein expression. The CUG-BP, Elav-like family (CELF) of RNA-binding proteins regulate several steps of RNA processing in the nucleus and cytoplasm, including pre-mRNA alternative splicing, C to U RNA editing, deadenylation, mRNA decay, and translation. In vivo, CELF proteins have been shown to play roles in gametogenesis and early embryonic development, heart and skeletal muscle function, and neurosynaptic transmission. Dysregulation of CELF-mediated programs has been implicated in the pathogenesis of human diseases affecting the heart, skeletal muscles, and nervous system.

  17. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions.

    PubMed

    McCarthy, Cormac; Saldova, Radka; Wormald, Mark R; Rudd, Pauline M; McElvaney, Noel G; Reeves, Emer P

    2014-07-03

    Acute phase proteins (APPs) are a group of circulating plasma proteins which undergo changes quantitatively or qualitatively at the time of inflammation. Many of these APPs are glycosylated, and it has been shown that alterations in glycosylation may occur in inflammatory and malignant conditions. Changes in glycosylation have been studied as potential biomarkers in cancer and also in chronic inflammatory conditions and have been shown to correlate with disease severity in certain conditions. Serine protease inhibitors (serpins), many of which are also APPs, are proteins involved in the control of proteases in numerous pathways. Alpha-1 Antitrypsin (AAT) is the most abundant serpin within the circulation and is an APP which has been shown to increase in response to inflammation. The primary role of AAT is maintaining the protease/antiprotease balance in the lung, but it also possesses important anti-inflammatory and immune-modulating properties. Several glycoforms of AAT exist, and they possess differing properties in regard to plasma half-life and stability. Glycosylation may also be important in determining the immune modulatory properties of AAT. The review will focus on the role and importance of glycosylation in acute phase proteins with particular attention to AAT and its use as a biomarker of disease. The review describes the processes involved in glycosylation, how glycosylation changes in differing disease states, and the alterations that occur to glycans of APPs with disease and inflammation. Finally, the review explores the importance of changes in glycosylation of AAT at times of inflammation and in malignant conditions and how this may impact upon the functions of AAT.

  18. Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO 2 Adsorption Performance in Silica/PEI Composite Sorbents

    DOE PAGES

    Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.; ...

    2015-08-08

    Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. One important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. But, the efficacy of this method to tune the adsorption performance has not beenmore » explored in materials of differing textural and morphological nature. These issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.« less

  19. The Cyclin-Dependent Kinase Inhibitor Orysa;KRP1 Plays an Important Role in Seed Development of Rice1[W

    PubMed Central

    Barrôco, Rosa Maria; Peres, Adrian; Droual, Anne-Marie; De Veylder, Lieven; Nguyen, Le Son Long; De Wolf, Joris; Mironov, Vladimir; Peerbolte, Rindert; Beemster, Gerrit T.S.; Inzé, Dirk; Broekaert, Willem F.; Frankard, Valerie

    2006-01-01

    Kip-related proteins (KRPs) play a major role in the regulation of the plant cell cycle. We report the identification of five putative rice (Oryza sativa) proteins that share characteristic motifs with previously described plant KRPs. To investigate the function of KRPs in rice development, we generated transgenic plants overexpressing the Orysa;KRP1 gene. Phenotypic analysis revealed that overexpressed KRP1 reduced cell production during leaf development. The reduced cell production in the leaf meristem was partly compensated by an increased cell size, demonstrating the existence of a compensatory mechanism in monocot species by which growth rate is less reduced than cell production, through cell expansion. Furthermore, Orysa;KRP1 overexpression dramatically reduced seed filling. Sectioning through the overexpressed KRP1 seeds showed that KRP overproduction disturbed the production of endosperm cells. The decrease in the number of fully formed seeds was accompanied by a drop in the endoreduplication of endosperm cells, pointing toward a role of KRP1 in connecting endocycle with endosperm development. Also, spatial and temporal transcript detection in developing seeds suggests that Orysa;KRP1 plays an important role in the exit from the mitotic cell cycle during rice grain formation. PMID:17012406

  20. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  1. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  2. Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of citrus canker susceptibility genes.

    PubMed

    Abe, Valeria Yukari; Benedetti, Celso Eduardo

    2016-10-01

    Citrus canker, caused by Xanthomonas citri, affects most commercial citrus varieties. All X. citri strains possess at least one transcription activator-like effector of the PthA family that activates host disease susceptibility (S) genes. The X. citri strain 306 encodes four PthA effectors; nevertheless, only PthA4 is known to elicit cankers on citrus. As none of the PthAs act as avirulence factors on citrus, we hypothesized that PthAs 1-3 might also contribute to pathogenicity on certain hosts. Here, we show that, although PthA4 is indispensable for canker formation in six Brazilian citrus varieties, PthAs 1 and 3 contribute to canker development in 'Pera' sweet orange, but not in 'Tahiti' lemon. Deletions in two or more pthA genes reduce bacterial growth in planta more pronouncedly than single deletions, suggesting an additive role of PthAs in pathogenicity and bacterial fitness. The contribution of PthAs 1 and 3 in canker formation in 'Pera' plants does not correlate with the activation of the canker S gene, LOB1 (LATERAL ORGAN BOUNDARIES 1), but with the induction of other PthA targets, including LOB2 and citrus dioxygenase (DIOX). LOB1, LOB2 and DIOX show differential PthA-dependent expression between 'Pera' and 'Tahiti' plants that appears to be associated with nucleotide polymorphisms found at or near PthA-binding sites. We also present evidence that LOB1 activation alone is not sufficient to elicit cankers on citrus, and that DIOX acts as a canker S gene in 'Pera', but not 'Tahiti', plants. Our results suggest that the activation of multiple S genes, such as LOB1 and DIOX, is necessary for full canker development.

  3. [Role of an educational-and-methodological complex in the optimization of teaching at the stage of additional professional education of physicians in the specialty "anesthesiology and reanimatology"].

    PubMed

    Buniatian, A A; Sizova, Zh M; Vyzhigina, M A; Shikh, E V

    2010-01-01

    An educational-and-methodological complex (EMC) in the specialty 'Anesthesiology and Reanimatology", which promotes manageability, flexibility, and dynamism of an educational process, is of great importance in solving the problem in the systematization of knowledge and its best learning by physicians at a stage of additional professional education (APE). EMC is a set of educational-and-methodological materials required to organize and hold an educational process for the advanced training of anesthesiologists and resuscitation specialists at the stage of APE. EMC includes a syllabus for training in the area "Anesthesiology and Reanimatology" by the appropriate training pattern (certification cycles, topical advanced training cycles); a work program for training in the specialty "Anesthesiology and Reanimatology"; a work curriculums for training in allied specialties (surgery, traumatology and orthopedics, obstetrics and gynecology, and pediatrics); work programs on basic disciplines (pharmacology, normal and pathological physiology, normal anatomy, chemistry and biology); working programs on the area "Public health care and health care service", guidelines for the teacher; educational-and-methodological materials for the student; and quiz programs. The main point of EMC in the specialty "Anesthesiology and Reanimatology" is a work program. Thus, educational-and-methodological and teaching materials included into the EMC in the specialty 'Anesthesiology and Reanimatology" should envisage the logically successive exposition of a teaching material, the use of currently available methods and educational facilities, which facilitates the optimization of training of anesthesiologists and resuscitation specialists at the stage of APE.

  4. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.

    PubMed

    Li, Yan; Burclaff, Joseph; Anderson, James T

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.

  5. The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer.

    PubMed

    Penzo, Marianna; Galbiati, Alice; Treré, Davide; Montanaro, Lorenzo

    2016-12-01

    In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.

  6. The Role of Important Non-Parental Adults (VIPs) in the Lives of Older Adolescents: A Comparison of Three Ethnic Groups

    PubMed Central

    Chen, Chuansheng; Greenberger, Ellen

    2010-01-01

    Previous research has consistently documented the importance of VIPs (mentors or important non-parental adults) in the lives of adolescents. Little is known, however, about whether VIPs play the same important roles across ethnic groups and whether VIPs remain influential when adolescents are older and involved in romantic relationships. The present study compared VIPs of 355 Hispanic, Asian, and European American older adolescents (age range = 17–19 years; M = 18.7 years; 62% female). Results indicated that, despite ethnic differences in their social capital, VIPs’ psychological characteristics (e.g., warmth and acceptance, depressive symptoms, and problem behavior) were similar. VIPs were perceived to have more positive psychological profiles than parents and peers, and in some cases, romantic partners. Moreover, with a few exceptions, the associations between VIP characteristics and adolescent adjustment (e.g., self-esteem, depressive symptoms, and problem behavior) were largely similar across ethnic groups. Finally, VIPs made unique contributions to adolescents’ self-esteem and problem behaviors even after the effects of romantic partners were considered. Implications of the findings are discussed. PMID:20446024

  7. The role of important non-parental adults (VIPs) in the lives of older adolescents: a comparison of three ethnic groups.

    PubMed

    Haddad, Eileen; Chen, Chuansheng; Greenberger, Ellen

    2011-03-01

    Previous research has consistently documented the importance of VIPs (mentors or important non-parental adults) in the lives of adolescents. Little is known, however, about whether VIPs play the same important roles across ethnic groups and whether VIPs remain influential when adolescents are older and involved in romantic relationships. The present study compared VIPs of 355 Hispanic, Asian, and European American older adolescents (age range = 17-19 years; M = 18.7 years; 62% female). Results indicated that, despite ethnic differences in their social capital, VIPs' psychological characteristics (e.g., warmth and acceptance, depressive symptoms, and problem behavior) were similar. VIPs were perceived to have more positive psychological profiles than parents and peers, and in some cases, romantic partners. Moreover, with a few exceptions, the associations between VIP characteristics and adolescent adjustment (e.g., self-esteem, depressive symptoms, and problem behavior) were largely similar across ethnic groups. Finally, VIPs made unique contributions to adolescents' self-esteem and problem behaviors even after the effects of romantic partners were considered. Implications of the findings are discussed.

  8. Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO 2 Adsorption Performance in Silica/PEI Composite Sorbents

    SciTech Connect

    Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.; Yoo, Chun-Jae; Chai, Song-Hai; Dai, Sheng; Jones, Christopher W.

    2015-08-08

    Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. One important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. But, the efficacy of this method to tune the adsorption performance has not been explored in materials of differing textural and morphological nature. These issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.

  9. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro.

    PubMed

    Yu, Min; Bojic, Sanja; Figueiredo, Gustavo S; Rooney, Paul; de Havilland, Julian; Dickinson, Anne; Figueiredo, Francisco C; Lako, Majlinda

    2016-11-01

    The cornea is a self-renewing tissue located at the front of the eye. Its transparency is essential for allowing light to focus onto the retina for visual perception. The continuous renewal of corneal epithelium is supported by limbal stem cells (LSCs) which are located in the border region between conjunctiva and cornea known as the limbus. Ex vivo expansion of LSCs has been successfully applied in the last two decades to treat patients with limbal stem cell deficiency (LSCD). Various methods have been used for their expansion, yet the most widely used culture media contains a number of ingredients derived from animal sources which may compromise the safety profile of human LSC transplantation. In this study we sought to understand the role of these components namely adenine, cholera toxin, hydrocortisone and triiodothyronine with the aim of re-defining a safe and GMP compatible minimal media for the ex vivo expansion of LSCs on human amniotic membrane. Our data suggest that all four components play a critical role in maintaining LSC proliferation and promoting LSC self-renewal. However removal of adenine and triiodothyronine had a more profound impact and led to LSC differentiation and loss of viability respectively, suggesting their essential role for ex vivo expansion of LSCs. Replacement of each of the components with GMP-grade reagents resulted in equal growth to non-GMP grade media, however an enhanced differentiation of LSCs was observed, suggesting that additional combinations of GMP grade reagents need to be tested to achieve similar or better level of LSC maintenance in the same manner as the traditional LSC media.

  10. The Polo-like kinase PLKA in Aspergillus nidulans is not essential but plays important roles during vegetative growth and development.

    PubMed

    Mogilevsky, Klarita; Glory, Amandeep; Bachewich, Catherine

    2012-02-01

    The Polo-like kinases (Plks) are conserved, multifunctional cell cycle regulators that are induced in many forms of cancer and play additional roles in metazoan development. We previously identified plkA in Aspergillus nidulans, the only Plk investigated in filamentous fungi to date, and partially characterized its function through overexpression. Here, we report the plkA null phenotype. Surprisingly, plkA was not essential, unlike Plks in other organisms that contain a single homologue. A subset of cells lacking PLKA contained defects in spindle formation and chromosome organization, supporting some conservation in cell cycle function. However, septa were present, suggesting that PLKA, unlike other Plks, is not a central regulator of septation. Colonies lacking PLKA were compact with multibranched hyphae, implying a role for this factor in aspects of hyphal morphogenesis. These defects were suppressed by high temperature or low concentrations of benomyl, suggesting that PLKA may function during vegetative growth by influencing microtubule dynamics. However, the colonies also showed reduced conidiation and precocious formation of sexual Hülle cells in a benomyl- and temperature-insensitive manner. This result suggests that PLKA may influence reproduction through distinct mechanisms and represents the first example of a link between Plk function and development in fungi. Finally, filamentous fungal Plks have distinct features, and phylogenetic analyses reveal that they may group more closely with metazoan PLK4. In contrast, yeast Plks are more similar to metazoan proteins PLK1 to PLK3. Thus, A. nidulans PLKA shows some conservation in cell cycle function but may also play novel roles during hyphal morphogenesis and development.

  11. Analytic Hierarchy Process to Define the Most Important Factors and Related Technologies for Empowering Elderly People in Taking an Active Role in their Health.

    PubMed

    Fico, G; Gaeta, E; Arredondo, M T; Pecchia, L

    2015-09-01

    Successful management of health conditions in older population is determined by strategic involvement of a professional team of careers and by empowering patients and their caregivers to take over a central role and responsibility in the daily management of condition. Identifying, structuring and ranking the most important needs related to these aspects could pave the way for improved strategies in designing systems and technological solutions supporting user empowerment. This paper presents the preliminary results of a study aiming to elicit these needs. Healthcare professionals, working together in the European and Innovation Partnership on Active and Healthy Ageing (EIP-AHA) initiative, have defined a set of needs and factors that have been organized in two hierarchies around the concepts of patient activation and proactive and prepared care team, defined in the Chronic Care Model. The two hierarchies have been mapped, by a team of experts in computer science, with technologies and solutions that could facilitate the achievement of the identified needs.

  12. Central beta-adrenergic receptors play an important role in the enhancing effect of voluntary exercise on learning and memory in rat.

    PubMed

    Ebrahimi, Shima; Rashidy-Pour, Ali; Vafaei, Abbas A; Akhavan, Maziar M

    2010-03-17

    The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the role of the beta-adrenergic system in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the beta-adrenergic receptors, the animals were received propranolol (a beta-blocker), or nadolol (a peripherally acting beta-blocker) before each night of five consecutive nights of exercise. Then their learning and memory were tested on the water maze task using a two-trials-per-day for 5 consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that propranolol, but not nadolol reversed the exercise-induced improvement in learning and memory in rat. Our findings indicate that central beta-adrenergic receptors play an important role in mediating the beneficial effects of voluntary exercise on learning and memory.

  13. The DNase domain-containing protein TATDN1 plays an important role in chromosomal segregation and cell cycle progression during zebrafish eye development

    PubMed Central

    Yang, Hui; Liu, Changwei; Jamsen, Joonas; Wu, Zhenxing; Wang, Yingjie; Chen, Jun; Zheng, Li; Shen, Binghui

    2012-01-01

    The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish. PMID:23187801

  14. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage.

    PubMed

    Cheng, Yu-Ting; Ho, Cheng-Ying; Jhang, Jhih-Jia; Lu, Chi-Cheng; Yen, Gow-Chin

    2014-10-01

    Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague-Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.

  15. Mig-14 plays an important role in influencing gene expression of Salmonella enterica serovar Typhi, which contributes to cell invasion under hyperosmotic conditions.

    PubMed

    Sheng, Xiumei; Zhang, Hong; Xia, Qiufeng; Xu, Shungao; Xu, Huaxi; Huang, Xinxiang

    2013-11-01

    mig-14 is a horizontally acquired host-induced virulence gene in Salmonella enterica serovar Typhi. The molecular function of mig-14 is still unknown; sequence analysis showed that mig-14 shared homology with the helix-loop-helix motif of the AraC family of transcriptional regulatory proteins. In our previous microarray-based studies, mig-14 was upregulated at the early stage of high osmotic stress, indicating a potential role under this condition. Therefore, we compared growth and the global transcriptional difference between wild-type and mig-14 mutant strains to identify the role of Mig-14. The results showed that growth of mig-14 mutant strain was clearly slower than that of the wild-type strain, and 148 genes showed significant differences in expression between these two strains under upshift high osmotic treatment for 30 min. In total, 77 genes and 71 genes in the mig-14 mutant strain were upregulated and downregulated, respectively. Genes involved in invasion, virulence, flagellation, motility and chemotaxis of Salmonella were downregulated. Thus, cell invasion abilities of these two strains were further analyzed. The results confirmed that activities of mig-14 were important for cell invasion.

  16. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  17. Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2005-10-10

    The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell-cell fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of {alpha}-helical packing in promoting S glycoprotein-mediated membrane fusion.

  18. Characterization of a glycerophosphodiesterase with an unusual tripartite distribution and an important role in the asexual blood stages of Plasmodium falciparum.

    PubMed

    Denloye, Titilola; Dalal, Seema; Klemba, Michael

    2012-11-01

    Catabolism of glycerophospholipids during the rapid growth of the asexual intraerythrocytic malaria parasite may contribute to membrane recycling and the acquisition of lipid biosynthetic precursors from the host. To better understand the scope of lipid catabolism in Plasmodium falciparum, we have characterized a malarial homolog of bacterial glycerophosphodiesterases. These enzymes catalyze the hydrolysis of glycerophosphodiesterases that are generated by phospholipase-catalyzed removal of the two acyl groups from glycerophospholipids. The P. falciparum glycerophosphodiesterase (PfGDPD) exhibits an unusual tripartite distribution during the asexual blood stage with pools of enzyme in the parasitophorous vacuole, food vacuole and cytosol. Efforts to disrupt the chromosomal PfGDPD coding sequence were unsuccessful, which implies that the enzyme is important for efficient parasite growth. Tagging of the endogenous pool of PfGDPD with a conditional aggregation domain partially perturbed the distribution of the enzyme in the parasitophorous vacuole but had no discernable effect on growth in culture. Kinetic characterization of the hydrolysis of glycerophosphocholine by recombinant PfGDPD, an Mg(2+)-dependent enzyme, yielded steady-state parameters that were comparable to those of a homologous bacterial glycerophosphodiesterase. Together, these results suggest a physiological role for PfGDPD in glycerophospholipid catabolism in multiple subcellular compartments. Possibilities for what this role might be are discussed.

  19. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt.

    PubMed

    Yang, Jun; Ma, Qing; Zhang, Yan; Wang, Xingfen; Zhang, Guiyin; Ma, Zhiying

    2016-01-10

    Most of the disease resistance genes already characterized in plants encode nucleotide-binding site-leucine rich repeat (NBS-LRR) proteins that have key roles in resistance to Verticillium dahliae. Using a cDNA library and RACE protocols, we cloned a coiled-coil (CC)-NBS-LRR-type gene, GbRVd, from a resistant tetraploid cotton species, Gossypium barbadense (RVd=Resistance to V. dahliae). We also applied RT-qPCR and VIGS technologies to analyze how expression of GbRVd was induced upon attack by V. dahliae. Its 2862-bp ORF encodes a predicted protein containing 953 amino acid residues, with a predicted molecular weight of 110.17kDa and an isoelectric point of 5.87. GbRVd has three domains - CC, NBS, and LRR - and is most closely related to Gossypium raimondii RVd (88% amino acid identity). Profiling demonstrated that GbRVd is constitutively expressed in all tested tissues, and transcript levels are especially high in the leaves. In plants inoculated with V. dahliae, GbRVd was significantly up-regulated when compared with the control, with expression peaking at 48h post-inoculation. Silencing of GbRVd in cotton through VIGS dramatically down-regulated SA, NO, and H2O2 production, resulting in greater susceptibility to V. dahliae. Taken together, these results suggest that GbRVd has an important role in protecting G. barbadense against infection by V. dahliae.

  20. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  1. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck).

    PubMed

    Pan, Zhiyong; Liu, Qing; Yun, Ze; Guan, Rui; Zeng, Wenfang; Xu, Qiang; Deng, Xiuxin

    2009-12-01

    A spontaneous sweet orange (Citrus sinenesis [L.] Osbeck) mutant 'Hong Anliu' is of high value due to lycopene accumulation in the pulp. In this study, we analyzed the proteomic alterations in the pulp of 'Hong Anliu' versus its wild type (WT) at four maturing stages by using 2-DE combined with MALDI-TOF-TOF MS. Among the 74 differentially expressed proteins identified, the majority are predicted to be involved in stress response, carbohydrate/energy metabolism and regulation, or protein fate, modification and degradation. Particularly, expression levels of six anti-oxidative enzymes were altered by the mutation; and assays of their respective enzymatic activities indicated an enhanced level of oxidative stress in 'Hong Anliu', implying a regulatory role of oxidative stress on carotenogenesis. This conclusion was further confirmed by our observation that treatment of fruit pulps with tert-butylhydroperoxide (a ROS progenitor) induced lycopene accumulation in 'Hong Anliu' only. Gene expression showed that genes predicted to function upstream of lycopene biosynthesis were generally upregulated in juice sacs, but downregulated in segment membranes in both 'Hong Anliu' and its WT. The result suggests an important role of post-transcriptional regulation on carotenogenesis since lycopene was induced in 'Hong Anliu' but not WT. The result also implies that carotenogenesis in juice sacs and segment membranes of citrus fruits may be regulated by different mechanisms.

  2. Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Shepson, P. B.; Bertman, S. B.; Sparks, J. P.; Holland, E. A.

    2002-12-01

    Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling Atmospheric composition and chemistry directly affect ecosystem nitrogen cycling and indirectly affect ecosystem carbon cycling and storage. Current understanding of atmosphere-forest nitrogen exchange and subsequent impacts is based almost exclusively on nitrogen deposition data obtained from networks using buckets placed in open areas, studies involving inorganic nitrogen, frequently with enhanced N deposition inputs applied only to soils, and that ignore multiple stresses (e.g., the combined effects of aerosols, ozone exposure, elevated CO2, and drought). Current models of nitrogen cycling treat deposited nitrogen (e.g., HNO3 and NO3-) as a permanent sink whereas data appear to indicate that photolytic and heterogeneous chemical processes occurring on surfaces and in dew can result in the re-evolution of gaseous species such as NO and HONO. Similarly, the direct uptake of gaseous nitrogen compounds by foliage has been neglected, compromising conclusions drawn from deposition experiments and ignoring a mechanism that may significantly affect nitrogen cycling and carbon storage, one that may become more significant with future atmospheric and climate change. We hypothesize that the atmosphere plays a significant role in the delivery of nutrient nitrogen to the N-limited mixed hardwood forest at the PROPHET research site at the University of Michigan Biological Station. We assert that a complete understanding of atmosphere- biosphere interactions and feedbacks is required to develop a predictive capability regarding forest response to increasing atmospheric CO2, reactive nitrogen, oxidants, and aerosols, increasing nitrogen and acidic deposition, and anticipated climate change. We further assert that conclusions drawn from studies that are limited to inorganic nitrogen, fertilization of soils, and/or that

  3. 24th WRSM panel discussion: {open_quotes}The role of research in nuclear regulation: The case of qualified importers{close_quotes}

    SciTech Connect

    Alonso, A.

    1997-01-01

    Scientific knowledge and technological maturity are needed to establish regulatory requirements, what also needs talent and skills. Scientists are rarely interested in regulation and regulators not always are closely connected to scientific research. This has created gaps in regulations, mainly within qualified importers. A qualified importer, in the sense of this presentation, is a country who has acquired nuclear power plants from more technologically advanced exporters but with an increasing participation of its own industry and institutions in the design, construction, component manufacture and assembly of such nuclear power plants and is fully responsible for the operation of the nuclear units and the corresponding fuel cycle. These countries have also a long standing and independent nuclear regulatory organization and the corresponding technical body. Spain is a qualified importer. In the case of Spain, it originally adopted the codes and regulations of the UE which it was a member of, as well as the codes and standards of the country from which their reactors were produced. Since Spain added KWU plants they even went to German regulations. Plant operation rested with Spain. As problems began to appear in operating plants, local research projects were funded to study the problems, aimed at immediate solutions, but also providing training for local personnel in addition to information of use for regulators. Spain has participated in many joint research projects, which have trained people, and given confidence to Spaniards involved in science and regulations. Qualified importers, like Spain, participate in research, even though it may not translate itself into regulation. Such participation will always serve to give self-confidence and independence to regulators and licensees, to better understand the adopted regulations of the most advanced countries and to solve specific problems.

  4. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.

    PubMed

    Kou, Yanjun; Tan, Yi Han; Ramanujam, Ravikrishna; Naqvi, Naweed I

    2017-04-01

    The interaction of Magnaporthe oryzae, the rice blast fungus, and rice begins when M. oryzae establishes contact with the host plant surface. On perception of appropriate surface signals, M. oryzae forms appressoria and initiates host invasion. Pth11, an important G-protein-coupled receptor necessary for appressorium formation in M. oryzae, contains seven transmembrane regions and a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues. We focused on gaining further insight into the role of the CFEM domain in the putative surface sensing/response function of Pth11. Increased/constitutive expression of CFEM resulted in precocious, albeit defective, appressoria formation in wild-type M. oryzae. The Pth11(C63A/C65A) mutant, probably with disrupted disulfide bonds in the CFEM, showed delayed appressorium formation and reduced virulence. Furthermore, the accumulation of reactive oxygen species (ROS) was found to be altered in the pth11Δ strain. Strikingly, antioxidant treatment induced appressorium formation in pth11Δ. The Gα subunit MagB and the mitogen-activated protein (MAP) kinase Pmk1 were required for the formation of antioxidant-induced appressoria. We conclude that the CFEM domain of Pth11 is required for proper development of the appressoria, appressoria-like structures and pathogenicity. Highly regulated ROS homeostasis is important for Pth11-mediated appressorium formation in M. oryzae.

  5. Investigating the relative importance of individual differences on the work-family interface and the moderating role of boundary preference for segmentation.

    PubMed

    Michel, Jesse S; Clark, Malissa A

    2013-10-01

    This study examines the relative importance of individual differences in relation to perceptions of work-family conflict and facilitation, as well as the moderating role of boundary preference for segmentation on these relationships. Relative importance analyses, based on a diverse sample of 380 employees from the USA, revealed that individual differences were consistently predictive of self-reported work-family conflict and facilitation. Conscientiousness, neuroticism, negative affect and core self-evaluations were consistently related to both directions of work-family conflict, whereas agreeableness predicted significant variance in family-to-work conflict only. Positive affect and core self-evaluations were consistently related to both directions of work-family facilitation, whereas agreeableness and neuroticism predicted significant variance in family-to-work facilitation only. Collectively, individual differences explained 25-28% of the variance in work-family conflict (primarily predicted by neuroticism and negative affect) and 11-18% of the variance in work-family facilitation (primarily predicted by positive affect and core self-evaluations). Moderated regression analyses showed that boundary preference for segmentation strengthened many of the relationships between individual differences and work-family conflict and facilitation. Implications for addressing the nature of work and family are discussed.

  6. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  7. Genetic manipulation of the ApoF/Stat2 locus supports an important role for type I interferon signaling in atherosclerosis.

    PubMed

    Lagor, William R; Fields, David W; Bauer, Robert C; Crawford, Alison; Abt, Michael C; Artis, David; Wherry, E John; Rader, Daniel J

    2014-03-01

    Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (Ldlr KO) and ApoF/Ldlr double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/Ldlr DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p < 0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease.

  8. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  9. Genetic manipulation of the ApoF/Stat2 locus supports an important role for Type I Interferon signaling in atherosclerosis

    PubMed Central

    Lagor, William R.; Fields, David W.; Bauer, Robert C.; Crawford, Alison; Abt, Michael C.; Artis, David; Wherry, E. John; Rader, Daniel J.

    2014-01-01

    Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (LDLR KO) and ApoF/LDLR double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/LDLR DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p<0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease. PMID:24529150

  10. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans.

    PubMed

    Baldwin, Cynthia L; Telfer, Janice C

    2015-07-01

    There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.

  11. Addition of a fracture risk assessment to a coordinator's role improved treatment rates within 6 months of screening in a fragility fracture screening program.

    PubMed

    Beaton, D E; Vidmar, M; Pitzul, K B; Sujic, R; Rotondi, N K; Bogoch, E R; Sale, J E M; Jain, R; Weldon, J

    2017-03-01

    We evaluated the impact of a more intensive version of an existing post-fracture coordinator-based fracture prevention program and found that the addition of a full-risk assessment improved treatment rates. These findings provide additional support for more intensive programs aimed at reducing the risk of re-fractures.

  12. Pharmacokinetics of Exosomes-an Important Factor for Elucidating the Biological Roles of Exosomes and for the Development of Exosome-Based Therapeutics.

    PubMed

    Morishita, Masaki; Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-03-07

    Exosomes are small membrane vesicles containing lipids, proteins, and nucleic acids. Recently, researchers have uncovered that exosomes are involved in various biological events, such as tumor growth, metastasis, and the immune response, by delivering their cargos to exosome-receiving cells. Moreover, exosomes are expected to be employed in therapeutic treatments, such as tissue regeneration therapy and antitumor immunotherapy, since exosomes are effective delivery vehicles for proteins, nucleic acids, and other bioactive compounds. To elucidate the biological functions of exosomes, and for the development of exosome-based therapeutics, the pharmacokinetics of exosomes is important. In this review, we aim to summarize current knowledge about the pharmacokinetics and biodistribution of exosomes. The pharmacokinetics of exogenously administered exosomes is discussed based on the tissue distribution, types of cells taking up exosomes, and key molecules in the pharmacokinetics of exosomes. In addition, recent progress in the methods to control the pharmacokinetics of exosomes is reviewed.

  13. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  14. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    SciTech Connect

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new

  15. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    DOE PAGES

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; ...

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thusmore » provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new and

  16. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: insights into the important role of electron transfer.

    PubMed

    Ba, Lina; Li, Pan; Zhang, Hui; Duan, Yan; Lin, Zhanglin

    2013-11-01

    Hybrid P450 systems in which P450 monooxygenases are reconstituted with non-native or surrogate redox partners have become important for the engineering of this class of versatile enzymes. P450sca-2 from Streptomyces carbophilus stereoselectively hydroxylates mevastatin to yield pravastatin, a cholesterol-lowering drug. While S. carbophilus has been successfully applied in the industrial biotransformation process for pravastatin, the molecular study and engineering of P450sca-2 has been very limited. We have previously established a functional P450sca-2/Pdx/Pdr hybrid system. In this study, on the basis of a more active P450sca-2 mutant (R8-5C), five sites located in the substrate binding pocket, substrate access entrance, and presumed Pdx interaction interface were rationally chosen, and systematically subjected to site-directed saturation mutagenesis (SDSM), and three rounds of iterative saturation mutagenesis (ISM). A best mutant (Variant III) was obtained, which showed a whole cell biotransformation activity (377.5 mg/L) and an overall apparent k(cat) (6.37 min⁻¹) that was 7.1- and 10.0-fold that of the starting template R8-5C, respectively. Kinetic characterization revealed that most of the improvements seen for the SDSM and ISM mutants came from enhanced overall electron transfer, with the two sites at the interface between P450sca-2 and Pdx (T119 and N363) being most critical. Our study underscores the important role of electron transfer in a hybrid P450 system, and also demonstrates the utility of ISM in optimizing the redox partner interface. This should facilitate engineering of this and other important hybrid P450 systems.

  17. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.

  18. IGF‐1 Signaling Plays an Important Role in the Formation of Three‐Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells

    PubMed Central

    Mellough, Carla B.; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H. W.

    2015-01-01

    Abstract We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin‐like growth factor 1 (IGF‐1) can orchestrate the formation of three‐dimensional ocular‐like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal‐like structures. Inhibition of IGF‐1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF‐1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC‐derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod‐ and cone‐like photoreceptor inner and outer segments and phototransduction‐related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling. Stem Cells 2015;33:2416–2430 PMID:25827910

  19. Role of inert gas additive on dry etch patterning of InGaP in planar inductively coupled BCl 3 plasmas

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Lim, W. T.; Baek, I. K.; Yoo, S. R.; Jeon, M. H.; Cho, G. S.; Pearton, S. J.; Abernathy, C. R.

    2004-01-01

    The dry etch characteristics of InGaP in BCl 3 planar inductively coupled plasmas (ICP) with additions of Ar or Ne were determined. The inert gas additive provided enhanced etch rates relative to pure BCl 3 and Ne addition in particular produced much higher etch rates at low ratios of BCl 3 in the mixture. The etched features tended to have sloped sidewalls and much rougher surfaces than for GaAs and AlGaAs etched under the same conditions. The practical effect of the Ar or Ne addition was the ability to operate the ICP source over a somewhat broader range of pressures and still maintain practical etch rates. The use of room temperature BCl 3-based etching in a planar ICP appears feasible for base and emitter mesa applications in InGaP/GaAs heterojunction bipolar transistors.

  20. Cyclooxygenase-2 derived PGE2 and PGI2 play an important role via EP2 and PPARdelta receptors in early steps of oil induced decidualization in mice.

    PubMed

    Pakrasi, P L; Jain, A K

    2008-06-01

    Differentiation of endometrial stromal cells into decidual cells (decidualization) is prerequisite for blastocyst implantation. Different prostanoids are shown to be involved in the cascade of events found in implantation and decidualization. Previous reports described that cyclooxygenase-2 (COX2) derived prostacyclin (PGI2) plays an important role via peroxisome proliferator activated receptor (PPARdelta) nuclear receptor in implantation and decidualization. Herein, we investigated the role of COX2 derived PGE2 and PGI2 and examined the protein expression and regulation of COX1, COX2, membrane-bound prostaglandin E synthase (mPGES-1), prostaglandin I synthase (PGIS), PGE2 receptor (EP2) and PPARdelta in hormone primed oil infused uterine horn as well as in non-infused uterine horn (control horn). Our results show that selective COX2 inhibitor (Nimesulide) inhibits decidualization while COX1 inhibitor (SC560) does not affect decidualization. COX2, mPGES-1, PGIS, EP2 and PPARdelta immunostaining are strongly observed at 24 h and 48 h in oil-induced horn and than significantly reduced at 72 h and 120 h and absent in non-infused horn. However COX1 immunostaining is observed in infused as well as in non-infused horn. Our immunohistochemical studies corroborated well with follow up western blotting of the same proteins. PGE2 and PGI2 products were also elevated at 24h and 48 h after oil induction in infused horn in comparison to control horn. Our data suggest that COX2 derived both PGE2 and PGI2 mediate its function via EP2 and PPARdelta receptors in early steps of decidualization in mice.

  1. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    PubMed

    Toth, Karoly; Lee, Sang R; Ying, Baoling; Spencer, Jacqueline F; Tollefson, Ann E; Sagartz, John E; Kong, Il-Keun; Wang, Zhongde; Wold, William S M

    2015-08-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models.

  2. On the Content and Structure of the Gender Role Self-Concept: Including Gender-Stereotypical Behaviors in Addition to Traits

    ERIC Educational Resources Information Center

    Athenstaedt, Ursula

    2003-01-01

    The present study introduces a conceptualization of gender role self-concept that implies not only the commonly measured socially desirable expressive and instrumental traits (F+ and M+) but also feminine and masculine behaviors (FBehav and MBehav), and socially undesirable gender traits (F- and M-). Three different models were tested using…

  3. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    PubMed

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus.

  4. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence

    PubMed Central

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  5. Analysis of gene expression and regulation implicates C2H9orf152 has an important role in calcium metabolism and chicken reproduction.

    PubMed

    Liu, Long; Fan, Yanfeng; Zhang, Zhenhe; Yang, Chan; Geng, Tuoyu; Gong, Daoqing; Hou, Zhuocheng; Ning, Zhonghua

    2017-01-01

    The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality.

  6. Role of Additives in Minimizing Zinc Electrode Shape Change: The Effect of Lead on the Kinetics of Zn(II) Reduction in Concentrated Alkaline Media.

    DTIC Science & Technology

    1985-07-01

    Stripping of either the alloy phase or the underpotential deposit is believed to give rise to the additional oxidation peaks observed at -1.15V and...multiple oxidation peaks in the region from -0.40V to -0.80 volts correspond to the oxidation of both bulk and underpotentially deposited (UPD) Pb on silver...shifts in zinc underpotential deposition are also seen in the presence of Bi203, whose solubility is only 60 ppm. Yet, In20 3 additive, whose solubility

  7. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain

    PubMed Central

    Guo, Huichen; Huang, Mei; Yuan, Quan; Wei, Yanquan; Gao, Yuan; Mao, Lejiao; Gu, Lingjun; Tan, Yong Wah; Zhong, Yanxin; Liu, Dingxiang; Sun, Shiqi

    2017-01-01

    Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage. PMID:28081264

  8. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m−2 s−1. Compared with leaves exposed to a constant light of 1200 μmol photons m−2 s−1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m−2 s−1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m−2 s−1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m−2 s−1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow. PMID:26322062

  9. Does weather play an important role in the early nesting activity of colonial waterbirds? A case study in putrajaya wetlands, malaysia.

    PubMed

    Ismail, Ahmad; Rahman, Faid

    2013-08-01

    Environmental factors can play important roles in influencing waterbird communities. In particular, weather may have various biological and ecological impacts on the breeding activities of waterbirds, though most studies have investigated the effect of weather on the late stages of waterbird breeding (e.g., hatching rate, chick mortality). Conversely, the present study attempts to highlight the influence of weather on the early nesting activities of waterbirds by evaluating a recently established mixed-species colony in Putrajaya Wetlands, Malaysia. The results show that only rainfall and temperature have a significant influence on the species' nesting activities. Rainfall activity is significantly correlated with the Grey Heron's rate of establishment (rainfall: rs = 0.558, p = 0.03, n = 72) whereas both temperature and rainfall are associated with Painted Stork's nesting density (temperature: rs = 0.573, p = 0.013; rainfall: rs = -0.662, p = 0.03, n = 48). There is a possibility that variations in the rainfall and temperature provide a cue for the birds to initiate their nesting. Regardless, this paper addresses concerns on the limitations faced in the study and suggests long-term studies for confirmation.

  10. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus.

  11. Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons.

    PubMed

    Devine, Matthew S; Kiernan, Matthew C; Heggie, Susan; McCombe, Pamela A; Henderson, Robert D

    2014-12-01

    In amyotrophic lateral sclerosis (ALS), onset and spread of upper motor neuron (UMN) and lower motor neuron (LMN) dysfunction is typically asymmetric. Our aim was to investigate the relationship between limb dominance and the onset and spread of clinical UMN and LMN dysfunction in ALS. We studied 138 ALS subjects with unilateral and concordant limb dominance, from two tertiary centres. A questionnaire was used to determine the pattern of disease onset and spread. The clinical severity of UMN and LMN signs in each limb was quantified using a validated scoring system. Results showed that onset of weakness was more likely to occur in the dominant upper limb (p = 0.02). In subjects with initial weakness in a non-dominant limb, spread of weakness was more likely to be to the other limb on that side (p = 0.008). The relative distribution of upper limb UMN signs was affected by whether weakness first occurred on the dominant or non-dominant side (p = 0.03). These findings support limb dominance as a significant factor underlying onset and spread of ALS, with UMN processes playing an important role. The effect of limb dominance on the presentation of ALS may reflect underlying neuronal vulnerabilities, which become exposed by the disease.

  12. Should they have a percutaneous endoscopic gastrostomy? the importance of assessing decision-making capacity and the central role of a multidisciplinary team.

    PubMed

    Clarke, Gemma; Galbraith, Sarah; Woodward, Jeremy; Holland, Anthony; Barclay, Stephen

    2014-06-01

    Decisions about percutaneous endoscopic gastrostomy (PEG) can be clinically and ethically challenging, particularly when patients lack decision-making capacity. As the age of the UK population rises, with the associated increase in prevalence of dementias and neurodegenerative diseases, it is becoming an increasingly important issue for clinicians. The recent review and subsequent withdrawal of the Liverpool Care Pathway highlighted feeding as a particular area of concern. The authors undertook a 1-year retrospective review of individuals referred to the feeding issues multidisciplinary team (FIMDT) at Addenbrooke's Hospital, Cambridge, UK, in 2011. The majority of patients referred (n = 158) had a primary diagnosis of cancer (44%). The second largest group was those who had had a stroke or brain haemorrhage (13%). Twenty-eight per cent of patients had no, or uncertain, decision-making capacity on at least one occasion during decision-making. There are reflections on the role of a multidisciplinary team in the process of decision-making for these complex patients.

  13. RUNX3 plays an important role in As2O3‑induced apoptosis and allows cells to overcome MSC‑mediated drug resistance.

    PubMed

    Pan, Guo-Zheng; Zhai, Feng-Xian; Lu, Yin; Fang, Zhi-Gang; Fan, Rui-Fang; Liu, Xiang-Fu; Lin, Dong-Jun

    2016-10-01

    The interaction between bone marrow stromal cells and leukemia cells is critical for the persistence and progression of leukemia, and this interaction may account for residual disease. However, the link between leukemia cells and their environment is still poorly understood. In our study, runt‑related transcription factor 3 (RUNX3) was identified as a novel target gene affected by As2O3 and involved in mesenchymal stem cell (MSC)‑mediated protection of leukemia cells from As2O3‑induced apoptosis. We observed induction of RUNX3 expression and the translocation of RUNX3 into the nucleus after As2O3 treatment in leukemia cells. In K562 chronic myeloid leukemia cells, downregulation of endogenous RUNX3 compromised As2O3‑induced growth inhibition, cell cycle arrest, and apoptosis. In the presence of MSC, As2O3‑induced expression of RUNX3 was reduced significantly and this reduction was modulated by CXCL12/CXCR4 signaling. Furthermore, overexpression of RUNX3 restored, at least in part, the sensitivity of leukemic cells to As2O3. We conclude that RUNX3 plays an important role in As2O3‑induced cellular responses and allows cells to overcome MSC‑mediated drug resistance. Therefore, RUNX3 is a promising target for therapeutic approaches to overcome MSC‑mediated drug resistance.

  14. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight.

    PubMed

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

  15. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states.

    PubMed

    Nabe, Hayase; Funabiki, Ryoko; Kashino, Yasuhiro; Koike, Hiroyuki; Satoh, Kazuhiko

    2007-11-01

    The effects of air drying and hypertonic treatments in the dark on seven bryophytes, which had grown under different water environments, were studied. All the desiccation-tolerant species tested lost most of their PSII photochemical activity when photosynthetic electron transport was inhibited by air drying, while, in all the sensitive species, the PSII photochemical activity remained at a high level even when photosynthesis was totally inhibited. The PSI reaction center remained active under drying conditions in both sensitive and tolerant species, but the activity became non-detectable in the light only in tolerant species due to deactivation of the cyclic electron flow around PSI and of the back reaction in PSI. Light-induced non-photochemical quenching (NPQ) was found to be induced not only by the xanthophyll cycle but also by a DeltapH-induced, dithiothreitol-insensitive mechanism in both the desiccation-tolerant and -intolerant bryophytes. Both mechanisms are thought to have an important role in protecting desiccation-tolerant species from photoinhibition under drying conditions. Fluorescence emission spectra at 77K showed that dehydration-induced quenching of PSII fluorescence was observed only in tolerant species and was due to neither state 1-state 2 transition nor detachment of light-harvesting chlorophyll protein complexes from PSII core complexes. The presence of dehydration-induced quenching of PSI fluorescence was also suggested.

  16. Specific elevation of DcR3 in sera of sepsis patients and its potential role as a clinically important biomarker of sepsis

    PubMed Central

    Kim, Sunghee; Mi, Lijun; Zhang, Lurong

    2012-01-01

    Because of its potentially important role in the pathogenesis of sepsis, the expression of soluble decoy receptor 3 (DcR3) was investigated in sera of sepsis patients. The serum levels of DcR3 and its TNF-like ligand TL1A and homologous decoy receptor OPG were quantified by ELISA. The values of DcR3 to diagnose sepsis were analyzed by receiver-operating characteristic (ROC) curves. The results showed that DcR3 was significantly elevated in sepsis compared to SIRS (systemic inflammatory response syndrome), a condition similar to sepsis but resulting from noninfectious insults. DcR3 showed superior area under the ROC curve (AUC, 0.958) compared to poor AUCs of TL1A and OPG. At a cut-off of 3.24 ng/ml, DcR3 predicted sepsis from SIRS with 96% sensitivity and 82.6% specificity. DcR3 also predicted sepsis from cancer and inflammatory bowel disease with equally excellent values. Therefore, DcR3 serum level has the potential to serve as a reliable biomarker of sepsis. PMID:22647538

  17. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase

    PubMed Central

    Böttinger, Lena; Guiard, Bernard; Oeljeklaus, Silke; Kulawiak, Bogusz; Zufall, Nicole; Wiedemann, Nils; Warscheid, Bettina; van der Laan, Martin; Becker, Thomas

    2013-01-01

    The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed. PMID:23864706

  18. The Sand Seas of northern China: Important sinks and sources of global sediment fluxes and their changing roles during different climate conditions of Late Quaternary

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2014-12-01

    Although the occurrence of aeolian sands in sedimentary sequences has been widely used as indicators of desert formation or proxies of desert climate, one should be aware that accumulation of aeolian sands does occur along river channels, in lake shores not necessarily associated with arid environment. Our ongoing geomorphological and paleoenvironmental studies in the deserts of northern China reconfirm that formation of sand seas is dependent on not only erodibility (arising from bare surface due to aridity) and wind power but more importantly sand availability related to sediment cycles under interactions between fluvial, lacustrine and aeolian processes. Here we present our ongoing geomorphological and paleoclimatic research on the Late Quaternary landscape and climatic changes in the Taklamkan Desert of northwestern China, the largest sand sea of China in arid zone, and in the Hunshandake Sandy Land at the east part of the Asian mid-latitude desert belt under semiarid climate. We find out that the occurrence of tall sand dunes in the over 300,000 km2 large Taklamakan Sand Sea is closely related to the sites of intensive fluvial sedimentation and convergence zone of surface winds. In the case of Hunshandake, the dunes (although much smaller) mainly occur along the shorelines of the former lake basins, and sedim