Measuring the Interestingness of Articles in a Limited User Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, Raymond K.
Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which varies from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment, there are not enough users that would make collaborative filtering effective. A general framework,more » called iScore, is presented for defining and measuring the 'interestingness' of articles, incorporating user-feedback. iScore addresses various aspects of what makes an article interesting, such as topic relevancy, uniqueness, freshness, source reputation, and writing style. It employs various methods to measure these features and uses a classifier operating on these features to recommend articles. The basic iScore configuration is shown to improve recommendation results by as much as 20%. In addition to the basic iScore features, additional features are presented to address the deficiencies of existing feature extractors, such as one that tracks multiple topics, called MTT, and a version of the Rocchio algorithm that learns its parameters online as it processes documents, called eRocchio. The inclusion of both MTT and eRocchio into iScore is shown to improve iScore recommendation results by as much as 3.1% and 5.6%, respectively. Additionally, in TREC11 Adaptive Filter Task, eRocchio is shown to be 10% better than the best filter in the last run of the task. In addition to these two major topic relevancy measures, other features are also introduced that employ language models, phrases, clustering, and changes in topics to improve recommendation results. These additional features are shown to improve recommendation results by iScore by up to 14%. Due to varying reasons that users hold regarding why an article is interesting, an online feature selection method in naive Bayes is also introduced. Online feature selection can improve recommendation results in iScore by up to 18.9%. In summary, iScore in its best configuration can outperform traditional IR techniques by as much as 50.7%. iScore and its components are evaluated in the news recommendation task using three datasets from Yahoo! News, actual users, and Digg. iScore and its components are also evaluated in the TREC Adaptive Filter task using the Reuters RCV1 corpus.« less
Sotos syndrome: An interesting disorder with gigantism.
Nalini, A; Biswas, Arundhati
2008-07-01
We report the case of a 16-year-old boy diagnosed to have Sotos syndrome, with rare association of bilateral primary optic atrophy and epilepsy. He presented with accelerated linear growth, facial gestalt, distinctive facial features, seizures and progressive diminution of vision in both eyes. He had features of gigantism from early childhood. An MRI showed that brain and endocrine functions were normal. This case is of interest, as we have to be aware of this not so rare disorder. In addition to the classic features, there were two unusual associations with Sotos syndrome in the patient.
Sotos syndrome: An interesting disorder with gigantism
Nalini, A.; Biswas, Arundhati
2008-01-01
We report the case of a 16-year-old boy diagnosed to have Sotos syndrome, with rare association of bilateral primary optic atrophy and epilepsy. He presented with accelerated linear growth, facial gestalt, distinctive facial features, seizures and progressive diminution of vision in both eyes. He had features of gigantism from early childhood. An MRI showed that brain and endocrine functions were normal. This case is of interest, as we have to be aware of this not so rare disorder. In addition to the classic features, there were two unusual associations with Sotos syndrome in the patient. PMID:19893668
Measuring the Interestingness of Articles in a Limited User Environment Prospectus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, Raymond K.
2007-04-18
Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which would vary from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment there are not enough users that would make collaborative filtering effective. I presentmore » a general framework for defining and measuring the ''interestingness'' of articles, called iScore, incorporating user-feedback including tracking multiple topics of interest as well as finding interesting entities or phrases in a complex relationship network. I propose and have shown the validity of the following: 1. Filtering based on only topic relevancy is insufficient for identifying interesting articles. 2. No single feature can characterize the interestingness of an article for a user. It is the combination of multiple features that yields higher quality results. For each user, these features have different degrees of usefulness for predicting interestingness. 3. Through user-feedback, a classifier can combine features to predict interestingness for the user. 4. Current evaluation corpora, such as TREC, do not capture all aspects of personalized news filtering systems necessary for system evaluation. 5. Focusing on only specific evolving user interests instead of all topics allows for more efficient resource utilization while yielding high quality recommendation results. 6. Multiple profile vectors yield significantly better results than traditional methods, such as the Rocchio algorithm, for identifying interesting articles. Additionally, the addition of tracking multiple topics as a new feature in iScore, can improve iScore's classification performance. 7. Multiple topic tracking yields better results than the best results from the last TREC adaptive filtering run. As future work, I will address the following hypothesis: Entities and the relationship among these entities using current information extraction technology can be utilized to identify entities of interest and relationships of interest, using a scheme such as PageRank. And I will address one of the following two hypotheses: 1. By addressing the multiple reading roles that a single user may have, classification results can be improved. 2. By tailoring the operating parameters of MTT, better classification results can be achieved.« less
Criminal acts against civil aviation
DOT National Transportation Integrated Search
2001-01-01
Criminal Acts Against Civil Aviation reports on incidents that have taken place against civil aviation aircraft and interests worldwide. Incidents that are recorded are summarized in regional geographic overviews. In addition, one or more feature art...
Online writer identification using alphabetic information clustering
NASA Astrophysics Data System (ADS)
Tan, Guo Xian; Viard-Gaudin, Christian; Kot, Alex C.
2009-01-01
Writer identification is a topic of much renewed interest today because of its importance in applications such as writer adaptation, routing of documents and forensic document analysis. Various algorithms have been proposed to handle such tasks. Of particular interests are the approaches that use allographic features [1-3] to perform a comparison of the documents in question. The allographic features are used to define prototypes that model the unique handwriting styles of the individual writers. This paper investigates a novel perspective that takes alphabetic information into consideration when the allographic features are clustered into prototypes at the character level. We hypothesize that alphabetic information provides additional clues which help in the clustering of allographic prototypes. An alphabet information coefficient (AIC) has been introduced in our study and the effect of this coefficient is presented. Our experiments showed an increase of writer identification accuracy from 66.0% to 87.0% when alphabetic information was used in conjunction with allographic features on a database of 200 reference writers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... is featured in an Al-Shabaab video in which militia members are shown training and explicitly stating... organizing a suicide bombing attack carried out by a Somali-American from Minnesota who traveled to Somalia...
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael
2017-05-01
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Description of data on the Nimbus 7 LIMS map archive tape: Temperature and geopotential height
NASA Technical Reports Server (NTRS)
Haggard, K. V.; Remsberg, E. E.; Grose, W. L.; Russell, J. M., III; Marshall, B. T.; Lingenfelser, G.
1986-01-01
The process by which the analysis of the Limb Infared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of temperature and geopotential height is described. In addition to a detailed description of the analysis procedure, several interesting features in the data are discussed and these features are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components. While some suggestions are made for an improved analysis of the data, it is shown that, in general, the maps are an excellent estimation of the synoptic fields.
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Ferrari, José A.
2017-05-01
Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Proposed Information Collection to OMB Manufactured Home Construction and Safety Standards Act Reporting... home producers to place labels and notices in and on manufactured homes and mandate State and Private...' interests by requiring certain features of design and construction. In addition, information collected...
Contexts in a Paper Recommendation System with Collaborative Filtering
ERIC Educational Resources Information Center
Winoto, Pinata; Tang, Tiffany Ya; McCalla, Gordon
2012-01-01
Making personalized paper recommendations to users in an educational domain is not a trivial task of simply matching users' interests with a paper topic. Therefore, we proposed a context-aware multidimensional paper recommendation system that considers additional user and paper features. Earlier experiments on experienced graduate students…
Dar Al Gani 872: Yet Another Eucrite, Yet Another Lesson to Learn?
NASA Technical Reports Server (NTRS)
Patzer, A.; Hill, D. H.; Boynton, W. V.; Sipiera, P. P.; Jerman, G. A.
2002-01-01
We present chemical and mineralogical data on a new monomict basaltic eucrite recovered from Libya. In contrast to most other eucrites, it exhibits high shock features, unusually heterogeneous exsolution of pigeonite, and interesting melt pockets. Additional information is contained in the original extended abstract.
Description of data on the Nimbus 7 LIMS map archive tape: Water vapor and nitrogen dioxide
NASA Technical Reports Server (NTRS)
Haggard, Kenneth V.; Marshall, B. T.; Kurzeja, Robert J.; Remsberg, Ellis E.; Russell, James M., III
1988-01-01
Described is the process by which the analysis of the Limb Infrared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of water vapor and nitrogen dioxide. In addition to a detailed description of the analysis procedure, also discussed are several interesting features in the data which are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components.
Can PPG be used for HRV analysis?
Pinheiro, N; Couceiro, R; Henriques, J; Muehlsteff, J; Quintal, I; Goncalves, L; Carvalho, P
2016-08-01
Heart rate variability (HRV) represents one of the most promising markers of the autonomic nervous system (ANS) regulation. However, it requires the acquisition of the ECG signal in order to reliably detect the RR intervals, which is not always easily and comfortably available in personal health applications. Additionally, due to progress in single spot optical sensors, photoplethysmography (PPG) is an interesting alternative for heartbeat interval measurements, since it is a more convenient and a less intrusive measurement technique. Driven by the technological advances in such sensors, wrist-worn devices are becoming a commodity, and the interest in the assessment of HRV indexes from the PPG analysis (pulse rate variability - PRV) is rising. In this study, we investigate the hypothesis of using PRV features as surrogates for HRV indexes, in three different contexts: healthy subjects at rest, healthy subjects after physical exercise and subjects with cardiovascular diseases (CVD). Additionally, we also evaluate which are the characteristic points better suited for PRV analysis in these contexts, i.e. the PPG waveform characteristic points leading to the PRV features that present the best estimates of HRV (correlation and error analysis). The achieved results suggest that the PRV can be often used as an alternative for HRV analysis in healthy subjects, with significant correlations above 82%, for both time and frequency features. Contrarily, in the post-exercise and CVD subjects, time and (most importantly) frequency domain features shall be used with caution (mean correlations ranging from 68% to 88%).
Topological features of the Sokolov integrable case on the Lie algebra so(3,1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, D V
2014-08-31
The integrable Sokolov case on so(3,1){sup ⋆} is investigated. This is a Hamiltonian system with two degrees of freedom, in which the Hamiltonian and the additional integral are homogeneous polynomials of degrees 2 and 4, respectively. It is an interesting feature of this system that connected components of common level surfaces of the Hamiltonian and the additional integral turn out to be noncompact. The critical points of the moment map and their indices are found, the bifurcation diagram is constructed, and the topology of noncompact level surfaces is determined, that is, the closures of solutions of the Sokolov system on so(3,1)more » are described. Bibliography: 24 titles.« less
Special Features of the Advanced Loans Module of the ABCD Integrated Library System
ERIC Educational Resources Information Center
de Smet, Egbert
2011-01-01
Purpose: The "advanced loans" module of the relatively new library software, ABCD, is an addition to the normal loans module and it offers a "generic transaction decision-making engine" functionality. The module requires extra installation effort and parameterisation, so this article aims to explain to the many potentially interested libraries,…
Which Features Make Illustrations in Multimedia Learning Interesting?
ERIC Educational Resources Information Center
Magner, Ulrike Irmgard Elisabeth; Glogger, Inga; Renkl, Alexander
2016-01-01
How can illustrations motivate learners in multimedia learning? Which features make illustrations interesting? Beside the theoretical relevance of addressing these questions, these issues are practically relevant when instructional designers are to decide which features of illustrations can trigger situational interest irrespective of individual…
NASA Astrophysics Data System (ADS)
Venkataraman, Sankar; Li, Wenjing
2008-03-01
Image analysis for automated diagnosis of cervical cancer has attained high prominence in the last decade. Automated image analysis at all levels requires a basic segmentation of the region of interest (ROI) within a given image. The precision of the diagnosis is often reflected by the precision in detecting the initial region of interest, especially when some features outside the ROI mimic the ones within the same. Work described here discusses algorithms that are used to improve the cervical region of interest as a part of automated cervical image diagnosis. A vital visual aid in diagnosing cervical cancer is the aceto-whitening of the cervix after the application of acetic acid. Color and texture are used to segment acetowhite regions within the cervical ROI. Vaginal walls along with cottonswabs sometimes mimic these essential features leading to several false positives. Work presented here is focused towards detecting in-focus vaginal wall boundaries and then extrapolating them to exclude vaginal walls from the cervical ROI. In addition, discussed here is a marker-controlled watershed segmentation that is used to detect cottonswabs from the cervical ROI. A dataset comprising 50 high resolution images of the cervix acquired after 60 seconds of acetic acid application were used to test the algorithm. Out of the 50 images, 27 benefited from a new cervical ROI. Significant improvement in overall diagnosis was observed in these images as false positives caused by features outside the actual ROI mimicking acetowhite region were eliminated.
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
Trajectory analysis via a geometric feature space approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, Mark D.; Wilson, Andrew T.
This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally,more » these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. Furthermore, we demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.« less
Trajectory analysis via a geometric feature space approach
Rintoul, Mark D.; Wilson, Andrew T.
2015-10-05
This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally,more » these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. Furthermore, we demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.« less
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Greg; Ippolito, Corey
2005-01-01
This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.
Menstrual cycle variation of women's interest in erotica.
Zillmann, D; Schweitzer, K J; Mundorf, N
1994-10-01
Female respondents were given the opportunity to choose feature films for viewing. Choices were made on the basis of synopses and promotional videos. These materials projected (i) a focus on erotic, sexual events, (ii) romantic themes, (iii) action-packed violent drama, and (iv) hilarious comedy. Additionally, respondents evaluated the appeal of the projected films. Respondents' position in the menstrual cycle was then determined, with placement into one of seven 4-day phases. Measured in both choices and evaluations, a postmenstrual surge in erotic interest was evident. Erotic interest was also pronounced prior to and during menses. In contrast, it was at a minimum during the first half of the luteal phase. The choice of romantic films was not appreciably influenced by cycle position. However, in evaluating films with romantic themes, premenstrual women expressed particularly little interest in this genre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, Mark Daniel; Wilson, Andrew T.; Valicka, Christopher G.
We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generallymore » be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.« less
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
Remarks on forensically interesting Sony Playstation 3 console features
NASA Astrophysics Data System (ADS)
Daugs, Gunnar; Kröger, Knut; Creutzburg, Reiner
2012-02-01
This paper deals with forensically interesting features of the Sony Playstation 3 game console. The construction and the internal structure are analyzed more precisely. Interesting forensic features of the operating system and the file system are presented. Differences between a PS3 with and without jailbreak are introduced and possible forensic attempts when using an installed Linux are discussed.
Automating radiologist workflow, part 3: education and training.
Reiner, Bruce
2008-12-01
The current model for radiologist education consists largely of mentorship during residency, followed by peer-to-peer training thereafter. The traditional focus of this radiologist education has historically been restricted to anatomy, pathology, and imaging modality. This "human" mentoring model becomes a limiting factor in the current practice environment because of rapid and dramatic changes in imaging and information technologies, along with the increased time demands placed on practicing radiologists. One novel way to address these burgeoning education and training challenges is to leverage technology, with the creation of user-specific and context-specific automated workflow templates. These automated templates would provide a low-stress, time-efficient, and easy-to-use equivalent of "computerized" mentoring. A radiologist could identify the workflow template of interest on the basis of the specific computer application, pathology, anatomy, or modality of interest. While the corresponding workflow template is activated, the radiologist "student" could effectively start and stop at areas of interest and use the functionality of an electronic wizard to identify additional educational resource of interest. An additional training feature of the technology is the ability to review "proven" cases for the purposes of establishing competence and credentialing.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
2001-08-01
The JCE High School ChemEd Learning Information Center (CLIC) and Buyers Guide continue to be updated with each issue of the print Journal. Every month, links to articles of interest to high school teachers are added to CLIC. Links to all new book and media reviews are added to the Buyers Guide. Additions to the Biographical Snapshots of Famous Women and Minority Chemists (March 2001) and the updated WWW Site Review feature (July 2001) have been previously noted in this column. The Conceptual Questions and Challenge Problems feature has a useful, new tool, Chemical Concepts Inventory, that can be used to assess the level of chemistry misconceptions held by students.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
In most methods for evaluation of cardiac function based on echocardiography, the heart wall is currently identified manually by an operator. However, this task is very time-consuming and suffers from inter- and intraobserver variability. The present paper proposes a method that uses multiple features of ultrasonic echo signals for automated identification of the heart wall region throughout an entire cardiac cycle. In addition, the optimal cardiac phase to select a frame of interest, i.e., the frame for the initiation of tracking, was determined. The heart wall region at the frame of interest in this cardiac phase was identified by the expectation-maximization (EM) algorithm, and heart wall regions in the following frames were identified by tracking each point classified in the initial frame as the heart wall region using the phased tracking method. The results for two subjects indicate the feasibility of the proposed method in the longitudinal axis view of the heart.
NASA Astrophysics Data System (ADS)
Mobasher, K.; Turk, H. J.; Witherspoon, W.; Tate, L.; Hoynes, J.
2015-12-01
A GIS geology geodatabase of Georgia was developed using ArcGIS 10.2. The geodatabase for each physiographic provinces of Georgia contains fields designed to store information regarding geologic features. Using ArcGIS online, the virtual field guide is created which provides an interactive learning experience for students to allow in real time photography, description, mapping and sharing their observations with the instructor and peers. Gigapan© facilitates visualizing geologic features at different scales with high resolutions and in their larger surrounding context. The classroom applications of the Gigapan© are limitless when teaching students the entire range of geologic structures from showcasing crystalline structures of minerals to understanding the geological processes responsible for formation of an entire mountain range. The addition of the Story Map enhances the virtual experience when you want to present a geo-located story point narrative featuring images or videos. The virtual field component and supplementary Gigapan© imagery coupled with Story Map added significantly to the detailed realism of virtual field guide further allowing students to more fully understand geological concepts at various scales. These technologies peaked students interest and facilitated their learning and preparation to function more effectively in the geosciences by developing better observations and new skills. These technologies facilitated increased student engagement in the geosciences by sharing, enhancing and transferring lecture information to actual field knowledge and experiences. This enhanced interactive learning experience not only begins to allow students to understand and recognize geologic features in the field but also increased their collaboration, enthusiasm and interest in the discipline. The increased interest and collaboration occurred as students assisted in populating a geologic geodatabase of Georgia.
Effects of Individual Differences and Situational Features on Age Differences in Mindless Reading.
Shake, Matthew C; Shulley, Leah J; Soto-Freita, Angelica M
2016-09-01
Mindless reading occurs when an individual shifts their attention away from the text and toward other off-task thoughts. This study examined whether previously reported age-related declines in mindless reading episodes are due primarily to (a) situational features related to the text itself (e.g., text genre or interest in the text) and/or (b) individual differences in cognitive ability. Participants read 2 texts written in different genres but about the same topic. During reading, they were randomly probed to indicate whether they were on-task or mind-wandering. They also indicated their perceptions regarding the interest and difficulty of the text, and completed a battery of cognitive ability measures. The results showed that (a) text genre may engender some age differences in mindless reading and (b) greater age and perceived interest in the text were each uniquely predictive of reduced mindless reading for both text genres. Individual differences in cognitive abilities (e.g., working memory, vocabulary) did not account for additional significant variance in mindless reading after interest and age were taken into account. Our findings are discussed in terms of implications for age differences in lapses of attention during reading and predictors of mind-wandering generally. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Deep features for efficient multi-biometric recognition with face and ear images
NASA Astrophysics Data System (ADS)
Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng
2017-07-01
Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.
2013-01-01
Adult and juvenile dermatomyositis share the hallmark features of pathognomic skin rash and muscle inflammation, but are heterogeneous disorders with a range of additional disease features and complications. The frequency of important clinical features such as calcinosis, interstitial lung disease and malignancy varies markedly between adult and juvenile disease. These differences may reflect different disease triggers between children and adults, but whilst various viral and other environmental triggers have been implicated, results are so far conflicting. Myositis-specific autoantibodies can be detected in both adults and children with idiopathic inflammatory myopathies. They are associated with specific disease phenotypes and complications, and divide patients into clinically homogenous subgroups. Interestingly, whilst the same autoantibodies are found in both adults and children, the disease features remain different within autoantibody subgroups, particularly with regard to life-threatening disease associations, such as malignancy and rapidly progressive interstitial lung disease. Our understanding of the mechanisms that underlie these differences is limited by a lack of studies directly comparing adults and children. Dermatomyositis is an autoimmune disease, which is believed to develop as a result of an environmental trigger in a genetically predisposed individual. Age-specific host immune responses and muscle physiology may be additional complicating factors that have significant impact on disease presentation. Further study into this area may produce new insights into disease pathogenesis. PMID:23566358
NASA Astrophysics Data System (ADS)
Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling
2017-12-01
Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.
Resolving Ethical Challenges in an Era of Persistent Conflict
2011-04-01
pleasure. For John Stuart Mill , it was hap- piness. Others consider it interest or well-being. In the context of 36 Just War thinking, the good is...war. THE PROFESSIONAL MILITARY ETHIC: BALANCING RISK Accomplishing the Mission. Military ethics begins with the utilitarian im- perative to...avoid defeat are not just permissible, they are obliga- tory. Additionally, it is a feature of any utilitarian ethic that the greater the good, the
Boyer, Kathleen; Filan, Eamon; Ching, Brian; Rooks, Veronica; Kellicut, Dwight
2018-02-01
Nutcracker phenomenon is the descriptor for a patient's anatomy whenever the left renal vein becomes compressed between the abdominal aorta and the superior mesenteric artery. Nutcracker syndrome is the terminology used when the nutcracker phenomenon is accompanied by symptoms including pain (abdominal, flank, pelvic), hematuria, and orthostatic proteinuria. Diagnosis can be made with Doppler ultrasound, venography, computed tomography, or magnetic resonance imaging. This case demonstrates some of the typical findings of nutcracker syndrome. The limited clinical features and interesting imaging findings, in addition to the young age of the patient, make this a notable case.
Establish and Evaluate Ada Runtime Features of Interest for Real-Time Systems
1989-02-15
Runtime Features of Interest for Real - Time Systems -,-. CLEARED POR :)E,4 pUEL tCATLON SEP 2 0 19E19 ,CETM ORP t ’R RE LOO O Nt-U~HM- ANDQ SECURITY...ESTABLISH AND EVALUATE py ADA RUNTIME FEATURES OF INTEREST FOR REAL - TIME SYSTEMS CONTRACT NUMBER: MDA 903-87-D-0056 IITRI PROJECT NUMBER: T06168 PREPARED...2 2.0 SELECTION PROCESS OVERVIEW .................................... 3 2.1 REAL - TIME SYSTEMS IDENTIFICATION ........................... 4 2.2
Automatic detection of Martian dark slope streaks by machine learning using HiRISE images
NASA Astrophysics Data System (ADS)
Wang, Yexin; Di, Kaichang; Xin, Xin; Wan, Wenhui
2017-07-01
Dark slope streaks (DSSs) on the Martian surface are one of the active geologic features that can be observed on Mars nowadays. The detection of DSS is a prerequisite for studying its appearance, morphology, and distribution to reveal its underlying geological mechanisms. In addition, increasingly massive amounts of Mars high resolution data are now available. Hence, an automatic detection method for locating DSSs is highly desirable. In this research, we present an automatic DSS detection method by combining interest region extraction and machine learning techniques. The interest region extraction combines gradient and regional grayscale information. Moreover, a novel recognition strategy is proposed that takes the normalized minimum bounding rectangles (MBRs) of the extracted regions to calculate the Local Binary Pattern (LBP) feature and train a DSS classifier using the Adaboost machine learning algorithm. Comparative experiments using five different feature descriptors and three different machine learning algorithms show the superiority of the proposed method. Experimental results utilizing 888 extracted region samples from 28 HiRISE images show that the overall detection accuracy of our proposed method is 92.4%, with a true positive rate of 79.1% and false positive rate of 3.7%, which in particular indicates great performance of the method at eliminating non-DSS regions.
NASA Astrophysics Data System (ADS)
Fuchs, Thomas J.; Thompson, David R.; Bue, Brian D.; Castillo-Rogez, Julie; Chien, Steve A.; Gharibian, Dero; Wagstaff, Kiri L.
2015-10-01
Spacecraft autonomy is crucial to increase the science return of optical remote sensing observations at distant primitive bodies. To date, most small bodies exploration has involved short timescale flybys that execute prescripted data collection sequences. Light time delay means that the spacecraft must operate completely autonomously without direct control from the ground, but in most cases the physical properties and morphologies of prospective targets are unknown before the flyby. Surface features of interest are highly localized, and successful observations must account for geometry and illumination constraints. Under these circumstances onboard computer vision can improve science yield by responding immediately to collected imagery. It can reacquire bad data or identify features of opportunity for additional targeted measurements. We present a comprehensive framework for onboard computer vision for flyby missions at small bodies. We introduce novel algorithms for target tracking, target segmentation, surface feature detection, and anomaly detection. The performance and generalization power are evaluated in detail using expert annotations on data sets from previous encounters with primitive bodies.
Radiomics: a new application from established techniques
Parekh, Vishwa; Jacobs, Michael A.
2016-01-01
The increasing use of biomarkers in cancer have led to the concept of personalized medicine for patients. Personalized medicine provides better diagnosis and treatment options available to clinicians. Radiological imaging techniques provide an opportunity to deliver unique data on different types of tissue. However, obtaining useful information from all radiological data is challenging in the era of “big data”. Recent advances in computational power and the use of genomics have generated a new area of research termed Radiomics. Radiomics is defined as the high throughput extraction of quantitative imaging features or texture (radiomics) from imaging to decode tissue pathology and creating a high dimensional data set for feature extraction. Radiomic features provide information about the gray-scale patterns, inter-pixel relationships. In addition, shape and spectral properties can be extracted within the same regions of interest on radiological images. Moreover, these features can be further used to develop computational models using advanced machine learning algorithms that may serve as a tool for personalized diagnosis and treatment guidance. PMID:28042608
Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study
NASA Astrophysics Data System (ADS)
Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin
2011-03-01
Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2014-06-24
A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.
Are There Optical Solitary Wave Solutions in Linear Media with Group Velocity Dispersion?
NASA Technical Reports Server (NTRS)
Li, Zhonghao; Zhou, Guosheng
1996-01-01
A generalized exact optical bright solitary wave solution in a three dimensional dispersive linear medium is presented. The most interesting property of the solution is that it can exist in the normal group-velocity-dispersion (GVD) region. In addition, another peculiar feature is that it may achieve a condition of 'zero-dispersion' to the media so that a solitary wave of arbitrarily small amplitude may be propagated with no dependence on is pulse width.
Saund, Eric
2013-10-01
Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.
NASA Astrophysics Data System (ADS)
Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim
2018-04-01
Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.
A Direct Assessment of “Obesogenic” Built Environments: Challenges and Recommendations
Gasevic, Danijela; Vukmirovich, Ina; Yusuf, Salim; Teo, Koon; Chow, Clara; Dagenais, Gilles; Lear, Scott A.
2011-01-01
This paper outlines the challenges faced during direct built environment (BE) assessments of 42 Canadian communities of various income and urbanization levels. In addition, we recommend options for overcoming such challenges during BE community assessments. Direct BE assessments were performed utilizing two distinct audit methods: (1) modified version of Irvine-Minnesota Inventory in which a paper version of an audit tool was used to assess BE features and (2) a Physical Activity and Nutrition Features audit tool, where the presence and positions of all environmental features of interest were recorded using a Global-Positioning-System (GPS) unit. This paper responds to the call for the need of creators and users of environmental audit tools to share experiences regarding the usability of tools for BE assessments. The outlined BE assessment challenges plus recommendations for overcoming them can help improve and refine the existing audit tools and aid researchers in future assessments of the BE. PMID:22174727
Helioviewer: A Web 2.0 Tool for Visualizing Heterogeneous Heliophysics Data
NASA Astrophysics Data System (ADS)
Hughitt, V. K.; Ireland, J.; Lynch, M. J.; Schmeidel, P.; Dimitoglou, G.; Müeller, D.; Fleck, B.
2008-12-01
Solar physics datasets are becoming larger, richer, more numerous and more distributed. Feature/event catalogs (describing objects of interest in the original data) are becoming important tools in navigating these data. In the wake of this increasing influx of data and catalogs there has been a growing need for highly sophisticated tools for accessing and visualizing this wealth of information. Helioviewer is a novel tool for integrating and visualizing disparate sources of solar and Heliophysics data. Taking advantage of the newly available power of modern web application frameworks, Helioviewer merges image and feature catalog data, and provides for Heliophysics data a familiar interface not unlike Google Maps or MapQuest. In addition to streamlining the process of combining heterogeneous Heliophysics datatypes such as full-disk images and coronagraphs, the inclusion of visual representations of automated and human-annotated features provides the user with an integrated and intuitive view of how different factors may be interacting on the Sun. Currently, Helioviewer offers images from The Extreme ultraviolet Imaging Telescope (EIT), The Large Angle and Spectrometric COronagraph experiment (LASCO) and the Michelson Doppler Imager (MDI) instruments onboard The Solar and Heliospheric Observatory (SOHO), as well as The Transition Region and Coronal Explorer (TRACE). Helioviewer also incorporates feature/event information from the LASCO CME List, NOAA Active Regions, CACTus CME and Type II Radio Bursts feature/event catalogs. The project is undergoing continuous development with many more data sources and additional functionality planned for the near future.
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
NASA Astrophysics Data System (ADS)
Ozturk, Tugce; Rollett, Anthony D.
2018-02-01
The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.
Fluid Mechanical Properties of Silkworm Fibroin Solutions
NASA Astrophysics Data System (ADS)
Matsumoto, Akira
2005-11-01
The aqueous solution behavior of silk fibroin is of interest due to the assembly and processing of this protein related to the spinning of protein fibers that exhibit remarkable mechanical properties. To gain insight into the origins of this functional feature, it is desired to determine how the protein behaves under a range of solution conditions. Pure fibroin at different concentrations in water was studied for surface tension, as a measure of surfactancy. In addition, shear induced changes on these solutions in terms of structure and morphology was also determined. Fibroin solutions exhibited shear rate-sensitive viscosity changes and precipitated at a critical shear rate where a dramatic increase of 75-150% of the initial value was observed along with a decrease in viscosity. In surface tension measurements, critical micelle concentrations were in the range of 3-4% w/v. The influence of additional factors, such as sericin protein, divalent and monovalent cations, and pH on the solution behavior in relation to structural and morphological features will also be described.
NASA Astrophysics Data System (ADS)
Hughes, Anna; Boley, Aaron C.
2017-10-01
Kepler Object of Interest 425 (KOI 425) is an eclipsing binary with periodic features in addition to the known primary and secondary transits. This KOI has been observed by Saterne et al. 2012 with SOPHIE, who found its phase variance to be indicative of a diluted eclipsing binary, likely produced by a multi-star system. We analyze the complete set of Kepler archival data for this system along with the published SOPHIE results to assess the multiplicity and the dynamics of the system.
Splish-splash: Center of mass, stability, and a fun pool toy
NASA Astrophysics Data System (ADS)
Ashman, Seth
2018-03-01
Center of mass is a common topic in physics courses. It appears in relation to studies of stable and unstable equilibrium, momentum, and rotation. Science products suppliers frequently include gadgets that demonstrate the concepts of center of mass and stability, such as the classic balancing bird. Additionally, The Physics Teacher has featured articles studying the center of mass of a rotating baton, locating the center of mass of a hanging Slinky toy, and describing a wide range of interesting systems.
Cioc, Răzvan C; Estévez, Verónica; van der Niet, Daan J; Vande Velde, Christophe M L; Turrini, Nikolaus G; Hall, Mélanie; Faber, Kurt; Ruijter, Eelco; Orru, Romano V A
2017-03-03
We report the use of bifunctional starting materials (ketoacids) in a diastereoselective Passerini three-center-two-component reaction. Study of the reaction scope revealed the required structural features for stereoselectivity in the isocyanide addition. In this system, an interesting isomerization of the primary Passerini product - the α-carboxamido lactone - into an atypical product, an α-hydroxy imide, was found to occur under acidic conditions. Furthermore, enantioenriched Passerini products can be generated from an enantioenriched ketoacid obtained by chemoenzymatic synthesis.
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Markelin, L.; Nezami, S.; Suomalainen, J.; Honkavaara, E.
2018-04-01
Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure. Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10 % better results than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 40 % compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0 %) was obtained with multiview anisotropy corrected data set and the 3D features.
Woldegebriel, Michael; Derks, Eduard
2017-01-17
In this work, a novel probabilistic untargeted feature detection algorithm for liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) using artificial neural network (ANN) is presented. The feature detection process is approached as a pattern recognition problem, and thus, ANN was utilized as an efficient feature recognition tool. Unlike most existing feature detection algorithms, with this approach, any suspected chromatographic profile (i.e., shape of a peak) can easily be incorporated by training the network, avoiding the need to perform computationally expensive regression methods with specific mathematical models. In addition, with this method, we have shown that the high-resolution raw data can be fully utilized without applying any arbitrary thresholds or data reduction, therefore improving the sensitivity of the method for compound identification purposes. Furthermore, opposed to existing deterministic (binary) approaches, this method rather estimates the probability of a feature being present/absent at a given point of interest, thus giving chance for all data points to be propagated down the data analysis pipeline, weighed with their probability. The algorithm was tested with data sets generated from spiked samples in forensic and food safety context and has shown promising results by detecting features for all compounds in a computationally reasonable time.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2015-01-06
A system includes host and learning machines. Each machine has a processor in electrical communication with at least one sensor. Instructions for predicting a binary quality status of an item of interest during a repeatable process are recorded in memory. The binary quality status includes passing and failing binary classes. The learning machine receives signals from the at least one sensor and identifies candidate features. Features are extracted from the candidate features, each more predictive of the binary quality status. The extracted features are mapped to a dimensional space having a number of dimensions proportional to the number of extracted features. The dimensional space includes most of the passing class and excludes at least 90 percent of the failing class. Received signals are compared to the boundaries of the recorded dimensional space to predict, in real time, the binary quality status of a subsequent item of interest.
Nagel, Madeline G; Watts, Ashley L; Murphy, Brett A; Lilienfeld, Scott O
2018-06-21
General personality traits and interests, both vocational and avocational, have long been considered intertwined constructs. Nevertheless, the linkages between personality disorder features, such as psychopathy, and interests are poorly understood. This study bridges this gap by examining how psychopathic traits relate to vocational and avocational interests, and to what extent these associations are distinctive to psychopathy as opposed to a broader pattern of general and abnormal personality traits. In a sample of 426 community participants, Psychopathic Personality Inventory-Revised Fearless Dominance features of psychopathy were associated with interest in a broad swath of vocational and avocational interests, whereas Self-Centered Impulsivity features were associated with realistic, artistic, enterprising, and conventional interests; most zero-order associations were in the small to medium range. Coldheartedness and the factors derived from the Levenson Self-Report Psychopathy Scale were largely unrelated to interests, although there were several notable exceptions. Narcissistic traits, as well as HEXACO (Honesty-Humility, Emotionality, Extraversion, Agreeableness, Conscientiousness, and Openness) Honesty-Humility, Extraversion, and Openness to Experience, were also related broadly to interests. The patterns of interests associated with personality disorder traits may ultimately bear practical implications for interventions as individuals seek out positions or hobbies that suit their traits. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Overview and forensic investigation approaches of the gaming console Sony PlayStation Portable
NASA Astrophysics Data System (ADS)
Schön, Stephan; Schön, Ralph; Kröger, Knut; Creutzburg, Reiner
2013-03-01
This paper addresses the forensically interesting features of the Sony PlayStation Portable game console. The construction and the internal structure are analyzed precisely and interesting forensic features of the operating system and the file system are presented.
Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.
Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara
2017-10-01
The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.
Bayesian network interface for assisting radiology interpretation and education
NASA Astrophysics Data System (ADS)
Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa
2018-03-01
In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
3D Texture Features Mining for MRI Brain Tumor Identification
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra
2014-03-01
Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.
NASA Astrophysics Data System (ADS)
Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo
2017-04-01
Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.
Geographical topic learning for social images with a deep neural network
NASA Astrophysics Data System (ADS)
Feng, Jiangfan; Xu, Xin
2017-03-01
The use of geographical tagging in social-media images is becoming a part of image metadata and a great interest for geographical information science. It is well recognized that geographical topic learning is crucial for geographical annotation. Existing methods usually exploit geographical characteristics using image preprocessing, pixel-based classification, and feature recognition. How to effectively exploit the high-level semantic feature and underlying correlation among different types of contents is a crucial task for geographical topic learning. Deep learning (DL) has recently demonstrated robust capabilities for image tagging and has been introduced into geoscience. It extracts high-level features computed from a whole image component, where the cluttered background may dominate spatial features in the deep representation. Therefore, a method of spatial-attentional DL for geographical topic learning is provided and we can regard it as a special case of DL combined with various deep networks and tuning tricks. Results demonstrated that the method is discriminative for different types of geographical topic learning. In addition, it outperforms other sequential processing models in a tagging task for a geographical image dataset.
HST archive primer, version 4.1
NASA Technical Reports Server (NTRS)
Fruchter, A. (Editor); Baum, S. (Editor)
1994-01-01
This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Identifying significant environmental features using feature recognition.
DOT National Transportation Integrated Search
2015-10-01
The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, : including those r...
Groups of adjacent contour segments for object detection.
Ferrari, V; Fevrier, L; Jurie, F; Schmid, C
2008-01-01
We present a family of scale-invariant local shape features formed by chains of k connected, roughly straight contour segments (kAS), and their use for object class detection. kAS are able to cleanly encode pure fragments of an object boundary, without including nearby clutter. Moreover, they offer an attractive compromise between information content and repeatability, and encompass a wide variety of local shape structures. We also define a translation and scale invariant descriptor encoding the geometric configuration of the segments within a kAS, making kAS easy to reuse in other frameworks, for example as a replacement or addition to interest points. Software for detecting and describing kAS is released on lear.inrialpes.fr/software. We demonstrate the high performance of kAS within a simple but powerful sliding-window object detection scheme. Through extensive evaluations, involving eight diverse object classes and more than 1400 images, we 1) study the evolution of performance as the degree of feature complexity k varies and determine the best degree; 2) show that kAS substantially outperform interest points for detecting shape-based classes; 3) compare our object detector to the recent, state-of-the-art system by Dalal and Triggs [4].
Utilizing feedback in adaptive SAR ATR systems
NASA Astrophysics Data System (ADS)
Horsfield, Owen; Blacknell, David
2009-05-01
Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.
Park, Hyunjin; Yang, Jin-ju; Seo, Jongbum; Choi, Yu-yong; Lee, Kun-ho; Lee, Jong-min
2014-04-01
Cortical features derived from magnetic resonance imaging (MRI) provide important information to account for human intelligence. Cortical thickness, surface area, sulcal depth, and mean curvature were considered to explain human intelligence. One region of interest (ROI) of a cortical structure consisting of thousands of vertices contained thousands of measurements, and typically, one mean value (first order moment), was used to represent a chosen ROI, which led to a potentially significant loss of information. We proposed a technological improvement to account for human intelligence in which a second moment (variance) in addition to the mean value was adopted to represent a chosen ROI, so that the loss of information would be less severe. Two computed moments for the chosen ROIs were analyzed with partial least squares regression (PLSR). Cortical features for 78 adults were measured and analyzed in conjunction with the full-scale intelligence quotient (FSIQ). Our results showed that 45% of the variance of the FSIQ could be explained using the combination of four cortical features using two moments per chosen ROI. Our results showed improvement over using a mean value for each ROI, which explained 37% of the variance of FSIQ using the same set of cortical measurements. Our results suggest that using additional second order moments is potentially better than using mean values of chosen ROIs for regression analysis to account for human intelligence. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brainhack: a collaborative workshop for the open neuroscience community.
Cameron Craddock, R; S Margulies, Daniel; Bellec, Pierre; Nolan Nichols, B; Alcauter, Sarael; A Barrios, Fernando; Burnod, Yves; J Cannistraci, Christopher; Cohen-Adad, Julien; De Leener, Benjamin; Dery, Sebastien; Downar, Jonathan; Dunlop, Katharine; R Franco, Alexandre; Seligman Froehlich, Caroline; J Gerber, Andrew; S Ghosh, Satrajit; J Grabowski, Thomas; Hill, Sean; Sólon Heinsfeld, Anibal; Matthew Hutchison, R; Kundu, Prantik; R Laird, Angela; Liew, Sook-Lei; J Lurie, Daniel; G McLaren, Donald; Meneguzzi, Felipe; Mennes, Maarten; Mesmoudi, Salma; O'Connor, David; H Pasaye, Erick; Peltier, Scott; Poline, Jean-Baptiste; Prasad, Gautam; Fraga Pereira, Ramon; Quirion, Pierre-Olivier; Rokem, Ariel; S Saad, Ziad; Shi, Yonggang; C Strother, Stephen; Toro, Roberto; Q Uddin, Lucina; D Van Horn, John; W Van Meter, John; C Welsh, Robert; Xu, Ting
2016-01-01
Brainhack events offer a novel workshop format with participant-generated content that caters to the rapidly growing open neuroscience community. Including components from hackathons and unconferences, as well as parallel educational sessions, Brainhack fosters novel collaborations around the interests of its attendees. Here we provide an overview of its structure, past events, and example projects. Additionally, we outline current innovations such as regional events and post-conference publications. Through introducing Brainhack to the wider neuroscience community, we hope to provide a unique conference format that promotes the features of collaborative, open science.
Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.
2017-08-08
Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.
Phonon Effects on Charge Transport Through a Two State Molecule
NASA Astrophysics Data System (ADS)
Ulloa, Sergio E.; Yudiarsah, Efta
2008-03-01
We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).
A systematic review of the factors affecting choice of surgery as a career.
Peel, John K; Schlachta, Christopher M; Alkhamesi, Nawar A
2018-02-01
Interest in surgical careers among medical students has declined over the past decade. Multiple explanations have been offered for why top students are deterred or rejected from surgical programs, though no consensus has emerged. We conducted a review of the literature to better characterize what factors affect the pursuit of a surgical career. We searched PubMed and EMBASE and performed additional reference checks. Agency for Healthcare Research and Quality (AHRQ) and Newcastle-Ottawa Education scores were used to evaluate the included data. Our search identified 122 full-text, primary articles. Analysis of this evidence identified 3 core concepts that impact surgical career decision-making: gender, features of surgical education, and student "fit" in the culture of surgery. Real and perceived gender discrimination has deterred female medical students from entering surgical careers. In addition, limited exposure to surgery during medical school and differences between student and surgeon personality traits and values may deter students from entering surgical careers. We suggest that deliberate and visible effort to include women and early-career medical students in surgical settings may enhance their interest in carreers in surgery.
Family physicians' interests in special features of electronic publication
Torre, Dario M.; Wright, Scott M.; Wilson, Renee F.; Diener-West, Marie; Bass, Eric B.
2003-01-01
Objective: Because many of the medical journals read by family physicians now have an electronic version, the authors conducted a survey to determine the interest of family physicians in specific features of electronic journal publications. Setting and Participants: We surveyed 175 family physicians randomly selected from the American Academy of Family Physicians. Results: The response rate was 63%. About half of family physicians reported good to excellent computer proficiency, and about one quarter used online journals sometimes or often. Many respondents reported high interest in having links to: an electronic medical text (48% for original articles, 56% for review articles), articles' list of references (52% for original articles, 56% for review articles), and health-related Websites (48% for original and review articles). Conclusion: Primary care–oriented journals should consider the interests of family physicians when developing and offering electronic features for their readers. PMID:12883561
Jaspers, M E H; Stekelenburg, C M; Simons, J M; Brouwer, K M; Vlig, M; van den Kerckhove, E; Middelkoop, E; van Zuijlen, P P M
2017-08-01
In hypertrophic scar assessment, laser Doppler imaging (LDI), colorimetry and subjective assessment (POSAS) can be used to evaluate blood flow, erythema and redness, respectively. In addition, the microvasculature (i.e. presence of microvessels) can be determined by immunohistochemistry. These measurement techniques are frequently used in clinical practice and/or in research to evaluate treatment response and monitor scar development. However, until now it has not been tested to what extent the outcomes of these techniques are associated, whilst the outcome terms are frequently used interchangeably or replaced by the umbrella term 'vascularization'. This is confusing, as every technique seems to measure a specific feature. Therefore, we evaluated the correlations of the four measurement techniques. We included 32 consecutive patients, aged ≥18 years, who underwent elective resection of a hypertrophic scar. Pre-operatively, we performed LDI (measuring blood flow), colorimetry (measuring erythema) and the POSAS (subjective redness) within the predefined scar area of interest (∼1.5cm). Subsequently, the scar was excised and the area of interest was sent for immunohistochemistry, to determine the presence of microvessels. Only a statistically significant correlation was found between erythema values (colorimetry) and subjective redness assessment (POSAS) (r=0.403, p=0.030). We found no correlations between the outcomes of LDI, immunohistochemistry and colorimetry. Blood flow, the presence of microvessels and erythema appear to be different hypertrophic scar features because they show an absence of correlation. Therefore, in the field of scar assessment, these outcome terms cannot be used interchangeably. In addition, we conclude that the term 'vascularization' does not seem appropriate to serve as an umbrella term. The use of precise definitions in research as well as in clinical practice is recommended. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Current trends in the design of scaffolds for computer-aided tissue engineering.
Giannitelli, S M; Accoto, D; Trombetta, M; Rainer, A
2014-02-01
Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A survey of hybrid Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Saeed, Adnan S.; Younes, Ahmad Bani; Cai, Chenxiao; Cai, Guowei
2018-04-01
This article presents a comprehensive overview on the recent advances of miniature hybrid Unmanned Aerial Vehicles (UAVs). For now, two conventional types, i.e., fixed-wing UAV and Vertical Takeoff and Landing (VTOL) UAV, dominate the miniature UAVs. Each type has its own inherent limitations on flexibility, payload, flight range, cruising speed, takeoff and landing requirements and endurance. Enhanced popularity and interest are recently gained by the newer type, named hybrid UAV, that integrates the beneficial features of both conventional ones. In this survey paper, a systematic categorization method for the hybrid UAV's platform designs is introduced, first presenting the technical features and representative examples. Next, the hybrid UAV's flight dynamics model and flight control strategies are explained addressing several representative modeling and control work. In addition, key observations, existing challenges and conclusive remarks based on the conducted review are discussed accordingly.
Vortex line topology during vortex tube reconnection
NASA Astrophysics Data System (ADS)
McGavin, P.; Pontin, D. I.
2018-05-01
This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.
Monocular Vision-Based Underwater Object Detection
Zhang, Zhen; Dai, Fengzhao; Bu, Yang; Wang, Huibin
2017-01-01
In this paper, we propose an underwater object detection method using monocular vision sensors. In addition to commonly used visual features such as color and intensity, we investigate the potential of underwater object detection using light transmission information. The global contrast of various features is used to initially identify the region of interest (ROI), which is then filtered by the image segmentation method, producing the final underwater object detection results. We test the performance of our method with diverse underwater datasets. Samples of the datasets are acquired by a monocular camera with different qualities (such as resolution and focal length) and setups (viewing distance, viewing angle, and optical environment). It is demonstrated that our ROI detection method is necessary and can largely remove the background noise and significantly increase the accuracy of our underwater object detection method. PMID:28771194
Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications
Mo, Liuting; Lu, Chun-Hua; Fu, Ting
2016-01-01
Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955
Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations
NASA Astrophysics Data System (ADS)
Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian
2018-04-01
Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.
Interesting features of transmission across locally periodic delta potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharani, M., E-mail: m-dharani@blr.amrita.edu, E-mail: mdharu@yahoo.co.in; Shastry, C. S.
2016-05-23
We study the theory of transmission of electrons through N delta potential barriers as well as wells. Some of the interesting features like the correlation between resonance peak positions and box states, number of peaks in transmission band and bound states are analyzed for locally periodic attractive, repulsive and pair of attractive and repulsive potentials.
A DFT-Based Method of Feature Extraction for Palmprint Recognition
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Karungaru, Stephen G.; Tsuge, Satoru; Fukumi, Minoru
Over the last quarter century, research in biometric systems has developed at a breathtaking pace and what started with the focus on the fingerprint has now expanded to include face, voice, iris, and behavioral characteristics such as gait. Palmprint is one of the most recent additions, and is currently the subject of great research interest due to its inherent uniqueness, stability, user-friendliness and ease of acquisition. This paper describes an effective and procedurally simple method of palmprint feature extraction specifically for palmprint recognition, although verification experiments are also conducted. This method takes advantage of the correspondences that exist between prominent palmprint features or objects in the spatial domain with those in the frequency or Fourier domain. Multi-dimensional feature vectors are formed by extracting a GA-optimized set of points from the 2-D Fourier spectrum of the palmprint images. The feature vectors are then used for palmprint recognition, before and after dimensionality reduction via the Karhunen-Loeve Transform (KLT). Experiments performed using palmprint images from the ‘PolyU Palmprint Database’ indicate that using a compact set of DFT coefficients, combined with KLT and data preprocessing, produces a recognition accuracy of more than 98% and can provide a fast and effective technique for personal identification.
Li, Yang; Cui, Weigang; Luo, Meilin; Li, Ke; Wang, Lina
2018-01-25
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
NASA Astrophysics Data System (ADS)
Karimova, Svetlana; Alvera-Azcarate, Aida
2017-04-01
Despite great efforts being paid to studying circulation of the Western Mediterranean Basin and the factors triggering bioproductivity of its marine ecosystem, the evidence provided by satellite imagery has not been fully analysed yet. In the present paper, we concentrate our attention on mesoscale and submesoscale circulation features of the Liguro-Provençal Basin captured by satellite radiometer, spectroradiometer, and radar images. Using such a dataset makes it possible to observe the circulation features from a wide spatial range, from the basin scale through mesoscale to the scales of a few kilometers. Mesoscale features in this study are being mostly observed with thermal infrared imagery retrieved by AVHRR and AATSR sensors. Special attention in the work was paid to an analysis of the data coming from a geostationary satellite, namely ones provided by SEVIRI. Due to their uniquely high temporal resolution, such imagery allows observing circulation features in their evolution. During the winter blooming events, surface circulation at meso- to submesoscales in the region of interest was additionally highlighted by images obtained in the visible range. Full spatial resolution images provided by Envisat MERIS, Sentinel-2 MSI, and Landsat TM/ETM+/OLI made the greatest contribution to this part. The smallest scales (namely submesoscale) are being observed with synthetic aperture radar (SAR) imagery provided by Envisat ASAR and Sentinel-1 SAR. During an analysis of SAR images, it was noted that there was strikingly great amount of biogenic surfactants on the water surface in the region of interest. Apparently, low biological productivity typical for the Western Mediterranean ecosystem is not a limiting factor for the formation of surfactant films seen in SAR imagery. This finding though requires further consideration in some other researches, and hereafter we just benefited from the presence of surfactants, because they behave as good tracers of surface currents. Even though the region of interest belongs to the areas with low mean eddy kinetic energy, analysis of the images listed above revealed that the Liguro-Provençal Basin was showing a surprisingly high eddy activity among submesoscale and mesoscale features. However, the typical size of eddies in this area was smaller than that in the southern part of the Western Mediterranean. The general impression retrieved from the observations performed is that the main contributors to generation of observed mesoscale vortical structures are (i) the instability of the main currents in the region of interest and especially frontal instability at the Liguro-Provençal front and (ii) instabilities caused by the coastline inhomogeneity, especially in the eastern part of the Basin. Submesoscale eddy activity seems to be developed to its full extent during the periods when the mesoscale activity in the region of interest is not so prominent. This study is supported by the University of Liege and the EU in the context of the FP7-PEOPLE-COFUND-BeIPD project. Satellite imagery is provided by the European Space Agency.
Incorporating Feature-Based Annotations into Automatically Generated Knowledge Representations
NASA Astrophysics Data System (ADS)
Lumb, L. I.; Lederman, J. I.; Aldridge, K. D.
2006-12-01
Earth Science Markup Language (ESML) is efficient and effective in representing scientific data in an XML- based formalism. However, features of the data being represented are not accounted for in ESML. Such features might derive from events (e.g., a gap in data collection due to instrument servicing), identifications (e.g., a scientifically interesting area/volume in an image), or some other source. In order to account for features in an ESML context, we consider them from the perspective of annotation, i.e., the addition of information to existing documents without changing the originals. Although it is possible to extend ESML to incorporate feature-based annotations internally (e.g., by extending the XML schema for ESML), there are a number of complicating factors that we identify. Rather than pursuing the ESML-extension approach, we focus on an external representation for feature-based annotations via XML Pointer Language (XPointer). In previous work (Lumb &Aldridge, HPCS 2006, IEEE, doi:10.1109/HPCS.2006.26), we have shown that it is possible to extract relationships from ESML-based representations, and capture the results in the Resource Description Format (RDF). Thus we explore and report on this same requirement for XPointer-based annotations of ESML representations. As in our past efforts, the Global Geodynamics Project (GGP) allows us to illustrate with a real-world example this approach for introducing annotations into automatically generated knowledge representations.
The Centre for Speech, Language and the Brain (CSLB) concept property norms.
Devereux, Barry J; Tyler, Lorraine K; Geertzen, Jeroen; Randall, Billi
2014-12-01
Theories of the representation and processing of concepts have been greatly enhanced by models based on information available in semantic property norms. This information relates both to the identity of the features produced in the norms and to their statistical properties. In this article, we introduce a new and large set of property norms that are designed to be a more flexible tool to meet the demands of many different disciplines interested in conceptual knowledge representation, from cognitive psychology to computational linguistics. As well as providing all features listed by 2 or more participants, we also show the considerable linguistic variation that underlies each normalized feature label and the number of participants who generated each variant. Our norms are highly comparable with the largest extant set (McRae, Cree, Seidenberg, & McNorgan, 2005) in terms of the number and distribution of features. In addition, we show how the norms give rise to a coherent category structure. We provide these norms in the hope that the greater detail available in the Centre for Speech, Language and the Brain norms should further promote the development of models of conceptual knowledge. The norms can be downloaded at www.csl.psychol.cam.ac.uk/propertynorms.
Viger, R.J.
2008-01-01
The GIS Weasel is a freely available, open-source software package built on top of ArcInfo Workstation?? [ESRI, Inc., 2001, ArcInfo Workstation (8.1 ed.), Redlands, CA] for creating maps and parameters of geographic features used in environmental simulation models. The software has been designed to minimize the need for GIS expertise and automate the preparation of the geographic information as much as possible. Although many kinds of data can be exploited with the GIS Weasel, the only information required is a raster dataset of elevation for the user's area of interest (AOI). The user-defined AOI serves as a starting point from which to create maps of many different types of geographic features, including sub-watersheds, streams, elevation bands, land cover patches, land parcels, or anything else that can be discerned from the available data. The GIS Weasel has a library of over 200 routines that can be applied to any raster map of geographic features to generate information about shape, area, or topological association with other features of the same or different maps. In addition, a wide variety of parameters can be derived using ancillary data layers such as soil and vegetation maps.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian; Davis, Alicia; Chestek, Cynthia A; Gates, Deanna H
2015-06-13
Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis. An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants' interest in each technique. Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques - 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation. The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.
Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel
2013-12-01
In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.
NASA Astrophysics Data System (ADS)
Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.
2016-12-01
The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.
Advances in systems biology: computational algorithms and applications.
Huang, Yufei; Zhao, Zhongming; Xu, Hua; Shyr, Yu; Zhang, Bing
2012-01-01
The 2012 International Conference on Intelligent Biology and Medicine (ICIBM 2012) was held on April 22-24, 2012 in Nashville, Tennessee, USA. The conference featured six technical sessions, one tutorial session, one workshop, and 3 keynote presentations that covered state-of-the-art research activities in genomics, systems biology, and intelligent computing. In addition to a major emphasis on the next generation sequencing (NGS)-driven informatics, ICIBM 2012 aligned significant interests in systems biology and its applications in medicine. We highlight in this editorial the selected papers from the meeting that address the developments of novel algorithms and applications in systems biology.
Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.
2012-01-01
Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162
Markey, Charlotte N; Markey, Patrick M
2010-03-01
Two studies are presented that examine the influence of media messages about cosmetic surgery on youths' interest in altering their own physical appearance. In Study 1, 170 participants (59% female; M age=19.77 years) completed surveys assessing their impression of reality television shows featuring cosmetic surgery, appearance satisfaction, self-esteem, and their interest in cosmetic surgery. Results indicated that participants who reported favorable impressions of reality television shows featuring cosmetic surgery were more likely to indicate interest in pursuing surgery. One hundred and eighty-nine participants (51% female; M age=19.84 years) completed Study 2. Approximately half of the participants were exposed to a television message featuring a surgical make-over; the other half was exposed to a neutral message. Results indicated that participants who watched a television program about cosmetic surgery wanted to alter their own appearance using cosmetic surgery more than did participants who were not exposed to this program. Copyright 2009 Elsevier Ltd. All rights reserved.
What's New on MedlinePlus: Announcements and Special Features
... this page: https://medlineplus.gov/whatsnew.html What's New on MedlinePlus: Announcements and Special Features To use ... features on this page, please enable JavaScript. "What's New" Page Retirement Thank you for your interest in ...
Soh, Jung; Gordon, Paul MK; Taschuk, Morgan L; Dong, Anguo; Ah-Seng, Andrew C; Turinsky, Andrei L; Sensen, Christoph W
2008-01-01
Background The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses. Results Bluejay 1.0 is a genome viewer integrating genome annotation with: (i) gene expression information; and (ii) comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i) numerous display customization features; (ii) the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii) the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding. Conclusion Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes. PMID:18940007
Measuring and modeling salience with the theory of visual attention.
Krüger, Alexander; Tünnermann, Jan; Scharlau, Ingrid
2017-08-01
For almost three decades, the theory of visual attention (TVA) has been successful in mathematically describing and explaining a wide variety of phenomena in visual selection and recognition with high quantitative precision. Interestingly, the influence of feature contrast on attention has been included in TVA only recently, although it has been extensively studied outside the TVA framework. The present approach further develops this extension of TVA's scope by measuring and modeling salience. An empirical measure of salience is achieved by linking different (orientation and luminance) contrasts to a TVA parameter. In the modeling part, the function relating feature contrasts to salience is described mathematically and tested against alternatives by Bayesian model comparison. This model comparison reveals that the power function is an appropriate model of salience growth in the dimensions of orientation and luminance contrast. Furthermore, if contrasts from the two dimensions are combined, salience adds up additively.
Structures composing protein domains.
Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří
2013-08-01
This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2009-01-01
Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution.
Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles
NASA Astrophysics Data System (ADS)
He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato
2014-06-01
There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.
1980-11-12
Range : 660,000 kilometers (400,000 miles) Time : 5:05 am PST This Voyager 1 picture of Mimas shows a large impact structure at 110 degrees W Long., located on that face of the moon which leads Mimas in its orbit. The feature, about 130 kilometers in diameter (80 miles), is more than 1/4 the diameter of the entire moon. This is a particularly interesting feature in view of its large diameter compared with the size of the satellite, and may have the largest crater diameter/satillite diameter ratio in the solar system. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15-45 kilometers in diameter, can be seen scattered across the surface, particularly alon the terminator. Mimas is one of the smaller Saturnian satellites with a low density implying its chief component is ice.
Clinical features and genetic diagnosis of hereditary spinocerebellar ataxia 3.
Wang, Yaoguang; Yang, Xiaokai; Ma, Weide; Li, Jinxin; Zhang, Qingyuan; Xia, Shuqi; Wang, Hai; Zhang, Chenghui; Xu, Xiaomin; Zheng, Jiayong
2016-10-01
Spinocerebellar ataxia type 3 (SCA3) is a rare inherited autosomal dominant progressive neurological disorder, which results from a CAG‑repeat expansion in the gene encoding the deubiquitinating enzyme, ataxin‑3. At present, no effective treatment is available for this fatal disorder; however, certain studies have suggested that reducing the levels of mutant ataxin‑3 protein may reverse or halt the progression of disease in patients with SCA3. In the present study, clinical examinations were performed on a patient with SCA3 who exhibited disease features including coughing, expectoration and was bedridden with mobility limitation. CAG repetitions at SCA‑associated genes were detected in the patient's family by performing standard polymerase chain reaction (PCR) and triple‑repeat primed PCR. The numbers of CAG‑repeats within the two alleles of the gene of interest in the patient were 15 and 78. Notably, the patient's brother, who harbored 76 CAG‑repeats in one allele of the gene of interest, did not exhibit severe disease symptoms. These results suggest that the number of CAG‑repeats is a critical for determination of SCA3 disease severity and time of onset. In addition, the defined phenotypic characteristics of the patient in the present study provide useful insight for more accurate clinical diagnosis and genotyping of future patients.
Pectin-modifying enzymes and pectin-derived materials: applications and impacts.
Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine
2014-01-01
Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.
Crane, Genevieve M; Gardner, Jerad M
2016-08-01
There is a rising interest in the use of social media by pathologists. However, the use of pathology images on social media has been debated, particularly gross examination, autopsy, and dermatologic condition photographs. The immediacy of the interactions, increased interest from patients and patient groups, and fewer barriers to public discussion raise additional considerations to ensure patient privacy is protected. Yet these very features all add to the power of social media for educating other physicians and the nonmedical public about disease and for creating better understanding of the important role of pathologists in patient care. The professional and societal benefits are overwhelmingly positive, and we believe the potential for harm is minimal provided common sense and routine patient privacy principles are utilized. We lay out ethical and practical guidelines for pathologists who use social media professionally. © 2016 American Medical Association. All Rights Reserved.
Ma, Ruru; Xu, Dongdong; Yang, Yun; Su, Xin; Lei, Binghua; Yang, Zhihua; Pan, Shilie
2017-11-07
Two new isostructural rare-earth oxyborates ScMO(BO 3 ) (M = Ca and Cd) with a three-dimensional (3D) cationic framework and parallel arranged [BO 3 ] triangles have been synthesized by the flux method. In the 3D cationic framework, an interesting sandwich-like basic building unit (BBU) is constructed by two [Ca(1)O 4 ] 6- chains and two [Sc(1)O 4 ] 5- chains. ScMO(BO 3 ) melt incongruently, which shows that title compounds can be grown by the flux method. The UV cut-off edges for ScCaO(BO 3 ) and ScCdO(BO 3 ) are 230 and 249 nm, respectively. In addition, the first-principles calculations are performed to gain further insights into the relationship between the microscopic electronic structures and associated optical properties.
Caywood, Matthew S.; Roberts, Daniel M.; Colombe, Jeffrey B.; Greenwald, Hal S.; Weiland, Monica Z.
2017-01-01
There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model’s predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy. PMID:28123359
What Do We Learn from Binding Features? Evidence for Multilevel Feature Integration
ERIC Educational Resources Information Center
Colzato, Lorenza S.; Raffone, Antonino; Hommel, Bernhard
2006-01-01
Four experiments were conducted to investigate the relationship between the binding of visual features (as measured by their after-effects on subsequent binding) and the learning of feature-conjunction probabilities. Both binding and learning effects were obtained, but they did not interact. Interestingly, (shape-color) binding effects…
An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Peck, R. E.; Schmidt, D. K.
1993-01-01
The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.
Emerman, Amy B; Bowman, Sarah K; Barry, Andrew; Henig, Noa; Patel, Kruti M; Gardner, Andrew F; Hendrickson, Cynthia L
2017-07-05
Next-generation sequencing (NGS) is a powerful tool for genomic studies, translational research, and clinical diagnostics that enables the detection of single nucleotide polymorphisms, insertions and deletions, copy number variations, and other genetic variations. Target enrichment technologies improve the efficiency of NGS by only sequencing regions of interest, which reduces sequencing costs while increasing coverage of the selected targets. Here we present NEBNext Direct ® , a hybridization-based, target-enrichment approach that addresses many of the shortcomings of traditional target-enrichment methods. This approach features a simple, 7-hr workflow that uses enzymatic removal of off-target sequences to achieve a high specificity for regions of interest. Additionally, unique molecular identifiers are incorporated for the identification and filtering of PCR duplicates. The same protocol can be used across a wide range of input amounts, input types, and panel sizes, enabling NEBNext Direct to be broadly applicable across a wide variety of research and diagnostic needs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
1999-05-01
The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad in the Chemistry Curriculum, and WWW Site Review. These columns differ from the print feature columns in that they use the Internet as the publication medium. Doing so allows these features to include continually updated information, digital components, and links to other online resources. The Conceptual Questions and Challenge Problems feature of JCE Internet serves as a good example for the kinds of resources that you can expect to find in an online feature column. Like other columns it contains a mission statement that defines the role of the column. It includes a digital library of continually updated examples of conceptual questions and challenge problems. (As I write this we have just added several new questions to the library.) It also includes a list of links to related online resources, information for authors about how to write questions and problems, and information for teachers about how to use conceptual questions and challenge problems.
Teaching with Technology home page at JCE Online. One-Stop Feature Shop The updated Feature area of JCE Online offers information about all JCE feature columns in one place. It gives you a quick and convenient way to access a group of articles in a particular subject area. It provides authors and readers with a good definition of the column and its mission. It complements the print feature columns with online resources. It provides up-to-date bibliographies for selected areas of interest. And last, but not least, it provides that email address you can use to send that message of appreciation to the feature editor for his or her contribution to JCE and the chemical education community.
NASA Technical Reports Server (NTRS)
Zhang, Yuhan; Lu, Dr. Thomas
2010-01-01
The objectives of this project were to develop a ROI (Region of Interest) detector using Haar-like feature similar to the face detection in Intel's OpenCV library, implement it in Matlab code, and test the performance of the new ROI detector against the existing ROI detector that uses Optimal Trade-off Maximum Average Correlation Height filter (OTMACH). The ROI detector included 3 parts: 1, Automated Haar-like feature selection in finding a small set of the most relevant Haar-like features for detecting ROIs that contained a target. 2, Having the small set of Haar-like features from the last step, a neural network needed to be trained to recognize ROIs with targets by taking the Haar-like features as inputs. 3, using the trained neural network from the last step, a filtering method needed to be developed to process the neural network responses into a small set of regions of interests. This needed to be coded in Matlab. All the 3 parts needed to be coded in Matlab. The parameters in the detector needed to be trained by machine learning and tested with specific datasets. Since OpenCV library and Haar-like feature were not available in Matlab, the Haar-like feature calculation needed to be implemented in Matlab. The codes for Adaptive Boosting and max/min filters in Matlab could to be found from the Internet but needed to be integrated to serve the purpose of this project. The performance of the new detector was tested by comparing the accuracy and the speed of the new detector against the existing OTMACH detector. The speed was referred as the average speed to find the regions of interests in an image. The accuracy was measured by the number of false positives (false alarms) at the same detection rate between the two detectors.
Effect of Heterogeneous Interest Similarity on the Spread of Information in Mobile Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Narisa; Sui, Guoqin; Yang, Fan
2018-06-01
Mobile social networks (MSNs) are important platforms for spreading news. The fact that individuals usually forward information aligned with their own interests inevitably changes the dynamics of information spread. Thereby, first we present a theoretical model based on the discrete Markov chain and mean field theory to evaluate the effect of interest similarity on the information spread in MSNs. Meanwhile, individuals' interests are heterogeneous and vary with time. These two features result in interest shift behavior, and both features are considered in our model. A leveraging simulation demonstrates the accuracy of our model. Moreover, the basic reproduction number R0 is determined. Further extensive numerical analyses based on the model indicate that interest similarity has a critical impact on information spread at the early spreading stage. Specifically, the information always spreads more quickly and widely if the interest similarity between an individual and the information is higher. Finally, five actual data sets from Sina Weibo illustrate the validity of the model.
Effect of sugar additives on stability of human serum albumin during vacuum foam drying and storage.
Hajare, A A; More, H N; Pisal, S S
2011-11-01
No literature on the protein stabilization of human serum albumin (HSA) by vacuum foam drying (VFD) has been reported. The purpose of this study was to investigate the effect of sugar-additive systems on the stability of HSA by VFD. For the assessment, HSA was formulated with sucrose and mannitol, respectively, alone or in combination with stabilizers, which were vacuum foam dried and stored at 25C. Protein content of the resulting dried formulations was analyzed by Lowry method. Fourier-transform infrared spectroscopy (FT-IR) analysis of the HSA secondary structure showed apparent protein structure-stabilizing effects of the amorphous sugar and phosphate combination during the VFD. In particular, sucrose-sodium phosphate monobasic mixture provide an interesting alternative to pure saccharide formulations due to their high glass transition temperatures and their increased ability to maintain a low melting transition temperature in the presence of small amounts of water. Inhibition of the sucrose crystallization in solutions under vacuum resulted in highly amorphous sucrose. Changes in the endothermic melting transition suggested reduced sucrose molecular mobility with increase in the sodium phosphate ratio. The addition of phosphate salts to sugar systems has several interesting features that merit its consideration in formulations to protect dehydrated labile biomaterials. In conclusion, our data suggest that sucrose and phosphate as additives seem to protect HSA during VFD better than lyophilized products and also maintain its stability in the VFD state during storage.
Boschi, Aurélie; Planche, Pascale; Hemimou, Cherhazad; Demily, Caroline; Vaivre-Douret, Laurence
2016-01-01
Background: An increasing number of clinicians point to similar clinical features between some children with High Intellectual Potential (HIP or "Giftedness" = Total IQ > 2 SD ), and children with Autism Spectrum Disorder (ASD) without intellectual or language delay, formerly diagnosed with Asperger Syndrome. Some of these common features are social interaction impairments, special interests, and in some cases high-verbal abilities. The aim of this article is to determine whether these similarities exist at more fundamental levels, other than clinical, and to explore the literature in order to provide empirical support for an overlap between ASD and HIP. Method: First, comparative studies between ASD and HIP children were sought. Because of a lack of data, the respective characteristics of ASD and HIP subjects were explored by a cross-sectional review of different areas of research. Emphasis was placed on psychometric and cognitive evaluations, experimental and developmental assessments, and neurobiological research, following a "bottom-up" procedure. Results: This review highlights the existence of similarities in the neurocognitive, developmental and neurobiological domains between these profiles, which require further study. In addition, the conclusions of several studies show that there are differences between HIP children with a homogeneous Intellectual Quotient profile and children with a heterogeneous Intellectual Quotient profile. Conclusion: HIP seems to cover different developmental profiles, one of which might share features with ASD. A new line of investigation providing a possible starting-point for future research is proposed. Its implications, interesting from both clinical and research perspectives, are discussed.
Boschi, Aurélie; Planche, Pascale; Hemimou, Cherhazad; Demily, Caroline; Vaivre-Douret, Laurence
2016-01-01
Background: An increasing number of clinicians point to similar clinical features between some children with High Intellectual Potential (HIP or “Giftedness” = Total IQ > 2 SD), and children with Autism Spectrum Disorder (ASD) without intellectual or language delay, formerly diagnosed with Asperger Syndrome. Some of these common features are social interaction impairments, special interests, and in some cases high-verbal abilities. The aim of this article is to determine whether these similarities exist at more fundamental levels, other than clinical, and to explore the literature in order to provide empirical support for an overlap between ASD and HIP. Method: First, comparative studies between ASD and HIP children were sought. Because of a lack of data, the respective characteristics of ASD and HIP subjects were explored by a cross-sectional review of different areas of research. Emphasis was placed on psychometric and cognitive evaluations, experimental and developmental assessments, and neurobiological research, following a “bottom-up” procedure. Results: This review highlights the existence of similarities in the neurocognitive, developmental and neurobiological domains between these profiles, which require further study. In addition, the conclusions of several studies show that there are differences between HIP children with a homogeneous Intellectual Quotient profile and children with a heterogeneous Intellectual Quotient profile. Conclusion: HIP seems to cover different developmental profiles, one of which might share features with ASD. A new line of investigation providing a possible starting-point for future research is proposed. Its implications, interesting from both clinical and research perspectives, are discussed. PMID:27812341
Factors in life science textbooks that may deter girls' interest in science
NASA Astrophysics Data System (ADS)
Potter, Ellen F.; Rosser, Sue V.
In order to examine factors that may deter girls' interest in science, five seventh-grade life science textbooks were analyzed for sexism in language, images, and curricular content, and for features of activities that have been found to be useful for motivating girls. Although overt sexism was not apparent, subtle forms of sexism in the selection of language, images, and curricular content were found. Activities had some features useful to girls, but other features were seldom included. Teachers may wish to use differences that were found among texts as one basis for text selection.
Schubert, Gerrit Alexander; Czabanka, Marcus; Seiz, Marcel; Horn, Peter; Vajkoczy, Peter; Thomé, Claudius
2014-01-01
Moyamoya disease (MMD) is characterized by unique angiographic features of collateralization. However, a detailed quantification as well as comparative analysis with cerebrovascular atherosclerotic disease (CAD) and healthy controls have not been performed to date. We reviewed 67 patients with MMD undergoing Xenon-enhanced computed tomography, as well as 108 patients with CAD and 5 controls. In addition to cortical, central, and infratentorial regions of interest, particular emphasis was put on regions that are typically involved in MMD (pericallosal territory, basal ganglia). Cerebral blood flow (CBF), cerebrovascular reserve capacity (CVRC), and hemodynamic stress distribution were calculated. MMD is characterized by a significant, ubiquitous decrease in CVRC and a cortical but not pericallosal decrease in CBF when compared with controls. Baseline perfusion is maintained within the basal ganglia, and hemodynamic stress distribution confirmed a relative preservation of central regions of interest in MMD, indicative for its characteristic proximal collateralization pattern. In MMD and CAD, cortical and central CBF decreased significantly with age, whereas CVRC and hemodynamic stress distribution are relatively unaffected by age. No difference in CVRC of comparable regions of interest was seen between MMD and CAD, but stress distribution was significantly higher in MMD, illustrating the functionality of the characteristic rete mirabilis. Our data provide quantitative support for a territory-specific perfusion pattern that is unique for MMD, including central preservation of CBF compared with controls and patients with CAD. This correlates well with its characteristic feature of proximal collateralization. CVRC and hemodynamic stress distribution seem to be more robust parameters than CBF alone for assessment of disease severity.
User-Independent Motion State Recognition Using Smartphone Sensors
Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga
2015-01-01
The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users’ data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people’s motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human’s motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy. PMID:26690163
User-Independent Motion State Recognition Using Smartphone Sensors.
Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga
2015-12-04
The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users' data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people's motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human's motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.
A systematic review of the factors affecting choice of surgery as a career
Peel, John K.; Schlachta, Christopher M.; Alkhamesi, Nawar A.
2018-01-01
Background Interest in surgical careers among medical students has declined over the past decade. Multiple explanations have been offered for why top students are deterred or rejected from surgical programs, though no consensus has emerged. Methods We conducted a review of the literature to better characterize what factors affect the pursuit of a surgical career. We searched PubMed and EMBASE and performed additional reference checks. Agency for Healthcare Research and Quality (AHRQ) and Newcastle–Ottawa Education scores were used to evaluate the included data. Results Our search identified 122 full-text, primary articles. Analysis of this evidence identified 3 core concepts that impact surgical career decision-making: gender, features of surgical education, and student “fit” in the culture of surgery. Conclusion Real and perceived gender discrimination has deterred female medical students from entering surgical careers. In addition, limited exposure to surgery during medical school and differences between student and surgeon personality traits and values may deter students from entering surgical careers. We suggest that deliberate and visible effort to include women and early-career medical students in surgical settings may enhance their interest in carreers in surgery. PMID:29368678
ERIC Educational Resources Information Center
Durik, Amanda M.; Harackiewicz, Judith M.
2007-01-01
Individual interest was examined as a moderator of effects of situational factors designed to catch and hold task interest. In Study 1, 96 college students learned a math technique with materials enhanced with collative features (catch) versus not. Catch promoted motivation among participants with low individual interest in math (IIM) but hampered…
Shender, Victoria O; Pavlyukov, Marat S; Ziganshin, Rustam H; Arapidi, Georgij P; Kovalchuk, Sergey I; Anikanov, Nikolay A; Altukhov, Ilya A; Alexeev, Dmitry G; Butenko, Ivan O; Shavarda, Alexey L; Khomyakova, Elena B; Evtushenko, Evgeniy; Ashrafyan, Lev A; Antonova, Irina B; Kuznetcov, Igor N; Gorbachev, Alexey Yu; Shakhparonov, Mikhail I; Govorun, Vadim M
2014-12-01
Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Urschler, Martin; Grassegger, Sabine; Štern, Darko
2015-01-01
Age estimation of individuals is important in human biology and has various medical and forensic applications. Recent interest in MR-based methods aims to investigate alternatives for established methods involving ionising radiation. Automatic, software-based methods additionally promise improved estimation objectivity. To investigate how informative automatically selected image features are regarding their ability to discriminate age, by exploring a recently proposed software-based age estimation method for MR images of the left hand and wrist. One hundred and two MR datasets of left hand images are used to evaluate age estimation performance, consisting of bone and epiphyseal gap volume localisation, computation of one age regression model per bone mapping image features to age and fusion of individual bone age predictions to a final age estimate. Quantitative results of the software-based method show an age estimation performance with a mean absolute difference of 0.85 years (SD = 0.58 years) to chronological age, as determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature selection works and which image features of skeletal maturation are automatically chosen to model the non-linear regression function. Feasibility of automatic age estimation based on MRI data is shown and selected image features are found to be informative for describing anatomical changes during physical maturation in male adolescents.
Nelson, David A; Coyne, Sarah M; Swanson, Savannah M; Hart, Craig H; Olsen, Joseph A
2014-08-01
Crick, Murray-Close, and Woods (2005) encouraged the study of relational aggression as a developmental precursor to borderline personality features in children and adolescents. A longitudinal study is needed to more fully explore this association, to contrast potential associations with physical aggression, and to assess generalizability across various cultural contexts. In addition, parenting is of particular interest in the prediction of aggression or borderline personality disorder. Early aggression and parenting experiences may differ in their long-term prediction of aggression or borderline features, which may have important implications for early intervention. The currrent study incorporated a longitudinal sample of preschool children (84 boys, 84 girls) living in intact, two-parent biological households in Voronezh, Russia. Teachers provided ratings of children's relational and physical aggression in preschool. Mothers and fathers also self-reported their engagement in authoritative, authoritarian, permissive, and psychological controlling forms of parenting with their preschooler. A decade later, 70.8% of the original child participants consented to a follow-up study in which they completed self-reports of relational and physical aggression and borderline personality features. The multivariate results of this study showed that preschool relational aggression in girls predicted adolescent relational aggression. Preschool aversive parenting (i.e., authoritarian, permissive, and psychologically controlling forms) significantly predicted aggression and borderline features in adolescent females. For adolescent males, preschool authoritative parenting served as a protective factor against aggression and borderline features, whereas authoritarian parenting was a risk factor for later aggression.
Arnould, Annabelle; Rochat, Lucien; Azouvi, Philippe; van der Linden, Martial
2018-01-09
Apathy is a core feature in patients with traumatic brain injury (TBI). The psychological processes underlying apathy are still unclear, and the few studies conducted on this subject have essentially focused on cognitive processes and informant reports of apathetic manifestations. The aims of the present study were to examine self-reports versus informant reports of diminished initiative/interest, as well as their relationship with different cognitive factors (attention/executive mechanisms, episodic memory, and multitasking) and personal identity factors (self-esteem and self-efficacy beliefs). To this end, 74 participants (38 patients with severe TBI matched with 36 control participants) were given three questionnaires to assess self-esteem, general self-efficacy beliefs, and anxio-depressive symptoms and five tasks to assess cognitive processes, including real-life multitasking. In addition, a questionnaire that assessed self-awareness of functional competencies and a questionnaire that assessed lack of initiative/interest were administered to each participant and their relatives. The main results showed that patients demonstrated an awareness of their lack of initiative/interest and that self-reported lack of initiative/interest was best predicted by low general self-efficacy beliefs and self-esteem, whereas informant-reported lack of initiative/interest was predicted by episodic memory difficulties. These results shed new light on the psychological processes related to apathetic manifestations, as well as the differing perspectives and lived experiences of patients and external observers in the TBI population, which opens interesting prospects for psychological interventions.
Integration of real time kinematic satellite navigation with ground-penetrating radar surveys
USDA-ARS?s Scientific Manuscript database
Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...
Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin
2016-01-01
Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging. PMID:27763555
Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin
2016-10-18
Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging.
Echegaray, Sebastian; Nair, Viswam; Kadoch, Michael; Leung, Ann; Rubin, Daniel; Gevaert, Olivier; Napel, Sandy
2016-12-01
Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.
Kumar, B V S Suneel; Kotla, Rohith; Buddiga, Revanth; Roy, Jyoti; Singh, Sardar Shamshair; Gundla, Rambabu; Ravikumar, Muttineni; Sarma, Jagarlapudi A R P
2011-01-01
Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r²) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r² of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149)and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM)and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.
Chemical vapor deposition of low reflective cobalt (II) oxide films
NASA Astrophysics Data System (ADS)
Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin
2016-01-01
Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal cauliflower morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.
Quantum coherence: Reciprocity and distribution
NASA Astrophysics Data System (ADS)
Kumar, Asutosh
2017-03-01
Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation-which we refer to as additivity relation-between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent
2008-01-01
In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.
Enclosure Transform for Interest Point Detection From Speckle Imagery.
Yongjian Yu; Jue Wang
2017-03-01
We present a fast enclosure transform (ET) to localize complex objects of interest from speckle imagery. This approach explores the spatial confinement on regional features from a sparse image feature representation. Unrelated, broken ridge features surrounding an object are organized collaboratively, giving rise to the enclosureness of the object. Three enclosure likelihood measures are constructed, consisting of the enclosure force, potential energy, and encloser count. In the transform domain, the local maxima manifest the locations of objects of interest, for which only the intrinsic dimension is known a priori. The discrete ET algorithm is computationally efficient, being on the order of O(MN) using N measuring distances across an image of M ridge pixels. It involves easy and few parameter settings. We demonstrate and assess the performance of ET on the automatic detection of the prostate locations from supra-pubic ultrasound images. ET yields superior results in terms of positive detection rate, accuracy and coverage.
Systems and methods for predicting materials properties
Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano
2007-11-06
Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.
Intelligence, Surveillance, and Reconnaissance Fusion for Coalition Operations
2008-07-01
classification of the targets of interest. The MMI features extracted in this manner have two properties that provide a sound justification for...are generalizations of well- known feature extraction methods such as Principal Components Analysis (PCA) and Independent Component Analysis (ICA...augment (without degrading performance) a large class of generic fusion processes. Ontologies Classifications Feature extraction Feature analysis
NASA Astrophysics Data System (ADS)
Davoudinejad, A.; Ribo, M. M.; Pedersen, D. B.; Islam, A.; Tosello, G.
2018-08-01
Functional surfaces have proven their potential to solve many engineering problems, attracting great interest among the scientific community. Bio-inspired multi-hierarchical micro-structures grant the surfaces with new properties, such as hydrophobicity, adhesion, unique optical properties and so on. The geometry and fabrication of these surfaces are still under research. In this study, the feasibility of using direct fabrication of microscale features by additive manufacturing (AM) processes was investigated. The investigation was carried out using a specifically designed vat photopolymerization AM machine-tool suitable for precision manufacturing at the micro dimensional scale which has previously been developed, built and validated at the Technical University of Denmark. It was shown that it was possible to replicate a simplified surface inspired by the Tokay gecko, the geometry was previously designed and replicated by a complex multi-step micromanufacturing method extracted from the literature and used as benchmark. Ultimately, the smallest printed features were analyzed by conducting a sensitivity analysis to obtain the righteous parameters in terms of layer thickness and exposure time. Moreover, two more intricate designs were fabricated with the same parameters to assess the surfaces functionality by its wettability. The surface with increased density and decreased feature size showed a water contact angle (CA) of 124° ± 0.10°, agreeing with the Cassie–Baxter model. These results indicate the possibility of using precision AM for a rapid, easy and reliable fabrication method for functional surfaces.
Using marketing research concepts to investigate specialty selection by medical students.
Weissman, Charles; Schroeder, Josh; Elchalal, Uriel; Weiss, Yoram; Tandeter, Howard; Zisk-Rony, Rachel Y
2012-10-01
This study was intended to examine whether a marketing research approach improves understanding of medical specialty selection by medical students. This approach likens students to consumers who are deciding whether or not to purchase a product (specialty). This approach proposes that when consumers' criteria match their perceptions of a product's features, the likelihood that they will purchase it (select the specialty) increases. This study examines whether exploring students' selection criteria and perceptions of various specialties provides additional insights into the selection process. Using a consumer behaviour model as a framework, a questionnaire was designed and administered to Year 6 (final-year) students in 2008 and 2009 to elicit information on their knowledge about and interests in various specialties, the criteria they used in specialty selection, and their perceptions of six specialties. A total of 132 (67%) questionnaires were returned. In many instances, consistency between selection criteria and perceptions of a specialty was accompanied by interest in pursuing the specialty. Exceptions were noted and pointed to areas requiring additional research. For example, although > 70% of female students replied that the affordance of a controllable lifestyle was an important selection criterion, many were interested in obstetrics and gynaecology despite the fact that it was not perceived as providing a controllable lifestyle. Minimal overlap among students reporting interest in primary specialties that possess similar characteristics (e.g. paediatrics and family medicine) demonstrated the need to target marketing (recruitment) efforts for each specialty individually. Using marketing research concepts to examine medical specialty selection may precipitate a conceptual shift among health care leaders which acknowledges that, to attract students, specialties must meet students' selection criteria. Moreover, if consumers (students) deem a product (specialty) unattractive, it may need to be examined further to improve its appeal. © Blackwell Publishing Ltd 2012.
Palmprint verification using Lagrangian decomposition and invariant interest points
NASA Astrophysics Data System (ADS)
Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.
Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.
Segovia, F; Górriz, J M; Ramírez, J; Phillips, C
2016-01-01
Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.
75 FR 47141 - Review of Personal Radio Services Rules
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
...In this document, the Commission proposes to update, reorganize, simplify and streamline its Personal Radio Services rules to reflect technological advances and other changes in the way the American public uses the Personal Radio Services. In addition to improving the clarity of the rules, this document includes proposals intended to reduce unnecessary regulatory burdens on users, improve spectrum use, provide for enhanced equipment operating features, and promote the safety and consumer interests of operators. The document also proposes to reclassify one of the existing Personal Radio Services, specifically the 218-219 MHz service, as a Miscellaneous Wireless Communications Service, and accordingly move its rules from one part to another.
Scan-Based Implementation of JPEG 2000 Extensions
NASA Technical Reports Server (NTRS)
Rountree, Janet C.; Webb, Brian N.; Flohr, Thomas J.; Marcellin, Michael W.
2001-01-01
JPEG 2000 Part 2 (Extensions) contains a number of technologies that are of potential interest in remote sensing applications. These include arbitrary wavelet transforms, techniques to limit boundary artifacts in tiles, multiple component transforms, and trellis-coded quantization (TCQ). We are investigating the addition of these features to the low-memory (scan-based) implementation of JPEG 2000 Part 1. A scan-based implementation of TCQ has been realized and tested, with a very small performance loss as compared with the full image (frame-based) version. A proposed amendment to JPEG 2000 Part 2 will effect the syntax changes required to make scan-based TCQ compatible with the standard.
EPA Facility Registry System (FRS): NEPT
This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Environmental Performance Track (NEPT) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs
EPA Facility Registry Service (FRS): NEI
This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the National Emissions Inventory (NEI) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs
Carraça, Eliana V; Mackenbach, Joreintje D; Lakerveld, Jeroen; Rutter, Harry; Oppert, Jean-Michel; De Bourdeaudhuij, Ilse; Compernolle, Sofie; Roda, Célina; Bardos, Helga; Teixeira, Pedro J
2018-06-01
A considerable proportion of European adults report little or no interest in physical activity. Identifying individual-level and environmental-level characteristics of these individuals can help designing effective interventions and policies to promote physical activity. This cross-sectional study additionally explored associations between level of interest and physical activity, after controlling for other individual and environmental variables. Measures of objective and perceived features of the physical environment of residence, self-reported physical activity and other lifestyle behaviors, barriers towards physical activity, general health, and demographics were obtained from 5205 European adults participating in the 2014 online SPOTLIGHT survey. t-Tests, chi-square tests, and generalized estimating equations with negative binomial log-link function were conducted. Adults not interested in physical activity reported a higher BMI and a lower self-rated health, were less educated, and to a smaller extent female and less frequently employed. They were more prone to have less healthy eating habits, and to perceive more barriers towards physical activity. Only minor differences were observed in environmental attributes: the non-interested were slightly more likely to live in neighborhoods objectively characterized as less aesthetic and containing more destinations, and perceived as less functional, safe, and aesthetic. Even after controlling for other individual and environmental factors, interest in physical activity remained a significant correlate of physical activity, supporting the importance of this association. This study is among the first to describe characteristics of individuals with reduced interest in physical activity, suggesting that (lack of) interest is a robust correlate of physical activity in several personal and environmental conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Linked Scatter Plots, A Powerful Exploration Tool For Very Large Sets of Spectra
NASA Astrophysics Data System (ADS)
Carbon, Duane Francis; Henze, Christopher
2015-08-01
We present a new tool, based on linked scatter plots, that is designed to efficiently explore very large spectrum data sets such as the SDSS, APOGEE, LAMOST, GAIA, and RAVE data sets.The tool works in two stages: the first uses batch processing and the second runs interactively. In the batch stage, spectra are processed through our data pipeline which computes the depths relative to the local continuum at preselected feature wavelengths. These depths, and any additional available variables such as local S/N level, magnitudes, colors, positions, and radial velocities, are the basic measured quantities used in the interactive stage.The interactive stage employs the NASA hyperwall, a configuration of 128 workstation displays (8x16 array) controlled by a parallelized software suite running on NASA's Pleiades supercomputer. Each hyperwall panel is used to display a fully linked 2-D scatter plot showing the depth of feature A vs the depth of feature B for all of the spectra. A and B change from panel to panel. The relationships between the various (A,B) strengths and any distinctive clustering, as well as unique outlier groupings, are visually apparent when examining and inter-comparing the different panels on the hyperwall. In addition, the data links between the scatter plots allow the user to apply a logical algebra to the measurements. By graphically selecting the objects in any interesting region of any 2-D plot on the hyperwall, the tool immediately and clearly shows how the selected objects are distributed in all the other 2-D plots. The selection process may be repeated multiple times and, at each step, the selections can represent a sequence of logical constraints on the measurements, revealing those objects which satisfy all the constraints thus far. The spectra of the selected objects may be examined at any time on a connected workstation display.Using over 945,000,000 depth measurements from 569,738 SDSS DR10 stellar spectra, we illustrate how to quickly isolate and examine such interesting stellar subsets as EMP stars, C-rich EMP stars, and CV stars.
The Effect of Resolution on Detecting Visually Salient Preattentive Features
2015-06-01
resolutions in descending order (a–e). The plot compiles the areas of interest displayed in the images and each symbol represents 1 of the images. Data...to particular regions in a scene by highly salient 2 features, for example, the color of the flower discussed in the previous example. These...descending order (a–e). The plot compiles the areas of interest displayed in the images and each symbol represents 1 of the images. Data clusters
Toward a Best-Practice Protocol for Assessment of Sensory Features in ASD
ERIC Educational Resources Information Center
Schaaf, Roseann C.; Lane, Alison E.
2015-01-01
Sensory difficulties are a commonly occurring feature of autism spectrum disorders and are now included as one manifestation of the "restricted, repetitive patterns of behavior, interests, or activities" diagnostic criteria of the DSM5 necessitating guidelines for comprehensive assessment of these features. To facilitate the development…
Speech Music Discrimination Using Class-Specific Features
2004-08-01
Speech Music Discrimination Using Class-Specific Features Thomas Beierholm...between speech and music . Feature extraction is class-specific and can therefore be tailored to each class meaning that segment size, model orders...interest. Some of the applications of audio signal classification are speech/ music classification [1], acoustical environmental classification [2][3
Courseware Components and Features: Preferences of Faculty in the Human Sciences
ERIC Educational Resources Information Center
Causin, Gina Fe G.; Robertson, Lona J.; Ryan, Bill
2008-01-01
This project gathered information on the important components and features of distance education courseware identified by faculty teaching in the Great Plains Interactive Distance Education Alliance. Respondents indicated that they were most interested in features that helped with course management, allowed them to update and post course materials…
Structural properties of prokaryotic promoter regions correlate with functional features.
Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris
2014-01-01
The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.
Appolloni, L; Sandulli, R; Vetrano, G; Russo, G F
2018-05-15
Marine Protected Areas are considered key tools for conservation of coastal ecosystems. However, many reserves are characterized by several problems mainly related to inadequate zonings that often do not protect high biodiversity and propagule supply areas precluding, at the same time, economic important zones for local interests. The Gulf of Naples is here employed as a study area to assess the effects of inclusion of different conservation features and costs in reserve design process. In particular eight scenarios are developed using graph theory to identify propagule source patches and fishing and exploitation activities as costs-in-use for local population. Scenarios elaborated by MARXAN, software commonly used for marine conservation planning, are compared using multivariate analyses (MDS, PERMANOVA and PERMDISP) in order to assess input data having greatest effects on protected areas selection. MARXAN is heuristic software able to give a number of different correct results, all of them near to the best solution. Its outputs show that the most important areas to be protected, in order to ensure long-term habitat life and adequate propagule supply, are mainly located around the Gulf islands. In addition through statistical analyses it allowed us to prove that different choices on conservation features lead to statistically different scenarios. The presence of propagule supply patches forces MARXAN to select almost the same areas to protect decreasingly different MARXAN results and, thus, choices for reserves area selection. The multivariate analyses applied here to marine spatial planning proved to be very helpful allowing to identify i) how different scenario input data affect MARXAN and ii) what features have to be taken into account in study areas characterized by peculiar biological and economic interests. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kazantseva, Liliya
2012-09-01
Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.
Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra
2014-01-01
Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268
Chou, A; Burke, J
1999-05-01
DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :
NASA Astrophysics Data System (ADS)
Madison, Lindsey R.; Mosley, Jonathan; Mauney, Daniel; Duncan, Michael A.; McCoy, Anne B.
2016-06-01
Formaldehyde is the smallest organic molecule and is a prime candidate for a thorough investigation regarding the anharmonic approximations made in computationally modeling its infrared spectrum. Mass-selected ion spectroscopy was used to detect mass 30 cations which include of HCOH^+ and CH_2O^+. In order to elucidate the differences between the structures of these isomers, infrared spectroscopy was performed on the mass 30 cations using Ar predissociation. Interestingly, several additional spectral features are observed that cannot be explained by the fundamental OH and CH stretch vibrations alone. By including anharmonic coupling between OH and CH stretching and various overtones and combination bands involving lower frequency vibrations, we are able to identify how specific modes couple and lead to the experimentally observed spectral features. We combine straight-forward, ab initio calculations of the anharmonic frequencies of the mass 30 cations with higher order, adiabatic approximations and Fermi resonance models. By including anharmonic effects we are able to confirm that the isomers of the CH_2O^+\\cdotAr system have substantially different, and thus distinguishable, IR spectra and that many of the features can only be explained with anharmonic treatments.
Acoustic and Lexical Representations for Affect Prediction in Spontaneous Conversations.
Cao, Houwei; Savran, Arman; Verma, Ragini; Nenkova, Ani
2015-01-01
In this article we investigate what representations of acoustics and word usage are most suitable for predicting dimensions of affect|AROUSAL, VALANCE, POWER and EXPECTANCY|in spontaneous interactions. Our experiments are based on the AVEC 2012 challenge dataset. For lexical representations, we compare corpus-independent features based on psychological word norms of emotional dimensions, as well as corpus-dependent representations. We find that corpus-dependent bag of words approach with mutual information between word and emotion dimensions is by far the best representation. For the analysis of acoustics, we zero in on the question of granularity. We confirm on our corpus that utterance-level features are more predictive than word-level features. Further, we study more detailed representations in which the utterance is divided into regions of interest (ROI), each with separate representation. We introduce two ROI representations, which significantly outperform less informed approaches. In addition we show that acoustic models of emotion can be improved considerably by taking into account annotator agreement and training the model on smaller but reliable dataset. Finally we discuss the potential for improving prediction by combining the lexical and acoustic modalities. Simple fusion methods do not lead to consistent improvements over lexical classifiers alone but improve over acoustic models.
Banna, Jinan; Grace Lin, Meng-Fen; Stewart, Maria; Fialkowski, Marie K
2015-06-01
Fostering interaction in the online classroom is an important consideration in ensuring that students actively create their own knowledge and reach a high level of achievement in science courses. This study focuses on fostering interaction in an online introductory nutrition course offered in a public institution of higher education in Hawai'i, USA. Interactive features included synchronous discussions and polls in scheduled sessions, and social media tools for sharing of information and resources. Qualitative student feedback was solicited regarding the new course features. Findings indicated that students who attended monthly synchronous sessions valued live interaction with peers and the instructor. Issues identified included technical difficulties during synchronous sessions, lack of participation on the part of fellow students in discussion and inability to attend synchronous sessions due to scheduling conflicts. In addition, few students made use of the opportunity to interact via social media. While students indicated that the interactive components of the course were valuable, several areas in which improvement may be made remain. Future studies may explore potential solutions to issues identified with new features to further promote interaction and foster learning in the course. Recommendations for instructors who are interested in offering online science courses in higher education are provided.
Pyun, So Young; Jeong, Jin-Ho; Bae, Jong Seok
2015-12-01
Recurrent Guillain-Barré syndrome (rGBS) has been described as a rare entity with distinct characteristics. However, little is known about rGBS in Asian group. The aim of this study was to identify the incidence and clinical course of rGBS, and to determine its clinical/pathophysiological implications. The consecutive data of 117 GBS patients were retrieved from a single university-based hospital in Korea and analyzed in terms of clinical, serological, electrophysiological aspects. A thorough review revealed that three (2.6%) of the enrolled patients had experienced more than two definite recurrent attacks of GBS. Interestingly, all three cases exhibited clinically stereotypical features, serum antiganglioside antibodies, and rapid recovery after intravenous immunoglobulin treatment. Clinical, serological, and electrophysiological features of rGBS cases were described in detail. The stereotypic presentation of each attack in this variant suggests the importance of both host and genetic factors for the clinical manifestations. In addition, the simultaneous presence of serum antiganglioside antibodies and rapid recovery implicate reversible nerve conduction failure as the mechanism of rGBS. These features are different from typical monophasic GBS and acute onset of chronic inflammatory demyelinating polyneuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.
Rural medicine interest groups at McMaster University: a pilot study.
Blau, Elaine M; Aird, Pamela; Dolovich, Lisa; Burns, Sheri; del Pilar-Chacon, Marie
2009-01-01
Although rural medicine interest groups (RMIGs) are prevalent in Canadian medical schools, there is little research on their contribution to rural education, training and careers. We explored 2 broad questions by means of an electronic survey to people who were RMIG participants at McMaster University from 2002 to 2007: 1) What are the experiences of undergraduate trainees in an RMIG? 2) What are the features of RMIGs that contribute to an interest in rural medicine? The survey itself contained 35 questions broken down into sections detailing demographics, involvement in RMIGs, RMIG features, core and elective experiences, careers and Canadian Resident Matching Service. Of the 63 participants who completed the survey, 13 (20.6%) were in postgraduate training and 50 (79.4%) were in undergraduate training. The mean (standard deviation) age of participants was 28.4 (6.5) years and 71.9% percent were female. Respondents indicated that rural placements had the most influence on their choice of specialty and rural interest. Of all the features and activities of the RMIG, rural medicine special events contributed the most to an interest in rural medicine (e.g., "rural medicine days"). At McMaster University, the responses of participants suggested that RMIG participation had more influence on career choice than did the medical school attended. Communities, government organizations, residency programs and others interested in improving access to rural physicians, will note the importance of RMIGs and the importance survey respondents gave to rural medicine special events and rural electives.
Xie, Xia; Chen, Yanling; Chen, Hong; Au, Alma; Guo, Hongxia
2017-06-01
In this study, we explored the predictors of quality of life and depressive features in older people living in temporary housing 13 months after the Wenchuan earthquake in western China. Anonymous data were collected via questionnaires in a cross-sectional survey of 189 older people living in temporary housing 13 months after the earthquake. To explore the predictors of the outcomes of interest, Pearson correlation and multiple linear regression analysis were used. The results indicated that interests/hobbies, subjective support, and family function were positive predictors of quality of life, whereas instrumental activities of daily living and depressive symptoms were its negative predictors. In addition, we found that a higher level of instrumental activities of daily living predicted a greater likelihood of depression. These results suggested that developing strategies to decrease the instrumental activities of daily living score of these people helps improve their quality of life and depression. To enhance the quality of life of these individuals, healthcare providers should also focus on developing their interests/hobbies and provide them with adequate social support, especially subjective support. © 2017 John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott
Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order Rhizobiales, which is thus far poorly characterized at the genome level. Cultures from this spe- cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model organism for studying the genomic basis of regulatory networks required for the switch between consumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, S. novella is of interest for itsmore » ability to grow on various inorganic sulfur compounds and several C1- compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second species in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The cur- rent taxonomic classification of this group is in significant conflict with the 16S rRNA data. The genomic data indicate that the physiological capabilities of the organism might have been underestimated. Here, the 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less
Hennenfent, Andrew; DelVento, Vito; Davies-Cole, John; Johnson-Clarke, Fern
2017-03-01
To enhance the early detection of emerging infectious diseases and bioterrorism events using companion animal-based surveillance. Washington, DC, small animal veterinary facilities (n=17) were surveyed to determine interest in conducting infectious disease surveillance. Using these results, an electronic-based online reporting system was developed and launched in August 2015 to monitor rates of canine influenza, canine leptospirosis, antibiotic resistant infections, canine parvovirus, and syndromic disease trends. Nine of the 10 facilities that responded expressed interest conducting surveillance. In September 2015, 17 canine parvovirus cases were reported. In response, a campaign encouraging regular veterinary preventative care was launched and featured on local media platforms. Additionally, during the system's first year of operation it detected 5 canine leptospirosis cases and 2 antibiotic resistant infections. No canine influenza cases were reported and syndromic surveillance compliance varied, peaking during National Special Security Events. Small animal veterinarians and the general public are interested in companion animal disease surveillance. The system described can serve as a model for establishing similar systems to monitor disease trends of public health importance in pet populations and enhance biosurveillance capabilities. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.
2007-12-01
The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.
Rotation invariant fast features for large-scale recognition
NASA Astrophysics Data System (ADS)
Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd
2012-10-01
We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.
NASA Astrophysics Data System (ADS)
Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth region of interest of the test images manually annotated by experts. This tool successfully identified a mask around the LV and RV and furthermore the minimal region of interest around the LV that fully enclosed the left ventricle from all testing datasets, yielding a 98% overlap with their corresponding ground truth. The achieved mean absolute distance error between the two contours that normalized by the radius of the ground truth is 0.20 +/- 0.09.
Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J
2009-07-01
Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.
Recognizing characters of ancient manuscripts
NASA Astrophysics Data System (ADS)
Diem, Markus; Sablatnig, Robert
2010-02-01
Considering printed Latin text, the main issues of Optical Character Recognition (OCR) systems are solved. However, for degraded handwritten document images, basic preprocessing steps such as binarization, gain poor results with state-of-the-art methods. In this paper ancient Slavonic manuscripts from the 11th century are investigated. In order to minimize the consequences of false character segmentation, a binarization-free approach based on local descriptors is proposed. Additionally local information allows the recognition of partially visible or washed out characters. The proposed algorithm consists of two steps: character classification and character localization. Initially Scale Invariant Feature Transform (SIFT) features are extracted which are subsequently classified using Support Vector Machines (SVM). Afterwards, the interest points are clustered according to their spatial information. Thereby, characters are localized and finally recognized based on a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background clutter (e.g. stains, tears) and faded out characters.
Kamruzzaman, Mohammed; Elmasry, Gamal; Sun, Da-Wen; Allen, Paul
2013-11-01
The purpose of this study was to develop and test a hyperspectral imaging system (900-1700 nm) to predict instrumental and sensory tenderness of lamb meat. Warner-Bratzler shear force (WBSF) values and sensory scores by trained panellists were collected as the indicator of instrumental and sensory tenderness, respectively. Partial least squares regression models were developed for predicting instrumental and sensory tenderness with reasonable accuracy (Rcv=0.84 for WBSF and 0.69 for sensory tenderness). Overall, the results confirmed that the spectral data could become an interesting screening tool to quickly categorise lamb steaks in good (i.e. tender) and bad (i.e. tough) based on WBSF values and sensory scores with overall accuracy of about 94.51% and 91%, respectively. Successive projections algorithm (SPA) was used to select the most important wavelengths for WBSF prediction. Additionally, textural features from Gray Level Co-occurrence Matrix (GLCM) were extracted to determine the correlation between textural features and WBSF values. Copyright © 2013 Elsevier Ltd. All rights reserved.
Feature Selection for Wheat Yield Prediction
NASA Astrophysics Data System (ADS)
Ruß, Georg; Kruse, Rudolf
Carrying out effective and sustainable agriculture has become an important issue in recent years. Agricultural production has to keep up with an everincreasing population by taking advantage of a field’s heterogeneity. Nowadays, modern technology such as the global positioning system (GPS) and a multitude of developed sensors enable farmers to better measure their fields’ heterogeneities. For this small-scale, precise treatment the term precision agriculture has been coined. However, the large amounts of data that are (literally) harvested during the growing season have to be analysed. In particular, the farmer is interested in knowing whether a newly developed heterogeneity sensor is potentially advantageous or not. Since the sensor data are readily available, this issue should be seen from an artificial intelligence perspective. There it can be treated as a feature selection problem. The additional task of yield prediction can be treated as a multi-dimensional regression problem. This article aims to present an approach towards solving these two practically important problems using artificial intelligence and data mining ideas and methodologies.
Medium and large-scale variations of dynamo-induced electric fields from AE ion drift measurements
NASA Technical Reports Server (NTRS)
Coley, W. R.; Mcclure, J. P.
1986-01-01
Current models of the low latitude electric field are largely based on data from incoherent scatter radars. These observations are extended through the addition of the rather extensive high quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Explorer (AE) spacecraft. Some preliminary results obtained from the Unified Abstract files of satellite AE-E are presented. This satellite was active from the end of 1975 through June 1981 in various elliptical and circular orbits having an inclination near 20 deg. The resulting data can be examined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and magnetic activity. The results presented deal primarily with latitudinal variations of the drift features. Diagrams of data are given and briefly interpreted. The preliminary results presented here indicate that IDM data from the AE and the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and previously unobserved dynamical features of the low latitude F region.
Allele quantification using molecular inversion probes (MIP)
Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Falkowski, Matthew; Chen, Chunnuan; Siddiqui, Farooq; Davis, Ronald W.; Willis, Thomas D.; Faham, Malek
2005-01-01
Detection of genomic copy number changes has been an important research area, especially in cancer. Several high-throughput technologies have been developed to detect these changes. Features that are important for the utility of technologies assessing copy number changes include the ability to interrogate regions of interest at the desired density as well as the ability to differentiate the two homologs. In addition, assessing formaldehyde fixed and paraffin embedded (FFPE) samples allows the utilization of the vast majority of cancer samples. To address these points we demonstrate the use of molecular inversion probe (MIP) technology to the study of copy number. MIP is a high-throughput genotyping technology capable of interrogating >20 000 single nucleotide polymorphisms in the same tube. We have shown the ability of MIP at this multiplex level to provide copy number measurements while obtaining the allele information. In addition we have demonstrated a proof of principle for copy number analysis in FFPE samples. PMID:16314297
The Origin of the EUV Late Phase: A Case Study of the C8.8 Flare on 2010 May 5
NASA Technical Reports Server (NTRS)
Hock, R. A.; Woods, T. N.; Klimchuk, J. A.; Eparvier, F. G.; Jones, A. R.
2012-01-01
Since the launch of NASA's Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enhancement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.
A Review on Functionally Gradient Materials (FGMs) and Their Applications
NASA Astrophysics Data System (ADS)
Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.
2017-09-01
Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.
U.S. EPAs Geospatial Data Access Project
To improve public health and the environment, the United States Environmental Protection Agency (EPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata Shapefile, Feature Class or extensible markup language (XML) file containing facility and site information from EPA's national program systems. The files are Internet accessible from the Envirofacts Web site (https://www3.epa.gov/enviro/). The data may be used with geospatial mapping applications. (Note: The files omit facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the files contain a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.
Challenging ocular image recognition
NASA Astrophysics Data System (ADS)
Pauca, V. Paúl; Forkin, Michael; Xu, Xiao; Plemmons, Robert; Ross, Arun A.
2011-06-01
Ocular recognition is a new area of biometric investigation targeted at overcoming the limitations of iris recognition performance in the presence of non-ideal data. There are several advantages for increasing the area beyond the iris, yet there are also key issues that must be addressed such as size of the ocular region, factors affecting performance, and appropriate corpora to study these factors in isolation. In this paper, we explore and identify some of these issues with the goal of better defining parameters for ocular recognition. An empirical study is performed where iris recognition methods are contrasted with texture and point operators on existing iris and face datasets. The experimental results show a dramatic recognition performance gain when additional features are considered in the presence of poor quality iris data, offering strong evidence for extending interest beyond the iris. The experiments also highlight the need for the direct collection of additional ocular imagery.
Concept mapping and network analysis: an analytic approach to measure ties among constructs.
Goldman, Alyssa W; Kane, Mary
2014-12-01
Group concept mapping is a mixed-methods approach that helps a group visually represent its ideas on a topic of interest through a series of related maps. The maps and additional graphics are useful for planning, evaluation and theory development. Group concept maps are typically described, interpreted and utilized through points, clusters and distances, and the implications of these features in understanding how constructs relate to one another. This paper focuses on the application of network analysis to group concept mapping to quantify the strength and directionality of relationships among clusters. The authors outline the steps of this analysis, and illustrate its practical use through an organizational strategic planning example. Additional benefits of this analysis to evaluation projects are also discussed, supporting the overall utility of this supplemental technique to the standard concept mapping methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mammographic phenotypes of breast cancer risk driven by breast anatomy
NASA Astrophysics Data System (ADS)
Gastounioti, Aimilia; Oustimov, Andrew; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina
2017-03-01
Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women's cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.
The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions
Klemm, Bradley P.; Wu, Nancy; Chen, Yu; Liu, Xin; Kaitany, Kipchumba J.; Howard, Michael J.; Fierke, Carol A.
2016-01-01
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5’ end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5’ maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field. PMID:27187488
Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning
NASA Astrophysics Data System (ADS)
DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf
2018-06-01
We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.
Huang, H; Coatrieux, G; Shu, H Z; Luo, L M; Roux, Ch
2011-01-01
In this paper we present a medical image integrity verification system that not only allows detecting and approximating malevolent local image alterations (e.g. removal or addition of findings) but is also capable to identify the nature of global image processing applied to the image (e.g. lossy compression, filtering …). For that purpose, we propose an image signature derived from the geometric moments of pixel blocks. Such a signature is computed over regions of interest of the image and then watermarked in regions of non interest. Image integrity analysis is conducted by comparing embedded and recomputed signatures. If any, local modifications are approximated through the determination of the parameters of the nearest generalized 2D Gaussian. Image moments are taken as image features and serve as inputs to one classifier we learned to discriminate the type of global image processing. Experimental results with both local and global modifications illustrate the overall performances of our approach.
NASA Astrophysics Data System (ADS)
Jerome, N. P.; Orton, M. R.; d'Arcy, J. A.; Feiweier, T.; Tunariu, N.; Koh, D.-M.; Leach, M. O.; Collins, D. J.
2015-01-01
Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.
Piriyapongsa, Jittima; Bootchai, Chaiwat; Ngamphiw, Chumpol; Tongsima, Sissades
2014-01-01
microRNA (miRNA)–promoter interaction resource (microPIR) is a public database containing over 15 million predicted miRNA target sites located within human promoter sequences. These predicted targets are presented along with their related genomic and experimental data, making the microPIR database the most comprehensive repository of miRNA promoter target sites. Here, we describe major updates of the microPIR database including new target predictions in the mouse genome and revised human target predictions. The updated database (microPIR2) now provides ∼80 million human and 40 million mouse predicted target sites. In addition to being a reference database, microPIR2 is a tool for comparative analysis of target sites on the promoters of human–mouse orthologous genes. In particular, this new feature was designed to identify potential miRNA–promoter interactions conserved between species that could be stronger candidates for further experimental validation. We also incorporated additional supporting information to microPIR2 such as nuclear and cytoplasmic localization of miRNAs and miRNA–disease association. Extra search features were also implemented to enable various investigations of targets of interest. Database URL: http://www4a.biotec.or.th/micropir2 PMID:25425035
Jerome, N P; Orton, M R; d'Arcy, J A; Feiweier, T; Tunariu, N; Koh, D-M; Leach, M O; Collins, D J
2015-01-21
Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.
Robustly detecting differential expression in RNA sequencing data using observation weights
Zhou, Xiaobei; Lindsay, Helen; Robinson, Mark D.
2014-01-01
A popular approach for comparing gene expression levels between (replicated) conditions of RNA sequencing data relies on counting reads that map to features of interest. Within such count-based methods, many flexible and advanced statistical approaches now exist and offer the ability to adjust for covariates (e.g. batch effects). Often, these methods include some sort of ‘sharing of information’ across features to improve inferences in small samples. It is important to achieve an appropriate tradeoff between statistical power and protection against outliers. Here, we study the robustness of existing approaches for count-based differential expression analysis and propose a new strategy based on observation weights that can be used within existing frameworks. The results suggest that outliers can have a global effect on differential analyses. We demonstrate the effectiveness of our new approach with real data and simulated data that reflects properties of real datasets (e.g. dispersion-mean trend) and develop an extensible framework for comprehensive testing of current and future methods. In addition, we explore the origin of such outliers, in some cases highlighting additional biological or technical factors within the experiment. Further details can be downloaded from the project website: http://imlspenticton.uzh.ch/robinson_lab/edgeR_robust/. PMID:24753412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain
The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 ± 0.37% with no PDMS to 2.16 ± 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC 61BM) as the electron acceptor. PDMS is shown to havemore » a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm 2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.« less
ERIC Educational Resources Information Center
Wool, D. L.; Kanfer, A. G.; Michaels, J.; Thompson, S.; Morris, S. A.; Hasler, C. M.
2000-01-01
A study of the "Ask an Expert" feature of StratSoy, a Web-based information system, surveyed 50 users and 48 using it for the first time. Topic areas of interest and web site features desired by respondents were identified. (JOW)
Distinctive Features of Japanese Education. NIER Occasional Paper 01/91.
ERIC Educational Resources Information Center
National Inst. for Educational Research, Tokyo (Japan).
For the past decade there has been a surge of international interest in Japanese education in the wake of its economic and technological successes. This paper discusses eight distinctive features of Japanese education, identifying their advantages and disadvantages and how they have been brought about. These eight features of Japanese schooling…
Select Features in "Sibelius 6" for Music Educators
ERIC Educational Resources Information Center
Thompson, Douglas Earl
2012-01-01
Select features of interest to music educators are spotlighted in "Sibelius 6" (version 6.2.0 build 88) and presented under three headings: (a) Worksheets, (2) Plug-Ins, and (3) Potpourri. Guidance is given for accessing these features, and the commentary suggests their application in the music education classroom. (Contains 3 figures.)
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
Mathews, Carol A; Nievergelt, Caroline M; Azzam, Amin; Garrido, Helena; Chavira, Denise A; Wessel, Jennifer; Bagnarello, Monica; Reus, Victor I; Schork, Nicholas J
2007-03-05
To date, only one complete genome screen for obsessive-compulsive disorder (OCD) has been published. That study identified a region of suggestive linkage (maximum lod score of 2.25) with a relatively small sample size (N = 56; 27 with OCD). Additional complete genome screens are needed to confirm this finding and identify other regions of linkage. We present the clinical characteristics and power to detect linkage of 11 multigenerational families with OCD and hoarding (N = 92; 44 with OCD), as well as heritability estimates for several quantitative traits. Families with at least two individuals with OCD were identified through probands with childhood-onset OCD. Expected lod scores were calculated for simulated genetic marker data under an additive and two dominant models assuming a dense SNP marker map. All affected individuals had an early age of onset (18 or younger). Hoarding was present in 46% of subjects. Obsessive-compulsive symptoms and hoarding were highly heritable. The maximum mean expected lod score was 3.31 for OCD and 1.39 for hoarding. We found reasonable power to detect regions of interest (lod = 2) for OCD in these families, but will need to expand our family collection to have adequate power to detect regions of interest for hoarding. (c) 2007 Wiley-Liss, Inc.
An Inquiry into the Structure of Situational Interests
ERIC Educational Resources Information Center
Azevedo, Flávio S.
2018-01-01
I advance theoretically and empirically grounded arguments for broadening how we frame and understand situational interests. A situational interest refers to the short-term spike in a person's attention and participation in an activity and it is triggered in the interactions between the person and environment features (e.g., novelty and surprise).…
This page provides information for Project Expo sites that were featured at the LMOP Conferences in 2013 and 2014. Project Expo sites were featured as being interested in identifying project partners for the development of an LFG energy project.
Textural features for radar image analysis
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.
1981-01-01
Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Deep learning decision fusion for the classification of urban remote sensing data
NASA Astrophysics Data System (ADS)
Abdi, Ghasem; Samadzadegan, Farhad; Reinartz, Peter
2018-01-01
Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral-spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.
Reconnaissance Imaging Spectrometer for Mars CRISM Data Analysis
NASA Astrophysics Data System (ADS)
Frink, K.; Hayden, D.; Lecompte, D.
2009-05-01
The Compact Reconnaissance Imaging Spectrometer for Mars CRISM (CRISM) carried aboard the Mars Reconnaissance Orbiter (MRO), is the first visible-infrared spectrometer to fly on a NASA Mars mission. CRISM scientists are using the instrument to look for the residue of minerals that form in the presence of water: the 'fingerprints' left by evaporated hot springs, thermal vents, lakes or ponds. With unprecedented clarity, CRISM is mapping regions on the Martian surface at scales as small as 60 feet (about 18 meters) across, when the spacecraft is 186 miles (300 kilometers) above the planet. CRISM is reading 544 'colors' in reflected sunlight to detect certain minerals on the surface, including signature traces of past water. CRISM alone will generate more than 10 terabytes of data, enough to fill more than 15,000 compact discs. Given that quantity of data being returned by MRO-CRISM, this project partners with Johns Hopkins University (JHU) Applied Physics Laboratory (APL) scientists of the CRISM team to assist in the data analysis process. The CRISM operations team has prototyped and will provide the necessary software analysis tools. In addition, the CRISM operations team will provide reduced data volume representations of the data as PNG files, accessible via a web interface without recourse to specialized user tools. The web interface allows me to recommend repeating certain of the CRISM observations as survey results indicate, and to enter notes on the features present in the images. After analysis of a small percentage of CRISM observations, APL scientists concluded that their efforts would be greatly facilitated by adding a preliminary survey to evaluate the overall characteristics and quality of the CRISM data. The first-look should increase the efficiency and speed of their data analysis efforts. This project provides first-look assessments of the data quality while noting features of interest likely to need further study or additional CRISM observations. The project includes looking at CRISM images to determine if any were corrupted by transient environmental or instrumental perturbations or whether the Martian surface was obscured by haze, clouds, dust or dust storms preventing further study. In such cases, the project report will recommend conducting additional observations of a specific site. The project will also identify images containing interesting features that are candidates for more detailed investigation. For example, images of rock outcrops with evidence of water-containing minerals may be quickly recognized and marked for special treatment. In many cases, the project will be the first eyes on the data coming down from the spacecraft.
Fahimi, Fatemeh; Guan, Cuntai; Wooi Boon Goh; Kai Keng Ang; Choon Guan Lim; Tih Shih Lee
2017-07-01
Measuring attention from electroencephalogram (EEG) has found applications in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). It is of great interest to understand what features in EEG are most representative of attention. Intensive research has been done in the past and it has been proven that frequency band powers and their ratios are effective features in detecting attention. However, there are still unanswered questions, like, what features in EEG are most discriminative between attentive and non-attentive states? Are these features common among all subjects or are they subject-specific and must be optimized for each subject? Using Mutual Information (MI) to perform subject-specific feature selection on a large data set including 120 ADHD children, we found that besides theta beta ratio (TBR) which is commonly used in attention detection and neurofeedback, the relative beta power and theta/(alpha+beta) (TBAR) are also equally significant and informative for attention detection. Interestingly, we found that the relative theta power (which is also commonly used) may not have sufficient discriminative information itself (it is informative only for 3.26% of ADHD children). We have also demonstrated that although these features (relative beta power, TBR and TBAR) are the most important measures to detect attention on average, different subjects have different set of most discriminative features.
Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)
Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie
2012-01-01
Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000
Using satellite imagery to identify and analyze tumuli on Earth and Mars
NASA Astrophysics Data System (ADS)
Diniega, Serina; Sangha, Simran; Browne, Brandon
2018-01-01
Tumuli are small, dome-like features that form when magmatic pressures build within a subsurface lava pathway, causing the overlying crust to bulge upwards. As the appearance of these features has been linked to lava flow structure (e.g., underlying lava flow tubes) and conditions, there is interest in identifying such features in satellite images so they can be used to expand our understanding of lava flows within regions difficult to access (such as on other planets). Here, we define a methodology for identifying (and measuring) tumuli within satellite imagery, and validate it by comparing our results with fieldwork results of terrestrial tumuli reported in the literature and with independent measurements we made within Amboy Field, CA. In addition, we present aggregated results from the application of our methodology to satellite images of six terrestrial fields and seven martian fields (with >2100 tumuli identified, per planet). Comparisons of tumuli morphometrics on Earth and Mars yield similarities in size and overall shape, which were surprising given the many differences in the environmental and planetary conditions within which these features have formed. Given our measurements, we identify constraints for tumulus formation models and drivers that would yield similar shapes and sizes on two different planets. Furthermore, we test a published hypothesis regarding the number of tumuli that form per a square kilometer, and find it unlikely that a diagnostic "tumuli density" value exists.
NASA Astrophysics Data System (ADS)
Zhang, Yunlu; Yan, Lei; Liou, Frank
2018-05-01
The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.
Feature tracking for automated volume of interest stabilization on 4D-OCT images
NASA Astrophysics Data System (ADS)
Laves, Max-Heinrich; Schoob, Andreas; Kahrs, Lüder A.; Pfeiffer, Tom; Huber, Robert; Ortmaier, Tobias
2017-03-01
A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance.
Satellite classification and segmentation using non-additive entropy
NASA Astrophysics Data System (ADS)
Assirati, Lucas; Souto Martinez, Alexandre; Martinez Bruno, Odemir
2014-03-01
Here we compare the Boltzmann-Gibbs-Shannon (standard) with the Tsallis entropy on the pattern recognition and segmentation of colored images obtained by satellites, via "Google Earth". By segmentation we mean particionate an image to locate regions of interest. Here, we discriminate and define an image partition classes according to a training basis. This training basis consists of three pattern classes: aquatic, urban and vegetation regions. Our numerical experiments demonstrate that the Tsallis entropy, used as a feature vector composed of distinct entropic indexes q outperforms the standard entropy. There are several applications of our proposed methodology, once satellite images can be used to monitor migration form rural to urban regions, agricultural activities, oil spreading on the ocean etc.
NASA Astrophysics Data System (ADS)
Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad
2018-06-01
Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.
Development of magnetoelectric nanocomposite for soft technology
NASA Astrophysics Data System (ADS)
Bitla, Yugandhar; Chu, Ying-Hao
2018-06-01
The proliferation of flexible and stretchable electronics has led to substantial advancements in principles, material combinations and technologies. The integration of magnetoelectric systems in soft electronics is inevitable by virtue of their extensive applications. Recently, 2D layered materials have emerged as potential candidates due to their excellent flexibility and atomic-scale thickness scalability in addition to their interesting physics. This paper presents a new perspective on the development of magnetoelectric nanocomposites through materials engineering on a pliant mica with excellent mechanical, thermal and chemical stabilities. The unique features of 2D muscovite mica and the power of van der Waals epitaxy are expected to contribute significantly to the emerging transparent soft-technology research applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Friedrich, E-mail: Friedrich.Roth@cfel.de; Knupfer, Martin, E-mail: M.Knupfer@ifw-dresden.de
We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understandmore » the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.« less
Broken SU(3) x SU(3) x SU(3) x SU(3) Symmetry
DOE R&D Accomplishments Database
Freund, P. G. O.; Nambu, Y.
1964-10-01
We argue that the "Eight-fold Way" version of the SU(3) symmetry should be extended to a product of up to four separate and badly broken SU(3) groups, including the gamma{sub 5} type SU(3) symmetry. A hierarchy of subgroups (or subalgebras) are considered within this framework, and two candidates are found to be interesting in view of experimental evidence. Main features of the theory are: 1) the baryons belong to a nonet; 2) there is an octet of axial vector gauge mesons in addition to one or two octets of vector mesons; 3) pseudoscalar and scalar mesons exist as "incomplete" multiplets arising from spontaneous breakdown of symmetry.
What Do Smokers Want in A Smartphone-Based Cessation Application?
Oliver, Jason A; Hallyburton, Matthew B; Pacek, Lauren R; Mitchell, John T; Vilardaga, Roger; Fuemmeler, Bernard F; Joseph McClernon, F
2017-08-03
Fueled by rapid technological advances over the past decade, there is growing interest in the use of smartphones to aid in smoking cessation. Hundreds of applications have been developed for this purpose, but little is known about how these applications are accessed and used by smokers or what features smokers believe would be most useful. The present study sought to understand the prevalence of smartphone ownership and patterns of use among smokers as well as the perceived utility of various smartphone application features for smoking cessation that are currently in development or already available. Daily cigarette smokers (n = 224) reported on smartphone ownership, their patterns of smartphone usage, and perceived utility of features. Features were ranked according to perceived utility and differences in both perceived utility and general smartphone use patterns were examined as a function of demographic and smoking-related variables. Most smokers (80.4%) own a smartphone, but experience with smoking cessation applications is extremely rare (6.1%). Ownership and patterns of usage differed as a function of demographic and smoking-related variables. Overall, gain-framed features were rated as most useful, while loss-framed and interpersonal features were rated as least useful. Mobile health interventions have the potential to reach a large number of smokers but are currently underutilized. Additional effort is needed to ensure parity in treatment access. Gain-framed messages may be especially useful for engaging smokers, even if other features ultimately drive treatment effects. This study describes patterns of smartphone usage among smokers and identifies the smartphone application features smokers believe would be most useful during a quit attempt. Findings indicate which subgroups of smokers are most likely to be reached with mobile health interventions and suggests that inclusion of specific features may be helpful for engaging smokers in the smoking cessation process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Patscanui: an intuitive web interface for searching patterns in DNA and protein data.
Blin, Kai; Wohlleben, Wolfgang; Weber, Tilmann
2018-05-02
Patterns in biological sequences frequently signify interesting features in the underlying molecule. Many tools exist to search for well-known patterns. Less support is available for exploratory analysis, where no well-defined patterns are known yet. PatScanUI (https://patscan.secondarymetabolites.org/) provides a highly interactive web interface to the powerful generic pattern search tool PatScan. The complex PatScan-patterns are created in a drag-and-drop aware interface allowing researchers to do rapid prototyping of the often complicated patterns useful to identifying features of interest.
Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi
2016-12-01
This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Authentic Mars Research in the High School
NASA Astrophysics Data System (ADS)
Kortekaas, Katie; Leach, Dani
2015-01-01
As a 11th and 12th grade Astrobiology class we were charged with developing a scientific research question about the potential for life on Mars. We narrowed our big picture question to, 'Where should the next Mars rover land in order to study the volcanic and water features to find evidence of past or present extremophiles on Mars?'After a lot of searching through images on JMARS (although not extensive due to high school time constraints) we narrowed our interest to three areas of Mars we thought could be good candidates to land a rover there to do further research. We know from extremophiles on Earth that microscopic life need water and energy. It seems reasonable that Mars would be no different. We developed a research question, 'Does Kasei Valles, Dzigai Vallis and Hecate Tholus have volcanic features (lava flow, fractures, volcanoes, cryovolcanoes) and water features (layers of ice, hematite, carbonate, chaos)?'This question is important and interesting because by having a deeper understanding of whether these places have evidence of volcanic and water features, we will be able to decide where the best place to land a future rover would be. Evidence of volcanic and water features are important to help determine where to land our rover because in those areas, temperatures could have been warm and the land could be wet. In these conditions, the probability of life is higher.We individually did research through JMARS (CTX, THEMIS) in order to establish if those three areas could contain certain land features (volcanic and water features) that could possibly lead to the discovery of extremophiles. We evaluated the images to determine if the three areas have evidence of those volcanic and water features.Although we are not experts at identifying features we believe we have evidence to say that all three areas are interesting, astrobiologically, but Dzigai Vallis shows the most number of types of volcanic and water features. More importantly, through this process we as a class began to understand true authentic science and how it is performed.Thank you to Arizona State University for the curriculum and guidance.
A Lively Class Section for the Adult Education Second-Language Course.
ERIC Educational Resources Information Center
Carton, Dana
1983-01-01
Exercises with numbers designed to hold the interest of a heterogeneous group of adult students are described. They include games about age, counting, and cards. Meaningful content and active, interested participation are features of the techniques. (MSE)
A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1996-01-01
The feasibility of automatically identifying internal features of hardwood logs using CT imagery has been established previously. Features of primary interest are bark, knots, voids, decay, and clear wood. Our previous approach: filtered original CT images, applied histogram segmentation, grew volumes to extract 3-d regions, and applied a rule base, with Dempster-...
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Mnaymneh, Khaled
2005-09-01
The key feature that gives photonic crystals (PhCs) their ability to form photonic band gaps (PBGs) analogous to electronic band gaps of semiconductors is their translation symmetries. In recent years, however, it has been found that structures that possess only rotational symmetries can also have PBGs. In addition, these structures, known as Photonic Quasicrystals (PhQs), have other interesting qualities that set them apart of their translational cousins. One interesting feature is how defect states can be created in PhQs. If the rotational symmetry is disturbed, defect states analogous to defects states that are created in PhCs can be obtained. Simulation results of these defect states and other propagation properties of planar 12-fold photonic quasicrystal patterns, and its physical implementations in Silicon-On-Insulator (SOI) are presented. The main mechanisms required to make any optical multiplexing system is propagation; stop bands and add/drop ports. With the rotationally symmetry of the PhQ causing the stop bands, line defects facilitating propagation and now these specially design defect states acting as add/drop ports, a physical implementation of an OADM can be presented. Theoretical, practical and manufacturing benefits of PhQs are discussed. Simulated transmission plots are shown for various fill factors, dielectric contrast and propagation direction. It is shown that low index waveguides can be produced using the quasi-crystal photonic crystal pattern. Fabrication steps and results are shown.
Delivering Global Environmental Change Science Through Documentary Film
NASA Astrophysics Data System (ADS)
Dodgson, K.; Byrne, J. M.; Graham, J. R.
2010-12-01
Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.
Deep Learning for Population Genetic Inference.
Sheehan, Sara; Song, Yun S
2016-03-01
Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.
Deep Learning for Population Genetic Inference
Sheehan, Sara; Song, Yun S.
2016-01-01
Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908
NASA Astrophysics Data System (ADS)
Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man
2012-03-01
We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Investigation of kinematic features for dismount detection and tracking
NASA Astrophysics Data System (ADS)
Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.
2012-05-01
With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.
Larson, Eric; Lee, Adrian K C
2014-01-01
Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
Texture classification of normal tissues in computed tomography using Gabor filters
NASA Astrophysics Data System (ADS)
Dettori, Lucia; Bashir, Alia; Hasemann, Julie
2007-03-01
The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images
NASA Astrophysics Data System (ADS)
Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil
2013-12-01
This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.
Complex Molecules in the Laboratory - a Comparison of Chriped Pulse and Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Hermanns, Marius; Wehres, Nadine; Maßen, Jakob; Schlemmer, Stephan
2017-06-01
Detecting molecules of astrophysical interest in the interstellar medium strongly relies on precise spectroscopic data from the laboratory. In recent years, the advancement of the chirped-pulse technique has added many more options available to choose from. The Cologne emission spectrometer is an additional path to molecular spectroscopy. It allows to record instantaneously broad band spectra with calibrated intensities. Here we present a comparison of both methods: The Cologne chirped-pulse spectrometer as well as the Cologne emission spectrometer both cover the frequency range of 75-110 GHz, consistent with the ALMA Band 3 receivers. High sensitive heterodyne receivers with very low noise temperature amplifiers are used with a typical bandwidth of 2.5 GHz in a single sideband. Additionally the chirped-pulse spectrometer contains a high power amplifier of 200 mW for the excitation of molecules. Room temperature spectra of methyl cyanide and comparison of key features, such as measurement time, sensitivity, limitations and commonalities are shown in respect to identification of complex molecules of astrophysical importance. In addition, future developments for both setups will be discussed.
Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena
2017-04-19
Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-traditional geometries in engineered structural materials. But, microstructures generated from AM processes can be equally, if not more, complex than their conventionally processed counterparts. While some microstructural features observed in AM may also occur in more traditional solidification processes, the introduction of spatially and temporally mobile heat sources can result in significant microstructural heterogeneity. While grain size and shape in metal AM structures are understood to be highly dependent on both local and global temperature profiles, the exact form of this relation is not well understood. Wemore » implement an idealized molten zone and temperature-dependent grain boundary mobility in a kinetic Monte Carlo model to predict three-dimensional grain structure in additively manufactured metals. In order to demonstrate the flexibility of the model, synthetic microstructures are generated under conditions mimicking relatively diverse experimental results present in the literature. Simulated microstructures are then qualitatively and quantitatively compared to their experimental complements and are shown to be in good agreement.« less
Additive manufacturing techniques for the production of tissue engineering constructs.
Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo
2015-03-01
'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin
2018-04-24
Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
2011-01-01
Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots. PMID:21798070
NASA Astrophysics Data System (ADS)
Huynh, Benjamin Q.; Antropova, Natasha; Giger, Maryellen L.
2017-03-01
DCE-MRI datasets have a temporal aspect to them, resulting in multiple regions of interest (ROIs) per subject, based on contrast time points. It is unclear how the different contrast time points vary in terms of usefulness for computer-aided diagnosis tasks in conjunction with deep learning methods. We thus sought to compare the different DCE-MRI contrast time points with regard to how well their extracted features predict response to neoadjuvant chemotherapy within a deep convolutional neural network. Our dataset consisted of 561 ROIs from 64 subjects. Each subject was categorized as a non-responder or responder, determined by recurrence-free survival. First, features were extracted from each ROI using a convolutional neural network (CNN) pre-trained on non-medical images. Linear discriminant analysis classifiers were then trained on varying subsets of these features, based on their contrast time points of origin. Leave-one-out cross validation (by subject) was used to assess performance in the task of estimating probability of response to therapy, with area under the ROC curve (AUC) as the metric. The classifier trained on features from strictly the pre-contrast time point performed the best, with an AUC of 0.85 (SD = 0.033). The remaining classifiers resulted in AUCs ranging from 0.71 (SD = 0.028) to 0.82 (SD = 0.027). Overall, we found the pre-contrast time point to be the most effective at predicting response to therapy and that including additional contrast time points moderately reduces variance.
Kim, Yoon Jae; Heo, Jeong; Park, Kwang Suk; Kim, Sungwan
2016-08-01
Arrhythmia refers to a group of conditions in which the heartbeat is irregular, fast, or slow due to abnormal electrical activity in the heart. Some types of arrhythmia such as ventricular fibrillation may result in cardiac arrest or death. Thus, arrhythmia detection becomes an important issue, and various studies have been conducted. Additionally, an arrhythmia detection algorithm for portable devices such as mobile phones has recently been developed because of increasing interest in e-health care. This paper proposes a novel classification approach and features, which are validated for improved real-time arrhythmia monitoring. The classification approach that was employed for arrhythmia detection is based on the concept of ensemble learning and the Taguchi method and has the advantage of being accurate and computationally efficient. The electrocardiography (ECG) data for arrhythmia detection was obtained from the MIT-BIH Arrhythmia Database (n=48). A novel feature, namely the heart rate variability calculated from 5s segments of ECG, which was not considered previously, was used. The novel classification approach and feature demonstrated arrhythmia detection accuracy of 89.13%. When the same data was classified using the conventional support vector machine (SVM), the obtained accuracy was 91.69%, 88.14%, and 88.74% for Gaussian, linear, and polynomial kernels, respectively. In terms of computation time, the proposed classifier was 5821.7 times faster than conventional SVM. In conclusion, the proposed classifier and feature showed performance comparable to those of previous studies, while the computational complexity and update interval were highly reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pepper, Jessica K; Emery, Sherry L; Ribisl, Kurt M; Southwell, Brian G; Brewer, Noel T
2014-01-01
Introduction Electronic cigarettes (e-cigarettes) are battery-powered nicotine delivery devices that have become popular among smokers. We conducted an experiment to understand adult smokers’ responses to e-cigarette advertisements and investigate the impact of ads’ arguments and imagery. Methods A US national sample of smokers who had never tried e-cigarettes (n=3253) participated in a between-subjects experiment. Smokers viewed an online advertisement promoting e-cigarettes using one of three comparison types (emphasising similarity to regular cigarettes, differences or neither) with one of three images, for nine conditions total. Smokers then indicated their interest in trying e-cigarettes. Results Ads that emphasised differences between e-cigarettes and regular cigarettes elicited more interest than ads without comparisons (p<0.01), primarily due to claims about e-cigarettes’ lower cost, greater healthfulness and utility for smoking cessation. However, ads that emphasised the similarities of the products did not differ from ads without comparisons. Ads showing a person using an e-cigarette created more interest than ads showing a person without an e-cigarette (p<0.01). Conclusions Interest in trying e-cigarettes was highest after viewing ads with messages about differences between regular and electronic cigarettes and ads showing product use. If e-cigarettes prove to be harmful or ineffective cessation devices, regulators might restrict images of e-cigarette use in advertising, and public health messages should not emphasise differences between regular and electronic cigarettes. To inform additional regulations, future research should seek to identify what advertising messages and features appeal to youth. PMID:24935896
Semi-automated surface mapping via unsupervised classification
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-09-01
Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.
Defining the Optimal Region of Interest for Hyperemia Grading in the Bulbar Conjunctiva
Sánchez Brea, María Luisa; Mosquera González, Antonio; Evans, Katharine; Pena-Verdeal, Hugo
2016-01-01
Conjunctival hyperemia or conjunctival redness is a symptom that can be associated with a broad group of ocular diseases. Its levels of severity are represented by standard photographic charts that are visually compared with the patient's eye. This way, the hyperemia diagnosis becomes a nonrepeatable task that depends on the experience of the grader. To solve this problem, we have proposed a computer-aided methodology that comprises three main stages: the segmentation of the conjunctiva, the extraction of features in this region based on colour and the presence of blood vessels, and, finally, the transformation of these features into grading scale values by means of regression techniques. However, the conjunctival segmentation can be slightly inaccurate mainly due to illumination issues. In this work, we analyse the relevance of different features with respect to their location within the conjunctiva in order to delimit a reliable region of interest for the grading. The results show that the automatic procedure behaves like an expert using only a limited region of interest within the conjunctiva. PMID:28096890
Interesting Features in Spirit's Uphill View
NASA Technical Reports Server (NTRS)
2004-01-01
Planetary scientists got excited when they saw this imagery coming in from NASA's Mars Exploration Rover Spirit because they could see hints of rock strata and other interesting geologic features ahead. In the middle of this image, from upper left to the lower right, lies a trough that resembles a small ravine. To the right of that and a little way up the hill, beyond a rock-strewn surface, sits a small rounded ridge. Fine horizontal streaks, just perceptible in this image, suggest possible layering in the bedrock. Above that are rock features that appear to drape across the slopes. Scientists are discussing whether to take the rover closer or select other interesting targets for further study. This view looks eastward from the 'West Spur' of the 'Columbia Hills,' where Spirit has been conducting scientific investigations. It is a mosaic of several frames Spirit took with its panoramic camera on the rover's 229th martian day, or sol, (Aug. 24, 2004). The field of view is 48 degrees from left to right. The image is presented in a cylindrical projection with geometrical seam correction.ERIC Educational Resources Information Center
McIntosh, Phyllis
2013-01-01
Motorcycles are the subject of this feature article, which explores such topics as the history of motorcycles, types of motorcycles, special interest motorcycle clubs, motorcycle rallies, the Harley-Davidson company, and Rolling Thunder. A list of websites of interest and a glossary of "motorcycle jargon" are included.
The value of Geoheritage and implications for the assessment
NASA Astrophysics Data System (ADS)
Perret, Amandine; Reynard, Emmanuel
2014-05-01
Geological, geomorphological, hydrological and pedological features form with biological elements the natural heritage, which, in addition to cultural material features (historical monuments, archaeological vestiges) or intangible elements of the culture (e.g. traditions) constitute the heritage of an area, a country or even the World. Heritage recognition is the result of a complex process including the awareness of the heritage value by specialists (e.g. scientists), by militants (e.g. environmental associations) and then by large circles of the society. The emergence of this awareness often happens in times of crisis (Di Méo, 2008) (e.g. when species are close to disappear) and is not concomitant for all parts of nature or culture. Until recently geological and geomorphological features have not been fully recognized as heritage by the society. The current context of environmental crisis (climate change, overexploitation of natural resources) seems to be one of the drivers of a process of geoheritage recognition in several parts of the World. In this process, the first stage is often the selection of objects worth to be conserved and transmitted to the future generations. This selection, carried out by geoscientists, is funded on a set of values attributed to the potential heritage objects. The definition of these values is underway in the scientific community since the 1990s. Two main lines of research have emerged. (1) The first one reflects an anthropo-centred conception of Nature. These authors (e.g. Reynard, 2005) consider that the core value of geosites is their scientific importance for the knowledge of the Earth, climate and life history on the planet Earth; this central value (scientific) may be completed by several so-called additional values (e.g. ecological, cultural, aesthetic); they form together the intrinsic value of geosites. In this context, "intrinsic" is understood as inherent in the nature of the object as defined by the Earth sciences. In addition, several works (e.g. Giusti and Calvet, 2010) have demonstrated that this intrinsic value can completed by a second group of interests forming the social value of geosites, often defined based on their interest for education or tourism. (2) A second view exists, based on an eco-centred conception of Nature (Sharples, 2002). These works assign importance to geological and geomorphological objects without any reference to human interests. The assessment of the geodiversity can also be considered as an eco-centred tentative of defining the value of the "geonature" per se. A detailed comparison of various geosite assessment methods relating to the first conception shows that: (1) the main values considered are very similar even if the criteria used for the assessment and their weighting can vary from one method to the other; 2) more than the criteria to be used, it is the transparency of the procedure that is important for understanding how the sites have been selected; (3) new research is needed to evaluate what are the differences between the selection funded by the anthropo- and eco-centred assessment methods.
Is adermatoglyphia an additional feature of Kindler Syndrome?
Almeida, Hiram Larangeira de; Goetze, Fernanda Mendes; Fong, Kenneth; Lai-Cheong, Joey; McGrath, John
2015-01-01
A typical feature of Kindler Syndrome is skin fragility; this condition in currently classified as a form of epidermolysis bullosa. We describe a rarely reported feature of two cases, one sporadic and one familial; both patients noticed acquired adermatoglyphia. The loss of dermatoglyphics could be an additional feature of this syndrome.
Code of Federal Regulations, 2010 CFR
2010-07-01
... whether: (1) The information requested is essential for processing the license application; and (2) The... or other interested party requests additional information? 148.108 Section 148.108 Navigation and... requests additional information? (a) Any Federal or State agency or other interested person may recommend...
Optimizing morphology through blood cell image analysis.
Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J
2018-05-01
Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.
Tunneling spectra for electrons in the lowest Landau level
NASA Astrophysics Data System (ADS)
Burnell, F. J.; Simon, Steven H.
2010-03-01
The recently developed experimental technique of time dependent capacitance spectroscopy [1] allows for measurements of high-resolution tunneling spectra of 2DEGs in the quantum Hall regime, giving a detailed probe of the single particle spectral function (electron addition and subtraction spectra). These experiments show a number of interesting features including Landau level structure, exchange enhanced Zeeman energy, Coulomb gap physics, effects of fractional quantization, as well as several key features that remain to be explained. While there has been some prior theoretical work[2] towards explaining low energy Coulomb gap features of tunneling spectra found in much earlier tunneling experiments [3], the new experiments[1] have uncovered physics outside of the prior theoretical explanations. Building on a number of these prior theoretical works, we investigate theoretically the expected tunneling spectra for electrons in low Landau levels, including the effects of electron spin and coupling to collective modes. [1] O. E. Dial, R.C. Ashoori, L.N. Pfeiffer, and K.W. West, Nature 448, 176-179 (2007) ; O. E. Dial et al, unpublished. [2] I. Aleiner et al, Phys. Rev. Lett 74 3435; (1994) S. R. E. Yang and A. MacDonald PRL 70 4110 (1993); S. He, P.M. Platzman, and B. I. Halperin, PRL 71 777 (1993). [3] J. P. Eisenstein et al, Phy. Rev. Lett. 69, 3804 (1992).
Reinforcement of timber beams with carbon fibers reinforced plastics
NASA Astrophysics Data System (ADS)
Gugutsidze, G.; Draškovič, F.
2010-06-01
Wood is a polymeric material with many valuable features and which also lacks some negative features. In order to keep up with high construction rates and the minimization of negative effects, wood has become one of the most valuable materials in modern engineering. But the use of timber material economically is also an actual problem in order to protect the environment and improve natural surroundings. A panel of scientists is interested in solving these problems and in creating rational structures, where timber can be used efficiently. These constructions are as follows: glue-laminated (gluelam), composed and reinforced wooden constructions. Composed and reinforced wooden constructions are examined less, but according to researches already carried out, it is clear that significant work can be accomplished in creating rational, highly effective and economic timber constructions. The paper deals with research on the formation of composed fiber-reinforced beams (CFRP) made of timber and provide evidence of their effectiveness. The aim of the paper is to investigate cross-bending of CFRP-reinforced gluelaminated timber beams. According to the results we were able to determine the additional effectiveness of reinforcement with CFRP (which depends on the CFRP material's quality, quantity and module of elasticity) on the mechanical features of timber and a whole beam.
Schneider, Tiffany Rae; McFarland, W.D.
1996-01-01
A hydrologic reconnaissance of the Medicine Lake Volcano area was done to collect data needed for the design of a hydrologic monitoring plan. The reconnaissance was completed during two field trips made in June and September 1992, during which geothermal and hydrologic features of public interest in the Medicine Lake area were identified. Selected wells, springs, and geothermal features were located and documented, and initial water-level, discharge, temperature, and specific-conductance measurements were made. Lakes in the study area also were surveyed during the September field trip. Temperature, specific- conductance, dissolved oxygen, and pH data were collected by using a multiparameter probe. The proposed monitoring plan includes measurement of water levels in wells, discharge from springs, and lake stage, as well as analysis of well-,spring-, and lake-water quality. In determining lake-water quality, data for both stratified and unstratified conditions would be considered. (Data for stratified conditions were collected during the reconnaissance phase of this project, but data for unstratified conditions were not.) In addition, lake stage also would be monitored. A geothermal feature near Medicine Lake is a "hot spot" from which hot gases discharge from two distinct vents. Gas chemistry and temperature would be monitored in one of these vents.
Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis
2015-01-01
DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245
Luque, Amalia; Gómez-Bellido, Jesús; Carrasco, Alejandro; Barbancho, Julio
2018-06-03
The analysis and classification of the sounds produced by certain animal species, notably anurans, have revealed these amphibians to be a potentially strong indicator of temperature fluctuations and therefore of the existence of climate change. Environmental monitoring systems using Wireless Sensor Networks are therefore of interest to obtain indicators of global warming. For the automatic classification of the sounds recorded on such systems, the proper representation of the sound spectrum is essential since it contains the information required for cataloguing anuran calls. The present paper focuses on this process of feature extraction by exploring three alternatives: the standardized MPEG-7, the Filter Bank Energy (FBE), and the Mel Frequency Cepstral Coefficients (MFCC). Moreover, various values for every option in the extraction of spectrum features have been considered. Throughout the paper, it is shown that representing the frame spectrum with pure FBE offers slightly worse results than using the MPEG-7 features. This performance can easily be increased, however, by rescaling the FBE in a double dimension: vertically, by taking the logarithm of the energies; and, horizontally, by applying mel scaling in the filter banks. On the other hand, representing the spectrum in the cepstral domain, as in MFCC, has shown additional marginal improvements in classification performance.
Aggregation of p-Sulfonatocalixarene-Based Amphiphiles and Supra-Amphiphiles
Basilio, Nuno; Francisco, Vitor; Garcia-Rio, Luis
2013-01-01
p-Sulfonatocalixarenes are a special class of water soluble macrocyclic molecules made of 4-hydroxybenzenesulfonate units linked by methylene bridges. One of the main features of these compounds relies on their ability to form inclusion complexes with cationic and neutral species. This feature, together with their water solubility and apparent biological compatibility, had enabled them to emerge as one the most important host receptors in supramolecular chemistry. Attachment of hydrophobic alkyl chains to these compounds leads to the formation of macrocyclic host molecules with amphiphilic properties. Like other oligomeric surfactants, these compounds present improved performance with respect to their monomeric counterparts. In addition, they hold their recognition abilities and present several structural features that depend on the size of the macrocycle and on the length of the alkyl chain, such as preorganization, flexibility and adopted conformations, which make these molecules very interesting to study structure-aggregation relationships. Moreover, the recognition abilities of p-sulfonatocalixarenes enable them to be applied in the design of amphiphiles constructed from non-covalent, rather than covalent, bonds (supramolecular amphiphiles). In this review, we summarize the developments made on the design and synthesis of p-sulfonatocalixarenes-based surfactants, the characterization of their self-assembly properties and on how their structure affects these properties. PMID:23380960
Banna, Jinan; Grace Lin, Meng-Fen; Stewart, Maria; Fialkowski, Marie K.
2016-01-01
Fostering interaction in the online classroom is an important consideration in ensuring that students actively create their own knowledge and reach a high level of achievement in science courses. This study focuses on fostering interaction in an online introductory nutrition course offered in a public institution of higher education in Hawai‘i, USA. Interactive features included synchronous discussions and polls in scheduled sessions, and social media tools for sharing of information and resources. Qualitative student feedback was solicited regarding the new course features. Findings indicated that students who attended monthly synchronous sessions valued live interaction with peers and the instructor. Issues identified included technical difficulties during synchronous sessions, lack of participation on the part of fellow students in discussion and inability to attend synchronous sessions due to scheduling conflicts. In addition, few students made use of the opportunity to interact via social media. While students indicated that the interactive components of the course were valuable, several areas in which improvement may be made remain. Future studies may explore potential solutions to issues identified with new features to further promote interaction and foster learning in the course. Recommendations for instructors who are interested in offering online science courses in higher education are provided. PMID:27441032
Anatomical curve identification
Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise
2015-01-01
Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943
Some of the most interesting CASP11 targets through the eyes of their authors
Kryshtafovych, Andriy; Moult, John; Baslé, Arnaud; Burgin, Alex; Craig, Timothy K.; Edwards, Robert A.; Fass, Deborah; Hartmann, Marcus D.; Korycinski, Mateusz; Lewis, Richard J.; Lorimer, Donald; Lupas, Andrei N.; Newman, Janet; Peat, Thomas S.; Piepenbrink, Kurt H.; Prahlad, Janani; van Raaij, Mark J.; Rohwer, Forest; Segall, Anca M.; Seguritan, Victor; Sundberg, Eric J.; Singh, Abhimanyu K.; Wilson, Mark A.
2015-01-01
ABSTRACT The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11. Proteins 2016; 84(Suppl 1):34–50. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26473983
The Starship Philosophy: Its Heritage and Competitors
NASA Astrophysics Data System (ADS)
Ashworth, S.
The distinctive features of the astronautical philosophy characteristic of the current surge of interest in interstellar spaceflight are examined and contrasted with the conflicting features of more Earthbound philosophies in order to elucidate the presentday place and past heritage of the astronautical philosophy in human thought.
Benign metastasizing leiomyoma presenting as multiple cystic pulmonary nodules: a case report.
Choe, Yeong Hun; Jeon, So Yeon; Lee, Yoon Chae; Chung, Myung Ja; Park, Seung Yong; Lee, Yong Chul; Kim, So Ri
2017-09-12
Benign metastatic leiomyoma (BML) is an extremely rare disease. Although uterine leiomyomas are benign histologically, they can metastasize to distant sites. While the incidence is very low, the lung is the organ most frequently affected by BML. Pulmonary BML usually presents as numerous well-defined nodules of various sizes, while the cavitary or cystic features in the nodules are rarely observed on radiologic images. A 52-year-old woman complained of cough and dyspnea for one month. She had been previously diagnosed with uterine leiomyoma and had undergone total hysterectomy about 14 years prior. High-resolution computed tomography (CT) images showed that there were multiple cystic nodules of various sizes in both lungs. Pathologic examination revealed that the pulmonary nodule had complex branching glandular structures lined by a single layer of simple cuboidal to columnar epithelium that was surrounded by abundant spindle cells. Additional immunohistochemistry data suggested that pulmonary nodule diagnosis was BML-associated uterine leiomyoma. In this report, we introduce an interesting case of pulmonary BML that presented as a combination of various kinds of nodules including simple round nodules, simple cysts, and cysts with a solid portion, which are very rare radiologic features of BML in lung. In addition, when the patient is a woman of reproductive age, physicians should meticulously review the gynecological history and suspect BML when there are various cystic pulmonary lesions.
Mourão-Miranda, Janaina; Hardoon, David R.; Hahn, Tim; Marquand, Andre F.; Williams, Steve C.R.; Shawe-Taylor, John; Brammer, Michael
2011-01-01
Pattern recognition approaches, such as the Support Vector Machine (SVM), have been successfully used to classify groups of individuals based on their patterns of brain activity or structure. However these approaches focus on finding group differences and are not applicable to situations where one is interested in accessing deviations from a specific class or population. In the present work we propose an application of the one-class SVM (OC-SVM) to investigate if patterns of fMRI response to sad facial expressions in depressed patients would be classified as outliers in relation to patterns of healthy control subjects. We defined features based on whole brain voxels and anatomical regions. In both cases we found a significant correlation between the OC-SVM predictions and the patients' Hamilton Rating Scale for Depression (HRSD), i.e. the more depressed the patients were the more of an outlier they were. In addition the OC-SVM split the patient groups into two subgroups whose membership was associated with future response to treatment. When applied to region-based features the OC-SVM classified 52% of patients as outliers. However among the patients classified as outliers 70% did not respond to treatment and among those classified as non-outliers 89% responded to treatment. In addition 89% of the healthy controls were classified as non-outliers. PMID:21723950
Neural Network Target Identification System for False Alarm Reduction
NASA Technical Reports Server (NTRS)
Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.
A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series
NASA Astrophysics Data System (ADS)
Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz
2014-03-01
Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.
3D joint inversion of gravity-gradient and borehole gravity data
NASA Astrophysics Data System (ADS)
Geng, Meixia; Yang, Qingjie; Huang, Danian
2017-12-01
Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.
Preliminary evaluation of the 15 October 1972 ERTS-1 imagery of east central Ohio (scene 1034-15415)
NASA Technical Reports Server (NTRS)
Pettyjohn, W. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Results of a general, physical interpretation of ERTS-1 imagery of east central Ohio are presented. Special emphasis is placed upon geologic features, such as linear features and hydrologic features. Man-made features are included as a matter of interest and image location. The interpretation is compared to available maps of the area and from this an assessment that ERTS-1 is potentially useful for updating and producing geological maps.
Is adermatoglyphia an additional feature of Kindler Syndrome?*
de Almeida Jr, Hiram Larangeira; Goetze, Fernanda Mendes; Fong, Kenneth; Lai-Cheong, Joey; McGrath, John
2015-01-01
A typical feature of Kindler Syndrome is skin fragility; this condition in currently classified as a form of epidermolysis bullosa. We describe a rarely reported feature of two cases, one sporadic and one familial; both patients noticed acquired adermatoglyphia. The loss of dermatoglyphics could be an additional feature of this syndrome. PMID:26375235
Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control
NASA Astrophysics Data System (ADS)
Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.
2012-04-01
A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.
Multi-channel MRI segmentation of eye structures and tumors using patient-specific features
Ciller, Carlos; De Zanet, Sandro; Kamnitsas, Konstantinos; Maeder, Philippe; Glocker, Ben; Munier, Francis L.; Rueckert, Daniel; Thiran, Jean-Philippe
2017-01-01
Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed. PMID:28350816
Spectral analysis of time series of categorical variables in earth sciences
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Rodríguez-Tovar, Francisco J.; Dorador, Javier
2016-10-01
Time series of categorical variables often appear in Earth Science disciplines and there is considerable interest in studying their cyclic behavior. This is true, for example, when the type of facies, petrofabric features, ichnofabrics, fossil assemblages or mineral compositions are measured continuously over a core or throughout a stratigraphic succession. Here we deal with the problem of applying spectral analysis to such sequences. A full indicator approach is proposed to complement the spectral envelope often used in other disciplines. Additionally, a stand-alone computer program is provided for calculating the spectral envelope, in this case implementing the permutation test to assess the statistical significance of the spectral peaks. We studied simulated sequences as well as real data in order to illustrate the methodology.
Jung, Tae-Sung; Yeo, Hock Chuan; Reddy, Satty G; Cho, Wan-Sup; Lee, Dong-Yup
2009-11-01
WEbcoli is a WEb application for in silico designing, analyzing and engineering Escherichia coli metabolism. It is devised and implemented using advanced web technologies, thereby leading to enhanced usability and dynamic web accessibility. As a main feature, the WEbcoli system provides a user-friendly rich web interface, allowing users to virtually design and synthesize mutant strains derived from the genome-scale wild-type E.coli model and to customize pathways of interest through a graph editor. In addition, constraints-based flux analysis can be conducted for quantifying metabolic fluxes and charactering the physiological and metabolic states under various genetic and/or environmental conditions. WEbcoli is freely accessible at http://webcoli.org. cheld@nus.edu.sg.
Data mining the PDB for glyco-related data.
Lütteke, Thomas; von der Lieth, Claus W
2009-01-01
The 3D structural data of glycoprotein or protein-carbohydrate complexes that are found in the Protein Data Bank (PDB) are an interesting data source for glycobiologists. Unfortunately, carbohydrate components are difficult to find with the means provided by the PDB. The GLYCOSCIENCES.de internet portal offers a variety of tools and databases to locate and analyze these structures. This chapter describes how to find PDB entries that feature a specific carbohydrate structure and how to locate carbohydrate residues in a 3D structure file and to check their consistency. In addition to this, methods to statistically analyze torsion angles and the abundance of amino acids both in the neighborhood of glycosylation sites and in the spatial vicinity of non-covalently bound carbohydrate chains are summarized.
Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings
Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.
2008-01-01
The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often present in addition to the results of bivariate and multivariable analyses. Qualitative metasummary, which includes the extraction, grouping, and formatting of findings, and the calculation of frequency and intensity effect sizes, can be used to produce mixed research syntheses and to conduct a posteriori analyses of the relationship between reports and findings. PMID:17243111
Electric discharges in air - Near infrared emission spectrum.
NASA Technical Reports Server (NTRS)
Benesch, W. M.; Saum, K. A.
1972-01-01
The emission from glow discharges in flowing air has been investigated in the 1- to 5-micron wavelength region with a vacuum spectrometer. Most of the spectral features observed in the pressure range of .5 to 10 torr are identified, including atomic lines of OI, NI, and HI and molecular bands of N2, NO, N2O, CO2, and CO. The spectra are presented as a function of pressure and a table compiled of the atomic lines. Of particular interest are the contrasts between the emission of the air discharge and that of the pure gases, nitrogen and oxygen. In addition, the results of studies of several discharge modes, employing steady voltages and pulsed, provide data on details of the energy flow within the plasma.
Miner, Daniel; Triesch, Jochen
2016-01-01
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring. PMID:26866369
High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae
NASA Astrophysics Data System (ADS)
Hagenaar-Daggett, Hermance J.; Shine, R.
2010-05-01
The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.
Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor
Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2015-01-01
In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods. PMID:26343654
Microscopic and continuum descriptions of Janus motor fluid flow fields
Reigh, Shang Yik; Schofield, Jeremy; Kapral, Raymond
2016-01-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698037
Zheng, Suqing; Santosh Laxmi, Y R; David, Emilie; Dinkova-Kostova, Albena T; Shiavoni, Katherine H; Ren, Yanqing; Zheng, Ying; Trevino, Isaac; Bumeister, Ronald; Ojima, Iwao; Wigley, W Christian; Bliska, James B; Mierke, Dale F; Honda, Tadashi
2012-05-24
Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.
Hartman, Jeffrey
2014-04-01
The uncinate process and its associated uncovertebral articulation are features unique to the cervical spine. This review examines the morphology of these unique structures with particular emphasis on the regional anatomy, development and clinical significance. Five electronic databases were utilized in the literature search and additional relevant citations were retrieved from the references. A total of 74 citations were included for review. This literature review found that the uncinate processes and uncovertebral articulations are rudimentary at birth and develop and evolve with age. With degeneration they become clinically apparent with compression of related structures; most importantly affecting the spinal nerve root and vertebral artery. The articulations have also been found to precipitate torticollis when edematous and be acutely damaged in severe head and neck injuries. The uncinate processes are also important in providing stability and guiding the motion of the cervical spine. This review is intended to re-examine an often overlooked region of the cervical spine as not only an interesting anatomical feature but also a clinically relevant one. Copyright © 2014 Wiley Periodicals, Inc.
Sensory Hair Cells: An Introduction to Structure and Physiology.
McPherson, Duane R
2018-06-18
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian.Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
NASA Astrophysics Data System (ADS)
Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho
2013-09-01
Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.
Issues in International Energy Consumption Analysis: Electricity Usage in India’s Housing Sector
2014-01-01
India offers a unique set of features for studying electricity use in the context of a developing country. First, it has a rapidly developing economy with high yearly growth rates in gross domestic product (GDP). Second, it has the second -largest population in the world and is likely to have the largest population in the future. Third, its electric system is maturing—with known difficulties (outages, shortages, issues with reliability and quality) that are characteristic of a developing country. This article focuses on electricity use in the residential sector of India and discusses key trends and provides an overview of available usage estimates from various sources. Indian households are an interesting environment where many of India’s unique features interact. The recent economic gains correlate with rising incomes and possible changes in living standards, which could affect electricity or other energy use within households. Additionally, the maturing electric system and large population in India both offer opportunities to study a range of interactions between electrification and electricity usage in a developing country.
Evaluating molecular cobalt complexes for the conversion of N2 to NH3.
Del Castillo, Trevor J; Thompson, Niklas B; Suess, Daniel L M; Ung, Gaël; Peters, Jonas C
2015-10-05
Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.
Using clustering and a modified classification algorithm for automatic text summarization
NASA Astrophysics Data System (ADS)
Aries, Abdelkrime; Oufaida, Houda; Nouali, Omar
2013-01-01
In this paper we describe a modified classification method destined for extractive summarization purpose. The classification in this method doesn't need a learning corpus; it uses the input text to do that. First, we cluster the document sentences to exploit the diversity of topics, then we use a learning algorithm (here we used Naive Bayes) on each cluster considering it as a class. After obtaining the classification model, we calculate the score of a sentence in each class, using a scoring model derived from classification algorithm. These scores are used, then, to reorder the sentences and extract the first ones as the output summary. We conducted some experiments using a corpus of scientific papers, and we have compared our results to another summarization system called UNIS.1 Also, we experiment the impact of clustering threshold tuning, on the resulted summary, as well as the impact of adding more features to the classifier. We found that this method is interesting, and gives good performance, and the addition of new features (which is simple using this method) can improve summary's accuracy.
... rss.html Question: Do you have a Really Simple Syndication (RSS) feed for MedlinePlus? To use the sharing features on this page, please enable JavaScript. Answer: MedlinePlus offers a variety of RSS feeds to suit your particular interests. You can subscribe to general interest feeds that ...
Exploring Marine Science through the University of Delaware's TIDE camp
NASA Astrophysics Data System (ADS)
Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.
2012-12-01
For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat
On Deep Learning for Trust-Aware Recommendations in Social Networks.
Deng, Shuiguang; Huang, Longtao; Xu, Guandong; Wu, Xindong; Wu, Zhaohui
2017-05-01
With the emergence of online social networks, the social network-based recommendation approach is popularly used. The major benefit of this approach is the ability of dealing with the problems with cold-start users. In addition to social networks, user trust information also plays an important role to obtain reliable recommendations. Although matrix factorization (MF) becomes dominant in recommender systems, the recommendation largely relies on the initialization of the user and item latent feature vectors. Aiming at addressing these challenges, we develop a novel trust-based approach for recommendation in social networks. In particular, we attempt to leverage deep learning to determinate the initialization in MF for trust-aware social recommendations and to differentiate the community effect in user's trusted friendships. A two-phase recommendation process is proposed to utilize deep learning in initialization and to synthesize the users' interests and their trusted friends' interests together with the impact of community effect for recommendations. We perform extensive experiments on real-world social network data to demonstrate the accuracy and effectiveness of our proposed approach in comparison with other state-of-the-art methods.
Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry
Gonçalves, F. A. G.; Colen, G.; Takahashi, J. A.
2014-01-01
Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest. PMID:24715814
Skynet Junior Scholars- Sharing the Universe with Blind/Low Vision Youth
NASA Astrophysics Data System (ADS)
Meredith, Kate K.; Hoette, Vivian; Kron, Richard; Heatherly, Sue Ann; Williamson, Kathryn; Gurton, Suzanne; Haislip, Josh; Reichart, Dan
2015-08-01
Skynet Junior Scholars, a project funded by the National Science Foundation, aims to engage middle school youth including youth with visual and hearing impairments in investigating the universe with the same tools professionals use. Project deliverables include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project deliverables to the greatest extent possible given existing accessibility technologies. In this poster we describe our experience in field-testing SJS activities with 29 blind/low vision youth attending a Lion’s Club summer camp. From our observations and preliminary results from pre and post surveys and interviews, we learned that rather than creating a new interest in STEM, we were instead nourishing pre-existing interest giving students their first direct experience in observational astronomy. Additional accessibility features have been added to the SJS program since the initial pilot testing. Full testing is scheduled for July 2015.
Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities
NASA Astrophysics Data System (ADS)
Kulp, S. A.; Strauss, B.
2015-12-01
Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.
An interdisciplinary analysis of ERTS data for Colorado mountain environments using ADP Techniques
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1972-01-01
Author identified significant preliminary results from the Ouachita portion of the Texoma frame of data indicate many potentials in the analysis and interpretation of ERTS data. It is believed that one of the more significant aspects of this analysis sequence has been the investigation of a technique to relate ERTS analysis and surface observation analysis. At present a sequence involving (1) preliminary analysis based solely upon the spectral characteristics of the data, followed by (2) a surface observation mission to obtain visual information and oblique photography to particular points of interest in the test site area, appears to provide an extremely efficient technique for obtaining particularly meaningful surface observation data. Following such a procedure permits concentration on particular points of interest in the entire ERTS frame and thereby makes the surface observation data obtained to be particularly significant and meaningful. The analysis of the Texoma frame has also been significant from the standpoint of demonstrating a fast turn around analysis capability. Additionally, the analysis has shown the potential accuracy and degree of complexity of features that can be identified and mapped using ERTS data.
Action recognition via cumulative histogram of multiple features
NASA Astrophysics Data System (ADS)
Yan, Xunshi; Luo, Yupin
2011-01-01
Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
Long-range dependence and multifractality in the term structure of LIBOR interest rates
NASA Astrophysics Data System (ADS)
Cajueiro, Daniel O.; Tabak, Benjamin M.
2007-01-01
In this paper we present evidence of long-range dependence in LIBOR interest rates. We study a data set from 2000 to 2005, for six different currencies and various maturities. Empirical results suggest that the degree of long-range dependence decreases with maturity, with the exception of interest rates on Japanese Yen and on Indonesian Rupiah. Furthermore, interest rates have a multifractal nature and the degree of multifractality is much stronger for Indonesia (emerging market). These findings suggest that interest rates derivatives should take these features into account. Furthermore, fixed income risk and portfolio management should incorporate long-range dependence in the modeling of interest rates.
Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I
To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
JOVIAL/Ada Microprocessor Study.
1982-04-01
Study Final Technical Report interesting feature of the nodes is that they provide multiple virtual terminals, so it is possible to monitor several...Terminal Interface Tasking Except ion Handling A more elaborate system could allow such features as spooling, background jobs or multiple users. To a large...Another editor feature is the buffer. Buffers may hold small amounts of text or entire text objects. They allow multiple files to be edited simultaneously
Dynamic Optical Coherence Tomography in Dermatology.
Ulrich, Martina; Themstrup, Lotte; de Carvalho, Nathalie; Manfredi, Marco; Grana, Costantino; Ciardo, Silvana; Kästle, Raphaela; Holmes, Jon; Whitehead, Richard; Jemec, Gregor B E; Pellacani, Giovanni; Welzel, Julia
2016-01-01
Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the applicability of OCT for different neoplastic and inflammatory skin diseases. Of these, dynamic OCT (D-OCT) based on speckle variance OCT is of special interest as it allows the in vivo evaluation of blood vessels and their distribution within specific lesions, providing additional functional information and consequently greater density of data. In an effort to assess the potential of D-OCT for future scientific and clinical studies, we have therefore reviewed the literature and preliminary unpublished data on the visualization of the microvasculature using D-OCT. Information on D-OCT in skin cancers including melanoma, as well as in a variety of other skin diseases, is presented in an atlas. Possible diagnostic features are suggested, although these require additional validation. © 2016 S. Karger AG, Basel.
Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor
2014-03-01
Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.
3D printing of soft robotic systems
NASA Astrophysics Data System (ADS)
Wallin, T. J.; Pikul, J.; Shepherd, R. F.
2018-06-01
Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena
Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-traditional geometries in engineered structural materials. But, microstructures generated from AM processes can be equally, if not more, complex than their conventionally processed counterparts. While some microstructural features observed in AM may also occur in more traditional solidification processes, the introduction of spatially and temporally mobile heat sources can result in significant microstructural heterogeneity. While grain size and shape in metal AM structures are understood to be highly dependent on both local and global temperature profiles, the exact form of this relation is not well understood. Wemore » implement an idealized molten zone and temperature-dependent grain boundary mobility in a kinetic Monte Carlo model to predict three-dimensional grain structure in additively manufactured metals. In order to demonstrate the flexibility of the model, synthetic microstructures are generated under conditions mimicking relatively diverse experimental results present in the literature. Simulated microstructures are then qualitatively and quantitatively compared to their experimental complements and are shown to be in good agreement.« less
The Morphosyntax of Discontinuous Exponence
ERIC Educational Resources Information Center
Campbell, Amy Melissa
2012-01-01
This thesis offers a systematic treatment of discontinuous exponence, a pattern of inflection in which a single feature or a set of features bundled in syntax is expressed by multiple, distinct morphemes. This pattern is interesting and theoretically relevant because it represents a deviation from the expected one-to-one relationship between…
Activity Participation and Sensory Features among Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Little, Lauren M.; Ausderau, Karla; Sideris, John; Baranek, Grace T.
2015-01-01
Sensory features are highly prevalent among children with autism spectrum disorders (ASD) and have been shown to cluster into four patterns of response, including hyperresponsiveness, hyporesponsiveness, enhanced perception, and sensory interests, repetitions and seeking behaviors. Given the lack of large-scale research on the differential effects…
A Clearer View of Vista Features
ERIC Educational Resources Information Center
Descy, Don E.
2008-01-01
In this article, the author discusses some features of Windows Vista that may be of interest to teachers and/or their students. These are: (1) User Account Control; (2) Windows Firewall; (3) Windows Backup; (4) Parental Controls; (5) Windows Sidebar and Gadgets; (6) Instant Search; and (7) Windows ReadyBoost.
NASA Astrophysics Data System (ADS)
Dussault, Mary E.; Wright, Erika A.; Sadler, Philip; Sonnert, Gerhard; ITEAMS II Team
2018-01-01
Encouraging students to pursue careers in science, technology, engineering, and mathematics (STEM) is a high priority for national K-12 education improvement initiatives in the United States. Many educators have claimed that a promising strategy for nurturing early student interest in STEM is to engage them in authentic inquiry experiences. “Authentic” refers to investigations in which the questions are of genuine interest and importance to students, and the inquiry more closely resembles the way real science is done. Science education researchers and practitioners at the Harvard-Smithsonian Center for Astrophysics have put this theory into action with the development of YouthAstroNet, a nationwide online learning community of middle-school aged students, educators, and STEM professionals that features the MicroObservatory Robotic Telescope Network, professional image analysis software, and complementary curricula for use in a variety of learning settings. This preliminary study examines factors that influence YouthAstroNet participants' Science Affinity, STEM Identity, and STEM Career Interest, using the matched pre/post survey results of 261 participants as the data source. The pre/post surveys included some 40 items measuring affinity, identity, knowledge, and career interest. In addition, the post intervention instrument included a number of items in which students reported the instructional strategies they experienced as part of the program. A simple analysis of pre-post changes in affinity and interest revealed very little significant change, and for those items where a small pre-post effect was observed, the average change was most often negative. However, after accounting for students' different program treatment experiences and for their prior attitudes and interests, a predictor of significant student gains in Affinity, STEM Identity, Computer/Math Identity, and STEM Career Interest could be identified. This was the degree to which students reported using and experiencing the primary "authentic" learning activities of the YouthAstroNet program.
75 FR 29766 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
...-member renal cancer cell lines in the Tumor Cell Line Repository of the Urologic Oncology Branch (UOB... genetic features are well characterized: This cell line is part of NCI Urologic Oncology Branch's Tumor... Oncology Branch, is seeking statements of capability or interest from parties interested in collaborative...
Effects of face feature and contour crowding in facial expression adaptation.
Liu, Pan; Montaser-Kouhsari, Leila; Xu, Hong
2014-12-01
Prolonged exposure to a visual stimulus, such as a happy face, biases the perception of subsequently presented neutral face toward sad perception, the known face adaptation. Face adaptation is affected by visibility or awareness of the adapting face. However, whether it is affected by discriminability of the adapting face is largely unknown. In the current study, we used crowding to manipulate discriminability of the adapting face and test its effect on face adaptation. Instead of presenting flanking faces near the target face, we shortened the distance between facial features (internal feature crowding), and reduced the size of face contour (external contour crowding), to introduce crowding. We are interested in whether internal feature crowding or external contour crowding is more effective in inducing crowding effect in our first experiment. We found that combining internal feature and external contour crowding, but not either of them alone, induced significant crowding effect. In Experiment 2, we went on further to investigate its effect on adaptation. We found that both internal feature crowding and external contour crowding reduced its facial expression aftereffect (FEA) significantly. However, we did not find a significant correlation between discriminability of the adapting face and its FEA. Interestingly, we found a significant correlation between discriminabilities of the adapting and test faces. Experiment 3 found that the reduced adaptation aftereffect in combined crowding by the external face contour and the internal facial features cannot be decomposed into the effects from the face contour and facial features linearly. It thus suggested a nonlinear integration between facial features and face contour in face adaptation.
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
NASA Astrophysics Data System (ADS)
Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping
2018-03-01
In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic. Overlay improvements derived from a high-densely sampled Overlay map measured with 5x5 um2 In Device Metrology (IDM) targets were investigated on a customer Logic application. In this work we present both the main design aspects of the 5x5 um2 IDM targets, as well as the results on the improved Overlay performance.
Some of the most interesting CASP11 targets through the eyes of their authors.
Kryshtafovych, Andriy; Moult, John; Baslé, Arnaud; Burgin, Alex; Craig, Timothy K; Edwards, Robert A; Fass, Deborah; Hartmann, Marcus D; Korycinski, Mateusz; Lewis, Richard J; Lorimer, Donald; Lupas, Andrei N; Newman, Janet; Peat, Thomas S; Piepenbrink, Kurt H; Prahlad, Janani; van Raaij, Mark J; Rohwer, Forest; Segall, Anca M; Seguritan, Victor; Sundberg, Eric J; Singh, Abhimanyu K; Wilson, Mark A; Schwede, Torsten
2016-09-01
The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11. Proteins 2016; 84(Suppl 1):34-50. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Computational approaches for predicting biomedical research collaborations.
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.
2017-04-19
This enhanced color Jupiter image, taken by the JunoCam imager on NASA's Juno spacecraft, showcases several interesting features on the apparent edge (limb) of the planet. Prior to Juno's fifth flyby over Jupiter's mysterious cloud tops, members of the public voted on which targets JunoCam should image. This picture captures not only a fascinating variety of textures in Jupiter's atmosphere, it also features three specific points of interest: "String of Pearls," "Between the Pearls," and "An Interesting Band Point." Also visible is what's known as the STB Spectre, a feature in Jupiter's South Temperate Belt where multiple atmospheric conditions appear to collide. JunoCam images of Jupiter sometimes appear to have an odd shape. This is because the Juno spacecraft is so close to Jupiter that it cannot capture the entire illuminated area in one image -- the sides get cut off. Juno acquired this image on March 27, 2017, at 2:12 a.m. PDT (5:12 a.m. EDT), as the spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was about 12,400 miles (20,000 kilometers) from the planet. This enhanced color image was created by citizen scientist Bjorn Jonsson. https://photojournal.jpl.nasa.gov/catalog/PIA21389
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.
2016-04-01
Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.
NASA Astrophysics Data System (ADS)
Price, Stanton R.; Murray, Bryce; Hu, Lequn; Anderson, Derek T.; Havens, Timothy C.; Luke, Robert H.; Keller, James M.
2016-05-01
A serious threat to civilians and soldiers is buried and above ground explosive hazards. The automatic detection of such threats is highly desired. Many methods exist for explosive hazard detection, e.g., hand-held based sensors, downward and forward looking vehicle mounted platforms, etc. In addition, multiple sensors are used to tackle this extreme problem, such as radar and infrared (IR) imagery. In this article, we explore the utility of feature and decision level fusion of learned features for forward looking explosive hazard detection in IR imagery. Specifically, we investigate different ways to fuse learned iECO features pre and post multiple kernel (MK) support vector machine (SVM) based classification. Three MK strategies are explored; fixed rule, heuristics and optimization-based. Performance is assessed in the context of receiver operating characteristic (ROC) curves on data from a U.S. Army test site that contains multiple target and clutter types, burial depths and times of day. Specifically, the results reveal two interesting things. First, the different MK strategies appear to indicate that the different iECO individuals are all more-or-less important and there is not a dominant feature. This is reinforcing as our hypothesis was that iECO provides different ways to approach target detection. Last, we observe that while optimization-based MK is mathematically appealing, i.e., it connects the learning of the fusion to the underlying classification problem we are trying to solve, it appears to be highly susceptible to over fitting and simpler, e.g., fixed rule and heuristics approaches help us realize more generalizable iECO solutions.
NASA Astrophysics Data System (ADS)
Kallergi, Maria; Menychtas, Dimitrios; Georgakopoulos, Alexandros; Pianou, Nikoletta; Metaxas, Marinos; Chatziioannou, Sofia
2013-03-01
The purpose of this study was to determine whether image characteristics could be used to predict the outcome of ROC studies in PET/CT imaging. Patients suspected for recurrent thyroid cancer underwent a standard whole body (WB) examination and an additional high-resolution head-and-neck (HN) F18-FDG PET/CT scan. The value of the latter was determined with an ROC study, the results of which showed that the WB+HN combination was better than WB alone for thyroid cancer detection and diagnosis. Following the ROC experiment, the WB and HN images of confirmed benign or malignant thyroid disease were analyzed and first and second order textural features were determined. Features included minimum, mean, and maximum intensity, as well as contrast in regions of interest encircling the thyroid lesions. Lesion size and standard uptake values (SUV) were also determined. Bivariate analysis was applied to determine relationships between WB and HN features and between observer ROC responses and the various feature values. The two sets showed significant associations in the values of SUV, contrast, and lesion size. They were completely different when the intensities were considered; no relationship was found between the WB minimum, maximum, and mean ROI values and their HN counterparts. SUV and contrast were the strongest predictors of ROC performance on PET/CT examinations of thyroid cancer. The high resolution HN images seem to enhance these relationships but without a single dramatic effect as was projected from the ROC results. A combination of features from both WB and HN datasets may possibly be a more robust predictor of ROC performance.
Billis, Evdokia V; McCarthy, Christopher J; Stathopoulos, Ioannis; Kapreli, Eleni; Pantzou, Paulina; Oldham, Jacqueline A
2007-06-01
Identifying homogenous subgroups of low back pain (LBP) patients is considered a priority in musculoskeletal rehabilitation and is believed to enhance clinical outcomes. In order to achieve this, the specific features of each subgroup need to be identified. The aim of this study was to develop a list of clinical and cultural features that are included in the assessment of LBP patients in Greece, among health professionals. This 'list' will be, utilized in a clinical study for developing LBP subgroups. Three focus groups were conducted, each one comprising health professionals with homogenous characteristics and all coordinated by a single moderator. There were: 11 physiotherapists (PTs) with clinical experience in LBP patients, seven PTs specialized in LBP management, and five doctors with a particular spinal interest. The focus of discussions was to develop a list of clinical and cultural features that were important in the examination of LBP. Content analysis was performed by two researchers. Clinicians and postgraduates developed five categories within the History (Present Symptoms, History of Symptoms, Function, Psychosocial, Medical History) and six categories within the Physical Examination (Observation, Neurological Examination, Active and Passive Movements, Muscle Features and Palpation). The doctors identified four categories in History (Symptomatology, Function, Psychosocial, Medical History) and an additional in Physical Examination (Special Tests). All groups identified three cultural categories; Attitudes of Health Professionals, Patients' Attitudes and Health System influences. An extensive Greek 'list' of clinical and cultural features was developed from the groups' analysis. Although similarities existed in most categories, there were several differences across the three focus groups which will be discussed.
Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei
2018-01-01
The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.
NASA Astrophysics Data System (ADS)
Ruzhitskaya, Lanika; Speck, A.; Baldridge, S.; Briggs, J.
2014-01-01
The 2017 solar eclipse will pass over the Midwest and right over the University of Missouri in Columbia. This event presents us with a wonderful opportunity for science outreach and education programs. In preparation for this event, we use our Coronado solar telescope as a portable solar viewing observatory roving all over our campus. During these solar viewing events, students, faculty and staff have a chance to look through the telescope to discover for themselves-- and learn about-- the most prominent features of the Sun: limb darkening, sunspots, granulations, flares, prominences and filaments. Astronomy undergraduate and graduate students are on hand to answer questions and to hand out leaflets explaining the science behind these solar features. These solar observations represent excellent opportunities for those who want to know more about the Sun and its role in our lives: from solar activity to global warming; from the formation of the Sun, our planet and the entire Solar System down to the end of our Sun’s life. These events also benefit the volunteering students who learn how to explain complicated science concepts in a simple way to the general public. In addition, the portable solar observatory makes people aware about other science talks and events on our campus. These events are a great way to make people on campus aware about the upcoming solar eclipse. Over the course of the next four years we expect to have generated enough interest to be able to accomplish our goal of hosting solar eclipse festivities in August of 2017 in our football stadium in front of a massive crowd of interested observers and potential astronomy students.
Pepper, Jessica K; Emery, Sherry L; Ribisl, Kurt M; Southwell, Brian G; Brewer, Noel T
2014-07-01
Electronic cigarettes (e-cigarettes) are battery-powered nicotine delivery devices that have become popular among smokers. We conducted an experiment to understand adult smokers' responses to e-cigarette advertisements and investigate the impact of ads' arguments and imagery. A U.S. national sample of smokers who had never tried e-cigarettes (n=3253) participated in a between-subjects experiment. Smokers viewed an online advertisement promoting e-cigarettes using one of three comparison types (emphasising similarity to regular cigarettes, differences or neither) with one of three images, for nine conditions total. Smokers then indicated their interest in trying e-cigarettes. Ads that emphasised differences between e-cigarettes and regular cigarettes elicited more interest than ads without comparisons (p<0.01), primarily due to claims about e-cigarettes' lower cost, greater healthfulness and utility for smoking cessation. However, ads that emphasised the similarities of the products did not differ from ads without comparisons. Ads showing a person using an e-cigarette created more interest than ads showing a person without an e-cigarette (p<0.01). Interest in trying e-cigarettes was highest after viewing ads with messages about differences between regular and electronic cigarettes and ads showing product use. If e-cigarettes prove to be harmful or ineffective cessation devices, regulators might restrict images of e-cigarette use in advertising, and public health messages should not emphasise differences between regular and electronic cigarettes. To inform additional regulations, future research should seek to identify what advertising messages and features appeal to youth. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao
2017-02-01
In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert
2000-01-01
In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.
Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features
Fink, Elian; Heathers, James A. J.; de Rosnay, Marc
2015-01-01
Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (N study1 = 75; N study2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952
An international standard for observation data
NASA Astrophysics Data System (ADS)
Cox, Simon
2010-05-01
A generic information model for observations and related features supports data exchange both within and between different scientific and technical communities. Observations and Measurements (O&M) formalizes a neutral terminology for observation data and metadata. It was based on a model developed for medical observations, and draws on experience from geology and mineral exploration, in-situ monitoring, remote sensing, intelligence, biodiversity studies, ocean observations and climate simulations. Hundreds of current deployments of Sensor Observation Services (SOS), covering multiple disciplines, provide validation of the O&M model. A W3C Incubator group on 'Semantic Sensor Networks' is now using O&M as one of the bases for development of a formal ontology for sensor networks. O&M defines the information describing observation acts and their results, including the following key terms: observation, result, observed-property, feature-of-interest, procedure, phenomenon-time, and result-time. The model separates of the (meta-)data associated with the observation procedure, the observed feature, and the observation event itself. Observation results may take various forms, including scalar quantities, categories, vectors, grids, or any data structure required to represent the value of some property of some observed feature. O&M follows the ISO/TC 211 General Feature Model so non-geometric properties must be associated with typed feature instances. This requires formalization of information that may be trivial when working within some earth-science sub-disciplines (e.g. temperature, pressure etc. are associated with the atmosphere or ocean, and not just a location) but is critical to cross-disciplinary applications. It also allows the same structure and terminology to be used for in-situ, ex-situ and remote sensing observations, as well as for simulations. For example: a stream level observation is an in-situ monitoring application where the feature-of-interest is a reach, the observed property is water-level, and the result is a time-series of heights; stream quality is usually determined by ex-situ observation where the feature-of-interest is a specimen that is recovered from the stream, the observed property is water-quality, and the result is a set of measures of various parameters, or an assessment derived from these; on the other hand, distribution of surface temperature of a water body is typically determined through remote-sensing, where at observation time the procedure is located distant from the feature-of-interest, and the result is an image or grid. Observations usually involve sampling of an ultimate feature-of-interest. In the environmental sciences common sampling strategies are used. Spatial sampling is classified primarily by topological dimension (point, curve, surface, volume) and is supported by standard processing and visualisation tools. Specimens are used for ex-situ processing in most disciplines. Sampling features are often part of complexes (e.g. specimens are sub-divided; specimens are retrieved from points along a transect; sections are taken across tracts), so relationships between instances must be recorded. And observational campaigns involve collections of sampling features. The sampling feature model is a core part of O&M, and application experience has shown that describing the relationships between sampling features and observations is generally critical to successful use of the model. O&M was developed through Open Geospatial Consortium (OGC) as part of the Sensor Web Enablement (SWE) initiative. Other SWE standards include SensorML, SOS, Sensor Planning Service (SPS). The OGC O&M standard (Version 1) had two parts: part 1 describes observation events, and part 2 provides a schema sampling features. A revised version of O&M (Version 2) is to be published in a single document as ISO 19156. O&M Version 1 included an XML encoding for data exchange, which is used as the payload for SOS responses. The new version will provide a UML model only. Since an XML encoding may be generated following a rule, such as that presented in ISO 19136 (GML 3.2), it is not included in the standard directly. O&M Version 2 thus supports multiple physical implementations and versions.
Article and process for producing an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Jacala, Ariel Caesar Prepena; Kottilingam, Srikanth Chandrudu
An article and a process of producing an article are provided. The article includes a base material, a cooling feature arrangement positioned on the base material, the cooling feature arrangement including an additive-structured material, and a cover material. The cooling feature arrangement is between the base material and the cover material. The process of producing the article includes manufacturing a cooling feature arrangement by an additive manufacturing technique, and then positioning the cooling feature arrangement between a base material and a cover material.
ERIC Educational Resources Information Center
Koellner, Karen; Jacobs, Jennifer; Borko, Hilda
2011-01-01
This article focuses on three features of professional development (PD) programs that play an important role in developing leadership skills and building teachers' capacity: (1) fostering a professional learning community, (2) developing teachers' mathematical knowledge for teaching, and (3) adapting PD to support local needs and interests. We…
ERIC Educational Resources Information Center
Rafieyan, Vahid; Majid, Norazman Bin Abdul; Eng, Lin Siew
2013-01-01
Familiarity with the cultural features of the target language society and interest in learning those cultural features are the key factors to determine language learners' level of pragmatic comprehension. To investigate this issue, this study attempted to assess the relationship between attitude toward incorporating target language culture into…
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875
Publishing Magazines: To Meet Reader Needs and Interests.
ERIC Educational Resources Information Center
Palmer, Lane M.
A series of lectures presented by "Farm Journal's" editor-in-chief Lane Palmer to the advanced agricultural writing course of the University of Wisconsin's Department of Agricultural Journalism in the spring of 1970 formed the basis for this publication. The purpose of the lectures was to stimulate student interest in feature writing and magazine…
Examining Kindergarten Students' Use of and Interest in Informational Text
ERIC Educational Resources Information Center
Hall, Anna H.; Matthew Boyer, D.; Beschorner, Elizabeth A.
2017-01-01
This article describes a dual-case study that was conducted to examine the effects of The Tools Approach on kindergarten students' use of and interest in informational text. Children in one teacher's kindergarten classroom during two subsequent years participated in a writing intervention which included learning about text features, conducting…
Controversy, Trials, and Crime--Oh My!
ERIC Educational Resources Information Center
Rott, Kim
2006-01-01
Teenagers' innate interest with the justice system is one of the reasons that so many high school literary classics teem with criminals, controversial issues, and trials. Novels such as "To Kill a Mockingbird," "A Separate Peace," "The Crucible," and "Twelve Angry Men" feature high-impact trials. In the author's desire to tap into this interest,…
Deacon, D; Nousak, J M; Pilotti, M; Ritter, W; Yang, C M
1998-07-01
The effects of global and feature-specific probabilities of auditory stimuli were manipulated to determine their effects on the mismatch negativity (MMN) of the human event-related potential. The question of interest was whether the automatic comparison of stimuli indexed by the MMN was performed on representations of individual stimulus features or on gestalt representations of their combined attributes. The design of the study was such that both feature and gestalt representations could have been available to the comparator mechanism generating the MMN. The data were consistent with the interpretation that the MMN was generated following an analysis of stimulus features.
Zeng, Guixiang; Sakaki, Shigeyoshi
2011-06-06
Through detailed calculations by density functional theory and second-order Møller-Plesset perturbation theory (MP2) to fourth-order Møller-Plesset perturbation theory including single, double, and quadruple excitations [MP4(SDQ)] methods, we investigated the oxidative addition of the B-Br bond of dibromo(trimethylsiloxy)borane [Br(2)B(OSiMe(3))] to Pt(0) and Pd(0) complexes [M(PMe(3))(2)] (M = Pt or Pd) directly yielding a trans bromoboryl complex trans-[MBr{BBr(OSiMe(3))}(PMe(3))(2)]. Two reaction pathways are found for this reaction: One is a nucleophilic attack pathway which directly leads to the trans product, and the other is a stepwise reaction pathway which occurs through successive cis oxidative addition of the B-Br bond to [M(PMe(3))(2)] and thermal cis-trans isomerization. In the Pt system, the former course occurs with a much smaller energy barrier (E(a) = 5.8 kcal/mol) than the latter one (E(a) = 20.7 kcal/mol), where the DFT-calculated E(a) value is presented hereafter. In the Pd system, only the latter course is found in which the rate-determining steps is the cis-trans isomerization with the E(a) of 15.1 kcal/mol. Interestingly, the thermal cis-trans isomerization occurs on the singlet potential energy surface against our expectation. This unexpected result is understood in terms of the strong donation ability of the boryl group. Detailed analyses of electronic processes in all these reaction steps as well as remarkable characteristic features of [Br(2)B(OSiMe(3))] are also provided. © 2011 American Chemical Society
Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters
NASA Astrophysics Data System (ADS)
Wetterer, C.; Sheppard, D.; Hunt, B.
The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.
NASA Astrophysics Data System (ADS)
Bonfini, P.; González-Martín, O.; Fritz, J.; Bitsakis, T.; Bruzual, G.; Cervantes Sodi, B.
2018-07-01
A large fraction of early-type galaxies (ETGs) hosts prominent dust features, and central dust rings are arguably the most interesting among them. We present here `Lord of the Rings', a new methodology which allows to integrate the extinction by dust rings in a 2D-fittingmodelling of the surface brightness distribution. Our pipeline acts in two steps, first using the surface-fitting software GALFIT to determine the unabsorbed stellar emission, and then adopting the radiative transfer code SKIRT to apply dust extinction. We apply our technique to NGC 4552 and NGC 4494, two nearby ETGs. We show that the extinction by a dust ring can mimic, in a surface brightness profile, a central point source (e.g. an unresolved nuclear stellar cluster or an active galactic nucleus; AGN) superimposed to a `core' (i.e. a central flattening of the stellar light commonly observed in massive ETGs). We discuss how properly accounting for dust features is of paramount importance to derive correct fluxes, especially for low-luminosity AGNs (LLAGNs). We suggest that the geometries of dust features are strictly connected with how relaxed is the gravitational potential, i.e. with the evolutionary stage of the host galaxy. Additionally, we find hints that the dust mass contained in the ring relates to the AGN activity.
Jung, Moon Hee; Seong, Pil Nam; Kim, Myung Hwan; Myong, Na-Hye
2013-01-01
The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities. PMID:24133615
A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Lai, K Robert; Lee, Tzong-Yi
2017-01-01
Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data. With an increasing number of experimentally verified ubiquitination sites, we were motivated to design a predictive model for identifying lysine ubiquitination sites for large-scale proteome dataset. This work assessed not only single features, such as amino acid composition (AAC), amino acid pair composition (AAPC) and evolutionary information, but also the effectiveness of incorporating two or more features into a hybrid approach to model construction. The support vector machine (SVM) was applied to generate the prediction models for ubiquitination site identification. Evaluation by five-fold cross-validation showed that the SVM models learned from the combination of hybrid features delivered a better prediction performance. Additionally, a motif discovery tool, MDDLogo, was adopted to characterize the potential substrate motifs of ubiquitination sites. The SVM models integrating the MDDLogo-identified substrate motifs could yield an average accuracy of 68.70 percent. Furthermore, the independent testing result showed that the MDDLogo-clustered SVM models could provide a promising accuracy (78.50 percent) and perform better than other prediction tools. Two cases have demonstrated the effective prediction of ubiquitination sites with corresponding substrate motifs.
Neural mechanisms of rhythm perception: current findings and future perspectives.
Grahn, Jessica A
2012-10-01
Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Bonfini, P.; González-Martín, O.; Fritz, J.; Bitsakis, T.; Bruzual, G.; Sodi, B. Cervantes
2018-05-01
A large fraction of early-type galaxies (ETGs) host prominent dust features, and central dust rings are arguably the most interesting among them. We present here `Lord Of The Rings' (LOTR), a new methodology which allows to integrate the extinction by dust rings in a 2D fitting modelling of the surface brightness distribution. Our pipeline acts in two steps, first using the surface fitting software GALFIT to determine the unabsorbed stellar emission, and then adopting the radiative transfer code SKIRT to apply dust extinction. We apply our technique to NGC 4552 and NGC 4494, two nearby ETGs. We show that the extinction by a dust ring can mimic, in a surface brightness profile, a central point source (e.g. an unresolved nuclear stellar cluster or an active galactic nucleus; AGN) superimposed to a `core' (i.e. a central flattening of the stellar light commonly observed in massive ETGs). We discuss how properly accounting for dust features is of paramount importance to derive correct fluxes especially for low luminosity AGNs (LLAGNs). We suggest that the geometries of dust features are strictly connected with how relaxed is the gravitational potential, i.e. with the evolutionary stage of the host galaxy. Additionally, we find hints that the dust mass contained in the ring relates to the AGN activity.
Wang, Sen; Wang, Xinke; Zhang, Yan
2017-10-02
Based on the amplitude and phase modulation of subwavelength slits, a metasurface which can simultaneously generate Airy beam for surface plasmon polaritons (SPPs) and transmitted wave is presented. Interestingly, by changing the handedness of circularly polarized light, the position of SPPs Airy beam can be switched to the left or right side of the metasurface, while the field distribution and the position of the Airy beam for transmitted wave are not affected. The nondiffracting, self-bending and self-healing properties of the generated Airy beams are analyzed as well. In addition, abruptly autofocusing of SPPs and transmitted wave are demonstrated by interfering two Airy beams. The dual functionality and chirality features of the metasurface can provide more freedoms in the potential applications of Airy beams.
Al-Awadi/Raas-Rothschild Syndrome in a Newborn with Additional Anomalies
Alp, Esma; Atabek, Mehmet Emre; Pirgon, Özgür
2010-01-01
Al-Awadi/Raas-Rothschild (AARR) syndrome is a rare phocomelia syndrome characterized by limb/pelvic hypoplasia/aplasia, renal anomalies such as horseshoe and polycystic kidney, and abnormal facial features including cleft palate, hypertelorism and micro-retrognatia. Autosomal recessive inheritance has been proposed for AARR syndrome. In this report a boy affected with AARR syndrome is presented. The previous pregnancy of the mother was terminated because of lower limb agenesis detected at 14th week of gestation. This report emphasizes the importance of recognizing severe pelvic and limb deficiencies in newborns with AARR syndrome and differentiating the syndrome from other multiple malformation syndromes. Fetal ultrasonography at 15th week of gestation is helpful in diagnosing the major extremity anomalies in the fetus. Conflict of interest:None declared. PMID:21274338
Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman
2014-05-01
We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.
A novel robust speed controller scheme for PMBLDC motor.
Thirusakthimurugan, P; Dananjayan, P
2007-10-01
The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.
Vaz, Belén; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A
2015-08-18
Hollow inorganic nanostructures have attracted much interest in the last few years due to their many applications in different areas of science and technology. In this Feature Article, we overview part of our current work concerning the collective use of plasmonic and magnetic nanoparticles located in voided nanostructures and explore the more specific operational issues that should be taken into account in the design of inorganic nanocapsules. Along these lines, we focus our attention on the applications of silica-based submicrometer capsules aiming to stress the importance of creating nanocavities in order to further exploit the great potential of these functional nanomaterials. Additionally, we will examine some of the recent research on this topic and try to establish a perspective for future developments in this area.
Using the Teach Astronomy Website to Enrich Introductory Astronomy Classes
NASA Astrophysics Data System (ADS)
Hardegree-Ullman, K. K.; Impey, C. D.; Patikkal, A.; Austin, C. L.
2013-04-01
This year we implemented Teach Astronomy as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive astronomy content of the website includes: an introductory text book, encyclopedia articles, images, two to three minute topical video clips, podcasts, and news articles. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. We will present an overview of how Teach Astronomy works and how instructors can use it as an effective teaching tool in the classroom. Additionally, we will gather feedback from science instructors on how to improve the features and functionality of the website, as well as develop new assignment ideas using Teach Astronomy.
Disordered topological wires in a momentum-space lattice
NASA Astrophysics Data System (ADS)
Meier, Eric; An, Fangzhao; Gadway, Bryce
2017-04-01
One of the most interesting aspects of topological systems is the presence of boundary modes which remain robust in the presence of weak disorder. We explore this feature in the context of one-dimensional (1D) topological wires where staggered tunneling strengths lead to the creation of a mid-gap state in the lattice band structure. Using Bose-condensed 87Rb atoms in a 1D momentum-space lattice, we probe the robust topological character of this model when subjected to both site energy and tunneling disorder. We observe a transition to a topologically trivial phase when tailored disorder is applied, which we detect through both charge-pumping and Hamiltonian-quenching protocols. In addition, we report on efforts to probe the influence of interactions in topological momentum-space lattices.
An Approach Using Parallel Architecture to Storage DICOM Images in Distributed File System
NASA Astrophysics Data System (ADS)
Soares, Tiago S.; Prado, Thiago C.; Dantas, M. A. R.; de Macedo, Douglas D. J.; Bauer, Michael A.
2012-02-01
Telemedicine is a very important area in medical field that is expanding daily motivated by many researchers interested in improving medical applications. In Brazil was started in 2005, in the State of Santa Catarina has a developed server called the CyclopsDCMServer, which the purpose to embrace the HDF for the manipulation of medical images (DICOM) using a distributed file system. Since then, many researches were initiated in order to seek better performance. Our approach for this server represents an additional parallel implementation in I/O operations since HDF version 5 has an essential feature for our work which supports parallel I/O, based upon the MPI paradigm. Early experiments using four parallel nodes, provide good performance when compare to the serial HDF implemented in the CyclopsDCMServer.
Hetero-Orientation Epitaxial Growth of TiO2 Splats on Polycrystalline TiO2 Substrate
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-Jun
2018-05-01
In the present study, the effect of titania (TiO2) substrate grain size and orientation on the epitaxial growth of TiO2 splat was investigated. Interestingly, the splat presented comparable grain size with that of substrate, indicating the hereditary feature of grain size. In addition, hetero- and homo-orientation epitaxial growth was observed at deposition temperatures below 400 °C and above 500 °C, respectively. The preferential growth of high-energy (001) face was also observed at low deposition temperatures (≤ 400 °C), which was found to result from dynamic nonequilibrium effect during the thermal spray deposition. Moreover, thermal spray deposition paves the way for a new approach to prepare high-energy (001) facets of TiO2 crystals.
Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play
Cicone, Francesco; Viertl, David; Quintela Pousa, Ana Maria; Denoël, Thibaut; Gnesin, Silvano; Scopinaro, Francesco; Vozenin, Marie-Catherine; Prior, John O.
2017-01-01
The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions. PMID:28424774
Geomorphology, tectonics, and exploration
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1985-01-01
Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel
2015-03-01
Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.
Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena
2018-05-01
Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
George, Pravin; Newey, Christopher R; Bhimraj, Adarsh
2015-01-01
There is limited literature on tablet devices for neurohospitalists and in neurological graduate medical education. This study evaluated utilization, benefits, and limitations of customized tablets on inpatient neurology practice and resident education. The hypothesis was the perception of the tablet would be positive, given their portability, convenience to accessing point-of-care reference, and accessibility to the electronic medical record. Second-generation iPads with neurology-specific applications and literature were provided to our in-hospital general, stroke, and consult neurology teams. After 1 year, residents on these teams were surveyed on demographic data, familiarity, and utilization of the iPad and their perceptions of the device. All 27 residents responded to the survey. Most participants (23 of 27) used a tablet while on inpatient service. Twelve regularly utilized the neurology-specific apps and/or accessed scientific articles. Technologically savvy residents felt significantly more comfortable using tablets and were more quickly acquainted with the features. Thirteen respondents wanted a formal orientation on the advanced features of the tablet independent of their familiarity with the device or level of technological comfort. Overall, the perception was that the tablet was beneficial for inpatient clinical care and as an educational reference. Participants became easily familiarized with the device features quickly, regardless of whether they owned one previously or not. Most physicians indicated interest in advanced features of tablets; however, a formal orientation may be beneficial for optimal utilization. A reliable network connection is essential to in-hospital use of tablet devices. Additional research pertaining to patient outcomes, objective educational benefit, and cost-effectiveness is necessary.
Arsham, Andrew M; Neufeld, Thomas P
2009-06-29
The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.
U.S. Seismic Design Maps Web Application
NASA Astrophysics Data System (ADS)
Martinez, E.; Fee, J.
2015-12-01
The application computes earthquake ground motion design parameters compatible with the International Building Code and other seismic design provisions. It is the primary method for design engineers to obtain ground motion parameters for multiple building codes across the country. When designing new buildings and other structures, engineers around the country use the application. Users specify the design code of interest, location, and other parameters to obtain necessary ground motion information consisting of a high-level executive summary as well as detailed information including maps, data, and graphs. Results are formatted such that they can be directly included in a final engineering report. In addition to single-site analysis, the application supports a batch mode for simultaneous consideration of multiple locations. Finally, an application programming interface (API) is available which allows other application developers to integrate this application's results into larger applications for additional processing. Development on the application has proceeded in an iterative manner working with engineers through email, meetings, and workshops. Each iteration provided new features, improved performance, and usability enhancements. This development approach positioned the application to be integral to the structural design process and is now used to produce over 1800 reports daily. Recent efforts have enhanced the application to be a data-driven, mobile-first, responsive web application. Development is ongoing, and source code has recently been published into the open-source community on GitHub. Open-sourcing the code facilitates improved incorporation of user feedback to add new features ensuring the application's continued success.
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.
Bondurand, Nadege; Dastot-Le Moal, Florence; Stanchina, Laure; Collot, Nathalie; Baral, Viviane; Marlin, Sandrine; Attie-Bitach, Tania; Giurgea, Irina; Skopinski, Laurent; Reardon, William; Toutain, Annick; Sarda, Pierre; Echaieb, Anis; Lackmy-Port-Lis, Marilyn; Touraine, Renaud; Amiel, Jeanne; Goossens, Michel; Pingault, Veronique
2007-12-01
Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. Depending on additional symptoms, WS is classified into four subtypes, WS1-WS4. Absence of additional features characterizes WS2. The association of facial dysmorphic features defines WS1 and WS3, whereas the association with Hirschsprung disease (aganglionic megacolon) characterizes WS4, also called "Waardenburg-Hirschsprung disease." Mutations within the genes MITF and SNAI2 have been identified in WS2, whereas mutations of EDN3, EDNRB, and SOX10 have been observed in patients with WS4. However, not all cases are explained at the molecular level, which raises the possibility that other genes are involved or that some mutations within the known genes are not detected by commonly used genotyping methods. We used a combination of semiquantitative fluorescent multiplex polymerase chain reaction and fluorescent in situ hybridization to search for SOX10 heterozygous deletions. We describe the first characterization of SOX10 deletions in patients presenting with WS4. We also found SOX10 deletions in WS2 cases, making SOX10 a new gene of WS2. Interestingly, neurological phenotypes reminiscent of that observed in WS4 (PCWH syndrome [peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease]) were observed in some WS2-affected patients with SOX10 deletions. This study further characterizes the molecular complexity and the close relationship that links the different subtypes of WS.
Headaches caused by decreased intracranial pressure: diagnosis and management.
Mokri, Bahram
2003-06-01
More patients with spontaneous intracranial hypotension are now being diagnosed, and it is realized that most cases result from spontaneous cerebrospinal fluid leaks. A broader clinical and imaging spectrum of the disorder is recognized. This paper reviews new insights into the variability of clinical manifestations, imaging features, etiological factors, anatomy of leaks, and implications of these in patient management. Spontaneous intracranial hypotension should not be equated with post-lumbar puncture headaches. In a substantial minority of patients, headaches are not orthostatic and may mimic other types of headache. Additional diverse neurological manifestations may dominate the clinical picture and patients may occasionally have no headache at all. Reports on unusual presentations of the disorder continue to appear in the literature. Furthermore, additional imaging features of cerebrospinal fluid leaks are recognized. High-flow and slow-flow leaks may present diagnostic challenges, and require modification of diagnostic studies aimed at locating the site of the leak. Stigmata of connective tissue abnormality, especially abnormalities of fibrillin and elastin, are seen in a notable minority of patients, pointing to weakness of the dural sac as one of the etiological factors. After treatment of spontaneous intracranial hypotension, surgically or by epidural blood patch, a rebound and self-limiting intracranial hypertension may sometimes develop. In the past decade, interest in spontaneous intracranial hypotension has been rekindled, with a substantial growth of knowledge on various aspects of the disorder. We are in the learning phase, and new information will probably appear in the future, with notable diagnostic and therapeutic implications.
COSMIC: Software catalog 1991 edition diskette format
NASA Technical Reports Server (NTRS)
1991-01-01
The PC edition of the annual COSMIC Software contains descriptions of the over 1,200 computer programs available for use within the United States as of January 1, 1991. By using the PC version of the catalog, it is possible to conduct extensive searches of the software inventory for programs that meet specific criteria. Elements such as program keywords, hardware specifications, source code languages, and title acronyms can be used for the basis of such searches. After isolating those programs that might be of best interest to the user, it is then possible to either view at the monitor, or generate a hardcopy listing of all information on those packages. In addition to the program elements that the user can search on, information such as total program size, distribution media, and program price, as well as extensive abstracts on the program, are also available to the user at this time. Another useful feature of the catalog allows for the retention of programs that meet certain search criteria between individual sessions of using the catalog. This allows users to save the information on those programs that are of interest to them in different areas of application. They can then recall a specific collection of programs for information retrieval or further search reduction if desired. In addition, this version of the catalog is adaptable to a network/shared resource environment, allowing multiple users access to a single copy of the catalog database simultaneously.
Fast automatic delineation of cardiac volume of interest in MSCT images
NASA Astrophysics Data System (ADS)
Lorenz, Cristian; Lessick, Jonathan; Lavi, Guy; Bulow, Thomas; Renisch, Steffen
2004-05-01
Computed Tomography Angiography (CTA) is an emerging modality for assessing cardiac anatomy. The delineation of the cardiac volume of interest (VOI) is a pre-processing step for subsequent visualization or image processing. It serves the suppression of anatomic structures being not in the primary focus of the cardiac application, such as sternum, ribs, spinal column, descending aorta and pulmonary vasculature. These structures obliterate standard visualizations such as direct volume renderings or maximum intensity projections. In addition, outcome and performance of post-processing steps such as ventricle suppression, coronary artery segmentation or the detection of short and long axes of the heart can be improved. The structures being part of the cardiac VOI (coronary arteries and veins, myocardium, ventricles and atria) differ tremendously in appearance. In addition, there is no clear image feature associated with the contour (or better cut-surface) distinguishing between cardiac VOI and surrounding tissue making the automatic delineation of the cardiac VOI a difficult task. The presented approach locates in a first step chest wall and descending aorta in all image slices giving a rough estimate of the location of the heart. In a second step, a Fourier based active contour approach delineates slice-wise the border of the cardiac VOI. The algorithm has been evaluated on 41 multi-slice CT data-sets including cases with coronary stents and venous and arterial bypasses. The typical processing time amounts to 5-10s on a 1GHz P3 PC.
NASA Astrophysics Data System (ADS)
Taşkin Kaya, Gülşen
2013-10-01
Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.
NASA Astrophysics Data System (ADS)
Runnova, Anastasiya; Zhuravlev, Maxim; Kulanin, Roman; Protasov, Pavel; Efremova, Tatiana
2018-04-01
In this paper we found a correlation between the characteristics of a person revealed in classical psychological testing on the basis of Schulte tables, and its neurophysiological features of the functioning of the brain obtained from the time-frequency analysis of EEG. The results obtained are interesting from the point of view of the choice of training strategies for a particular individual. We believe that the obtained results are of interest for fundamental science and applied works of psychological testing and diagnostics. The study of such forming strategies on EEG data can be automated and do not require the work of highly skilled psychologists.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... Boeing Model 787-8 airplane. This airplane will have novel or unusual design features associated with an... standards for this design feature. These special conditions contain the additional safety standards that the... airworthiness standards. Additional special conditions will be issued for other novel or unusual design features...
Feature selection for examining behavior by pathology laboratories.
Hawkins, S; Williams, G; Baxter, R
2001-08-01
Australia has a universal health insurance scheme called Medicare, which is managed by Australia's Health Insurance Commission. Medicare payments for pathology services generate voluminous transaction data on patients, doctors and pathology laboratories. The Health Insurance Commission (HIC) currently uses predictive models to monitor compliance with regulatory requirements. The HIC commissioned a project to investigate the generation of new features from the data. Feature generation has not appeared as an important step in the knowledge discovery in databases (KDD) literature. New interesting features for use in predictive modeling are generated. These features were summarized, visualized and used as inputs for clustering and outlier detection methods. Data organization and data transformation methods are described for the efficient access and manipulation of these new features.
Bhatia, Tripta
2018-07-01
Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.
Features extraction in anterior and posterior cruciate ligaments analysis.
Zarychta, P
2015-12-01
The main aim of this research is finding the feature vectors of the anterior and posterior cruciate ligaments (ACL and PCL). These feature vectors have to clearly define the ligaments structure and make it easier to diagnose them. Extraction of feature vectors is obtained by analysis of both anterior and posterior cruciate ligaments. This procedure is performed after the extraction process of both ligaments. In the first stage in order to reduce the area of analysis a region of interest including cruciate ligaments (CL) is outlined in order to reduce the area of analysis. In this case, the fuzzy C-means algorithm with median modification helping to reduce blurred edges has been implemented. After finding the region of interest (ROI), the fuzzy connectedness procedure is performed. This procedure permits to extract the anterior and posterior cruciate ligament structures. In the last stage, on the basis of the extracted anterior and posterior cruciate ligament structures, 3-dimensional models of the anterior and posterior cruciate ligament are built and the feature vectors created. This methodology has been implemented in MATLAB and tested on clinical T1-weighted magnetic resonance imaging (MRI) slices of the knee joint. The 3D display is based on the Visualization Toolkit (VTK). Copyright © 2015 Elsevier Ltd. All rights reserved.
Grasso, Dennis N.
2003-01-01
Surface effects maps were produced for 72 of 89 underground detonations conducted at the Frenchman Flat, Rainier Mesa and Aqueduct Mesa, Climax Stock, Shoshone Mountain, Buckboard Mesa, and Dome Mountain testing areas of the Nevada Test Site between August 10, 1957 (Saturn detonation, Area 12) and September 18, 1992 (Hunters Trophy detonation, Area 12). The ?Other Areas? Surface Effects Map Database, which was used to construct the maps shown in this report, contains digital reproductions of these original maps. The database is provided in both ArcGIS (v. 8.2) geodatabase format and ArcView (v. 3.2) shapefile format. This database contains sinks, cracks, faults, and other surface effects having a combined (cumulative) length of 136.38 km (84.74 mi). In GIS digital format, the user can view all surface effects maps simultaneously, select and view the surface effects of one or more sites of interest, or view specific surface effects by area or site. Three map layers comprise the database. They are: (1) the surface effects maps layer (oase_n27f), (2) the bar symbols layer (oase_bar_n27f), and (3) the ball symbols layer (oase_ball_n27f). Additionally, an annotation layer, named 'Ball_and_Bar_Labels,' and a polygon features layer, named 'Area12_features_poly_n27f,' are contained in the geodatabase version of the database. The annotation layer automatically labels all 295 ball-and-bar symbols shown on these maps. The polygon features layer displays areas of ground disturbances, such as rock spall and disturbed ground caused by the detonations. Shapefile versions of the polygon features layer in Nevada State Plane and Universal Transverse Mercator projections, named 'area12_features_poly_n27f.shp' and 'area12_features_poly_u83m.shp,' are also provided in the archive.
How important is vehicle safety in the new vehicle purchase process?
Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael
2008-05-01
Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features for particular consumer groups (such as younger consumers) in order to increase their knowledge regarding vehicle safety and to encourage them to place highest priority on safety in the new vehicle purchase process.
Hierarchical clustering of EMD based interest points for road sign detection
NASA Astrophysics Data System (ADS)
Khan, Jesmin; Bhuiyan, Sharif; Adhami, Reza
2014-04-01
This paper presents an automatic road traffic signs detection and recognition system based on hierarchical clustering of interest points and joint transform correlation. The proposed algorithm consists of the three following stages: interest points detection, clustering of those points and similarity search. At the first stage, good discriminative, rotation and scale invariant interest points are selected from the image edges based on the 1-D empirical mode decomposition (EMD). We propose a two-step unsupervised clustering technique, which is adaptive and based on two criterion. In this context, the detected points are initially clustered based on the stable local features related to the brightness and color, which are extracted using Gabor filter. Then points belonging to each partition are reclustered depending on the dispersion of the points in the initial cluster using position feature. This two-step hierarchical clustering yields the possible candidate road signs or the region of interests (ROIs). Finally, a fringe-adjusted joint transform correlation (JTC) technique is used for matching the unknown signs with the existing known reference road signs stored in the database. The presented framework provides a novel way to detect a road sign from the natural scenes and the results demonstrate the efficacy of the proposed technique, which yields a very low false hit rate.
7 CFR 3555.352 - Loss covered by the guarantee.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the difference between the Total Indebtedness on the loan and the Net Recovery Value calculated... interest was paid by the borrower to the settlement date, as defined at § 3555.10; (c) Additional interest. Additional interest on the unsatisfied principal accrued from the settlement date to the date the claim is...
3D Wavelet-Based Filter and Method
Moss, William C.; Haase, Sebastian; Sedat, John W.
2008-08-12
A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.
ERIC Educational Resources Information Center
Ermeling, Bradley Alan
2012-01-01
Past and contemporary scholars have emphasized the importance of job-embedded, systematic instructional inquiry for educators. A recent review of the literature highlights four key features shared by several well documented inquiry approaches for classroom teachers. Interestingly, another line of research suggests that these key features also…
Rett Syndrome: Of Girls and Mice--Lessons for Regression in Autism
ERIC Educational Resources Information Center
Glaze, Daniel G.
2004-01-01
Rett syndrome (RTT) is a neurodevelopmental disorder occurring almost exclusively in females. Regression is a defining feature of RTT. During the regression stage, RTT girls display many autistic features, such as loss of communication and social skills, poor eye contact, and lack of interest, and initially may be given the diagnosis of autism.…
The Doll Project: Handmade Dolls as a Framework for Emergent Curriculum.
ERIC Educational Resources Information Center
Wien, Carol Anne; Stacey, Susan; Keating, Bobbi-Lynn Hubley; Rowlings, Joelle Deyarmond; Cameron, Heather
2002-01-01
Describes the use of handmade cloth dolls without facial features with 2- and 3-year-olds as a framework for an arts-based emergent curriculum related to body awareness. Shows how children's interests guided the project activities. Discusses the teachers' role in maintaining the content level and interest, and the importance of out-of-classroom…
Reflection spectra, 2.5-7 microns, of some solids of planetary interest
NASA Technical Reports Server (NTRS)
Fink, U.; Burk, S. D.
1973-01-01
Reflection spectra of 42 compounds of possible planetary interest were run from 2.5 to 7 microns. They were supplemented by some transmission spectra extending the wavelength coverage to 15 microns. The spectra were organized according to their constituent radicals and an attempt was made at the identification of the absorption features.
Faster than the Brighter-Light Beacon
ERIC Educational Resources Information Center
Baune, S.
2009-01-01
We analyse the motion of a spot of light projected onto a flat screen by a rotating source. We find that the motion of the spot has many interesting features such as spot splitting and superluminal effects. Our discussion is well suited for undergraduates and can be an interesting add-on in their curriculum, giving them new insights into the…
Tan, Maxine; Pu, Jiantao; Zheng, Bin
2014-01-01
Purpose: Improving radiologists’ performance in classification between malignant and benign breast lesions is important to increase cancer detection sensitivity and reduce false-positive recalls. For this purpose, developing computer-aided diagnosis (CAD) schemes has been attracting research interest in recent years. In this study, we investigated a new feature selection method for the task of breast mass classification. Methods: We initially computed 181 image features based on mass shape, spiculation, contrast, presence of fat or calcifications, texture, isodensity, and other morphological features. From this large image feature pool, we used a sequential forward floating selection (SFFS)-based feature selection method to select relevant features, and analyzed their performance using a support vector machine (SVM) model trained for the classification task. On a database of 600 benign and 600 malignant mass regions of interest (ROIs), we performed the study using a ten-fold cross-validation method. Feature selection and optimization of the SVM parameters were conducted on the training subsets only. Results: The area under the receiver operating characteristic curve (AUC) = 0.805±0.012 was obtained for the classification task. The results also showed that the most frequently-selected features by the SFFS-based algorithm in 10-fold iterations were those related to mass shape, isodensity and presence of fat, which are consistent with the image features frequently used by radiologists in the clinical environment for mass classification. The study also indicated that accurately computing mass spiculation features from the projection mammograms was difficult, and failed to perform well for the mass classification task due to tissue overlap within the benign mass regions. Conclusions: In conclusion, this comprehensive feature analysis study provided new and valuable information for optimizing computerized mass classification schemes that may have potential to be useful as a “second reader” in future clinical practice. PMID:24664267
Unique features of a new nickel-hydrogen 2-cell CPV
NASA Technical Reports Server (NTRS)
Wheeler, James R.
1995-01-01
Two-cell nickel-hydrogen common pressure vessel (CPV) units with some unusual design features have been successfully built and tested. The features of interest are half-normal platinum loading for the negative electrodes, the use of rabbit-ear terminals for a CPV unit, and the incorporation of a wall wick. The units have a nominal capacity of 20 Ah and are 3.5 inches in diameter. Electric performance data are provided. The data support the growing viability of the two-cell CPV design concept.
Semi supervised Learning of Feature Hierarchies for Object Detection in a Video (Open Access)
2013-10-03
dataset: PETS2009 Dataset, Oxford Town Center dataset [3], PNNL Parking Lot datasets [25] and CAVIAR cols1 dataset [1] for human detection. Be- sides, we...level features from TownCen- ter, ParkingLot, PETS09 and CAVIAR . As we can see that, the four set of features are visually very different from each other...information is more distinguished for detecting a person in the TownCen- ter than CAVIAR . Comparing figure 5(a) with 6(a), interest- ingly, the color
Childhood and Current Autistic Features in Adolescents with Schizotypal Personality Disorder
Esterberg, Michelle L.; Trotman, Hanan D.; Brasfield, Joy L.; Compton, Michael T.; Walker, Elaine F.
2008-01-01
The diagnostic boundaries between autistic- and schizophrenia-spectrum disorders have varied over the years, and some overlap in diagnostic criteria persists. The present study examined childhood and current signs of autistic disorder (AD) in adolescents with schizotypal personality disorder (SPD) or other personality disorders, as well as healthy controls. A structured interview was administered to rate participants’ current symptoms. Participants’ guardians were interviewed with the Autism Diagnostic Inventory-Revised (ADI-R), a clinical assessment of childhood and current autistic signs. Compared to both the other personality-disordered and healthy groups, adolescents with SPD were rated as having significantly more impairment on childhood and current social functioning, and having more unusual interests and behaviors. For the entire sample, impaired childhood social functioning and unusual interests and behaviors were associated with higher negative symptom scores. Current impairments in social functioning, unusual interests and behaviors, and communication were also linked with greater negative symptoms. However, neither childhood nor current autistic features significantly predicted later conversion to an Axis I psychotic disorder over the course of three years of follow-up. The findings indicate that past and current autistic signs are more common in adolescents with SPD, but neither current nor childhood autistic features are linked with conversion to psychosis. PMID:18554872
SU-F-R-35: Repeatability of Texture Features in T1- and T2-Weighted MR Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahon, R; Weiss, E; Karki, K
Purpose: To evaluate repeatability of lung tumor texture features from inspiration/expiration MR image pairs for potential use in patient specific care models and applications. Repeatability is a desirable and necessary characteristic of features included in such models. Methods: T1-weighted Volumetric Interpolation Breath-Hold Examination (VIBE) and/or T2-weighted MRI scans were acquired for 15 patients with non-small cell lung cancer before and during radiotherapy for a total of 32 and 34 same session inspiration-expiration breath-hold image pairs respectively. Bias correction was applied to the VIBE (VIBE-BC) and T2-weighted (T2-BC) images. Fifty-nine texture features at five wavelet decomposition ratios were extracted from themore » delineated primary tumor including: histogram(HIST), gray level co-occurrence matrix(GLCM), gray level run length matrix(GLRLM), gray level size zone matrix(GLSZM), and neighborhood gray tone different matrix (NGTDM) based features. Repeatability of the texture features for VIBE, VIBE-BC, T2-weighted, and T2-BC image pairs was evaluated by the concordance correlation coefficient (CCC) between corresponding image pairs, with a value greater than 0.90 indicating repeatability. Results: For the VIBE image pairs, the percentage of repeatable texture features by wavelet ratio was between 20% and 24% of the 59 extracted features; the T2-weighted image pairs exhibited repeatability in the range of 44–49%. The percentage dropped to 10–20% for the VIBE-BC images, and 12–14% for the T2-BC images. In addition, five texture features were found to be repeatable in all four image sets including two GLRLM, two GLZSM, and one NGTDN features. No single texture feature category was repeatable among all three image types; however, certain categories performed more consistently on a per image type basis. Conclusion: We identified repeatable texture features on T1- and T2-weighted MRI scans. These texture features should be further investigated for use in specific applications such as tissue classification and changes during radiation therapy utilizing a standard imaging protocol. Authors have the following disclosures: a research agreement with Philips Medical systems (Hugo, Weiss), a license agreement with Varian Medical Systems (Hugo, Weiss), research grants from the National Institute of Health (Hugo, Weiss), UpToDate royalties (Weiss), and none(Mahon, Ford, Karki). Authors have no potential conflicts of interest to disclose.« less
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
NASA Astrophysics Data System (ADS)
Rueda, L.; Moranta, J.; Abelló, P.; Balbín, R.; Barberá, C.; Fernández de Puelles, M. L.; Olivar, M. P.; Ordines, F.; Ramón, M.; Torres, A. P.; Valls, M.; Massutí, E.
2014-10-01
Body condition indices not only are often used as reliable indicators of the nutritional status of individuals but also can they be utilized to provide insights regarding food availability and habitat quality. The aim of this study was to evaluate the connection between the body condition of the demersal species and the environmental features in the water column (i.e. the hydrographic conditions and the potential trophic resources) in two proximate areas, the north and south regions of the Balearic Islands (western Mediterranean), viz., the Balearic sub-basin (BsB) and the Algerian sub-basin (AsB), respectively, with different geomorphological and hydrodynamic features. Body condition indices were calculated for individuals of 21 demersal species including 11 teleosts, 4 elasmobranchs, 3 cephalopods and 3 crustaceans, which represented > 70-77% of the deep water resources, captured by bottom trawling. The morphometric indices, viz., Relative Condition Index (Kn) and Standardised Residuals (SR) from the length-weight relationship, were used. The results for each one of the 21 species indicated a significantly better condition in terms of Kn and SR in the BsB, for 7 and 9 species, respectively. In addition, a general model, including the 21 species together, showed better body condition in the BsB, and during the summer. The spatial and temporal differences in the body condition are discussed in the context of the environmental variables characterising both the study areas, which showed significant variations, for some of the hydrographic features (chlorophyll a, dissolved oxygen, salinity, potential density and temperature), as well as for some of the potential trophic resources (mesopelagic and epibenthic fauna). These findings suggest an environmental effect on the body condition of the deep-water resources in the Balearic Islands, one of the most oligotrophic areas of the western Mediterranean, and reveal more suitable environmental conditions for these species on the northern insular margin, off the Archipelago. In addition to these ecological connections, the results also hold interest for the management and conservation of the habitats essential for the sustainability of fisheries.
Targetable genetic features of primary testicular and primary central nervous system lymphomas
Chapuy, Bjoern; Roemer, Margaretha G. M.; Stewart, Chip; Tan, Yuxiang; Abo, Ryan P.; Zhang, Liye; Dunford, Andrew J.; Meredith, David M.; Thorner, Aaron R.; Jordanova, Ekaterina S.; Liu, Gang; Feuerhake, Friedrich; Ducar, Matthew D.; Illerhaus, Gerald; Gusenleitner, Daniel; Linden, Erica A.; Sun, Heather H.; Homer, Heather; Aono, Miyuki; Pinkus, Geraldine S.; Ligon, Azra H.; Ligon, Keith L.; Ferry, Judith A.; Freeman, Gordon J.; van Hummelen, Paul; Golub, Todd R.; Getz, Gad; Rodig, Scott J.; de Jong, Daphne; Monti, Stefano
2016-01-01
Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL. PMID:26702065
NASA Technical Reports Server (NTRS)
1978-01-01
NASA remote sensing technology is being employed in archeological studies of the Anasazi Indians, who lived in New Mexico one thousand years ago. Under contract with the National Park Service, NASA's Technology Applications Center at the University of New Mexico is interpreting multispectral scanner data and demonstrating how aerospace scanning techniques can uncover features of prehistoric ruins not visible in conventional aerial photographs. The Center's initial study focused on Chaco Canyon, a pre-Columbia Anasazi site in northeastern New Mexico. Chaco Canyon is a national monument and it has been well explored on the ground and by aerial photography. But the National Park Service was interested in the potential of multispectral scanning for producing evidence of prehistoric roads, field patterns and dwelling areas not discernible in aerial photographs. The multispectral scanner produces imaging data in the invisible as well as the visible portions of the spectrum. This data is converted to pictures which bring out features not visible to the naked eye or to cameras. The Technology Applications Center joined forces with Bendix Aerospace Systems Division, Ann Arbor, Michigan, which provided a scanner-equipped airplane for mapping the Chaco Canyon area. The NASA group processed the scanner images and employed computerized image enhancement techniques to bring out additional detail.
Epileptic spasms are a feature of DEPDC5 mTORopathy
Carvill, Gemma L.; Crompton, Douglas E.; Regan, Brigid M.; McMahon, Jacinta M.; Saykally, Julia; Zemel, Matthew; Schneider, Amy L.; Dibbens, Leanne; Howell, Katherine B.; Mandelstam, Simone; Leventer, Richard J.; Harvey, A. Simon; Mullen, Saul A.; Berkovic, Samuel F.; Sullivan, Joseph; Scheffer, Ingrid E.
2015-01-01
Objective: To assess the presence of DEPDC5 mutations in a cohort of patients with epileptic spasms. Methods: We performed DEPDC5 resequencing in 130 patients with spasms, segregation analysis of variants of interest, and detailed clinical assessment of patients with possibly and likely pathogenic variants. Results: We identified 3 patients with variants in DEPDC5 in the cohort of 130 patients with spasms. We also describe 3 additional patients with DEPDC5 alterations and epileptic spasms: 2 from a previously described family and a third ascertained by clinical testing. Overall, we describe 6 patients from 5 families with spasms and DEPDC5 variants; 2 arose de novo and 3 were familial. Two individuals had focal cortical dysplasia. Clinical outcome was highly variable. Conclusions: While recent molecular findings in epileptic spasms emphasize the contribution of de novo mutations, we highlight the relevance of inherited mutations in the setting of a family history of focal epilepsies. We also illustrate the utility of clinical diagnostic testing and detailed phenotypic evaluation in characterizing the constellation of phenotypes associated with DEPDC5 alterations. We expand this phenotypic spectrum to include epileptic spasms, aligning DEPDC5 epilepsies more with the recognized features of other mTORopathies. PMID:27066554
Asymmetric hindwing foldings in rove beetles.
Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji
2014-11-18
Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.
Effect of interpolation on parameters extracted from seating interface pressure arrays.
Wininger, Michael; Crane, Barbara
2014-01-01
Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.
Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2013-09-09
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
Using Ontologies for the Online Recognition of Activities of Daily Living†
2018-01-01
The recognition of activities of daily living is an important research area of interest in recent years. The process of activity recognition aims to recognize the actions of one or more people in a smart environment, in which a set of sensors has been deployed. Usually, all the events produced during each activity are taken into account to develop the classification models. However, the instant in which an activity started is unknown in a real environment. Therefore, only the most recent events are usually used. In this paper, we use statistics to determine the most appropriate length of that interval for each type of activity. In addition, we use ontologies to automatically generate features that serve as the input for the supervised learning algorithms that produce the classification model. The features are formed by combining the entities in the ontology, such as concepts and properties. The results obtained show a significant increase in the accuracy of the classification models generated with respect to the classical approach, in which only the state of the sensors is taken into account. Moreover, the results obtained in a simulation of a real environment under an event-based segmentation also show an improvement in most activities. PMID:29662011
Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners
NASA Astrophysics Data System (ADS)
Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.
2013-01-01
Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; King, J.; Keiser, Jr., D.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
A musculoskeletal model for the lumbar spine.
Christophy, Miguel; Faruk Senan, Nur Adila; Lotz, Jeffrey C; O'Reilly, Oliver M
2012-01-01
A new musculoskeletal model for the lumbar spine is described in this paper. This model features a rigid pelvis and sacrum, the five lumbar vertebrae, and a rigid torso consisting of a lumped thoracic spine and ribcage. The motion of the individual lumbar vertebrae was defined as a fraction of the net lumbar movement about the three rotational degrees of freedom: flexion-extension lateral bending, and axial rotation. Additionally, the eight main muscle groups of the lumbar spine were incorporated using 238 muscle fascicles with prescriptions for the parameters in the Hill-type muscle models obtained with the help of an extensive literature survey. The features of the model include the abilities to predict joint reactions, muscle forces, and muscle activation patterns. To illustrate the capabilities of the model and validate its physiological similarity, the model's predictions for the moment arms of the muscles are shown for a range of flexion-extension motions of the lower back. The model uses the OpenSim platform and is freely available on https://www.simtk.org/home/lumbarspine to other spinal researchers interested in analyzing the kinematics of the spine. The model can also be integrated with existing OpenSim models to build more comprehensive models of the human body.
Hinojosa, José A.; Rincón-Pérez, Irene; Romero-Ferreiro, Mª Verónica; Martínez-García, Natalia; Villalba-García, Cristina; Montoro, Pedro R.; Pozo, Miguel A.
2016-01-01
The current study presents ratings by 540 Spanish native speakers for dominance, familiarity, subjective age of acquisition (AoA), and sensory experience (SER) for the 875 Spanish words included in the Madrid Affective Database for Spanish (MADS). The norms can be downloaded as supplementary materials for this manuscript from https://figshare.com/s/8e7b445b729527262c88 These ratings may be of potential relevance to researches who are interested in characterizing the interplay between language and emotion. Additionally, with the aim of investigating how the affective features interact with the lexicosemantic properties of words, we performed correlational analyses between norms for familiarity, subjective AoA and SER, and scores for those affective variables which are currently included in the MADs. A distinct pattern of significant correlations with affective features was found for different lexicosemantic variables. These results show that familiarity, subjective AoA and SERs may have independent effects on the processing of emotional words. They also suggest that these psycholinguistic variables should be fully considered when formulating theoretical approaches to the processing of affective language. PMID:27227521
Digital Device Architecture and the Safe Use of Flash Devices in Munitions
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.
Consed: a graphical editor for next-generation sequencing.
Gordon, David; Green, Phil
2013-11-15
The rapid growth of DNA sequencing throughput in recent years implies that graphical interfaces for viewing and correcting errors must now handle large numbers of reads, efficiently pinpoint regions of interest and automate as many tasks as possible. We have adapted consed to reflect this. To allow full-feature editing of large datasets while keeping memory requirements low, we developed a viewer, bamScape, that reads billion-read BAM files, identifies and displays problem areas for user review and launches the consed graphical editor on user-selected regions, allowing, in addition to longstanding consed capabilities such as assembly editing, a variety of new features including direct editing of the reference sequence, variant and error detection, display of annotation tracks and the ability to simultaneously process a group of reads. Many batch processing capabilities have been added. The consed package is free to academic, government and non-profit users, and licensed to others for a fee by the University of Washington. The current version (26.0) is available for linux, macosx and solaris systems or as C++ source code. It includes a user's manual (with exercises) and example datasets. http://www.phrap.org/consed/consed.html dgordon@uw.edu .
Adaptation to spectrally-rotated speech.
Green, Tim; Rosen, Stuart; Faulkner, Andrew; Paterson, Ruth
2013-08-01
Much recent interest surrounds listeners' abilities to adapt to various transformations that distort speech. An extreme example is spectral rotation, in which the spectrum of low-pass filtered speech is inverted around a center frequency (2 kHz here). Spectral shape and its dynamics are completely altered, rendering speech virtually unintelligible initially. However, intonation, rhythm, and contrasts in periodicity and aperiodicity are largely unaffected. Four normal hearing adults underwent 6 h of training with spectrally-rotated speech using Continuous Discourse Tracking. They and an untrained control group completed pre- and post-training speech perception tests, for which talkers differed from the training talker. Significantly improved recognition of spectrally-rotated sentences was observed for trained, but not untrained, participants. However, there were no significant improvements in the identification of medial vowels in /bVd/ syllables or intervocalic consonants. Additional tests were performed with speech materials manipulated so as to isolate the contribution of various speech features. These showed that preserving intonational contrasts did not contribute to the comprehension of spectrally-rotated speech after training, and suggested that improvements involved adaptation to altered spectral shape and dynamics, rather than just learning to focus on speech features relatively unaffected by the transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, A.
HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistantmore » and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.« less
Fission gas bubble identification using MATLAB's image processing toolbox
Collette, R.; King, J.; Keiser, Jr., D.; ...
2016-06-08
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel
2015-11-01
Phase-contrast X-ray computed tomography (PCI-CT) has attracted significant interest in recent years for its ability to provide significantly improved image contrast in low absorbing materials such as soft biological tissue. In the research context of cartilage imaging, previous studies have demonstrated the ability of PCI-CT to visualize structural details of human patellar cartilage matrix and capture changes to chondrocyte organization induced by osteoarthritis. This study evaluates the use of geometrical and topological features for volumetric characterization of such chondrocyte patterns in the presence (or absence) of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and topological features derived from Minkowski Functionals were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). Our results show that the classification performance of SIM-derived geometrical features (AUC: 0.90 ± 0.09) is significantly better than Minkowski Functionals volume (AUC: 0.54 ± 0.02), surface (AUC: 0.72 ± 0.06), mean breadth (AUC: 0.74 ± 0.06) and Euler characteristic (AUC: 0.78 ± 0.04) (p < 10(-4)). These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as diagnostic imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.
Physicochemical analog for modeling superimposed and coded memories
NASA Astrophysics Data System (ADS)
Ensanian, Minas
1992-07-01
The mammalian brain is distinguished by a life-time of memories being stored within the same general region of physicochemical space, and having two extraordinary features. First, memories to varying degrees are superimposed, as well as coded. Second, instantaneous recall of past events can often be affected by relatively simple, and seemingly unrelated sensory clues. For the purposes of attempting to mathematically model such complex behavior, and for gaining additional insights, it would be highly advantageous to be able to simulate or mimic similar behavior in a nonbiological entity where some analogical parameters of interest can reasonably be controlled. It has recently been discovered that in nonlinear accumulative metal fatigue memories (related to mechanical deformation) can be superimposed and coded in the crystal lattice, and that memory, that is, the total number of stress cycles can be recalled (determined) by scanning not the surfaces but the `edges' of the objects. The new scanning technique known as electrotopography (ETG) now makes the state space modeling of metallic networks possible. The author provides an overview of the new field and outlines the areas that are of immediate interest to the science of artificial neural networks.
A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Yearian, Mason R.
1990-01-01
When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements.
Organizational Risk and Opportunity Management: Concepts and Processes for NASA's Consideration
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher
2016-01-01
The focus of this report is on the development of a framework and overall approach that serves the interests of nonprofit and Government organizations like NASA that focus on developing and/or applying new technology (henceforth referred to as organizations like NASA). These interests tend to place emphasis on performing services and achieving scientific and technical gains more than on achieving financial investment goals, which is the province of commercial enterprises. In addition, the objectives of organizations like NASA extend to institutional development and maintenance, financial health, legal and reputational protection, education and partnerships, and mandated milestone achievements. This report discusses the philosophical underpinnings of OROM for organizations like NASA, the integration of OROM with existing management processes, and the nature of the activities that are performed to implement OROM within this context. The proposed framework includes a set of core principles that would be essential to any successful OROM approach, along with some features that are currently under development and are continuing to evolve. The report is intended to foster discussion of OROM at NASA in order to reach a consensus on the optimum approach for the agency.
Special Relativity at the Quantum Scale
Lam, Pui K.
2014-01-01
It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's “checker-board” trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum “coordinates”. This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point. PMID:25531675
Special relativity at the quantum scale.
Lam, Pui K
2014-01-01
It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.
BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins.
van Heel, Auke J; de Jong, Anne; Song, Chunxu; Viel, Jakob H; Kok, Jan; Kuipers, Oscar P
2018-05-21
Interest in secondary metabolites such as RiPPs (ribosomally synthesized and posttranslationally modified peptides) is increasing worldwide. To facilitate the research in this field we have updated our mining web server. BAGEL4 is faster than its predecessor and is now fully independent from ORF-calling. Gene clusters of interest are discovered using the core-peptide database and/or through HMM motifs that are present in associated context genes. The databases used for mining have been updated and extended with literature references and links to UniProt and NCBI. Additionally, we have included automated promoter and terminator prediction and the option to upload RNA expression data, which can be displayed along with the identified clusters. Further improvements include the annotation of the context genes, which is now based on a fast blast against the prokaryote part of the UniRef90 database, and the improved web-BLAST feature that dynamically loads structural data such as internal cross-linking from UniProt. Overall BAGEL4 provides the user with more information through a user-friendly web-interface which simplifies data evaluation. BAGEL4 is freely accessible at http://bagel4.molgenrug.nl.
Coordinating an Autonomous Earth-Observing Sensorweb
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth;
2006-01-01
A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.
Changes in Publication-Based Academic Interest in Local Anesthetics Over the Past 50 Years.
Vlassakov, Kamen V; Kissin, Igor
2016-07-01
To present the history of changes in academic interest in local anesthetics quantitatively. The changes in publication-based academic interest in local anesthetics were assessed using information from the database of PubMed. The assessment was mostly based on the following indices: general popularity index (GPI), representing the proportion of articles on a drug relative to all articles in the field of regional anesthesia, and specific popularity index (SPI), representing the proportion of articles on a drug relative to all articles in one of the four forms of regional anesthesia: local anesthesia, spinal anesthesia, epidural anesthesia, and peripheral nerve blocks. The most important general feature of the changes in publication-based academic interest in local anesthetics for the past 50 years was the concentration of this interest on a very limited number of drugs. By 2010-2014, only three anesthetics demonstrated the GPI value above 4.0: bupivacaine (10.1), lidocaine (10.0), and ropivacaine (4.6). All other local anesthetics had GPI declining mostly to less than 1.0 (2010-2014). The rate of change in publication-based academic interest was very slow in both its increase and decline. The most profound change in publication-based academic interests was caused by the introduction of bupivacaine. During a 20-year period (from 1965-1969 to 1985-1989), bupivacaine's GPI increased from 1.3 to 12.9. A slowly developing concentration of publication-based academic interest on a very limited number of local anesthetics was the dominant feature related to this class of anesthetic agents. Copyright © 2016 Anesthesia History Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Su, Fulin
2018-01-01
We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Nagaoka, Yutaka; Romero Aburto, Rebeca; Mitcham, Trevor; Ajayan, Pulickel M.; Bouchard, Richard R.; Sakamoto, Yasushi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.
2015-04-01
A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies.A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies. Electronic supplementary information (ESI) available: Methodology and additional experimental results. See DOI: 10.1039/c4nr07139e
iOS and OS X Apps for Exploring Earthquake Activity
NASA Astrophysics Data System (ADS)
Ammon, C. J.
2015-12-01
The U.S. Geological Survey and many other agencies rapidly provide information following earthquakes. This timely information garners great public interest and provides a rich opportunity to engage students in discussion and analysis of earthquakes and tectonics. In this presentation I will describe a suite of iOS and Mac OS X apps that I use for teaching and that Penn State employs in outreach efforts in a small museum run by the College of Earth and Mineral Sciences. The iOS apps include a simple, global overview of earthquake activity, epicentral, designed for a quick review or event lookup. A more full-featured iPad app, epicentral-plus, includes a simple global overview along with views that allow a more detailed exploration of geographic regions of interest. In addition, epicentral-plus allows the user to monitor ground motions using seismic channel lists compatible with the IRIS web services. Some limited seismogram processing features are included to allow focus on appropriate signal bandwidths. A companion web site, which includes background material on earthquakes, and a blog that includes sample images and channel lists appropriate for monitoring earthquakes in regions of recent earthquake activity can be accessed through the a third panel in the app. I use epicentral-plus at the beginning of each earthquake seismology class to review recent earthquake activity and to stimulate students to formulate and to ask questions that lead to discussions of earthquake and tectonic processes. Less interactive OS X versions of the apps are used to display a global map of earthquake activity and seismograms in near real time in a small museum on the ground floor of the building hosting Penn State's Geoscience Department.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
ERIC Educational Resources Information Center
Rutherford, M. D.; Walsh, Jennifer A.; Lee, Vivian
2015-01-01
Infants are interested in eyes, but look preferentially at mouths toward the end of the first year, when word learning begins. Language delays are characteristic of children developing with autism spectrum disorder (ASD). We measured how infants at risk for ASD, control infants, and infants who later reached ASD criterion scanned facial features.…
Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R
2015-10-01
This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.
Identification of simple objects in image sequences
NASA Astrophysics Data System (ADS)
Geiselmann, Christoph; Hahn, Michael
1994-08-01
We present an investigation in the identification and location of simple objects in color image sequences. As an example the identification of traffic signs is discussed. Three aspects are of special interest. First regions have to be detected which may contain the object. The separation of those regions from the background can be based on color, motion, and contours. In the experiments all three possibilities are investigated. The second aspect focuses on the extraction of suitable features for the identification of the objects. For that purpose the border line of the region of interest is used. For planar objects a sufficient approximation of perspective projection is affine mapping. In consequence, it is near at hand to extract affine-invariant features from the border line. The investigation includes invariant features based on Fourier descriptors and moments. Finally, the object is identified by maximum likelihood classification. In the experiments all three basic object types are correctly identified. The probabilities for misclassification have been found to be below 1%
NASA Astrophysics Data System (ADS)
Tenenbaum, L. F.; Jackson, R.; Greene, M.
2009-12-01
I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA
Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-01-01
Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398
NASA Technical Reports Server (NTRS)
Collins, R. J. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G. J.; Everett, J. R.
1974-01-01
The author has identified the following significant results. ERTS-1 data give exploration geologists a new perspective for looking at the earth. The data are excellent for interpreting regional lithologic and structural relationships and quickly directing attention to areas of greatest exploration interest. Information derived from ERTS data useful for petroleum exploration include: linear features, general lithologic distribution, identification of various anomalous features, some details of structures controlling hydrocarbon accumulation, overall structural relationships, and the regional context of the exploration province. Many anomalies (particularly geomorphic anomalies) correlate with known features of petroleum exploration interest. Linears interpreted from the imagery that were checked in the field correlate with fractures. Bands 5 and 7 and color composite imagery acquired during the periods of maximum and minimum vegetation vigor are best for geologic interpretation. Preliminary analysis indicates that use of ERTS imagery can substantially reduce the cost of petroleum exploration in relatively unexplored areas.
Padilla-Buritica, Jorge I.; Martinez-Vargas, Juan D.; Castellanos-Dominguez, German
2016-01-01
Lately, research on computational models of emotion had been getting much attention due to their potential for understanding the mechanisms of emotions and their promising broad range of applications that potentially bridge the gap between human and machine interactions. We propose a new method for emotion classification that relies on features extracted from those active brain areas that are most likely related to emotions. To this end, we carry out the selection of spatially compact regions of interest that are computed using the brain neural activity reconstructed from Electroencephalography data. Throughout this study, we consider three representative feature extraction methods widely applied to emotion detection tasks, including Power spectral density, Wavelet, and Hjorth parameters. Further feature selection is carried out using principal component analysis. For validation purpose, these features are used to feed a support vector machine classifier that is trained under the leave-one-out cross-validation strategy. Obtained results on real affective data show that incorporation of the proposed training method in combination with the enhanced spatial resolution provided by the source estimation allows improving the performed accuracy of discrimination in most of the considered emotions, namely: dominance, valence, and liking. PMID:27489541
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
NASA Astrophysics Data System (ADS)
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
Salient features of solitary waves in dusty plasma under the influence of Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004
The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less
Diaphragm disease of the small intestine: an interesting case report.
Ullah, Sana; Ajab, Shereen; Rao, Rajashekhar; Raghunathan, Girish; DaCosta, Philip
2015-06-01
Diaphragm disease of small intestine usually presents with nonspecific clinical features. Radiological investigations often fail to differentiate it from small intestinal tumors and inflammatory bowel disease. It is therefore diagnosed on final histology after surgical resection. We hereby report an interesting case of a suspected small bowel tumor later diagnosed as diaphragm disease on histology. © The Author(s) 2014.
Biography Today: Profiles of People of Interest to Young Readers, Volume 1, Issue 1, January 1992.
ERIC Educational Resources Information Center
Harris, Laurie Lanzen, Ed.
1992-01-01
This is the first issue of a new quarterly periodical designed to provide young students (9 and above) with biographies/profiles of well-known people in a story-telling format that are more appealing and interesting than those found in more comprehensive and encyclopedic biographical dictionaries. The first issue features profiles of the following…
What Do Academic Primary Care Physicians Want in an Electronic Journal?
Torre, Dario M; Wright, Scott M; Wilson, Renée F; Diener-West, Marie; Bass, Eric B
2003-01-01
To determine the interest of academic general internists and family physicians in specific features of electronic journal publications, we surveyed 350 physicians, 175 randomly selected from each of 2 medical societies: the Society of General Internal Medicine, and the Society of Teachers of Family Medicine. The response rate was 70%. Most general internists and family physicians used online journals sometimes or often. Most general internists and family physicians reported moderate to high interest in having links from original articles, reviews, or editorials to listed references (77% to 89% of internists and 65% to 81% of family physicians) and electronic medical reference texts (73% to 78% of internists and 65% to 83% of family physicians). Less than 25% of both groups reported moderate to high interest in having links to initiate dialog with other readers or to communicate comments to the author or editor. General internists were more likely than were family physicians to have moderate to high interest in having links to appendices and supportive material (e.g., 66% of general internists versus 46% of family physicians for original articles; P < .05) and less likely to have moderate to high interest in links to health-related web sites (44% of general internists versus 69% of family physicians for original articles; P < .05). We conclude that academic general internists and family physicians have strong but not identical interests in specific features of electronic publication that primary care–oriented journals should consider. PMID:12648253
Quantifying patterns of research interest evolution
NASA Astrophysics Data System (ADS)
Jia, Tao; Wang, Dashun; Szymanski, Boleslaw
Changing and shifting research interest is an integral part of a scientific career. Despite extensive investigations of various factors that influence a scientist's choice of research topics, quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing research interest evolution of individual scientists remain limited. Here we perform a large-scale analysis of extensive publication records, finding that research interest change follows a reproducible pattern characterized by an exponential distribution. We identify three fundamental features responsible for the observed exponential distribution, which arise from a subtle interplay between exploitation and exploration in research interest evolution. We develop a random walk based model, which adequately reproduces our empirical observations. Our study presents one of the first quantitative analyses of macroscopic patterns governing research interest change, documenting a high degree of regularity underlying scientific research and individual careers.
Washington Play Fairway Analysis Geothermal GIS Data
Corina Forson
2015-12-15
This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.
Callipeltosides A, B and C: Total Syntheses and Structural Confirmation
Frost, James R; Pearson, Colin M; Snaddon, Thomas N; Booth, Richard A; Turner, Richard M; Gold, Johan; Shaw, David M; Gaunt, Matthew J; Ley, Steven V
2015-01-01
Since their isolation almost 20 years ago, the callipeltosides have been of long standing interest to the synthetic community owing to their unique structural features and inherent biological activity. Herein we present our full research effort that has led to the synthesis of these molecules. Key aspects of our final strategy include 1) synthesis of the C1–C9 pyran core (5) using an AuCl3-catalysed cyclisation; 2) formation of C10–C22 vinyl iodide (55) by sequential bidirectional Stille reactions and 3) diastereoselective union of these advanced fragments by means of an alkenylzinc addition (d.r.=91:9 at C9). The common callipeltoside aglycon (4) was completed in a further five steps. Following this, all three sugar fragments were appended to provide the entire callipeltoside family. In addition to this, D-configured callipeltose B was synthesised and appended to the callipeltoside aglycon. The 1H NMR spectrum of this molecule was found to be significantly different to the natural isolate, further supporting our assignment of callipeltoside B (2). PMID:26230615
Callewaert, Raf; De Vuyst, Luc
2000-01-01
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724
Rougier, Patrice R; Boudrahem, Samir
2017-09-01
The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.
Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme
2014-03-01
Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.
Investigation of Cracks Found in Helicopter Longerons
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Investigation of Helicopter Longeron Cracks
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Heerwagen, J H; Heubach, J G; Montgomery, J; Weimer, W C
1995-09-01
The physical environment can be an important contributor to occupational stress. Factors that contribute to stress and other negative outcomes include: lack of control over the environment, distractions from coworkers, lack of privacy, noise, crowding, and environmental deprivations (such as lack of windows and aesthetic impoverishment). The design of "salutogenic" environments requires not only the elimination of negative stress inducing features, but also the addition of environmental enhancements, including such factors as increased personal control, contact with nature and daylight, aesthetically pleasing spaces, and spaces for relaxation alone or with others. Salutogenic environments also take into consideration positive psychosocial "fit," as well as functional fit between people and environments. At the heart of the current interest in the work environment are two major concerns: organizational productivity and employee well being.
NASA Astrophysics Data System (ADS)
Romain, Xavier; Baida, Fadi; Boyer, Philippe
2016-07-01
We study a polarizer-analyzer mounting for the terahertz regime with perfectly conducting metallic polarizers made of a periodic subwavelength pattern. With a renewed Jones formalism, we analytically investigate the influence of the multiple reflections, which occur between the polarizer and the analyzer, on the transmission response. We demonstrate that this interaction leads to a modified transmission response: the extended Malus law. In addition, we show that the transmission response can be controlled by the distance between the polarizer and the analyzer. For particular setups, the mounting exhibits extremely sensitive transmission responses. This interesting feature can be employed for high-precision sensing and characterization applications. We specifically propose a general design for measuring the electro-optical response of materials in the terahertz domain allowing detection of refractive index variations as small as 10-5.
Recent Advances of VCSEL Photonics
NASA Astrophysics Data System (ADS)
Koyama, Fumio
2006-12-01
A vertical-cavity surface emitting laser (VCSEL) was invented 30 years ago. A lot of unique features can be expected, such as low-power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years, and they are now key devices in local area networks using multimode optical fibers. Also, long wavelength VCSELs are currently attracting much interest for use in single-mode fiber metropolitan area and wide area network applications. In addition, a VCSEL-based disruptive technology enables various consumer applications such as a laser mouse and laser printers. In this paper, the recent advance of VCSEL photonics will be reviewed, which include the wavelength extension of single-mode VCSELs and their wavelength integration/control. Also, this paper explores the potential and challenges for new functions of VCSELs toward optical signal processing.
Sport, how people choose it: A network analysis approach.
Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco
2015-01-01
In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.
Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis
Chu, Xin-Yi; Zhou, Xiong-Hui; Cui, Ze-Jia; Zhang, Hong-Yu
2017-01-01
The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. It is thus of great interest to explore the evolutionary origins of cancer driver genes and the relevant mechanisms underlying the carcinogenesis. Moreover, the evolutionary features of cancer driver genes could be helpful in selecting cancer biomarkers from high-throughput data. In this study, through analyzing the cancer endogenous molecular networks, we revealed that the subnetwork originating from eukaryota could control the unlimited proliferation of cancer cells, and the subnetwork originating from eumetazoa could recapitulate the other hallmarks of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes were enriched in genes originating from eukaryota, opisthokonta, and eumetazoa. These results have important implications for enhancing the robustness of cancer prognosis models through selecting the gene signatures by the gene age information. PMID:28708071
Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis.
Chu, Xin-Yi; Jiang, Ling-Han; Zhou, Xiong-Hui; Cui, Ze-Jia; Zhang, Hong-Yu
2017-07-14
The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. It is thus of great interest to explore the evolutionary origins of cancer driver genes and the relevant mechanisms underlying the carcinogenesis. Moreover, the evolutionary features of cancer driver genes could be helpful in selecting cancer biomarkers from high-throughput data. In this study, through analyzing the cancer endogenous molecular networks, we revealed that the subnetwork originating from eukaryota could control the unlimited proliferation of cancer cells, and the subnetwork originating from eumetazoa could recapitulate the other hallmarks of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes were enriched in genes originating from eukaryota, opisthokonta, and eumetazoa. These results have important implications for enhancing the robustness of cancer prognosis models through selecting the gene signatures by the gene age information.
Chen, Xinyin
2015-02-01
Researchers have investigated the implications of social change for human development from different perspectives. The studies published in this special section were conducted within Greenfield's theoretical framework (2009). The findings concerning links between specific sociodemographic features (e.g., commercial activities, schooling) and individual cognition and social behaviour are particularly interesting because they tap the underlying forces that drive human development. To further understand the issues in these studies and in the field, a pluralist-constructive perspective is discussed, which emphasises the integration of diverse values and practices in both Western and non-Western societies and its effects on the development of sophisticated competencies in individual adaptation to the changing global community. In addition, several issues are highlighted and some suggestions are provided for future explorations in this field. © 2014 International Union of Psychological Science.
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.
Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J
2015-06-01
The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Solar H-alpha features with hot onsets. III. Long fibrils in Lyman-alpha and with ALMA
NASA Astrophysics Data System (ADS)
Rutten, R. J.
2017-02-01
In H-alpha most of the solar surface is covered by dense canopies of long opaque fibrils, but predictions for quiet-Sun observations with ALMA have ignored this fact. Comparison with Ly-alpha suggests that the extraordinary opacity of H-alpha fibrils is caused by hot precursor events. Application of a recipe that assumes momentary Saha-Boltzmann extinction during their hot onset to millimeter wavelengths suggests that ALMA will observe H-alpha-like fibril canopies, not acoustic shocks underneath, and will yield data more interesting than if these canopies were transparent. An additional file is available at the end of the PDF file of this article.This study is offered as compliment to M.W.M. de Graauw. Our ways, objects, instruments and spectral domains parted after the 1970 eclipse but converge here.
Image analysis and machine learning in digital pathology: Challenges and opportunities.
Madabhushi, Anant; Lee, George
2016-10-01
With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology. Copyright © 2016 Elsevier B.V. All rights reserved.
Bottesi, Gioia; Cerea, Silvia; Razzetti, Enrico; Sica, Claudio; Frost, Randy O.; Ghisi, Marta
2016-01-01
Trichotillomania (TTM) is still a scarcely known and often inadequately treated disorder in Italian clinical settings, despite growing evidence about its severe and disabling consequences. The current study investigated the phenomenology of TTM in Italian individuals; in addition, we sought to examine patterns of self-esteem, anxiety, depression, and OCD-related symptoms in individuals with TTM compared to healthy participants. The current study represents the first attempt to investigate the phenomenological and psychopathological features of TTM in Italian hair pullers. One hundred and twenty-two individuals with TTM were enrolled: 24 were assessed face-to-face (face-to-face group) and 98 were recruited online (online group). An additional group of 22 face-to-face assessed healthy controls (HC group) was included in the study. The overall female to male ratio was 14:1, which is slightly higher favoring female than findings reported in literature. Main results revealed that a higher percentage of individuals in the online group reported pulling from the pubic region than did face-to-face participants; furthermore, the former engaged in examining the bulb and running the hair across the lips and reported pulling while lying in bed at higher frequencies than the latter. Interestingly, the online TTM group showed greater functional and psychological impairment, as well as more severe psychopathological characteristics (self-esteem, physiological and social anxiety, perfectionism, overestimation of threat, and control of thoughts), than the face-to-face one. Differences between the two TTM groups may be explained by the anonymity nature of the online group, which may have led to successful recruitment of more serious TTM cases, or fostered more open answers to questions. Overall, results revealed that many of the phenomenological features of Italian TTM participants matched those found in U.S. clinical settings, even though some notable differences were observed; therefore, cross-cultural invariance might represent a characteristic of OCD-related disorders. PMID:26941700
Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.
2007-01-01
The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.
Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina
2012-05-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.
Hamker, Fred H
2008-07-15
Feature inheritance provides evidence that properties of an invisible target stimulus can be attached to a following mask. We apply a systemslevel model of attention and decision making to explore the influence of memory and feedback connections in feature inheritance. We find that the presence of feedback loops alone is sufficient to account for feature inheritance. Although our simulations do not cover all experimental variations and focus only on the general principle, our result appears of specific interest since the model was designed for a completely different purpose than to explain feature inheritance. We suggest that feedback is an important property in visual perception and provide a description of its mechanism and its role in perception.
Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina
2012-01-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602
Ó Ciardha, Caoilte; Attard-Johnson, Janice; Bindemann, Markus
2018-04-01
Latency-based measures of sexual interest require additional evidence of validity, as do newer pupil dilation approaches. A total of 102 community men completed six latency-based measures of sexual interest. Pupillary responses were recorded during three of these tasks and in an additional task where no participant response was required. For adult stimuli, there was a high degree of intercorrelation between measures, suggesting that tasks may be measuring the same underlying construct (convergent validity). In addition to being correlated with one another, measures also predicted participants' self-reported sexual interest, demonstrating concurrent validity (i.e., the ability of a task to predict a more validated, simultaneously recorded, measure). Latency-based and pupillometric approaches also showed preliminary evidence of concurrent validity in predicting both self-reported interest in child molestation and viewing pornographic material containing children. Taken together, the study findings build on the evidence base for the validity of latency-based and pupillometric measures of sexual interest.
Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie
2017-01-01
Background Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults’ quality perception toward exercise-promotion apps and which factor may influence such perception. Objectives The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. Methods A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London—Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. Results The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. Conclusions This study is the first to propose middle-agers’ needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. PMID:28546140
The Social Acceptance of Community Solar: A Portland Case Study
NASA Astrophysics Data System (ADS)
Weaver, Anne
Community solar is a renewable energy practice that's been adopted by multiple U.S. states and is being considered by many more, including the state of Oregon. A recent senate bill in Oregon, called the "Clean Electricity and Coal Transition Plan", includes a provision that directs the Oregon Public Utility Commission to establish a community solar program for investor-owned utilities by late 2017. Thus, energy consumers in Portland will be offered participation in community solar projects in the near future. Community solar is a mechanism that allows ratepayers to experience both the costs and benefits of solar energy while also helping to offset the proportion of fossil-fuel generated electricity in utility grids, thus aiding climate change mitigation. For community solar to achieve market success in the residential sector of Portland, ratepayers of investor-owned utilities must socially accept this energy practice. The aim of this study was to forecast the potential social acceptance of community solar among Portland residents by measuring willingness to participate in these projects. Additionally, consumer characteristics, attitudes, awareness, and knowledge were captured to assess the influence of these factors on intent to enroll in community solar. The theory of planned behavior, as well as the social acceptance, diffusion of innovation, and dual-interest theories were frameworks used to inform the analysis of community solar adoption. These research objectives were addressed through a mixed-mode survey of Portland residents, using a stratified random sample of Portland neighborhoods to acquire a gradient of demographics. 330 questionnaires were completed, yielding a 34.2% response rate. Descriptive statistics, binomial logistic regression models, and mean willingness to pay were the analyses conducted to measure the influence of project factors and demographic characteristics on likelihood of community solar participation. Roughly 60% of respondents exhibited interest in community solar enrollment. The logistic regression model revealed the percent change in utility bill (essentially the rate of return on the community solar investment) as a dramatically influential variable predicting willingness to participate. Community solar project scenarios also had a strong influence on willingness to participate: larger, cheaper, and distant projects were preferred over small and expensive local projects. Results indicate that community solar project features that accentuate affordability are most important to energy consumers. Additionally, demographic characteristics that were strongly correlated with willingness to enroll were politically liberal ideologies, higher incomes, current enrollment in green utility programs, and membership in an environmental organization. Thus, the market acceptance of community solar in Portland will potentially be broadened by emphasizing affordability over other features, such as community and locality. Additionally, I explored attitudinal influences on interest in community solar by conducting exploratory factor analysis on attitudes towards energy, climate change, and solar barriers and subsequently conducting binomial logistic regression models. Results found that perceiving renewable energy as environmentally beneficial was positively correlated with intent to enroll in community solar, which supported the notion that environmental attitudes will lead to environmental behaviors. The logistic regression model also revealed a negative correlation between community solar interest and negative attitudes towards renewable energy. Perceptions of solar barriers were mild, indicating that lack of an enabling mechanism may be the reason solar continues to be underutilized in this region.
[Callous and unemotional--do children have psychopathic features?].
Laajasalo, Taina; Saukkonen, Suvi; Aronen, Eeva
2014-01-01
The essence of psychopathic personality disorder is considered to consist of emotional deviations, the most central ones of which being the lack of feelings of guilt and empathy along with impoverishment of experiencing emotions. The interest in the occurrence of these callous-unemotional features in children and adolescents has increased over the past few years. According to the most recent studies, parental interventions promoting a positive, warm, and attentive parenting and interaction style are effective in the treatment of children having a conduct disorder accompanied by callous-unemotional features.
A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.
2016-12-01
It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.
The Tablet Device in Hospital Neurology and in Neurology Graduate Medical Education
Newey, Christopher R.; Bhimraj, Adarsh
2015-01-01
Background and Purpose: There is limited literature on tablet devices for neurohospitalists and in neurological graduate medical education. This study evaluated utilization, benefits, and limitations of customized tablets on inpatient neurology practice and resident education. The hypothesis was the perception of the tablet would be positive, given their portability, convenience to accessing point-of-care reference, and accessibility to the electronic medical record. Methods: Second-generation iPads with neurology-specific applications and literature were provided to our in-hospital general, stroke, and consult neurology teams. After 1 year, residents on these teams were surveyed on demographic data, familiarity, and utilization of the iPad and their perceptions of the device. Results: All 27 residents responded to the survey. Most participants (23 of 27) used a tablet while on inpatient service. Twelve regularly utilized the neurology-specific apps and/or accessed scientific articles. Technologically savvy residents felt significantly more comfortable using tablets and were more quickly acquainted with the features. Thirteen respondents wanted a formal orientation on the advanced features of the tablet independent of their familiarity with the device or level of technological comfort. Conclusion: Overall, the perception was that the tablet was beneficial for inpatient clinical care and as an educational reference. Participants became easily familiarized with the device features quickly, regardless of whether they owned one previously or not. Most physicians indicated interest in advanced features of tablets; however, a formal orientation may be beneficial for optimal utilization. A reliable network connection is essential to in-hospital use of tablet devices. Additional research pertaining to patient outcomes, objective educational benefit, and cost-effectiveness is necessary. PMID:25553224
Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
Pasolli, Edoardo; Truong, Duy Tin; Malik, Faizan; Waldron, Levi; Segata, Nicola
2016-07-01
Shotgun metagenomic analysis of the human associated microbiome provides a rich set of microbial features for prediction and biomarker discovery in the context of human diseases and health conditions. However, the use of such high-resolution microbial features presents new challenges, and validated computational tools for learning tasks are lacking. Moreover, classification rules have scarcely been validated in independent studies, posing questions about the generality and generalization of disease-predictive models across cohorts. In this paper, we comprehensively assess approaches to metagenomics-based prediction tasks and for quantitative assessment of the strength of potential microbiome-phenotype associations. We develop a computational framework for prediction tasks using quantitative microbiome profiles, including species-level relative abundances and presence of strain-specific markers. A comprehensive meta-analysis, with particular emphasis on generalization across cohorts, was performed in a collection of 2424 publicly available metagenomic samples from eight large-scale studies. Cross-validation revealed good disease-prediction capabilities, which were in general improved by feature selection and use of strain-specific markers instead of species-level taxonomic abundance. In cross-study analysis, models transferred between studies were in some cases less accurate than models tested by within-study cross-validation. Interestingly, the addition of healthy (control) samples from other studies to training sets improved disease prediction capabilities. Some microbial species (most notably Streptococcus anginosus) seem to characterize general dysbiotic states of the microbiome rather than connections with a specific disease. Our results in modelling features of the "healthy" microbiome can be considered a first step toward defining general microbial dysbiosis. The software framework, microbiome profiles, and metadata for thousands of samples are publicly available at http://segatalab.cibio.unitn.it/tools/metaml.
Michael, Todd P; Bryant, Douglas; Gutierrez, Ryan; Borisjuk, Nikolai; Chu, Philomena; Zhang, Hanzhong; Xia, Jing; Zhou, Junfei; Peng, Hai; El Baidouri, Moaine; Ten Hallers, Boudewijn; Hastie, Alex R; Liang, Tiffany; Acosta, Kenneth; Gilbert, Sarah; McEntee, Connor; Jackson, Scott A; Mockler, Todd C; Zhang, Weixiong; Lam, Eric
2017-02-01
Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia
2014-06-01
Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Neutrino Flavor Evolution in Turbulent Supernova Matter
NASA Astrophysics Data System (ADS)
Lund, Tina; Kneller, James P.
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.
Seuntjens, Terri G; Zeelenberg, Marcel; Breugelmans, Seger M; van de Ven, Niels
2015-08-01
Although greed is both hailed as the motor of economic growth and blamed as the cause of economic crises, very little is known about its psychological underpinnings. Five studies explored lay conceptualizations of greed among U.S. and Dutch participants using a prototype analysis. Study 1 identified features related to greed. Study 2 determined the importance of these features; the most important features were classified as central (e.g., self-interested, never satisfied), whereas less important features were classified as peripheral (e.g., ambition, addiction). Subsequently, we found that, compared to peripheral features, participants recalled central features better (Study 3), faster (Study 4), and these central features were more present in real-life episodes of greed (Study 5). These findings provide a better understanding of the elements that make up the experience of greed and provide insights into how greed can be manipulated and measured in future research. © 2014 The British Psychological Society.
Okumura, Hiroki
2017-01-01
An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.
NASA Astrophysics Data System (ADS)
Książek, Judyta
2015-10-01
At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.
Developing assessment system for wireless capsule endoscopy videos based on event detection
NASA Astrophysics Data System (ADS)
Chen, Ying-ju; Yasen, Wisam; Lee, Jeongkyu; Lee, Dongha; Kim, Yongho
2009-02-01
Along with the advancing of technology in wireless and miniature camera, Wireless Capsule Endoscopy (WCE), the combination of both, enables a physician to diagnose patient's digestive system without actually perform a surgical procedure. Although WCE is a technical breakthrough that allows physicians to visualize the entire small bowel noninvasively, the video viewing time takes 1 - 2 hours. This is very time consuming for the gastroenterologist. Not only it sets a limit on the wide application of this technology but also it incurs considerable amount of cost. Therefore, it is important to automate such process so that the medical clinicians only focus on interested events. As an extension from our previous work that characterizes the motility of digestive tract in WCE videos, we propose a new assessment system for energy based events detection (EG-EBD) to classify the events in WCE videos. For the system, we first extract general features of a WCE video that can characterize the intestinal contractions in digestive organs. Then, the event boundaries are identified by using High Frequency Content (HFC) function. The segments are classified into WCE event by special features. In this system, we focus on entering duodenum, entering cecum, and active bleeding. This assessment system can be easily extended to discover more WCE events, such as detailed organ segmentation and more diseases, by using new special features. In addition, the system provides a score for every WCE image for each event. Using the event scores, the system helps a specialist to speedup the diagnosis process.
projects. Research Interests Energy project finance Energy project tax matters Microgrids Resiliency School of Mines Executive MBA, University of Denver Featured Publications Wind Energy Finance in the
Pyo, J-S; Sohn, J H; Kang, G
2017-03-01
The aim of this study was to elucidate the cytological characteristics and the diagnostic usefulness of intraoperative cytology (IOC) for papillary thyroid carcinoma (PTC). In addition, using decision tree analysis, effective features for accurate cytological diagnosis were sought. We investigated cellularity, cytological features and diagnosis based on the Bethesda System for Reporting Thyroid Cytopathology in IOC of 240 conventional PTCs. The cytological features were evaluated in terms of nuclear score with nuclear features, and additional figures such as presence of swirling sheets, psammoma bodies, and multinucleated giant cells. The nuclear score (range 0-7) was made via seven nuclear features, including (1) enlarged, (2) oval or irregularly shaped nuclei, (3) longitudinal nuclear grooves, (4) intranuclear cytoplasmic pseudoinclusion, (5) pale nuclei with powdery chromatin, (6) nuclear membrane thickening, and (7) marginally placed micronucleoli. Nuclear scores in PTC, suspicious for malignancy, and atypia of undetermined significance cases were 6.18 ± 0.80, 4.48 ± 0.82, and 3.15 ± 0.67, respectively. Additional figures more frequent in PTC than in other diagnostic categories were identified. Cellularity of IOC significantly correlated with tumor size, nuclear score, and presence of additional figures. Also, IOCs with higher nuclear scores (4-7) significantly correlated with larger tumor size and presence of additional figures. In decision tree analysis, IOCs with nuclear score >5 and swirling sheets could be considered diagnostic for PTCs. Our study suggests that IOCs using nuclear features and additional figures could be useful with decreasing the likelihood of inconclusive results.
Equivalent circuit models for interpreting impedance perturbation spectroscopy data
NASA Astrophysics Data System (ADS)
Smith, R. Lowell
2004-07-01
As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.
Relating interesting quantitative time series patterns with text events and text features
NASA Astrophysics Data System (ADS)
Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.
2013-12-01
In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other application domains such as data analysis of smart grids, cyber physical systems or the security of critical infrastructure, where the data consists of a combination of quantitative and textual time series data.
IMPACT: The Magazine for Innovation and Change in the Helping Professions. Volume 2, Number 2.
ERIC Educational Resources Information Center
Walz, Garry, Ed.; And Others
The primary emphasis of this issue of "Impact" is on career guidance. Articles contain facts as well as comments and implications regarding this topic. A feature of interest is a modified version of the 18th century "Game of Life." Another feature in this issue is a report on the counselor survey "Counselors View Goals, the Future, and…
Does Hot Water Freeze Faster Than Cold? Or Why Mpemba's Ice Cream Is a Discrepant Event
ERIC Educational Resources Information Center
Palmer, Bill
1993-01-01
A discrepant event is a happening contrary to our current beliefs. Discrepant events are said to be useful in clarifying concepts. This is one of the interesting features of current theories of constructivism. The story of Mpemba's ice cream is quite well known, but it is the educational aspects of the experiment that are of interest in this…
Kergourlay, Gilles; Messaoudi, Soumaya; Dousset, Xavier; Prévost, Hervé
2012-06-01
We report the draft genome sequence of Lactobacillus salivarius SMXD51, isolated from the cecum of healthy chickens showing an activity against Campylobacter--the food-borne pathogen that is the most common cause of gastroenteritis in the European Union (EU)--and potentially interesting features for a probiotic strain, explaining our interest in it.
Studying the Surfaces of the Icy Galilean Satellites With JIMO
NASA Astrophysics Data System (ADS)
Prockter, L.; Schenk, P.; Pappalardo, R.
2003-12-01
The Geology subgroup of the Jupiter Icy Moons Orbiter (JIMO) Science Definition Team (SDT) has been working with colleagues within the planetary science community to determine the key outstanding science goals that could be met by the JIMO mission. Geological studies of the Galilean satellites will benefit from the spacecraft's long orbital periods around each satellite, lasting from one to several months. This mission plan allows us to select the optimal viewing conditions to complete global compositional and morphologic mapping at high resolution, and to target geologic features of key scientific interest at very high resolution. Community input to this planning process suggests two major science objectives, along with corresponding measurements proposed to meet them. Objective 1: Determine the origins of surface features and their implications for geological history and evolution. This encompasses investigations of magmatism (intrusion, extrusion, and diapirism), tectonism (isostatic compensation, and styles of faulting, flexure and folding), impact cratering (morphology and distribution), and gradation (erosion and deposition) processes (impact gardening, sputtering, mass wasting and frosts). Suggested measurements to meet this goal include (1) two dimensional global topographic mapping sufficient to discriminate features at a spatial scale of 10 m, and with better than or equal to 1 m relative vertical accuracy, (2) nested images of selected target areas at a range of resolutions down to the submeter pixel scale, (3) global (albedo) mapping at better than or equal to 10 m/pixel, and (4) multispectral global mapping in at least 3 colors at better than or equal to 100 m/pixel, with some subsets at better than 30 m/pixel. Objective 2. Identify and characterize potential landing sites for future missions. A primary component to the success of future landed missions is full characterization of potential sites in terms of their relative age, geological interest, and engineering safety. Measurement requirements suggested to meet this goal (in addition to the requirements of Objective 1) include the acquisition of super-high resolution images of selected target areas (with intermediate context imaging) down to 25 cm/pixel scale. The Geology subgroup passed these recommendations to the full JIMO Science Definition Team, to be incorporated into the final science recommendations for the JIMO mission.
Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.
2018-01-01
Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function. PMID:29320526
Rasche, Peter; Mertens, Alexander; Brandl, Christopher; Liu, Shan; Buecking, Benjamin; Bliemel, Christopher; Horst, Klemens; Weber, Christian David; Lichte, Philipp; Knobe, Matthias
2018-03-27
Prohibiting falls and fall-related injuries is a major challenge for health care systems worldwide, as a substantial proportion of falls occur in older adults who are previously known to be either frail or at high risk for falls. Hence, preventive measures are needed to educate and minimize the risk for falls rather than just minimize older adults' fall risk. Health apps have the potential to address this problem, as they enable users to self-assess their individual fall risk. The objective of this study was to identify product features of a fall prevention smartphone app, which increase or decrease users' satisfaction. In addition, willingness to pay (WTP) was assessed to explore how much revenue such an app could generate. A total of 96 participants completed an open self-selected Web-based survey. Participants answered various questions regarding health status, subjective and objective fall risk, and technical readiness. Seventeen predefined product features of a fall prevention smartphone app were evaluated twice: first, according to a functional (product feature is implemented in the app), and subsequently by a dysfunctional (product feature is not implemented in the app) question. On the basis of the combination of answers from these 2 questions, the product feature was assigned to a certain category (must-be, attractive, one-dimensional, indifferent, or questionable product feature). This method is widely used in user-oriented product development and captures users' expectations of a product and how their satisfaction is influenced by the availability of individual product features. Five product features were identified to increase users' acceptance, including (1) a checklist of typical tripping hazards, (2) an emergency guideline in case of a fall, (3) description of exercises and integrated workout plans that decrease the risk of falling, (4) inclusion of a continuous workout program, and (5) cost coverage by health insurer. Participants' WTP was assessed after all 17 product features were rated and revealed a median monthly payment WTP rate of €5.00 (interquartile range 10.00). The results show various motivating product features that should be incorporated into a fall prevention smartphone app. Results reveal aspects that fall prevention and intervention designers should keep in mind to encourage individuals to start joining their program and facilitate long-term user engagement, resulting in a greater interest in fall risk prevention. ©Peter Rasche, Alexander Mertens, Christopher Brandl, Shan Liu, Benjamin Buecking, Christopher Bliemel, Klemens Horst, Christian David Weber, Philipp Lichte, Matthias Knobe. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 27.03.2018.
Mertens, Alexander; Brandl, Christopher; Liu, Shan; Buecking, Benjamin; Bliemel, Christopher; Horst, Klemens; Weber, Christian David; Lichte, Philipp; Knobe, Matthias
2018-01-01
Background Prohibiting falls and fall-related injuries is a major challenge for health care systems worldwide, as a substantial proportion of falls occur in older adults who are previously known to be either frail or at high risk for falls. Hence, preventive measures are needed to educate and minimize the risk for falls rather than just minimize older adults’ fall risk. Health apps have the potential to address this problem, as they enable users to self-assess their individual fall risk. Objective The objective of this study was to identify product features of a fall prevention smartphone app, which increase or decrease users’ satisfaction. In addition, willingness to pay (WTP) was assessed to explore how much revenue such an app could generate. Methods A total of 96 participants completed an open self-selected Web-based survey. Participants answered various questions regarding health status, subjective and objective fall risk, and technical readiness. Seventeen predefined product features of a fall prevention smartphone app were evaluated twice: first, according to a functional (product feature is implemented in the app), and subsequently by a dysfunctional (product feature is not implemented in the app) question. On the basis of the combination of answers from these 2 questions, the product feature was assigned to a certain category (must-be, attractive, one-dimensional, indifferent, or questionable product feature). This method is widely used in user-oriented product development and captures users’ expectations of a product and how their satisfaction is influenced by the availability of individual product features. Results Five product features were identified to increase users’ acceptance, including (1) a checklist of typical tripping hazards, (2) an emergency guideline in case of a fall, (3) description of exercises and integrated workout plans that decrease the risk of falling, (4) inclusion of a continuous workout program, and (5) cost coverage by health insurer. Participants’ WTP was assessed after all 17 product features were rated and revealed a median monthly payment WTP rate of €5.00 (interquartile range 10.00). Conclusions The results show various motivating product features that should be incorporated into a fall prevention smartphone app. Results reveal aspects that fall prevention and intervention designers should keep in mind to encourage individuals to start joining their program and facilitate long-term user engagement, resulting in a greater interest in fall risk prevention. PMID:29588268
A Method Of Evaluating A Subsurface Region Using Gather Sensitive Data Discrimination
Lazaratos, Spyridon K.
2000-01-11
A method of evaluating a subsurface region by separating/enhancing a certain type of seismic event data of interest from an overall set of seismic event data which includes other, different types of seismic event data is disclosed herein. In accordance with one feature, a particular type of gather is generated from the seismic event data such that the gather includes at least a portion of the data which is of interest and at least a portion of the other data. A series of data discrimination lines are incorporated into the gather at positions and directions which are established in the gather in a predetermined way. Using the data discrimination lines, the data of interest which is present in the gather is separated/enhanced with respect to the other data within the gather. The separated data may be used for example in producing a map of the particular subterranean region. In accordance with another feature, the gather is selected such that the incorporated discrimination lines approach a near parallel relationship with one another. Thereby, the data is transformed in a way which causes the discrimination lines to be parallel with one another, resulting in reduced frequency distortion accompanied by improved accuracy in the separation/enhancement of data. In accordance with still another feature, the disclosed data separation/enhancement method is compatible with an iterative approach.
NASA Astrophysics Data System (ADS)
Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.
2011-02-01
In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.
A GIS planning model for urban oil spill management.
Li, J
2001-01-01
Oil spills in industrialized cities pose a significant threat to their urban water environment. The largest city in Canada, the city of Toronto, has an average 300-500 oil spills per year with an average total volume of about 160,000 L/year. About 45% of the spills was eventually cleaned up. Given the enormous amount of remaining oil entering into the fragile urban ecosystem, it is important to develop an effective pollution prevention and control plan for the city. A Geographic Information System (GIS) planning model has been developed to characterize oil spills and determine preventive and control measures available in the city. A database of oil spill records from 1988 to 1997 was compiled and geo-referenced. Attributes to each record such as spill volume, oil type, location, road type, sector, source, cleanup percentage, and environmental impacts were created. GIS layers of woodlots, wetlands, watercourses, Environmental Sensitive Areas, and Areas of Natural and Scientific Interest were obtained from the local Conservation Authority. By overlaying the spill characteristics with the GIS layers, evaluation of preventive and control solutions close to these environmental features was conducted. It was found that employee training and preventive maintenance should be improved as the principal cause of spills was attributed to human errors and equipment failure. Additionally, the cost of using oil separators at strategic spill locations was found to be $1.4 million. The GIS model provides an efficient planning tool for urban oil spill management. Additionally, the graphical capability of GIS allows users to integrate environmental features and spill characteristics in the management analysis.
Correa, Nicolle M; Li, Yi-Ou; Adalı, Tülay; Calhoun, Vince D
2008-12-01
Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí
SUMMARYThe genusTrichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inT. reesei,T. atroviride, andT. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 tomore » 11,000 genes of eachTrichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofTrichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique toTrichoderma, and these warrant further investigation. We found interesting expansions in theTrichodermagenus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique toT. atrovirideis the duplication of the alternative sulfur amino acid synthesis pathway.« less
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species
Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio
2016-01-01
SUMMARY The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. PMID:26864432
Liu, Qingyuan; Simpson, David C.; Gronert, Scott
2013-01-01
Mass spectrometry was used to investigate the effects of exposing mitochondrial aconitase (ACO2) to the membrane lipid peroxidation product, 4-hydroxy-2-(E)-nonenal (HNE). ACO2 was selected for this study because (1) it is known to be inactivated by HNE, (2) elevated concentrations of HNE-adducted ACO2 have been associated with disease states, (3) extensive structural information is available, and (4) the iron-sulfur cluster in ACO2 offers a critical target for HNE adduction. The aim of this study was to relate the inactivation of ACO2 by HNE to structural features. Initially, western blotting and an enzyme activity assay were used to assess aggregate effects and then gel electrophoresis, in-gel digestion, and tandem mass spectrometry were used to identify HNE addition sites. HNE addition reaction rates were determined for the most significant sites using the iTRAQ approach. The most reactive sites were Cys358, Cys421, and Cys424, the three iron-sulfur cluster-coordinating cysteines, Cys99, the closest non-ligated cysteine to the cluster, and Cys565, which is located in the cleft leading to the active site. Interestingly, both enzyme activity assay and iTRAQ relative abundance plots appeared to be trending toward horizontal asymptotes, rather than completion. PMID:23518448
Hastings, Janna; de Matos, Paula; Dekker, Adriano; Ennis, Marcus; Harsha, Bhavana; Kale, Namrata; Muthukrishnan, Venkatesh; Owen, Gareth; Turner, Steve; Williams, Mark; Steinbeck, Christoph
2013-01-01
ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now 'is_a' classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization.
Image ratio features for facial expression recognition application.
Song, Mingli; Tao, Dacheng; Liu, Zicheng; Li, Xuelong; Zhou, Mengchu
2010-06-01
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e.g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.
Adaptive Water Sampling based on Unsupervised Clustering
NASA Astrophysics Data System (ADS)
Py, F.; Ryan, J.; Rajan, K.; Sherman, A.; Bird, L.; Fox, M.; Long, D.
2007-12-01
Autonomous Underwater Vehicles (AUVs) are widely used for oceanographic surveys, during which data is collected from a number of on-board sensors. Engineers and scientists at MBARI have extended this approach by developing a water sampler specialy for the AUV, which can sample a specific patch of water at a specific time. The sampler, named the Gulper, captures 2 liters of seawater in less than 2 seconds on a 21" MBARI Odyssey AUV. Each sample chamber of the Gulper is filled with seawater through a one-way valve, which protrudes through the fairing of the AUV. This new kind of device raises a new problem: when to trigger the gulper autonomously? For example, scientists interested in studying the mobilization and transport of shelf sediments would like to detect intermediate nepheloïd layers (INLs). To be able to detect this phenomenon we need to extract a model based on AUV sensors that can detect this feature in-situ. The formation of such a model is not obvious as identification of this feature is generally based on data from multiple sensors. We have developed an unsupervised data clustering technique to extract the different features which will then be used for on-board classification and triggering of the Gulper. We use a three phase approach: 1) use data from past missions to learn the different classes of data from sensor inputs. The clustering algorithm will then extract the set of features that can be distinguished within this large data set. 2) Scientists on shore then identify these features and point out which correspond to those of interest (e.g. nepheloïd layer, upwelling material etc) 3) Embed the corresponding classifier into the AUV control system to indicate the most probable feature of the water depending on sensory input. The triggering algorithm looks to this result and triggers the Gulper if the classifier indicates that we are within the feature of interest with a predetermined threshold of confidence. We have deployed this method of online classification and sampling based on AUV depth and HOBI Labs Hydroscat-2 sensor data. Using approximately 20,000 data samples the clustering algorithm generated 14 clusters with one identified as corresponding to a nepheloïd layer. We demonstrate that such a technique can be used to reliably and efficiently sample water based on multiple sources of data in real-time.
Automated Discovery of Machine-Specific Code Improvements
1984-12-01
operation of the source language. Additional analysis may reveal special features of the target architecture that may be exploited to generate efficient...Additional analysis may reveal special features of the target architecture that may be exploited to generate efficient code. Such analysis is optional...incorporate knowledge of the source language, but do not refer to features of the target machine. These early phases are sometimes referred to as the
NASA Astrophysics Data System (ADS)
Zheng, Yuese; Solomon, Justin; Choudhury, Kingshuk; Marin, Daniele; Samei, Ehsan
2017-03-01
Texture analysis for lung lesions is sensitive to changing imaging conditions but these effects are not well understood, in part, due to a lack of ground-truth phantoms with realistic textures. The purpose of this study was to explore the accuracy and variability of texture features across imaging conditions by comparing imaged texture features to voxel-based 3D printed textured lesions for which the true values are known. The seven features of interest were based on the Grey Level Co-Occurrence Matrix (GLCM). The lesion phantoms were designed with three shapes (spherical, lobulated, and spiculated), two textures (homogenous and heterogeneous), and two sizes (diameter < 1.5 cm and 1.5 cm < diameter < 3 cm), resulting in 24 lesions (with a second replica of each). The lesions were inserted into an anthropomorphic thorax phantom (Multipurpose Chest Phantom N1, Kyoto Kagaku) and imaged using a commercial CT system (GE Revolution) at three CTDI levels (0.67, 1.42, and 5.80 mGy), three reconstruction algorithms (FBP, IR-2, IR-4), four reconstruction kernel types (standard, soft, edge), and two slice thicknesses (0.6 mm and 5 mm). Another repeat scan was performed. Texture features from these images were extracted and compared to the ground truth feature values by percent relative error. The variability across imaging conditions was calculated by standard deviation across a certain imaging condition for all heterogeneous lesions. The results indicated that the acquisition method has a significant influence on the accuracy and variability of extracted features and as such, feature quantities are highly susceptible to imaging parameter choices. The most influential parameters were slice thickness and reconstruction kernels. Thin slice thickness and edge reconstruction kernel overall produced more accurate and more repeatable results. Some features (e.g., Contrast) were more accurately quantified under conditions that render higher spatial frequencies (e.g., thinner slice thickness and sharp kernels), while others (e.g., Homogeneity) showed more accurate quantification under conditions that render smoother images (e.g., higher dose and smoother kernels). Care should be exercised is relating texture features between cases of varied acquisition protocols, with need to cross calibration dependent on the feature of interest.
Kanna, Balavenkatesh; Gu, Ying; Akhuetie, Jane; Dimitrov, Vihren
2009-07-13
IMGs constitute about a third of the United States (US) internal medicine graduates. US residency training programs face challenges in selection of IMGs with varied background features. However data on this topic is limited. We analyzed whether any pre-selection characteristics of IMG residents in our internal medicine program are associated with selected outcomes, namely competency based evaluation, examination performance and success in acquiring fellowship positions after graduation. We conducted a retrospective study of 51 IMGs at our ACGME accredited teaching institution between 2004 and 2007. Background resident features namely age, gender, self-reported ethnicity, time between medical school graduation to residency (pre-hire time), USMLE step I & II clinical skills scores, pre-GME clinical experience, US externship and interest in pursuing fellowship after graduation expressed in their personal statements were noted. Data on competency-based evaluations, in-service exam scores, research presentation and publications, fellowship pursuance were collected. There were no fellowships offered in our hospital in this study period. Background features were compared between resident groups according to following outcomes: (a) annual aggregate graduate PGY-level specific competency-based evaluation (CBE) score above versus below the median score within our program (scoring scale of 1 - 10), (b) US graduate PGY-level specific resident in-training exam (ITE) score higher versus lower than the median score, and (c) those who succeeded to secure a fellowship within the study period. Using appropriate statistical tests & adjusted regression analysis, odds ratio with 95% confidence intervals were calculated. 94% of the study sample were IMGs; median age was 35 years (Inter-Quartile range 25th - 75th percentile (IQR): 33-37 years); 43% women and 59% were Asian physicians. The median pre-hire time was 5 years (IQR: 4-7 years) and USMLE step I & step II clinical skills scores were 85 (IQR: 80-88) & 82 (IQR: 79-87) respectively. The median aggregate CBE scores during training were: PG1 5.8 (IQR: 5.6-6.3); PG2 6.3 (IQR 6-6.8) & PG3 6.7 (IQR: 6.7 - 7.1). 25% of our residents scored consistently above US national median ITE scores in all 3 years of training and 16% pursued a fellowship.Younger residents had higher aggregate annual CBE score than the program median (p < 0.05). Higher USMLE scores were associated with higher than US median ITE scores, reflecting exam-taking skills. Success in acquiring a fellowship was associated with consistent fellowship interest (p < 0.05) and research publications or presentations (p <0.05). None of the other characteristics including visa status were associated with the outcomes. Background IMG features namely, age and USMLE scores predict performance evaluation and in-training examination scores during residency training. In addition enhanced research activities during residency training could facilitate fellowship goals among interested IMGs.
Kanna, Balavenkatesh; Gu, Ying; Akhuetie, Jane; Dimitrov, Vihren
2009-01-01
Background IMGs constitute about a third of the United States (US) internal medicine graduates. US residency training programs face challenges in selection of IMGs with varied background features. However data on this topic is limited. We analyzed whether any pre-selection characteristics of IMG residents in our internal medicine program are associated with selected outcomes, namely competency based evaluation, examination performance and success in acquiring fellowship positions after graduation. Methods We conducted a retrospective study of 51 IMGs at our ACGME accredited teaching institution between 2004 and 2007. Background resident features namely age, gender, self-reported ethnicity, time between medical school graduation to residency (pre-hire time), USMLE step I & II clinical skills scores, pre-GME clinical experience, US externship and interest in pursuing fellowship after graduation expressed in their personal statements were noted. Data on competency-based evaluations, in-service exam scores, research presentation and publications, fellowship pursuance were collected. There were no fellowships offered in our hospital in this study period. Background features were compared between resident groups according to following outcomes: (a) annual aggregate graduate PGY-level specific competency-based evaluation (CBE) score above versus below the median score within our program (scoring scale of 1 – 10), (b) US graduate PGY-level specific resident in-training exam (ITE) score higher versus lower than the median score, and (c) those who succeeded to secure a fellowship within the study period. Using appropriate statistical tests & adjusted regression analysis, odds ratio with 95% confidence intervals were calculated. Results 94% of the study sample were IMGs; median age was 35 years (Inter-Quartile range 25th – 75th percentile (IQR): 33–37 years); 43% women and 59% were Asian physicians. The median pre-hire time was 5 years (IQR: 4–7 years) and USMLE step I & step II clinical skills scores were 85 (IQR: 80–88) & 82 (IQR: 79–87) respectively. The median aggregate CBE scores during training were: PG1 5.8 (IQR: 5.6–6.3); PG2 6.3 (IQR 6–6.8) & PG3 6.7 (IQR: 6.7 – 7.1). 25% of our residents scored consistently above US national median ITE scores in all 3 years of training and 16% pursued a fellowship. Younger residents had higher aggregate annual CBE score than the program median (p < 0.05). Higher USMLE scores were associated with higher than US median ITE scores, reflecting exam-taking skills. Success in acquiring a fellowship was associated with consistent fellowship interest (p < 0.05) and research publications or presentations (p <0.05). None of the other characteristics including visa status were associated with the outcomes. Conclusion Background IMG features namely, age and USMLE scores predict performance evaluation and in-training examination scores during residency training. In addition enhanced research activities during residency training could facilitate fellowship goals among interested IMGs. PMID:19594918
Code of Federal Regulations, 2010 CFR
2010-04-01
... simple annual interest, computed from the date on which the benefits were due. The interest shall be... payment of retroactive benefits, the beneficiary shall also be entitled to simple annual interest on such... entitled to simple annual interest computed from the date upon which the beneficiary's right to additional...
Eastwick, Paul W; Keneski, Elizabeth; Morgan, Taylor A; McDonald, Meagan A; Huang, Sabrina A
2018-05-01
Close relationships research has examined committed couples (e.g., dating relationships, marriages) using intensive methods that plot relationship development over time. But a substantial proportion of people's real-life sexual experiences take place (a) before committed relationships become "official" and (b) in short-term relationships; methods that document the time course of relationships have rarely been applied to these contexts. We adapted a classic relationship trajectory-plotting technique to generate the first empirical comparisons between the features of people's real-life short-term and long-term relationships across their entire timespan. Five studies compared long-term and short-term relationships in terms of the timing of relationship milestones (e.g., flirting, first sexual intercourse) and the occurrence/intensity of important relationship experiences (e.g., romantic interest, strong sexual desire, attachment). As romantic interest was rising and partners were becoming acquainted, long-term and short-term relationships were indistinguishable. Eventually, romantic interest in short-term relationships plateaued and declined while romantic interest in long-term relationships continued to rise, ultimately reaching a higher peak. As relationships progressed, participants evidenced more features characteristic of the attachment-behavioral system (e.g., attachment, caregiving) in long-term than short-term relationships but similar levels of other features (e.g., sexual desire, self-promotion, intrasexual competition). These data inform a new synthesis of close relationships and evolutionary psychological perspectives called the Relationship Coordination and Strategic Timing (ReCAST) model. ReCAST depicts short-term and long-term relationships as partially overlapping trajectories (rather than relationships initiated with distinct strategies) that differ in their progression along a normative relationship development sequence. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Educational and career goals of pharmacy students upon graduation.
Migliore, Mattia M; Costantino, Ryan C; Campagna, Nicholas A; Albers, David S
2013-11-12
To assess the doctor of pharmacy (PharmD) students' desire to obtain additional degrees after graduation. During the spring 2011 semester, an anonymous 14-question survey instrument was administered to students across all 6 years of the PharmD program to evaluate their interest in obtaining an additional degree after graduation. Demographic data was also collected and analyzed from this convenience sample. Approximately 34% of the respondents (n=1,239) indicated a desire to seek an additional degree. Of the additional degrees offered in the survey instrument, more than one-third of the students expressed interest in the master of business administration (MBA). Also, 79% of those respondents were willing to take summer courses to achieve a dual or additional degree. Pharmacy students are interested in obtaining an additional degree(s) after graduation and are willing to complete summer courses to achieve their career goals.
Advances in the REDCAT software package
2013-01-01
Background Residual Dipolar Couplings (RDCs) have emerged in the past two decades as an informative source of experimental restraints for the study of structure and dynamics of biological macromolecules and complexes. The REDCAT software package was previously introduced for the analysis of molecular structures using RDC data. Here we report additional features that have been included in this software package in order to expand the scope of its analyses. We first discuss the features that enhance REDCATs user-friendly nature, such as the integration of a number of analyses into one single operation and enabling convenient examination of a structural ensemble in order to identify the most suitable structure. We then describe the new features which expand the scope of RDC analyses, performing exercises that utilize both synthetic and experimental data to illustrate and evaluate different features with regard to structure refinement and structure validation. Results We establish the seamless interaction that takes place between REDCAT, VMD, and Xplor-NIH in demonstrations that utilize our newly developed REDCAT-VMD and XplorGUI interfaces. These modules enable visualization of RDC analysis results on the molecular structure displayed in VMD and refinement of structures with Xplor-NIH, respectively. We also highlight REDCAT’s Error-Analysis feature in reporting the localized fitness of a structure to RDC data, which provides a more effective means of recognizing local structural anomalies. This allows for structurally sound regions of a molecule to be identified, and for any refinement efforts to be focused solely on locally distorted regions. Conclusions The newly engineered REDCAT software package, which is available for download via the WWW from http://ifestos.cse.sc.edu, has been developed in the Object Oriented C++ environment. Our most recent enhancements to REDCAT serve to provide a more complete RDC analysis suite, while also accommodating a more user-friendly experience, and will be of great interest to the community of researchers and developers since it hides the complications of software development. PMID:24098943
Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution
Lund, Tina; Kneller, James P.
2013-07-16
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein conversion due to the shock wave passage throughmore » the star, and the impact of turbulence. In the Oxygen-Neon-Magnesium supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. Thus the spectral features of collective and shock effects in the neutrino signals from ONeMg supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.« less
Extracting intrinsic functional networks with feature-based group independent component analysis.
Calhoun, Vince D; Allen, Elena
2013-04-01
There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.
SLEEP AND CIRCADIAN RHYTHM DISORDERS IN PARKINSON'S DISEASE.
Gros, Priti; Videnovic, Aleksandar
2017-09-01
Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.
Automated AFM for small-scale and large-scale surface profiling in CMP applications
NASA Astrophysics Data System (ADS)
Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il
2018-03-01
As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Cardenas, A F; Buttler, D J
The definition of what makes an article interesting varies from user to user and continually evolves even for a single user. As a result, for news recommendation systems, useless document features can not be determined a priori and all features are usually considered for interestingness classification. Consequently, the presence of currently useless features degrades classification performance [1], particularly over the initial set of news articles being classified. The initial set of document is critical for a user when considering which particular news recommendation system to adopt. To address these problems, we introduce an improved version of the naive Bayes classifiermore » with online feature selection. We use correlation to determine the utility of each feature and take advantage of the conditional independence assumption used by naive Bayes for online feature selection and classification. The augmented naive Bayes classifier performs 28% better than the traditional naive Bayes classifier in recommending news articles from the Yahoo! RSS feeds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos
Short summary of the software's functionality: built-in scan feature to acquire optical image of the surface to be analyzed click-and-point selection of points of interest on the surface supporting standalone autosampler/HPLC/MS operation: creating independent batch files after points of interests are selected for LEAPShell (autosampler control software from Leap Technologies) and Analyst® (mass spectrometry (MS) software from AB Sciex) supporting integrated autosampler/HPLC/MS operation: creating one batch file for all instruments controlled by Analyst® (mass spectrometry software from AB Sciex) after points of interests are selected creating heatmaps of analytes of interests from collected MS files inmore » a hand-off fashion« less
NASA Astrophysics Data System (ADS)
Holmes, Jon L.
2000-06-01
New JCE Internet Feature at JCE Online Biographical Snapshots of Famous Chemists is a new JCE Internet feature on JCE Online. Edited by Barbara Burke, this feature provides biographical information on leading chemists, especially women and minority chemists, fostering the attitude that the practitioners of chemistry are as human as those who endeavor to learn about it. Currently, the column features biographical "snapshots" of 30 chemists. Each snapshot includes keywords and bibliography and several contain links to additional online information about the chemist. More biographical snapshots will appear in future installments. In addition, a database listing over 140 women and minority chemists is being compiled and will be made available online with the snapshots in the near future. The database includes the years of birth and death, gender and ethnicity, major and minor discipline, keywords to facilitate searching, and references to additional biographical information. We welcome your input into what we think is a very worthwhile resource. If you would like to provide additional biographical snapshots, see additional chemists added to the database, or know of additional references for those that are already in the database, please contact JCE Online or the feature editor. Your feedback is welcome and appreciated. You can find Biographical Snapshots of Famous Chemists starting from the JCE Online home page-- click the Features item under JCE Internet and then the Chemist Bios item. Access JCE Online without Name and Password We have recently been swamped by libraries requesting IP-number access to JCE Online. With the great benefit IP-number authentication gives to librarians (no user names and passwords to administer) and to their patrons (no need to remember and enter valid names and passwords) this is not surprising. If you would like access to JCE Online without the need to remember and enter a user name and password, you should tell your librarian about our IP-number access. Current subscriptions can be upgraded to IP-number access at little additional cost. We are pleased to be able to offer to institutions and libraries this convenient mode of access to subscriber only resources at JCE Online. JCE Online Usage Statistics We are continually amazed by the activity at JCE Online. So far, the year 2000 has shown a marked increase. Given the phenomenal overall growth of the Internet, perhaps our surprise is not warranted. However, during the months of January and February 2000, over 38,000 visitors requested over 275,000 pages. This is a monthly increase of over 33% from the October-December 1999 levels. It is good to know that people are visiting, but we would very much like to know what you would most like to see at JCE Online. Please send your suggestions to JCEOnline@chem.wisc.edu. For those who are interested, JCE Online year-to-date statistics are available. Biographical Snapshots of Famous Chemists: Mission Statement Feature Editor: Barbara Burke Chemistry Department, California State Polytechnic University-Pomona, Pomona, CA 91768 phone: 909/869-3664 fax: 909/869-4616 email: baburke@csupomona.edu The primary goal of this JCE Internet column is to provide information about chemists who have made important contributions to chemistry. For each chemist, there is a short biographical "snapshot" that provides basic information about the person's chemical work, gender, ethnicity, and cultural background. Each snapshot includes links to related websites and to a biobibliographic database. The database provides references for the individual and can be searched through key words listed at the end of each snapshot. All students, not just science majors, need to understand science as it really is: an exciting, challenging, human, and creative way of learning about our natural world. Investigating the life experiences of chemists can provide a means for students to gain a more realistic view of chemistry. In addition students, especially women and minorities, need more scientist role models. When teachers weave biographical information into their conceptual lectures, they are using an effective pedagogical tool that will enhance students' understanding of chemical facts. Linking chemical ideas to real people provides a stronger infrastructure than facts alone: students need more than just the facts--they need to know the stories of the people behind the "magic". Without these stories, our students miss the wonderful, exciting, human side of our chemical sciences. Acknowledgments National Science Foundation, Alliance for Minority Progress Grant (HRD 9353276); Chemical Heritage Foundation, Philadelphia, PA; Huntington Library, San Marino, CA.
ERIC Educational Resources Information Center
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
2002-06-17
This image taken by NASA Mars Odyssey spacecraft shows a portion of Maunder Crater with a number of interesting features including a series of barchan dunes that are traveling from right to left and gullies.
Jill A. Smedstad; Hannah Gosnell
2013-01-01
Adaptive comanagement (ACM) is a novel approach to environmental governance that combines the dynamic learning features of adaptive management with the linking and network features of collaborative management. There is growing interest in the potential for ACM to resolve conflicts around natural resource management and contribute to greater social and ecological...
Analysis of discriminants for experimental 3D SAR imagery of human targets
NASA Astrophysics Data System (ADS)
Chan, Brigitte; Sévigny, Pascale; DiFilippo, David D. J.
2014-10-01
Development of a prototype 3-D through-wall synthetic aperture radar (SAR) system is currently underway at Defence Research and Development Canada. The intent is to map out building wall layouts and to detect targets of interest and their location behind walls such as humans, arms caches, and furniture. This situational awareness capability can be invaluable to the military working in an urban environment. Tools and algorithms are being developed to exploit the resulting 3-D imagery. Current work involves analyzing signatures of targets behind a wall and understanding the clutter and multipath signals in a room of interest. In this paper, a comprehensive study of 3-D human target signature metrics in free space is presented. The aim is to identify features for discrimination of the human target from other targets. Targets used in this investigation include a human standing, a human standing with arms stretched out, a chair, a table, and a metallic plate. Several features were investigated as potential discriminants and five which were identified as good candidates are presented in this paper. Based on this study, no single feature could be used to fully discriminate the human targets from all others. A combination of at least two different features is required to achieve this.
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.