Science.gov

Sample records for additional latent heat

  1. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  2. Retrieved Latent Heating from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, Eric A.; Houze Jr, Robert

    2008-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for three-fourths of the total heat energy available to the Earth's atmosphere. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to meso-synoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations in environmental prediction models. The status of retrieved TRMM LH products, TRMM LH inter-comparison and validation project, current TRMM LH applications and critic issues/action items (based on previous five TRMM LH workshops) is presented in this article.

  3. Latent heat of vehicular motion

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan

    2016-11-01

    We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.

  4. Latent Heating from TRMM Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Tao, W.; Takayabu, Y. N.; Shige, S.; Lang, S. E.; Olson, W. S.

    2012-12-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has been developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generated from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  5. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  6. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  7. The effective latent heat of aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Taylor, Robert A.; Dai, Lenore; Prasher, Ravi; Phelan, Patrick E.

    2015-06-01

    Nanoparticle suspensions, popularly termed ‘nanofluids’, have been extensively investigated for their thermal and radiative properties (Eastman et al 1996 Mater. Res. Soc. Proc. 457; Keblinski et al 2005 Mater. Today 8 36-44 Barber et al 2011 Nanoscale Res. Lett. 6 1-13 Thomas and Sobhan 2011 Nanoscale Res. Lett. 6 1-21 Taylor et al 2011 Nanoscale Res. Lett. 6 1-11 Fang et al 2013 Nano Lett. 13 1736-42 Otanicar et al 2010 J. Renew. Sustainable Energy 2 03310201-13 Prasher et al 2006 ASME J. Heat Transfer 128 588-95 Shin and Banerjee 2011 ASME J. Heat Transfer 133 1-4 Taylor and Phelan 2009 Int. J. Heat Mass Transfer 52 5339-48 Ameen et al 2010 Int. J. Thermophys. 31 1131-44 Lee et al 2014 Appl. Phys. Lett. 104 1-4). Such work has generated great controversy, although it is (arguably) generally accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the specific heat of molten salt-based nanofluids reported by Shin and Banerjee (2011 ASME J. Heat Transfer 133 1-4) and the critical heat flux mentioned by Taylor and Phelan (2009 Int. J. Heat Mass Transfer 52 5339-48). Another largely overlooked example is the reported effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids, as reported by Ameen et al (2010 Int. J. Thermophys. 31 1131-44). Through molecular dynamics (MD) modeling supplemented with limited experimental data they found that hfg increases with increasing nanoparticle concentration, for Pt nanoparticles (MD) and Al2O3 nanoparticles (experiments). Here, we extend those exploratory experiments in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased by the addition of graphite or silver nanoparticles. Our results to date indicate that, yes, hfg can be substantially impacted, by

  8. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  9. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  10. The role of chemical additives to the phase change process of CaCl2.6H2O to optimize its performance as latent heat energy storage system

    NASA Astrophysics Data System (ADS)

    Sutjahja, I. M.; U, S. Rahayu A.; Kurniati, Nia; Pallitine, Ivyalentine D.; Kurnia, D.

    2016-08-01

    CaCl2.6H2O is one of salt hydrate based phase change material (PCM) which is suitable for room air-temperature stabilizer because it has the melting temperature just above the human comfort zone temperature (Tm ∼⃒ 29 oC) and a relatively large heat entalphy (AH ∼⃒ 190 kJ/kg). This paper reports the role of the type of chemical additives to PCM CaCl2.6H2O to the phase change process throughout the solidification process or heat release in order to optimize its performance as latent heat energy storage system. In this research we used several kinds of chemical additive, namely SrCl2.6H2O (1.0 wt%), BaCO3 (0.5 wt%), and K2CO3 (0.5 wt%). In terms of its latent time for phase change process the order the effectiveness of those chemical additives are reduced from SrCl2.6H2O, BaCO3and K2CO3. We found that this is also related to their role in suppression supercooling and phase separation effects which occurs during crystallization process of CaCl2.6H2O.

  11. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  12. Latent Work and Latent Heat of the Liquid/Vapor Transformation

    DTIC Science & Technology

    2014-08-01

    latent heat and latent work of liquid/vapor phase transformation for variously constrained thermodynamic processes . thermodynamics, phase...1. Introduction 1 2. Latent Heat and Work of Thermodynamic Process 3 3. Equations of Phase Equilibrium 5 4. Vaporization/Condensation under Fixed...between the phase in the process of vaporization/condensation. Thermodynamical identities allow one to express p, T, and µ in terms of the derivatives of

  13. Determination of the Latent Heats and Triple Point of Perfluorocyclobutane

    ERIC Educational Resources Information Center

    Briggs, A. G.; Strachan, A. N.

    1977-01-01

    Proposes the use of Perfluorocyclobutane in physical chemistry courses to conduct experiments on latent heat, triple point temperatures and pressures, boiling points, and entropy of vaporization. (SL)

  14. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  15. Solar Thermoelectricity via Advanced Latent Heat Storage

    SciTech Connect

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  16. Retrieval of Latent Heating from TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C. D.; Lang, S.; Nakamura, K.; Nakazawa, T.; Okamoto, K.; Shige, S.; Olson, W. S.; Takayabu, Y.; Tripoli, G. J.; Yang, S.

    2006-01-01

    Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.

  17. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    NASA Technical Reports Server (NTRS)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  18. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  19. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  20. High temperature active heat exchanger research for latent heat storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  1. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  2. Design and simulation of latent heat storage units

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. )

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  3. Design and simulation of latent heat storage units. Final report

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C.

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  4. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  5. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  6. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  7. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  8. Power generation by exchange of latent heats of phase transition

    SciTech Connect

    Ehrlich, S.; Levenson, W.L.

    1981-08-11

    A power system is provided that uses the latent heat of fusion of water to raise the potential energy of a working fluid to a level that upon release generates power, preferably electrical power. The system is self-sustaining except for the energy that is supplied in water entering the system. The inlet water can be at any temperature within its liquid range under atmospheric or super atmospheric pressure, can advantageously contain the sensible waste heat typical of effluent from fossil fuel or nuclear power plants, can be relatively pure or be contaminated as with sewage or be the medium of a colloidal suspension, or consist of marine or other saline waters. In every case, purification of the water by freezing, for example, desalination, is accomplished without additional power consumption. A selected working fluid that boils at a temperature substantially below the freezing point of water is brought in the liquid state into contact with the water or other aqueous medium, causing the water to freeze and the working fluid to vaporize under pressure; the produced ice is removed; a portion of the so-produced ice is admixed with a eutectic forming salt to create a cooling medium at a temperature below the condensation temperature of the cooling fluid; the working-fluid vapors are preferably superheated by inlet aqueous medium and are released from autogenic elevated pressure to drive a turbine. Working fluid vapors are condensed by said cooling medium and returned by pumping into contact with inlet aqueous medium.

  9. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions

    NASA Astrophysics Data System (ADS)

    Mottaghy, Darius; Rath, Volker

    2006-01-01

    In cold regions the thermal regime is strongly affected by freezing or melting processes, consuming or releasing large amounts of latent heat. This changes enthalpy by orders of magnitude. We present a numerical approach for the implementation of these effects into a 3-D finite-difference heat transport model. The latent heat effect can be handled by substituting an apparent heat capacity for the volumetric heat capacity of unfrozen soil in the heat transfer equation. The model is verified by the analytical solution of the heat transport equation including phase change. We found significant deviations of temperature profiles when applying the latent heat effect on forward calculations of deep temperature logs. Ground surface temperature histories derived from synthetic data and field data from NE Poland underline the importance of considering freezing processes. In spite of its limitations, the proposed method is appropriate for the study of long-period climatic changes.

  10. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  11. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  12. Latent heat and cyclone activity in the South Pacific, 10-18 January 1979

    NASA Technical Reports Server (NTRS)

    Miller, B. L.; Vincent, D. G.; Kann, D. M.; Robertson, Franklin R.

    1986-01-01

    This paper examines the heat budget of the tropical South Pacific for the period of January 10-18, 1979 and compares precipitation estimates obtained from the budget equation with those derived from GOES-IR satellite imagery, using data that were part of the total FGGE package. In addition, the relationship between latent heat release and the baroclinic energy conversion is examined for the life cycles of two cyclones which propagated along the South Pacific Convection Zone in that period. It is shown that latent heat plays an important role in the baroclinic energy conversion between potential and kinetic energy through diabatically-induced vertical circulations. For a cyclone where latent heat stays at a high level both spacially and with regard to intensity, there appears to be ample fuel for its intensification. On the other hand, for a filling cyclone, the latent heat impact decreased and the baroclinic conversion fell off rapidly, due to the lack of both potential energy generation and diabatically-induced thermally-direct circulations.

  13. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  14. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  15. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.

    PubMed

    Havenith, George; Richards, Mark G; Wang, Xiaoxin; Bröde, Peter; Candas, Victor; den Hartog, Emiel; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang

    2008-01-01

    Investigating claims that a clothed person's mass loss does not always represent their evaporative heat loss (EVAP), a thermal manikin study was performed measuring heat balance components in more detail than human studies would permit. Using clothing with different levels of vapor permeability and measuring heat losses from skin controlled at 34 degrees C in ambient temperatures of 10, 20, and 34 degrees C with constant vapor pressure (1 kPa), additional heat losses from wet skin compared with dry skin were analyzed. EVAP based on mass loss (E(mass)) measurement and direct measurement of the extra heat loss by the manikin due to wet skin (E(app)) were compared. A clear discrepancy was observed. E(mass) overestimated E(app) in warm environments, and both under and overestimations were observed in cool environments, depending on the clothing vapor permeability. At 34 degrees C, apparent latent heat (lambda(app)) of pure evaporative cooling was lower than the physical value (lambda; 2,430 J/g) and reduced with increasing vapor resistance up to 45%. At lower temperatures, lambda(app) increases due to additional skin heat loss via evaporation of moisture that condenses inside the clothing, analogous to a heat pipe. For impermeable clothing, lambda(app) even exceeds lambda by four times that value at 10 degrees C. These findings demonstrate that the traditional way of calculating evaporative heat loss of a clothed person can lead to substantial errors, especially for clothing with low permeability, which can be positive or negative, depending on the climate and clothing type. The model presented explains human subject data on EVAP that previously seemed contradictive.

  16. MJO Signals in Latent Heating: Results from TRMM Retrievals

    NASA Technical Reports Server (NTRS)

    Zhang, Chidong; Ling, Jian; Hagos, Samson; Tao, Wei-Kuo; Lang, Steve; Takayabu, Yukari N.; Shige, Shoichi; Katsumata, Masaki; Olson, William S.; L'Ecuyer, Tristan

    2010-01-01

    The Madden-Julian Oscillation (MJO) is the dominant intraseasonal signal in the global tropical atmosphere. Almost all numerical climate models have difficulty to simulate realistic MJO. Four TRMM datasets of latent heating were diagnosed for signals in the MJO. In all four datasets, vertical structures of latent heating are dominated by two components, one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of band-pass (30 - 90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the eastern hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

  17. Sensible and latent heating of the atmosphere as inferred from DST-6 data

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Schubert, S. D.; Johnson, W. T.

    1979-01-01

    The average distribution of convective latent heating, boundary layer sensible heat flux, and vertical velocity are determined for the winter 1976 DST period from GLAS model diagnostics. Key features are the regions of intense latent heating over Brazil, Central Africa, and Indonesia; and the regions of strong sensible heating due to air mass modification over the North Atlantic and North Pacific Oceans.

  18. Additional exposures to a compound of two preexposed stimuli deepen latent inhibition.

    PubMed

    Leung, Hiu Tin; Killcross, A S; Westbrook, R Frederick

    2011-10-01

    The present experiments studied the role of error correction mechanisms in the latent inhibition of conditioned fear responses by conditioned stimulus (CS) preexposure. They demonstrated that a preexposed CS subjected to additional exposures in compound with either another preexposed stimulus or a novel stimulus was more latently inhibited than a preexposed CS which received additional exposures in isolation. They also showed that a preexposed CS subjected to additional exposures in compound with another preexposed stimulus was more latently inhibited than a preexposed CS given additional exposures in compound with a novel stimulus. These results were discussed in terms of the Hall-Rodriguez (2010) model of latent inhibition.

  19. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  20. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  1. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  2. Latent heating and cloud processes in warm fronts

    NASA Astrophysics Data System (ADS)

    Igel, Adele

    The results of two studies are presented in this thesis. In the first, an extratropical cyclone that crossed the United States on April 9-11 2009 was successfully simulated at high resolution (3km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To our knowledge, no study has examined the indirect effects of aerosols on warm fronts. First the budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming and the melting of ice produced ˜75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation was relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed phase region lead to both an enhanced Bergeron process and decreased riming efficiencies with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front. The second study addresses the role of latent heating associated with the warm front by assessing the relative contributions of individual cloud processes to latent heating and frontogenesis in both the horizontal and vertical directions. Condensation and cloud droplet nucleation are the

  3. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  4. Latent heat storage technology and application workshop. Summary report: Session 6

    NASA Astrophysics Data System (ADS)

    Martin, J. F.

    Latent heat storage technology and application were studied. The economics of short term latent heat storage for application and system configuration were analyzed. Subjects discussed included: state of the art, solar energy stores, residential heating and cooling, and industrial and utility applications.

  5. The influence of viscous and latent heating on crystal-rich magma flow in a conduit

    NASA Astrophysics Data System (ADS)

    Hale, Alina J.; Wadge, Geoff; Mühlhaus, Hans B.

    2007-12-01

    The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufrière Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufrière Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that

  6. Wallboard with Latent Heat Storage for Passive Solar Applications

    SciTech Connect

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  7. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  8. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in

  9. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  10. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  11. Method of testing active latent-heat storage devices based on thermal performance. (ASHRAE standard)

    SciTech Connect

    1985-01-26

    The purpose of this standard is to provide a standard procedure for determining the thermal performance of latent heat thermal energy storage devices used in heating, air-conditioning, and service hot water systems.

  12. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar

  13. Effect of Melt Superheating Treatment on the Latent Heat Release of Sn

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun

    2016-12-01

    The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.

  14. Effect of Melt Superheating Treatment on the Latent Heat Release of Sn

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun

    2017-03-01

    The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.

  15. Impact of Ridge Induced Latent Heat Advection on Sea Ice Global Heat Budget.

    NASA Astrophysics Data System (ADS)

    Hudier, E.; Gosselin, J.

    2008-12-01

    The effects of permeability on ice keel induced latent heat fluxes are examined using pressure ridge density statistics computed from SAR images and a prognostic simulation of forced brine advection through the bottom ice layer. Under pressure gradients generated in the wake of an ice keel sea water is pushed into and brine pumped out of the bottom ice layer. This in turn causes a new thermodynamic equilibrium to be reached. At spring when the ice permeability increases, brine export combined with sea water import translates into an advective heat flow that is balanced by the latent heat absorbed by volume melting of brine channel walls. Sea ice within the sheltered areas behind keels is modelled as an anisotropic heteregeneous mushy layer. The non-linear equation system within each cell is implemented on a finite volume grid and include volume melt of the brine channels from which porosity, water density, temperature and salinity are computed. Outputs from these simulations are then combined with ridge distribution statistics to evaluate the global impact of latent heat absorbed due to volume melting in the wake of ridges. As anticipated, results are highly dependent on permeability, nevertheless, they show that pressure ridge induced melting within the ice is a significant component of the heat budget when compared with melting at the ice water interface. This work underlines needs for further researches to improve our understanding of ice permeability changes during the melt season, it also calls for better tools to extract pressure ridge characteristics from satellite images.

  16. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  17. The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs

    NASA Astrophysics Data System (ADS)

    Marinescu, P. J.; Heever, S. C.; Saleeby, S. M.; Kreidenweis, S. M.

    2016-07-01

    The shapes and magnitudes of latent heating profiles have been shown to be different within the convective and stratiform regions of mesoscale convective systems (MCSs). Properly representing these distinctions has significant implications for the atmospheric responses to latent heating on various scales. This study details (1) the microphysical process contributions to latent heating profiles within MCS convective, stratiform, and anvil regions and (2) the time evolution of these profiles throughout the MCS lifetime, using cloud-resolving model simulations. Simulations of two MCS events that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E) are conducted. Several features of the simulated MCSs are compared to a suite of observations obtained during the MC3E field campaign, and it is concluded that the simulations reasonably reproduce the MCS events. The simulations show that condensation and deposition are the primary contributors to MCS latent warming, as compared to riming and nucleation processes. In terms of MCS latent cooling, sublimation, melting, and evaporation all play significant roles. It is evident that throughout the MCS lifecycle, convective regions demonstrate an approximately linear decrease in the magnitudes of latent heating rates, while latent heating within stratiform regions is associated with transitions between MCS flow regimes. Such information regarding the temporal evolution of latent heating within convective and stratiform MCS regions could be useful in developing parameterizations representing convective organization.

  18. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  19. Sensible and latent heat flux estimates in Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.; Weidner, George A.

    1993-01-01

    The assumption has been made that the net annual contribution of water by the processes of deposition and sublimation to the Antarctic Ice Sheet is zero. The U.S. Antarctic Program started installing reliable automatic weather stations on the Antarctic Continent in 1980. The initial units were equipped to measure wind speed, wind direction, air pressure, and air temperature. During the 1983-1984 field season in Antarctica, three units were installed that measured a vertical air temperature difference between the nominal heights of 0.5 m and 3.0 m and relative humidity at a nominal height of 3 m. The measurements of the vertical air temperature difference and the relative humidity are the minimum required to estimate the sensible and latent heat fluxes to the air, while not exceeding the available energy requirements for the weather stations. The estimates of the net annual sublimation and deposition on the Ross Ice Shelf amount to 20 to 80 percent of the annual accumulation. We conclude that the assumption that annual sublimation and deposition are zero is not valid under Antarctic conditions.

  20. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1976-01-01

    Data from the Nimbus 5 electrically scanning microwave radiometer (ESMR) are used to make calculations of the latent heat release (L.H.R.) and the distribution of rainfall rate in a tropical cyclone as it grows from a tropical disturbance to a typhoon. The L.H.R. (calculated over a circular area of 4 deg latitude radius) increases during the development and intensification of the storm from a magnitude of 2.7 X 10 to the 21st power ergs/s (in the disturbance stage) to 8.8 X 10 to the 21st power ergs (typhoon stage). The latter value corresponds to a mean rainfall rate of 2.0 mm hr/s. The more intense the cyclone and the greater the L.H.R., the greater the percentage contribution of the larger rainfall rates to the L.H.R. In the disturbance stage the percentage contribution of rainfall rates less than or minus 6 mm hr/s is typically 8%; for the typhoon stage, the value is 38%. The distribution of rainfall rate as a function of radial distance from the center indicates that as the cyclone intensifies, the higher rainfall rates tend to concentrate toward the center of the circulation.

  1. Preparation of fine powdered composite for latent heat storage

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pomaleski, Marina; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  2. A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features

    SciTech Connect

    Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe; Hagos, Samson

    2016-09-01

    Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfall amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.

  3. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    NASA Technical Reports Server (NTRS)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  4. Latent heat exchange in the boreal and arctic biomes.

    PubMed

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  5. Measurement of Latent Heat of Melting of Thermal Storage Materials for Dynamic Type Ice Thermal Storage

    NASA Astrophysics Data System (ADS)

    Sawada, Hisashi; Okada, Masashi; Nakagawa, Shinji

    In order to measure the latent heat of melting of ice slurries with various solute concentrations, an adiabatic calorimeter was constructed. Ice slurries were made from each aqueous solution of ethanol, ethylene glycol and silane coupling agent. The latent heat of melting of ice made from tap water was measured with the present calorimeter and the uncertainty of the result was one percent. Ice slurries were made both by mixing ice particles made from water with each aqueous solution and by freezing each aqueous solution with stirring in a vessel. The latent heat of melting of these ice slurries was measured with various concentrations of solution. The latent heat of melting decreased as the solute concentration or the freezing point depression increased. The latent heat of ice slurries made from ethanol or ethylene glycol aqueous solution agreed with that of ice made from pure water known already. The latent heat of melting of ice slurries made from silane coupling agent aqueous solution got smaller than that of ice made from pure water as the freezing point depression increased.

  6. Active heat exchange: System development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1981-03-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide, and nitrate families, based on high storage capacity, good corrosion characteristics, and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCl, 24.5NaCl, 55.0MgCl2 percent by wt.), with a nominal melting point of 385 C.

  7. Thermodynamics of latent heat storage in parallel or in series with a heat engine

    NASA Astrophysics Data System (ADS)

    Charach, Chaim; Conti, Massimo

    1995-08-01

    The thermodynamics of a latent heat storage element, connected to a heat source, periodically varying in time, and to a heat engine, is addressed. Two typical modes of operation, referred to as the series and the parallel setups, are considered. They differ with regard to the active phase of the heat source. For the series mode the entire amount of heat transfer fluid (HTF), coming from the source, is first passed through the thermal storage element (TSE) before entering the engine. For the parallel setup only a fraction of the HTF, supplied by the heat source, is delivered directly to the engine, whereas the remaining fraction of HTF is pumped into the TSE to facilitate the exergy storage. The optimal selection of the freezing point of the phase-change material (PCM), the stability of operation of the engine, and the entropy production in the TSE during the heat storage-discharge cycle are considered. The parallel and the series modes of operation are compared for some simplified TSE models. For these models the series setup yields a higher efficiency and stability than the parallel scheme.

  8. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Meneghini, B.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Goddard Convective-Stratiform Heating (CSH) algorithm is used to retrieve profiles of latent heating over the global tropics for a period of several months using TRMM precipitation radar data. The seasonal variation of heating over the tropics is then examined. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  9. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    NASA Astrophysics Data System (ADS)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  10. Environmental Forcing of Super Typhoon Paka's (1997) Latent Heat Structure

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    1999-01-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than

  11. Latent Heat and Sensible Heat Fluxes Simulation in Maize Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Safa, B.

    2015-12-01

    Latent Heat (LE) and Sensible Heat (H) flux are two major components of the energy balance at the earth's surface which play important roles in the water cycle and global warming. There are various methods for their estimation or measurement. Eddy covariance is a direct and accurate technique for their measurement. Some limitations lead to prevention of the extensive use of the eddy covariance technique. Therefore, simulation approaches can be utilized for their estimation. ANNs are the information processing systems, which can inspect the empirical data and investigate the relations (hidden rules) among them, and then make the network structure. In this study, multi-layer perceptron neural network trained by the steepest descent Back-Propagation (BP) algorithm was tested to simulate LE and H flux above two maize sites (rain-fed & irrigated) near Mead, Nebraska. Network training and testing was fulfilled using hourly data of including year, local time of day (DTime), leaf area index (LAI), soil water content (SWC) in 10 and 25 cm depths, soil temperature (Ts) in 10 cm depth, air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), irrigation and precipitation (P), net radiation (Rn), and the fraction of incoming Photosynthetically Active Radiation (PAR) absorbed by the canopy (fPAR), which were selected from days of year (DOY) 169 to 222 for 2001, 2003, 2005, 2007, and 2009. The results showed high correlation between actual and estimated data; the R² values for LE flux in irrigated and rain-fed sites were 0.9576, and 0.9642; and for H flux 0.8001, and 0.8478, respectively. Furthermore, the RMSE values ranged from 0.0580 to 0.0721 W/m² for LE flux and from 0.0824 to 0.0863 W/m² for H flux. In addition, the sensitivity of the fluxes with respect to each input was analyzed over the growth stages. Thus, the most powerful effects among the inputs for LE flux were identified net radiation, leaf area index, vapor pressure deficit, wind speed, and for H

  12. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    PubMed

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  13. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  14. Multi-heat addition turbine engine

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C. (Inventor); Brabbs, Theodore A. (Inventor)

    1993-01-01

    A multi-heat addition turbine engine (MHATE) incorporates a plurality of heat addition devices to transfer energy to air and a plurality of turbines to extract energy from the air while converting it to work. The MHATE provides dry power and lower fuel consumption or lower combustor exit temperatures.

  15. [Dynamics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia].

    PubMed

    Zhang, Guo; Zhou, Guang-Sheng; Yang, Fu-Lin

    2010-03-01

    This paper studied the diurnal and seasonal characteristics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia, based on the 2008 observation data from eddy covariance tower. The diurnal patterns of sensible and latent heat fluxes over the ecosystem were both single kurtosis, with the maximum value being 319.01 W x m(-2) (on May 30th, 2008) and 425.37 W x m(-2) (on Jun 2nd, 2008), respectively, and occurred at about 12:00-13:30 (local time), which was similar to the diurnal pattern of net radiation but lagged about one hour of the maximum net radiation. The maximum diurnal variations of monthly mean sensible and latent heat fluxes occurred in May and June, and their minimum diurnal variations occurred in January and November, respectively. There was a closer relationship between soil moisture content and precipitation. Surface soil moisture content was most sensitive to precipitation, while the moisture content in deeper soil layers had a lagged response to precipitation. The seasonal dynamics of sensible and latent heat fluxes was similar to that of net radiation, and affected by precipitation. Sensible heat flux was obviously affected by net radiation, but latent heat flux was more sensitive to precipitation and mainly controlled by soil moisture content.

  16. Latent heat in uniaxially stressed KMnF3 ferroelastic crystal

    NASA Astrophysics Data System (ADS)

    Romero, F. J.; Gallardo, M. C.; Jimenez, J.; del Cerro, J.; Salje, E. K. H.

    2000-05-01

    The influence of weak uniaxial stress on both the latent heat and the coexistence interval of the ferroelastic phase transition of KMnF3 has been measured using a sensitive conduction calorimeter. The latent heat of the sample without stress is 0.129 J g-1 and, in the range of \\mbox{0-12} bar, it increases weakly with the stress. The width of the interval where the latent heat appears increases with stress, with an apparently larger coexistence interval. Heating and cooling processes show different kinetic behaviours. On cooling, the maximum of the differential thermal analysis traces splits into two peaks when a uniaxial stress is applied, which is related to the formation of ferroelastic domain patterns.

  17. Numerical study of finned heat pipe-assisted latent heat thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2014-11-01

    In the present study the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers as well as the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. Furthermore, it is showed that the number of fins does not affect the performance of the system considerably.

  18. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect

    Lee, Soochan; Phelan, Patrick E. Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  19. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Phelan, Patrick E.; Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-01

    This paper reports an experimental investigation of the latent heat of vaporization (hfg) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured hfg values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the hfg of nanofluids. That is, graphite nanofluid exhibits an increased hfg and silver nanofluid shows a decrease in hfg compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in hfg.

  20. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  1. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  2. The Estimation Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.

    1999-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased high by about 30 W/sq m. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  3. The Estimation of Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Miller, David O.; Schwemmer, Geary

    2000-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  4. Latent heating and mixing due to entrainment in tropical deep convection

    NASA Astrophysics Data System (ADS)

    McGee, Clayton J.

    Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation. A line of tropical convective cells develops within a high-resolution nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative-convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in equivalent potential temperature along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term. This residual term is composed of radiation and mixing. Due to the small magnitude of radiative heating rates in the convective inflow regions and updrafts examined here, the residual term is treated as an approximate representation of mixing within these regions. The simulations demonstrate that mixing with dry air decreases equivalent potential temperature along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase equivalent potential temperature above the freezing level. The latent heating contributions along trajectories from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation are also quantified. Finally, the source regions of trajectories reaching the upper troposphere are identified; it is found that two-thirds of backward trajectories with starting points within strong updrafts or downdrafts above 10 km have their origin at levels higher than 2 km AGL. The importance of both boundary layer and mid-level inflow in moist environments is

  5. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    PubMed

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution.

  6. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  7. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  8. Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2017-02-01

    The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east–west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.

  9. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  10. Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface models (LSMs) are often applied to predict the one-way coupling strength between surface soil moisture (SM) and surface latent heat (LH) flux. However, the ability of LSMs to accurately represent such coupling has not been adequately established. Likewise, the estimation of one-way SM/L...

  11. Effect of latent heating on mesoscale vortex development during extreme precipitation: Colorado, September 2013

    NASA Astrophysics Data System (ADS)

    Morales, Annareli

    From 9-16 September 2013, a slow-moving cut-off low in the southwestern U.S. funneled unseasonal amounts of moisture to the Colorado Front Range, resulting in extreme precipitation and flooding. The heaviest precipitation during the September 2013 event occurred over the northern Colorado Front Range, producing a 7-day total of over 380 mm of rain. The flash flooding caused over $3 billion in damage to property and infrastructure and resulted in eight fatalities. This study will focus on the precipitation and mesoscale features during 11-12 September 2013 in Boulder, CO. During the evening of 11 September, Boulder experienced flash flooding as a result of high rain rates accumulating over 180 mm of rain in 6 hours. From 0400-0700 UTC 12 September, a mesoscale vortex (mesovortex) was observed to travel northwestward towards Boulder. This circulation enhanced upslope flow and was associated with localized deep convection. The mesovortex originated in an area common for the development of a lee vortex known as the Denver Cyclone. We hypothesize that this mesoscale vortex is not associated with lee vortex formation, such as the Denver Cyclone, but developed through the release of latent heat from microphysical process. The Advanced Research Weather Research and Forecast (ARW) model was used to 1) produce a control simulation that properly represented the evolution and processes of interest during the event and 2) test the importance of latent heating to the development and evolution of the mesovortex. The results from various latent heating experiments suggested that the mesovortex did not develop through lee vortex formation and the latent heat released just before and during the mesovortex event was important to its development. Results also showed latent heating affected the flow field, resulting in a positive feedback between the circulation, associated low-level jet, and convection leading to further upslope flow and precipitation development. Further experiments

  12. The role of individual cyclones for atmospheric latent and sensible heat transport into the European Arctic

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Stohl, A.

    2010-12-01

    The bulk of the atmospheric latent heat transport induced by extratropical cyclones is organized in the warm conveyor belt, also known as atmospheric rivers. In order to enhance the process understanding of atmospheric sensible and latent heat transport with these structures into the European Arctic, the magnitude and variability of the energy flux from individual cyclones in this region was studied. We applied a moisture source tracking algorithm embedded in the limited-area numerical weather prediction model (NWP) Climate High-Resolution Model (CHRM) to trace the evaporation sources and transport of water vapour from different latitude bands of the North Atlantic Ocean. September 2002 and December 2006 were chosen as initial analysis periods, since a particularly large number of cyclones (including former hurricanes) traveled within the North Atlantic storm track during these months. The main findings are that latent heat (LH) from more southerly source regions is transported at higher altitudes. Stronger storms draw latent heat from a larger area (further south), and the ensuing precipitation will hence on average originate from further south as well. Most long-range transport of LH occurs in the cold frontal bands. Individual cyclones are the main source of sub-monthly LH flux variability, and can cause up to 4-sigma variation of the mean flux. LH flux is almost permanently net positive (northward), unlike for sensible heat (SH) and other energy fluxes. Most LH that is "permanently" transferred to north of 60°N in the Atlantic storm track originates from directly south of that latitude, implying on average short atmospheric moisture lifetimes, and hence a fast energy turnover. We compare these findings to results from a Lagrangian moisture tracking method based on the FLEXPART model. Remarks with regard to differences in the transport conditions of latent head in such structures along the North American West Coast and the Norwegian West Coast will be made.

  13. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment.

    PubMed

    Maia, A S C; daSilva, R G; Battiston Loureiro, C M

    2005-09-01

    The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36 degrees C the sensible heat transfer varied from 160 to -30 W m(-2), while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m(-2). Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20 degrees C. At air temperatures >30 degrees C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.

  14. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  15. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  16. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  17. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-12-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  18. Copper-silicon-magnesium alloys for latent heat storage

    SciTech Connect

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  19. The study of latent heat transport characteristics by solid particles and saccharide solution mixtures

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Inaba, Hideo

    2011-06-01

    The purpose of this study is the development of latent heat transport system by using the mixture of the minute latent heat storage materials and the saccharine solution as medium. The experimental studies are carried out by the evaluation of viscosity and pressure loss in a pipe. Polyethylene (P.E.) is selected as the dispersed minute material that has closeness density (920kg/m3) of ice (917kg/m3). D-sorbitol and D-xylose solutions are picked as continuum phase of the test mixture. The concentration of D-sorbitol solution is set 48mass% from measured results of saturation solubility and the melting point. 40mass% solution of D-xylose is selected as the other test continuum phase. The non-ion surfactant, EA157 Dai-ichiseiyaku CO. Ltd, is used in order to prevent of dispersed P.E. powder cohere. The pressure loss of test mixture is measured by the straight circular pipe that has smooth inner surface. The measuring length for pressure loss is 1000 mm, and the inner diameter of pipe is 15mm. The accuracy of experiment apparatus for measuring pressure loss is within ±5%. The pressure loss data is estimated by the relationship between the heat transport ratio and the required pump power. It is clarified that the optimum range of mixing ratio exists over 10mass% of latent heat storage material.

  20. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  1. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  2. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar

  3. Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables

    NASA Technical Reports Server (NTRS)

    Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin

    2003-01-01

    The primary goal of the Tropical Rainfall Measuring Mission (TRMM) is to use the information about distributions of precipitation to determine the four dimensional (i.e., temporal and spatial) patterns of latent heating over the whole tropical region. The Spectral Latent Heating (SLH) algorithm has been developed to estimate latent heating profiles for the TRMM Precipitation Radar (PR) with a cloud- resolving model (CRM). The method uses CRM- generated heating profile look-up tables for the three rain types; convective, shallow stratiform, and anvil rain (deep stratiform with a melting level). For convective and shallow stratiform regions, the look-up table refers to the precipitation top height (PTH). For anvil region, on the other hand, the look- up table refers to the precipitation rate at the melting level instead of PTH. For global applications, it is necessary to examine the universality of the look-up table. In this paper, we compare the look-up tables produced from the numerical simulations of cloud ensembles forced with the Tropical Ocean Global Atmosphere (TOGA) Coupled Atmosphere-Ocean Response Experiment (COARE) data and the GARP Atlantic Tropical Experiment (GATE) data. There are some notable differences between the TOGA-COARE table and the GATE table, especially for the convective heating. First, there is larger number of deepest convective profiles in the TOGA-COARE table than in the GATE table, mainly due to the differences in SST. Second, shallow convective heating is stronger in the TOGA COARE table than in the GATE table. This might be attributable to the difference in the strength of the low-level inversions. Third, altitudes of convective heating maxima are larger in the TOGA COARE table than in the GATE table. Levels of convective heating maxima are located just below the melting level, because warm-rain processes are prevalent in tropical oceanic convective systems. Differences in levels of convective heating maxima probably reflect

  4. Uncertainty in Tropical Ocean Latent Heat Flux Variability During the Last 25 Years

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.; Bosilovich, M. G.; Miller, T. L.

    2007-01-01

    When averaged over the tropical oceans (30deg N/S), latent heat flux anomalies derived from passive microwave satellite measurements as well as reanalyses and climate models driven with specified seal-surface temperatures show considerable disagreement in their decadal trends. These estimates range from virtually no trend to values over 8.4 W/sq m decade. Satellite estimates also tend to have a larger interannual signal related to El Nino/Southern Oscillation (ENSO) events than do reanalyses or model simulations. An analysis of wind speed and humidity going into bulk aerodynamic calculations used to derive these fluxes reveals several error sources. Among these are apparent remaining intercalibration issues affecting passive microwave satellite 10 m wind speeds and systematic biases in retrieval of near-surface humidity. Likewise, reanalyses suffer from discontinuities in availability of assimilated data that affect near surface meteorological variables. The results strongly suggest that current latent heat flux trends are overestimated.

  5. Effect of Latent Heat of Freezing on Crustal Generation at Ultraslow Spreading Rates

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.; Warren, J. M.

    2013-12-01

    The transition between slow and ultraslow ridge axes occurs at the spreading rate below which steady state molten rock cannot exist above the normal Moho depth of ca. 6 km. The latent heat of basaltic magma freezing within the mantle and the kinematics of the seafloor spreading play significant roles in this transition. Using thermal models, we show that freezing of melt at mantle depths buffers temperature due to latent heat of freezing. This allows steady state crustal magma at lower spreading rates than when all the melt freezes at shallow crustal depths. Two quasi-stable seafloor-spreading patterns are possible: (1) basaltic magma along a narrow axial zone, maintaining a hot, weak axial lid that favors this extension pattern; (2) extension in simple shear over a broad zone with isotherms that are horizontal within the cool lid, favoring extension in simple shear. The statistics of basalt, gabbro, melt-impregnated peridotite, and peridotite dredged from transitional ridge axes indicates that the mode of crustal generation is extremely variable at ultraslow spreading rates. Portions of the easternmost Southwest Indian Ridge (SWIR) are spreading at 14 mm per year and consist of 90 percent peridotite, whereas the SWIR Oblique Segment has the same spreading rate but only 37 percent peridotite. Overall, the dredge statistics indicate that some, but not all, the latent heat of ascending magmas is released at mantle depth, that both quasi-stable seafloor-spreading geometries occur, and that magma ascent focuses locally along the strike of transitional ridge axes.

  6. Experimental analysis of regularly structured composite latent heat storages for temporary cooling of electronic components

    NASA Astrophysics Data System (ADS)

    Lohse, Ekkehard; Schmitz, Gerhard

    2013-11-01

    This study presents the experimental investigation of regularly structured Composite Latent Heat Storages. Solid-liquid Phase Change Materials have a low thermal conductivity, resulting in high temperature differences. This drawback is compensated by the combination with specially designed frame-structures made of aluminum to enhance the transport of thermal energy. A prototype is investigated experimentally on a test rig, where the heat load and temperatures are measured while the phase change process is observed optically, and compared to a solid block Phase Change Material.

  7. Influence of latent heat and thermal diffusion on the growth of nematic liquid crystal nuclei.

    PubMed

    Huisman, B A H; Fasolino, A

    2007-08-01

    The growth of nematic liquid crystal nuclei from an isotropic melt follows a power law behavior with exponent n found experimentally to vary between 1/2 for low quench depths, up to 1 for high quench depths. This behavior has been attributed to the competition between curvature and free energy. We show that curvature cannot account for the low quench depth behavior of the nucleus growth, and attribute this behavior to the diffusion of latent heat. We use a multiscale approach to solve the Landau-Ginzburg order parameter evolution equation coupled to a diffusive heat equation, and discuss this behavior for material parameters experimentally measured for the liquid crystal 8CB.

  8. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  9. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  10. Heat Exchange, Additive Manufacturing, and Neutron Imaging

    SciTech Connect

    Geoghegan, Patrick

    2015-02-23

    Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.

  11. Heat Exchange, Additive Manufacturing, and Neutron Imaging

    ScienceCinema

    Geoghegan, Patrick

    2016-07-12

    Researchers at the Oak Ridge National Laboratory have captured undistorted snapshots of refrigerants flowing through small heat exchangers, helping them to better understand heat transfer in heating, cooling and ventilation systems.

  12. Including latent and sensible heat fluxes from sea spray in global weather and climate models

    NASA Astrophysics Data System (ADS)

    Copsey, Dan

    2016-04-01

    Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.

  13. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  14. Eddy covariance measurement of carbon, latent and sensible heat fluxes from western Lake Erie

    NASA Astrophysics Data System (ADS)

    Shao, C.; Chen, J.; Stepien, C.; Bridgeman, T.; Czajkowski, K. P.; Becker, R.; Chu, H.; yang, Z.

    2013-12-01

    Long-term measurements of sensible and latent heat and carbon dioxide fluxes were performed over a boreal lake in northern American using the direct micrometeorological eddy covariance (EC) technique. Two permanent EC flux stations in western Lake Erie - Crib (41.7167N, 83.2667W, nearest distance from shore is 4.5 km) and Light (41.8314N, 83.2006W, nearest distance from shore > 12 km) sites have been operating since September, 2011. In 2012, in both sites, the sensible heat flux had its minimum in the afternoon (15:00-17:00) and peaked in the early morning (7:00-9:00) in August-November, varied from -4 W m-2 to +30 W m-2. The diurnal amplitude of H was largest in spring and in early fall (30 W m-2 in September) whereas it was smaller in July and August (20 W m-2). The latent heat flux had obvious seasonal pattern in both sites with higher values in the summer, while it did not show obvious daily courses, even did not have the day and night variation in both sites, only one trend from June to October was higher at night than during the daytime in Light site. The maximum latent heat of ~180 W m-2 in summer whereas the minimum -10 W m-2 in winter were observed. The latent heat flux dominated clearly over the sensible heat in spring and summer; that is, the Bowen ratio was less than 1 and most of the energy absorbed by the water was consumed in terms of evapotranspiration. A lookup table method was performed data gap-filling in our aquatic ecosystems in order to obtain the continuously daily, monthly and yearly carbon and water budgets. In 2012, for the annual cumulative total, the evapotranspiration was 820 and 700 mm (about 2000 and 1700 MJ m-2) in Crib and Light sites, respectively, comparing with the annual rainfall of 700 mm. The annual sensible heat was 480 and 300 MJ m-2 in Crib and Light sites, respectively. And there were four and five CO2 uptake months in Crib and Light sites, respectively. The maximum CO2 uptake month was in July in both sites, with -28 and

  15. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  16. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  17. Computational modeling of latent-heat-storage in PCM modified interior plaster

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  18. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-10-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from an earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyzed SLHF changes several months before six marine earthquakes by employing daily SLHF data. Additionally, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest the following: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of the studied earthquakes, which were moderate and even devastating earthquakes (larger than Mw = 5.3), had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors that may result in SLHF variations should also be carefully considered.

  19. Modeling Subducting Slabs: Structural Variations due to Thermal Models, Latent Heat Feedback, and Thermal Parameter

    NASA Astrophysics Data System (ADS)

    Marton, F. C.

    2001-12-01

    The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.

  20. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  1. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    NASA Astrophysics Data System (ADS)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling

  2. Effects of latent heating on driving atmospheric circulation of brown dwarfs and directly imaged giant planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Latent heating from condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal atmospheric conditions of BDs (hot and thus with relatively short radiative timescale), latent heating alone by silicate vapor is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with relatively long radiative timescale, which may be the case for cooler bodies, tend to maintain an active hydrological cycle and develop zonal jets. Once condensation happens, storms driven by

  3. Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Sato, Noriaki; Kawaji, Masahiro; Kawanami, Tsuyoshi; Inamura, Takao

    2014-10-01

    The primary objective of this study was to investigate the fundamental phase change characteristics of a nanoemulsion using differential scanning calorimetry (DSC). Tetradecane, which has a slightly higher melting point than water, was utilized as the phase change material for the nanoemulsion. The melting point of the nanoemulsion, the melting peak temperature, and latent heat were examined in detail. Regarding the fundamental phase change characteristics of the nanoemulsion, it was found that its phase change characteristics were strongly affected by the temperature-scanning rate of the DSC. Moreover, it was confirmed that the phase change behavior does not change with repeated solidification and melting.

  4. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  5. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.

    PubMed

    Ding, Wenchao; Zhang, Peina; Li, Yijing; Xia, Haibing; Wang, Dayang; Tao, Xutang

    2015-02-02

    The Turkevich method, involving the reduction of HAuCl4 with citrate in boiling water, allows the facile production of monodisperse, quasispherical gold nanoparticles (AuNPs). Although, it is well-known that the size of the AuNPs obtained with the same recipe vary slightly (as little as approximately 4 nm), but noticeably, from one report to another, it has rarely been studied. The present work demonstrates that this size variation can be reconciled by the small, but noticeable, effect that the latent heat in boiling water has on the size of the AuNPs obtained by using the Turkevich method. The increase in latent heat during water boiling caused an approximately 3 nm reduction in the size of the as-prepared AuNPs; this reduction in size is mainly a result of accelerated nucleation driven by the extra heat. It was further demonstrated that, the heating temperature can be utilized as an additional measure to adjust the growth rate of AuNPs during the reduction of HAuCl4 with citrate in boiling water. Therefore, the latent heat of boiling solvents may provide one way to control nucleation and growth in the synthesis of monodisperse nanoparticles.

  6. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  7. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  8. Vertical Profiles of Latent Heat Release and Their Retrieval for TOGA COARE Convective Systems Using a Cloud Resolving Model, SSM/I, and Ship-borne Radar Data

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Simpson, J.; Olson, W. S.; Johnson, D.; Ferrier, B.; Kummerow, C.; Adler, R.

    1999-01-01

    Latent heating profiles associated with three (TOGA COARE) Tropical Ocean and Global Atmosphere Coupled Ocean Atmosphere Response Experiment active convective episodes (December 10-17 1992; December 19-27 1992; and February 9-13 1993) are examined using the Goddard Cumulus Ensemble (GCE) Model and retrieved by using the Goddard Convective and Stratiform Heating (CSH) algorithm . The following sources of rainfall information are input into the CSH algorithm: Special Sensor Microwave Imager (SSM/1), Radar and the GCE model. Diagnostically determined latent heating profiles calculated using 6 hourly soundings are used for validation. The GCE model simulated rainfall and latent heating profiles are in excellent agreement with those estimated by soundings. In addition, the typical convective and stratiform heating structures (or shapes) are well captured by the GCE model. Radar measured rainfall is smaller than that both estimated by the GCE model and SSM/I in all three different COARE IFA periods. SSM/I derived rainfall is more than the GCE model simulated for the December 19-27 and February 9-13 periods, but is in excellent agreement with the GCE model for the December 10-17 period. The GCE model estimated stratiform amount is about 50% for December 19-27, 42% for December 11-17 and 56% for the February 9-13 case. These results are consistent with large-scale analyses. The accurate estimates of stratiform amount is needed for good latent heating retrieval. A higher (lower) percentage of stratiform rain can imply a maximum heating rate at a higher (lower) altitude. The GCE model always simulates more stratiform rain (10 to 20%) than the radar for all three convective episodes. SSM/I derived stratiform amount is about 37% for December 19-27, 48% for December 11-17 and 41% for the February 9-13 case. Temporal variability of CSH algorithm retrieved latent heating profiles using either GCE model simulated or radar estimated rainfall and stratiform amount is in good

  9. Interannual and Decadal Variability of Ocean Surface Latent Heat Flux as Seen from Passive Microwave Satellite Algorithms

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Jackson, Darren L.; Wick, Gary A.; Roberts, Brent; Miller, Tim L.

    2007-01-01

    Ocean surface turbulent fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Deriving physically-based latent and sensible heat fluxes from satellite is dependent on inferences of near surface moisture and temperature from coarser layer retrievals or satellite radiances. Uncertainties in these "retrievals" propagate through bulk aerodynamic algorithms, interacting as well with error properties of surface wind speed, also provided by satellite. By systematically evaluating an array of passive microwave satellite algorithms, the SEAFLUX project is providing improved understanding of these errors and finding pathways for reducing or eliminating them. In this study we focus on evaluating the interannual variability of several passive microwave-based estimates of latent heat flux starting from monthly mean gridded data. The algorithms considered range from those based essentially on SSM/I (e.g. HOAPS) to newer approaches that consider additional moisture information from SSM/T-2 or AMSU-B and lower tropospheric temperature data from AMSU-A. On interannual scales, variability arising from ENSO events and time-lagged responses of ocean turbulent and radiative fluxes in other ocean basins (as well as the extratropical Pacific) is widely recognized, but still not well quantified. Locally, these flux anomalies are of order 10-20 W/sq m and present a relevant "target" with which to verify algorithm performance in a climate context. On decadal time scales there is some evidence from reanalyses and remotely-sensed fluxes alike that tropical ocean-averaged latent heat fluxes have increased 5-10 W/sq m since the early 1990s. However, significant uncertainty surrounds this estimate. Our work addresses the origin of these uncertainties and provides statistics on time series of tropical ocean averages, regional space

  10. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  11. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, P. E.; Johnson, R. H.; Houze, R.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, S.; Oki, R.; Bhardwaj, A.

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the

  12. Comparisons of sensible and latent heat fluxes using surface and aircraft data over adjacent wet and dry surfaces

    SciTech Connect

    Doran, J.C.; Hubbe, J.M.; Shaw, W.J.; Baldocchi, D.D.; Crawford, T.L.; Dobosy, R.J.; Meyers, T.J.

    1992-01-01

    In June 1991, a field study of surface fluxes of latent and sensible heat over heterogeneous surfaces was carried out near Boardman, Oregon (Doran et al., 1992). The object of the study was to develop improved methods of extrapolating from local measurements of fluxes to area-averaged values suitable for use in general circulation models (GCMs) applied to climate studies. A grid element in a GCM is likely to encompass regions whose fluxes vary significantly from one surface type to another. The problem of integrating these fluxes into a single, representative value for the whole element is not simple, and describing such a flux in terms of flux-gradient relationships, as is often done, presents additional difficulties.

  13. Conceptual design of a latent heat thermal energy storage subsystem for a saturated steam solar receiver and load

    NASA Astrophysics Data System (ADS)

    Dilauro, G. F.; Rice, R. E.

    1982-02-01

    The conceptual design of a tube intensive latent heat thermal energy storage (TES) subsystem which utilized a eutectic mixture of sodium hydroxide and sodium nitrate as the phase change material (PCM) was developed. The charging and discharging of the unit is accomplished by the same serpentine tube bundle heat exchanger in which heat transfer is augmented by aluminum channels acting as fins. Every tenth channel is made of steel to provide tube support.

  14. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  15. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  16. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  17. Novel functional materials from renewable lipids: Amphiphilic antimicrobial polymers and latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Floros, Michael Christopher

    Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit

  18. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  19. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.; Mathur, A. K.

    1980-04-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  20. A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tabassum, Tonny

    Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .

  1. Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry

    SciTech Connect

    Batista, Adriana S.M.; Gual, Maritza R.; Faria, Luiz O.; Lima, Claubia P.B.

    2015-07-01

    Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)

  2. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  3. Development of latent fingerprints on thermal paper by the controlled application of heat.

    PubMed

    Bond, John W

    2013-05-01

    Apparatus to produce a spatially and temporally uniform heat source is described and this is used to visualize latent fingerprints deposited onto thermal paper by raising the temperature of the paper. Results show an improvement over previous research when fingerprint deposits are aged or the developed fingerprints faint; visualization being enhanced by the use of a blue LED light source of 465 nm peak wavelength. An investigation of the components in fingerprint sweat likely to affect the solubility and hence color change of the dye present in the thermal paper has shown that polar protic solvents able to donate a proton are favored and a polar amino acid found commonly in eccrine fingerprint sweat (lysine) has been shown able to produce the desired color change. Aged fingerprint deposits on thermal paper from a variety of sources up to 4 years old have been visualized with this technique.

  4. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.

    1980-01-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  5. Steady-state performance characteristics of latent heat TES/heat pump systems

    NASA Astrophysics Data System (ADS)

    Sigmon, T. W.

    1982-03-01

    Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.

  6. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.

    1980-03-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  7. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  8. The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using ground-based soil moisture and latent/sensible heat fluxes observations acquired from the Ameriflux Network, we calculate the mutual information (MI) content between multiple soil moisture variables and evaporative fraction (EF) to examine the existence of information in vertically-integrated ...

  9. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  10. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  11. Numerical treatment of nonlinear latent heat boundary conditions at moving interfaces in genuine two dimensional solidification problems

    NASA Technical Reports Server (NTRS)

    Beckett, P. M.

    1981-01-01

    The proposed method for the treatment of two dimensional solidification problems is based on quasilinearization of the transformed heat conduction equation and latent heat condition at the interface and an iterative sequence in which these are solved simultaneously. Modern algorithms for solving such sparse systems mean that most of the storage advantage of other methods are reduced and the speed of solution can be improved.

  12. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  13. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1980-03-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  14. TRMM Latent Heating Retrieval: Applications and Comparisons with Field Campaigns and Large-Scale Analyses

    SciTech Connect

    Tao, Wei-Kuo; Takayabu, Yukari N.; Lang, Steve; Shige, Shoichi; Olson, William S.; Hou, Arthur; Skofronick-Jackson, Gail; Jiang, Xining; Zhang, Chidong; Lau, William K.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, Paul; Johnson, Richard; Houze, Robert A.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, Samson M.; Oki, R.; Bhardwaj, A.

    2016-05-05

    Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Latent heating (LH) is one of the most dominant terms in Q1. Yanai’s paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables in Tropical Rainfall Measuring Mission (TRMM) LH algorithms. A set of algorithms developed for retrieving LH profiles from TRMM-based rainfall profiles are described and evaluated, including details concerning their intrinsic space-time resolutions. Included in the paper are results from a variety of validation analyses that define the uncertainty of the LH profile estimates. Also, examples of how TRMM-retrieved LH profiles have been used to understand the lifecycle of the MJO and improve the predictions of global weather and climate models as well as comparisons with large-scale analyses are provided. Areas for further improvement of the TRMM products are discussed.

  15. The application of satellite data to study the effects of latent heat release on cyclones

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1984-01-01

    Generalized energetics were studied for nonlinear inviscid symmetric instability (SI). It was found that the linear theory fails to predict the stability in certain cases where the basic state is transitional between stability and instability. The initial growth of the SI perturbations can be fairly well approximated by linear theory, but the long time nonlinear evaluations will be bonded energetically if the SI region is finite. However, a further extension of the energetics to conditional symmetric instability (CSI) shows that the nonlinear evolution of circulation will energetically depend much more on the precipitation in a complicated way. By treating the latent heat as a source which is implicitly related to the motion field, the existence, uniqueness and stability of steady viscous (CSI) circulations are studied. Viscous CSI circulations are proved to be unique and asymptotically stable when the heat sources are weak and less sensitive to the motion perturbations. By considering the fact that moist updrafts are narrow and using eddy viscosity of 0(1,000 m squared/s) the stability criterion suggests that some frontal rainbands were probably dominated by the CSI mechanism even in their mature quasi-steady stage.

  16. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  17. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.

    2003-01-01

    To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux

  18. Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matt; Dacre, Helen; Forbes, Richard; Hodges, Kevin; Shaffrey, Len; Stein, Thorwald

    2016-06-01

    Extratropical cyclones are a key feature of the weather in the extratropics, which climate models need to represent in order to provide reliable projections of future climate. Extratropical cyclones produce significant precipitation and the associated latent heat release can play a major role in their development. This study evaluates the ability of a climate model, HiGEM, to represent latent heating in extratropical cyclones. Remote sensing data is used to investigate the ability of both the climate model and ERA-Interim (ERAI) reanalysis to represent extratropical cyclone cloud features before latent heating itself is assessed. An offline radiance simulator, COSP, and the ISCCP and CloudSat datasets are used to evaluate comparable fields from HiGEM and ERAI. HiGEM is found to exhibit biases in the cloud structure of extratropical cyclones, with too much high cloud produced in the warm conveyor belt region compared to ISCCP. Significant latent heating occurs in this region, derived primarily from HiGEM's convection scheme. ERAI is also found to exhibit biases in cloud structure, with more clouds at lower altitudes than those observed in ISCCP in the warm conveyor belt region. As a result, latent heat release in ERAI is concentrated at lower altitudes. CloudSat indicates that much precipitation may be produced at too low an altitude in both HiGEM and ERAI, particularly ERAI, and neither capture observed variability in precipitation intensity. The potential vorticity structure in composite extratropical cyclones in HiGEM and ERAI is also compared. A more pronounced tropopause ridge evolves in HiGEM on the leading edge of the composite as compared to ERAI. One future area of research to be addressed is what impact these biases in the representation of latent heating have on climate projections produced by HiGEM. The biases found in ERAI indicate caution is required when using reanalyses to study cloud features and precipitation processes in extratropical cyclones or

  19. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  20. A comparison of small and larger mesoscale latent heat and radiative fluxes: December 6 case study

    NASA Technical Reports Server (NTRS)

    Gultepe, I.; Starr, David; Heymsfield, A. J.

    1993-01-01

    Because of the small amounts of water vapor, the potential for rapid changes, and the very cold temperatures in the upper troposphere, moisture measuring instruments face several problems related to calibration and response. Calculations of eddy moisture fluxes are, therefore, subject to significant uncertainty. The purpose of this study is to examine the importance of latent heat (moisture) fluxes due to small and larger mesoscale circulations in comparison to radiative fluxes within cirrus. Scale separation is made at about 1 km because of significant changes in the structures within cirrus. Only observations at warmer than -40 C are used in this study. The EG&G hygrometer that is used for measuring dewpoint temperature (Td) is believed to be fairly accurate down to -40 C. On the other hand, Lyman-Alpha (L-alpha) hygrometer measurements of moisture may include large drift errors. In order to compensate for these drift errors, the L-alpha hygrometer is often calibrated against the EG&G hygrometer. However, large errors ensue for Td measurements at temperatures less than -40 C. The cryogenic hygrometer frost point measurements may be used to calibrate L-alpha measurements at temperatures less than -40 C. In this study, however, measurements obtained by EG&G hygrometer and L-alpha measurements are used for the flux calculations.

  1. Advanced latent heat storage media for high-temperature industrial applications

    NASA Astrophysics Data System (ADS)

    Olszewski, M.

    1984-03-01

    Several advanced thermal energy storage (TES) media are being developed for high temperature industrial applications. One of the concepts involves a composite medium consisting of a phase-change carbonate salt supported and immobilized within a submicro sized capillary structure of a particulate ceramic matrix or porous sintered ceramic. Immobilization of the molten salt within the ceramic structure permits operation of the composite pellets, bricks, or other shapes in direct contact with compatible fluids. Energy storage occurs in both sensible and latent forms with the composite providing higher energy storage densities than standard sensible heat storage systems. The second concept centers on the development of a self-encapsulating metallic eutectic. This work focuses on metallic eutectics containing silicon. Starting with a silicon-rich mixture, it is feasible to develop a self-encapsulating pellet by cooling the liquid drops at a controlled rate. A solid of nearly pure silicon will form on the exterior of the pellet leaving a eutectic, phase change media in the interior. The concept are described and information concerning current development activities is presented.

  2. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  3. Re-examining the roles of surface heat flux and latent heat release in a "hurricane-like" polar low over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias

    2016-07-01

    Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.

  4. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  5. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-06-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyze SLHF changes several months before six marine earthquakes by employing daily SLHF data. Besides, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of studied earthquakes which were moderate even devastating earthquakes (larger than Mw = 5.3) had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors which may result in SLHF variations also should be carefully considered.

  6. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces

    NASA Astrophysics Data System (ADS)

    Suvočarev, K.; Shapland, T. M.; Snyder, R. L.; Martínez-Cob, A.

    2014-02-01

    Surface renewal (SR) analysis is an interesting alternative to eddy covariance (EC) flux measurements. We have applied two recent SR approaches, with different theoretical background, that from Castellví (2004), SRCas, and that from Shapland et al. (2012a,b), SRShap. We have applied both models for sensible (H) and latent (LE) heat flux estimation over heterogeneous crop surfaces. For this, EC equipments, including a sonic anemometer CSAT3 and a krypton hygrometer KH20, were located in two zones of drip irrigated orchards of late and early maturing peaches. The measurement period was June-September 2009. The SRCas is based on similarity concepts for independent estimation of the calibration factor (α), which varies with respect to the atmospheric stability. The SRShap is based on analysis of different ramp dimensions, separating the ones that are flux-bearing from the others that are isotropic. According to the results obtained here, there was a high agreement between the 30-min turbulent fluxes independently derived by EC and SRCas. The SRShap agreement with EC was slightly lower. Estimation of fluxes determined by SRCas resulted in higher values (around 11% for LE) with respect to EC, similarly to previously published works over homogeneous canopies. In terms of evapotranspiration, the root mean square error (RMSE) between EC and SR was only 0.07 mm h-1 (for SRCas) and 0.11 mm h-1 (for SRShap) for both measuring spots. According to the energy balance closure, the SRCas method was as reliable as the EC in estimating the turbulent fluxes related to irrigated agriculture and watershed distribution management, even when applied in heterogeneous cropping systems.

  7. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  8. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  9. Assessments of surface latent heat flux associated with the Madden-Julian Oscillation in reanalyses

    NASA Astrophysics Data System (ADS)

    Gao, Yingxia; Hsu, Pang-Chi; Hsu, Huang-Hsiung

    2016-09-01

    To understand the accuracy and uncertainty of surface latent heat flux (LHF) associated with the Madden-Julian Oscillation (MJO), the LHF from each of the six global reanalysis datasets is compared with LHF based on in situ data and the objectively analyzed air-sea flux (OAFlux), in terms of tropical intraseasonal variability. The reanalysis products used in this study include the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), three generations of reanalysis from the National Center for Environmental Prediction (NCEP R1, R2 and CFSR), and the twentieth century reanalysis (20CR). We find that the intraseasonal LHF of the reanalysis products agrees well with the OAFlux over the tropical oceans in terms of patterns, but there is a significant spread in amplitude among the reanalysis products. Both ERA-I and MERRA show smaller biases in the power spectral analysis, while the other reanalysis products (NCEP R1, NCEP R2, CFSR, and 20CR) tend to overestimate the intraseasonal LHF when compared with the TAO buoy products and OAFlux. The role of anomalous LHF in supporting the MJO convection identified by previous TAO buoy data studies is confirmed by the long-term global reanalyses. The feature of increasing LHF accompanied by growing MJO observed in the recent MJO field campaign in the central Indian Ocean (DYNAMO/CINDY2011) is also well captured by the reanalysis products. Among the reanalysis datasets, MERRA has the smallest bias in temporal variability of LHF during the DYNAMO/CINDY2011 period.

  10. Assessment of the performance of the drag and bulk transfer method in estimating sensible and latent heat fluxes in a tropical station

    NASA Astrophysics Data System (ADS)

    Adeniyi, Mojisola Oluwayemisi; Ogunsola, Oluseyi E.

    2012-02-01

    The performance of the general bulk formulation in estimating sensible heat flux at Nigerian Micrometeorological Experimental site was assessed. Reliable sensible heat flux was estimated with the use of accurate diurnal values of transfer coefficient of sensible heat. The performances of one α, two β and a modified α formulations in the estimation of latent heat flux were also assessed at the station. The Lee and Pielke ( β), modified Kondo ( α), Jacquemin and Noilhan ( α) and Noilhan and Planton ( β) parameterizations gave good estimation of latent heat flux. The coefficient of determination ( R 2) of the models between measured and estimated values were greater than 0.7. Low diurnal mean absolute error and root mean squared error values were found between measured and estimated fluxes. All the parameterizations gave reliable latent heat flux when diurnal values of transfer coefficients of moisture were used.

  11. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion

    DTIC Science & Technology

    2014-06-01

    However, when cut open and examined, it was seen that small cracks had still formed in the internal boron nitride liners . An additional 80% fill...factor test was completed with a test section constructed entirely with SIC-6 grade graphite (i.e. no BN liner ) as a follow-on to materials...sectioning an 80% fill factor solar furnace test article. The graphite absorber / heat spreader, boron nitride liner , and silicon are shown. Test section

  12. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    SciTech Connect

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating

  13. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE PAGES

    Feng, Fei; Chen, Jiquan; Li, Xianglan; ...

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables

  14. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows.

    PubMed

    Santos, Severino Guilherme Caetano Gonçalves Dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2017-02-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m(2). There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m(2) for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  15. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2016-07-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  16. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2017-02-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  17. Assimilating Latent Heat Fluxes From Meteorological Geostationary Satellite Data In A Hydrological Model At The Scale of 20000 Km2

    NASA Astrophysics Data System (ADS)

    Roulin, E.

    This paper focuses on the use of evapotranspiration estimated from Meteosat data and from conventional meteorological information in a simple hydrological model at the scale of the river Scheldt and the river Meuse basins in Belgium and France. The radia- tive balance at the ground is computed from infrared and visible counts, radiosound- ing profiles and meteorological information from the synoptic network (Roulin et al., 1996). Latent heat flux is computed using the Monin-Obukhov theory and data of an automatic station. The ratio between latent heat flux and energy balance at the automatic station is used to infer evapotranspiration over the whole area (Gellens- Meulenberghs, 2000). The hydrological model is adapted from a conceptual model onto a grid of cells with 50 km2 area. Seven vegetation covers are represented. Wa- ter from vegetation and two soil buckets is depleted regarding the Penman-Monteith potential evapotranspiration. A simple assimilation scheme of the evapotranspiration from Meteosat is applied for the year 1995. The results are compared with soil mois- ture data gathered during a field campaign in a study area of 2200 km2 by UCL (Auquière et al., 1997).

  18. Non-additive model for specific heat of electrons

    NASA Astrophysics Data System (ADS)

    Anselmo, D. H. A. L.; Vasconcelos, M. S.; Silva, R.; Mello, V. D.

    2016-10-01

    By using non-additive Tsallis entropy we demonstrate numerically that one-dimensional quasicrystals, whose energy spectra are multifractal Cantor sets, are characterized by an entropic parameter, and calculate the electronic specific heat, where we consider a non-additive entropy Sq. In our method we consider an energy spectra calculated using the one-dimensional tight binding Schrödinger equation, and their bands (or levels) are scaled onto the [ 0 , 1 ] interval. The Tsallis' formalism is applied to the energy spectra of Fibonacci and double-period one-dimensional quasiperiodic lattices. We analytically obtain an expression for the specific heat that we consider to be more appropriate to calculate this quantity in those quasiperiodic structures.

  19. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  20. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2013-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  1. Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast - A case study

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Warner, Thomas T.

    1988-01-01

    The Penn State/NCAR mesoscale model was used to study special static-initialization (SI) and dynamic-initialization (DI) techniques designed to improve short-range quantitative precipitation forecasts (QPFs), as applied to the heavy convective rainfall that occurred in Texas, Oklahoma, and Kansas during the May 9-10, 1979 SESAMY IV study period. In the DI procedure, two types of four-dimensional data assimilation (FDDA) procedures were used to incorporate data during a 12-h preforecast period, one using the Newtonian relaxation, the other using latent-heat forcing. It was found that combined use of either the preforecast or in-forecast latent-heat forcing with the Newtonian relaxation produced an improved forecast (relative to a conventional forecast procedure) of rainfall intensity compared to the use of the Newtonian relaxation alone. The use of the experimental SI with prescribed latent heating during the first forecast hour produced greatly improved rainfall rates.

  2. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  3. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Biraud, S. C.; Torn, M. S.; Fischer, M. L.; Billesbach, D. P.; Berry, J. A.

    2009-12-01

    Characterizing net ecosystem exchanges (NEE) of CO2 and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km "macrocells" to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO2 exchange with the local atmosphere was -240, -340, and -270 gC m-2 yr-1 (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in

  4. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  5. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels

  6. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions.

    PubMed

    Tamura, Ryo; Tanaka, Shu

    2013-11-01

    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J(1) and antiferromagnetic third nearest-neighbor interaction J(3) in each triangular layer and the ferromagnetic interlayer interaction J([perpendicular]). Frustration comes from the intralayer interactions J(1) and J(3). We focus on the case that the order parameter space is SO(3)×C(3). We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C(3) symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J([perpendicular])/J(1) increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  7. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  8. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer

    1989-01-01

    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry.

  9. Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1.

    PubMed

    Suzuki, Shigeki; Kulkarni, Ashok B

    2010-07-30

    Transforming growth factor-beta 1 (TGF-beta1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-beta signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-beta activation process. In this study, we have identified heat shock protein 90 beta (HSP90beta) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90beta into extracellular space which inhibits the activation of latent TGF-beta1, and that there is a subsequent decrease in cell proliferation. TGF-beta1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90beta. Thus, extracellular HSP90beta is a negative regulator for the activation of latent TGF-beta1 modulating TGF-beta signaling in the extracellular domain.

  10. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  11. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    SciTech Connect

    Suzuki, Shigeki; Kulkarni, Ashok B.

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.

  12. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  13. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  14. Two-Dimensional, Supersonic, Linearized Flow with Heat Addition

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1959-01-01

    Calculations are presented for the forces on a thin supersonic wing underneath which the air is heated. The analysis is limited principally to linearized theory but nonlinear effects are considered. It is shown that significant advantages to external heating would exist if the heat were added well below and ahead of the wing.

  15. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    SciTech Connect

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  16. Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage.

    PubMed

    Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.

  17. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation

  18. Towards the development of latent heat storage electrodes for electroporation-based therapies

    NASA Astrophysics Data System (ADS)

    Arena, Christopher B.; Mahajan, Roop L.; Rylander, Marissa Nichole; Davalos, Rafael V.

    2012-08-01

    Phase change materials (PCMs) capable of storing a large amount of heat upon transitioning from the solid-to-liquid state have been widely used in the electronics and construction industries for mitigating temperature development. Here, we show that they are also beneficial for reducing the peak tissue temperature during electroporation-based therapies. A numerical model is developed of irreversible electroporation (IRE) performed with hollow needle electrodes filled with a PCM. Results indicate that this electrode design can be utilized to achieve large ablation volumes while reducing the probability for thermal damage.

  19. A field study of the effects of inhomogeneities of surface sensible and latent heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1992-01-01

    In recent years, the problem of characterizing turbulent fluxes of heat, momentum, and moisture over inhomogeneous surfaces has received increasing attention. This issue is relevant to the performance of general circulation models (GCMs), in which a single grid element can encompass a variety of surface and topographical features. Although considerable progress has been made in describing the energy balance at a surface partially covered by vegetation, less is known about how to treat adjacent regions of sharply contrasting surface characteristics. One difficulty is the scarcity of suitable data sets with which to study the problem, particularly on scales of tens to hundreds of kilometers.

  20. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations

    PubMed Central

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J. Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types. PMID:27472383

  1. Non-quasi-geostrophic effects in baroclinic waves with latent heat release

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Tang, C.-M.

    1984-01-01

    A study is conducted for the non-quasi-geostrophic baroclinic wave effects in a saturated atmosphere whose vertical motion is subject to pseudo-adiabatic processes. With respect to the characteristics of energetics for the first-order solution, it is noted that, in the cases of both the dry mode and the first moist mode, the heat transport quantities due to the second-order eddy are small and opposite in sign to their respective transports. The non-quasi-geostrophic effects render the vertical motion field asymmetric in each of the regions involved and enter into the present treatment only as nonlinear terms. The moisture transport terms in the eddy-available potential energy equation is small by comparison to other individual terms in the cyclone scale motion's energetics calculation. This is consistent with the observational results of Smith (1980).

  2. Latent Heat Characteristics of Biobased Oleochemical Carbonates as Novel Phase Change Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates are biobased materials that were readily prepared through a carbonate interchange reaction between renewable C10-C18 fatty alcohols and dimethyl or diethyl carbonate in the presence of a catalyst. These carbonates have various commercial uses in cosmetic, fuel additive and l...

  3. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean.

    PubMed

    Díaz, J I; Hidalgo, A; Tello, L

    2014-10-08

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.

  4. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean

    PubMed Central

    Díaz, J. I.; Hidalgo, A.; Tello, L.

    2014-01-01

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969

  5. Estimation of Mesoscale Atmospheric Latent Heating Profiles from TRMM Rain Statistics Utilizing a Simple One-Dimensional Model

    NASA Technical Reports Server (NTRS)

    Iacovazzi, Robert A., Jr.; Prabhakara, C.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by 1 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5 %) and +/- 5.0 K (+/- 15 %), respectively. At a given tropospheric level, such perturbations can cause a +/- 25 % variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain

  6. Latent heat loss of dairy cows in an equatorial semi-arid environment.

    PubMed

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous (E(S)) and respiratory (E(R)) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature (T(R)), hair coat surface temperature (T(S)) and respiratory rate (F(R)) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature (T(G)), air temperature (T(A)), wind speed (U), and partial air vapour pressure (P(V)). Data were analysed by mixed models, using the least squares method. Results showed that average E(S) and E(R) were higher in the semi-arid region (117.2 W m(-2) and 44.0 W m(-2), respectively) than in the subtropical region (85.2 W m(-2) and 30.2 W m(-2), respectively). Herds and individual cows were significant effects (P < 0.01) for all traits in the semi-arid region. Body parts did not affect T(S) and E(S) in the subtropical region, but was a significant effect (P < 0.01) in the semi-arid region. The average flank T(S) (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E(S) was higher in the neck (133.3 W m(-2)) than in the flank (116.2 W m(-2)) and hindquarters (98.6 W m(-2)). Coat colour affected significantly both T(S) and E(S) (P < 0.01). Black coats had higher T(S) and E(S) in the semi-arid region (41.7°C and 117.2 W m(-2), respectively) than white coats (37.2°C and 106.7 W m(-2), respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific

  7. Validation of HOAPS and ERA Interim latent heat fluxes against parameterizations applied to RV Polarstern data for 1995-1997

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Kinzel, Julian

    2014-05-01

    Latent heat fluxes (LHF) represent a crucial component of the global energy cycle. As LHF provide one of the upper boundary conditions for the oceanic component of coupled atmosphere-ocean circulation models, it is desirable to rely on one consistent LHF data source with sufficient spatial and temporal resolution. Remotely sensed LHF, particularly the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) climatology, are considered to fulfil this criterion. However, the validity of HOAPS LHF needs to be investigated to assess its potential of reliably representing an essential part of the global freshwater cycle. Within this study, a validation of HOAPS-3.0-based LHF at pixel-level resolution for 1995-1997 is performed over the Atlantic basin. A recently developed bulk flux algorithm termed OCEANET (Bumke et al., 2013), derived from turbulence measurements onboard R/V Polarstern by inertial dissipation method, is applied to hourly bulk measurements obtained during 19 Atlantic cruises of R/V Polarstern. Its LHF output serves as the in-situ validation data source, which is supplemented by ERA-Interim reanalysis data. By means of the nearest-neighbor approach, a collocation of HOAPS- to OCEANET- and ERA-Interim data is carried out. Bias analyses suggest that HOAPS LHF are on average significantly underestimated compared to OCEANET and ERA-Interim (-8 W/m²). A sub-division into latitudinal bands resolves absolute biases exceeding -20 W/m² in the tropics. As the minor differences between the HOAPS- and OCEANET-based transfer coefficients lie within the uncertainty range inherent to bulk flux parameterizations, it is suggested that the significant LHF deviations for the most part arise from deviations among the bulk input variables. Investigations of bulk input parameters reveal that the observed negative LHF biases within the HOAPS record are mainly associated with an overrepresentation of air specific humidity for 20°S - 60°N. Latitudinal

  8. Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data

    NASA Technical Reports Server (NTRS)

    Jourdan, Didier; Gautier, Catherine

    1995-01-01

    Comprehensive Ocean-Atmosphere Data Set (COADS) and satellite-derived parameters are input to a similarity theory-based model and treated in completely equivalent ways to compute global latent heat flux (LHF). In order to compute LHF exclusively from satellite measurements, an empirical relationship (Q-W relationship) is used to compute the air mixing ratio from Special Sensor Microwave/Imager (SSM/I) precipitable water W and a new one is derived to compute the air temperature also from retrieved W(T-W relationship). First analyses indicate that in situ and satellite LHF computations compare within 40%, but systematic errors increase the differences up to 100% in some regions. By investigating more closely the origin of the discrepancies, the spatial sampling of ship reports has been found to be an important source of error in the observed differences. When the number of in situ data records increases (more than 20 per month), the agreement is about 50 W/sq m rms (40 W/sq m rms for multiyear averages). Limitations of both empirical relationships and W retrieval errors strongly affect the LHF computation. Systematic LHF overestimation occurs in strong subsidence regions and LHF underestimation occurs within surface convergence zones and over oceanic upwelling areas. The analysis of time series of the different parameters in these regions confirms that systematic LHF discrepancies are negatively correlated with the differences between COADS and satellite-derived values of the air mixing ratio and air temperature. To reduce the systematic differences in satellite-derived LHF, a preliminary ship-satellite blending procedure has been developed for the air mixing ratio and air temperature.

  9. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data.

    PubMed

    Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun

    2015-06-01

    We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.

  10. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: A preliminary report.

    PubMed

    Shekhawat, Seema D; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    The diagnosis of a latent tuberculosis infection (LTBI) is of the utmost concern. The available tests, the tuberculin skin test (TST) and the Quantiferon-TB Gold test (QFT-G) cannot discriminate between active TB and LTBI. Therefore, the aim of the study is to identify new biomarkers that can discriminate between active TB and LTBI and can also assess the risk of the individual developing active TB. In total, 55 blood samples were collected, of which 10 samples were from the active TB infection group, 10 were from the high-risk exposure group, 23 were from the low-risk exposure group, and 12 were from healthy controls living in a non-TB endemic area. A panel of heat shock proteins (Hsps), including host Hsp25, Hsp60, Hsp70, and Hsp90 and Mycobacterium tuberculosis (MTB) Hsp16, were evaluated in all of the collected samples using ELISA. The levels of the host Hsp(s) (Hsp25, Hsp60, Hsp70 and Hsp90) and MTB Hsp16 were significantly (p<0.05) elevated in the active TB group compared to the high-risk exposure group, the low-risk exposure group and the control group. Notably, the levels of the same panel of Hsp(s) were elevated in the high-risk exposure group compared to the low-risk exposure group. On follow-up, out of the 10 high-risk exposure participants, 3 converted into active TB, indicating that this group has the highest risk of developing TB. Thus, the evaluated panel of Hsp(s) can discriminate between LTBI and active TB. They can also identify individuals who are at the highest risk of developing active TB. Because they can be rapidly detected, Hsp(s) have an edge over the existing diagnostic tools for LTBI. The evaluation of these proteins will be useful in designing better diagnostic methods for LTBI.

  11. The Contribution of Englacial Latent Heat Transfer to Seaward Ice Flux from Regions of Convergent and Divergent Ice Flow in Western Greenland

    NASA Astrophysics Data System (ADS)

    Poinar, K.; Joughin, I. R.

    2014-12-01

    Glacial meltwater can refreeze within firn and crevasses, warming the ice through latent heat transfer. The consequent softening of the ice has been identified as a potential destabilization mechanism for the Greenland Ice Sheet, which would flow more quickly seaward with lower viscosity. We calculate the effect of meltwater refreezing within firn and englacial features on ice temperature and viscosity in two contrasting areas of western Greenland: Jakobshavn Isbrae, a convergent, fast-flowing outlet glacier, and the Pakitsoq area (Swiss Camp) directly to its north, a "dead zone" experiencing slow, divergent flow because of its location between two outlet glaciers. We explore how much refreezing affects the seaward velocity of ice in each location by comparing our modeled temperature profiles to borehole data. Pakitsoq ice shows significant englacial latent heat transfer, or cryo-hydrologic warming, while the ice in Jakobshavn has warmed largely due to percolation within the firn. We find that the Pakitsoq region is rather unique in western Greenland because of the long residence time of the ice in the ablation zone (800 years) there; ice flowing through Jakobshavn, by contrast, spends only 20 years in the ablation zone, not enough time for deep, diffusive englacial warming to occur. Examination of the velocity field of the ice sheet indicates that 70% of the ice flux through western Greenland spends insufficient time (200 years or less) in the ablation zone to produce significant englacial warming. Thus, the effects of englacial latent heat transfer may be fairly limited to regions of divergent flow such as Pakitsoq. Ice loss in these regions, which tend to be land-terminating, is dominated by surface melt rather than seaward ice motion, further suggesting that englacial heat transfer may have a lesser effect on the stability of the ice sheet than previously supposed.

  12. Effect of fetch length on latent heat flux data accuracy calculated by Bowen ratio energy balance method

    NASA Astrophysics Data System (ADS)

    Pozníková, Gabriela; Fischer, Milan; Trnka, Miroslav; Orság, Matěj; Kučera, Jiří; Žalud, Zdeněk

    2013-04-01

    Bowen ratio energy balance (BREB) is one of the most widely used indirect methods for deriving latent heat (LE) and sensible heat fluxes. The BREB technique relies on net radiation, ground heat flux, and air temperature and humidity gradients measurements. Whilst the first two mentioned can be practically considered as point measurements, the source area of temperature and humidity gradients is at least one order of magnitudes larger. Therefore, the horizontal, homogeneous and extensive area is necessary prerequisite for correct flux determination by BREB method. An ideal fetch for BREB has been reported to be within 10 to 200 times the height of upper measuring level above zero plane displacement. This broad range is a result of different atmospheric stratifications and surface roughness, but the fetch to height ratio 100:1 has become generally acknowledged as a rule of thumb. In this study, data from four different BREB systems above various covers (two poplar plantations, grassland and turf grass field) will be used to calculate and analyse LE for different fetches. Data were recorded in Domanínek near Bystřice nad Pernštejnem in Czech-Moravian highlands where two BREB systems have measured above poplar plantation and turf grass since summer 2008 until present and two more systems have been placed above grassland and another poplar plantation at the beginning of 2011 and have measured until present time. During the measurements changing wind direction limited the fetch of particular BREB systems on the sites. That is why LE calculated for particular fetch lengths will be split into three categories - fetch classes ("good", "medium", and "bad") according to prevailing wind direction and corresponding fetch. These categories will be delimited using the simple footprint model. Fetches with more than 75% of the measured entities coming from the area of interest will be considered as the "good" ones. The "medium" class will contain fetches with 50-75% of the flux

  13. Spectral retrieval of latent heating profiles from TRMM PR data: comparisons of lookup tables from two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Shige, Shoichi; Takayabu, Yukari N.; Kida, Satoshi; Tao, Wei-Kuo; Zeng, Xiping; L'Ecuyer, Tristan

    2008-12-01

    The Spectral Latent Heating (SLH) algorithm was developed to estimate latent heating profiles for the TRMM PR. The method uses PR information (precipitation top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables. Lookup tables for the three rain types-convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)-were derived from numerical simulations of tropical cloud systems from the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) utilizing a cloud-resolving model (CRM). The two-dimensional ("2D") CRM was used in the previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional ("3D") CRM simulations for multiday periods becoming increasing prevalent. In this study, we compare lookup tables from the 2D and 3D simulations. The lookup table from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based one for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived one. This is explained by the fact that the 3D lookup table produces stronger convective heating and weaker stratiform heating above the melting level that 2D counterpart. Condensate generated in and carried over from the convective region is larger in 3D than in 2D, and condensate that is produced by the stratiform region's own upward motion is smaller in 3D than 2D.

  14. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  15. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Margolis, Hank A.; Cescatti, Alessandro; Richardson, Andrew D.; Arain, M. Altaf; Arneth, Almut; Bernhofer, Christian; Bonal, Damien; Chen, Jiquan; Gianelle, Damiano; Gobron, Nadine; Kiely, Gerald; Kutsch, Werner; Lasslop, Gitta; Law, Beverly E.; Lindroth, Anders; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.; Papale, Dario; Sottocornola, Matteo; Vaccari, Francesco; Williams, Christopher

    2011-09-01

    We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 1018 yr-1), H (164 ± 15 J × 1018 yr-1), and GPP (119 ± 6 Pg C yr-1) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr-1) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

  16. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Additional requirements to provide heat... requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg... monitor and report heat input rate at the unit level using the procedures set forth in part 75 of...

  17. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  18. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the...

  19. The Simulation of the Opposing Fluxes of Latent Heat and CO2 over Various Land-Use Types: Coupling a Gas Exchange Model to a Mesoscale Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Reyers, Mark; Krüger, Andreas; Werner, Christiane; Pinto, Joaquim G.; Zacharias, Stefan; Kerschgens, Michael

    2011-04-01

    A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.

  20. Latent fingerprint matching.

    PubMed

    Jain, Anil K; Feng, Jianjiang

    2011-01-01

    Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

  1. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Additional requirements to provide heat... requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg mass emissions using a Hg concentration monitoring system and a flow monitoring system shall...

  2. Influence of supplemental heat addition on performance of pilot-scale bioreactor landfills.

    PubMed

    Abdallah, Mohamed; Kennedy, Kevin; Narbaitz, Roberto; Warith, Mostafa; Sartaj, Majid

    2014-02-01

    Implementation of supplemental heat addition as a means of improving bioreactor landfill performance was investigated. The experimental work was conducted with two pilot-scale bioreactor setups (control cell and heated cell) operated for 280 days. Supplemental heat was introduced by recirculating leachate heated up to 35 °C compared to the control which used similar quantities of leachate at room temperature (21 ± 1 °C). The temporal and spatial effects of recirculating heated leachate on the landfill internal temperature were determined, and performance was assessed in terms of leachate parameters and biogas production. Recirculation of heated leachate helped establish balanced anaerobic microbial consortia that led to earlier (70 days) and greater (1.4-fold) organic matter degradation rates, as well as threefold higher methane production compared to the non-heated control. Despite the significant enhancements in performance resulting from supplemental heat addition, heated leachate recirculation did not significantly impact waste temperatures, and the effects were mainly restricted to short periods after recirculation and mostly at the upper layers of the waste. These findings suggest that improvements in bioreactor landfill performance may be achieved without increasing the temperature of the whole in-place waste, but rather more economically by raising the temperature at the leachate/waste interface which is also exposed to the maximum moisture levels within the waste matrix.

  3. Design optimization of heat transfer and fluidic devices by using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil

    After the development of additive manufacturing technology in the 1980s, it has found use in many applications like aerospace, automotive, marine, machinery, consumer and electronic applications. In recent time, few researchers have worked on the applications of additive manufacturing for heat transfer and fluidic devices. As the world has seen a drastic increase in population in last decades which have put stress on already scarce energy resources, optimization of energy devices which include energy storing devices, heat transfer devices, energy capturing devices etc. is need for the hour. Design of energy devices is often constrained by manufacturing constraints thus current design of energy devices is not an optimized one. In this research we want to conceptualize, design and manufacture optimized heat transfer and fluidic devices by exploiting the advantages provided by additive manufacturing. We want to benefit from the fact that very intricate geometry and desired surface finish can be obtained by using additive manufacturing. Additionally, we want to compare the efficacy of our designed device with conventional devices. Work on usage of Additive manufacturing for increasing efficiency of heat transfer devices can be found in the literature. We want to extend this approach to other heat transfer devices especially tubes with internal flow. By optimizing the design of energy systems we hope to solve current energy shortage and help conserve energy for future generation. We will also extend the application of additive manufacturing technology to fabricate "device for uniform flow distribution".

  4. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  5. The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-06-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updrafts/downdrafts in the middle/lower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  6. Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Kyoung; Biggerstaff, Michael I.

    2006-07-01

    The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing amounts of supercooled cloud water typical of both the tropical oceanic environment, in which there is little supercooled cloud water, and midlatitude continental environments in which supercooled cloud water is more plentiful. For convective surface-level rain rates, the uncertainty varied between 20% and 60% depending on which combination of passive and active microwave observations was used in the retrieval. The uncertainty in surface rain rate did not depend on the microphysical scheme or the parameter settings except for retrievals over stratiform regions based on 85-GHz brightness temperatures TB alone or 85-GHz TB and radar reflectivity combined. In contrast, systematic differences in the treatment of the production of cloud water, cloud ice, and snow between the parameterization schemes coupled with the low correlation between those properties and the passive microwave TB examined here led to significant differences in the uncertainty in retrievals of those cloud properties and latent heating. The variability in uncertainty of hydrometeor structure and latent heating associated with the different microphysical parameterizations exceeded the inherent variability in TB cloud property relations. This was true at the finescales of the cloud model as well as at scales consistent with satellite footprints in which the inherent variability in TB cloud property relations are reduced by area averaging.

  7. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  8. Effects of mass addition on blunt-body boundary-layer transition and heat transfer

    NASA Technical Reports Server (NTRS)

    Kaattari, G. E.

    1978-01-01

    The model bodies tested at Mach number 7.32 were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental data consisted of heat transfer measurements from which boundary layer transitions were deduced. The data verified various applicable boundary layer codes in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes.

  9. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  10. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment.

    PubMed

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2016-10-10

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  11. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment

    NASA Astrophysics Data System (ADS)

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2016-10-01

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  12. Proper use of sludge-control additives in residential heating oil systems

    SciTech Connect

    Tatnall, R.E.

    1995-04-01

    Discussed are various aspects of heating oil `sludge`: How it forms, typical problems it causes, how sludge-control additives work, what should be expected of them, and what happens in a contaminated system when such additives are used. Test results from laboratory and field experiments demonstrate that performance of commercially available additives varies greatly. The concept of `end-of-the-line` treatment is described and compared with bulk fuel treatment. A procedure is described whereby a retailer can test additives himself, and thus determine just what those additives will or will not do for his business. Finally, the economics of an effective treatment program are outlined.

  13. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    SciTech Connect

    Carter, William G.; Rios, Orlando; Akers, Ronald R.; Morrison, William A.

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  14. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  15. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial

  16. Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies

    NASA Astrophysics Data System (ADS)

    Reynolds, R. J.; Haffner, L. M.; Tufte, S. L.

    1999-11-01

    Spatial variations of the [S II]/Hα and [N II]/Hα line intensity ratios observed in the gaseous halo of the Milky Way and other galaxies are inconsistent with pure photoionization models. They appear to require a supplemental heating mechanism that increases the electron temperature at low densities, ne. This would imply that in addition to photoionization, which has a heating rate per unit volume proportional to n2e, there is another source of heat with a rate per unit volume proportional to a lower power of ne. One possible mechanism is the dissipation of interstellar plasma turbulence, which, according to Minter & Spangler, heats the ionized interstellar medium in the Milky Way at a rate of ~1×10-25ne ergs cm-3 s-1. If such a source were present, it would dominate over photoionization heating in regions where ne<~0.1 cm-3, producing the observed increases in the [S II]/Hα and [N II]/Hα intensity ratios at large distances from the galactic midplane as well as accounting for the constancy of [S II]/[N II], which is not explained by pure photoionization. Other supplemental heating sources, such as magnetic reconnection, cosmic rays, or photoelectric emission from small grains, could also account for these observations, provided they supply ~10-5 ergs s-1 per square centimeter of the Galactic disk to the warm ionized medium.

  17. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  18. Sensitivity of hydrometeor profiles and satellite brightness temperatures to model microphysics for MCSs over land and ocean: Model comparison using EOF analysis and implications for rain and latent heat retrievals

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Kyoung

    The impact of model microphysics on the relationships between microphysical variables and derived satellite microwave brightness temperatures (T B's) and on the retrievals of microphysical variables was using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate two mesoscale convective systems, one over land and one over ocean. Four microphysical schemes (each employing 3-ice bulk parameterizations) were compared in both convective and stratiform precipitation using Empirical Orthogonal Function analysis. The validity of the microphysical schemes suggests that over land the model microphysical schemes produce too much reflectivity aloft and too rapid a decrease in reflectivity from the melting level to the surface, and over ocean the simulations produced more graupel and not enough rain. Model microphysics had a noticeable impact on the relations between the hydrometeor structure and TB's. Classified in terms of TB 's, the microphysical schemes produce significantly different mean vertical profiles of cloud water, cloud ice, snow, vertical velocity, and latent heating, especially in stratiform clouds. Vertical velocity and latent heating in simulated stratiform clouds were not well correlated with TB's for any of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) frequencies. Differences in the amount of supercooled cloud water produced in the various schemes accounted for much of the variation in TB relations. The uncertainty in retrieving hydrometeor and latent heating profiles for passive microwave measurements has been examined quantitatively. The four microphysical schemes exhibited analogous uncertainties in retrieving rain and graupel, but very different uncertainties in retrieving cloud water, cloud ice, and snow. The uncertainty in retrieving latent heating appears to be related to the insensitivity of TMI frequencies to cloud water, cloud ice, and snow. Structural differences in hydrometeor and latent heating

  19. Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage

    PubMed Central

    Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853

  20. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  1. Differences in the effects of solution additives on heat- and refolding-induced aggregation.

    PubMed

    Hamada, Hiroyuki; Takahashi, Ryouta; Noguchi, Takumi; Shiraki, Kentaro

    2008-01-01

    Although a number of low-molecular-weight additives have been developed to suppress protein aggregation, it is unclear whether these aggregation suppressors affect various aggregation processes in the same manner. In this study, we evaluated the differences in the effect of solution additives on heat- and refolding-induced aggregation in the presence of guanidine (Gdn), arginine (Arg), and spermidine (Spd), and the comparable analysis showed the following differences: (i) Gdn did not suppress thermal aggregation but increased the yield of oxidative refolding. (ii) Spd showed the highest effect for heat-induced aggregation suppression among tested compounds, although it promoted aggregation in oxidative refolding. (iii) Arg was effective for both aggregation processes. Lysozyme solubility assay and thermal unfolding experiment showed that Spd was preferentially excluded from native lysozyme and Arg and Gdn solubilized the model state of intermediates during oxidative refolding. This preference of additives to protein surfaces is the cause of the different effect on aggregation suppression.

  2. Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models

    NASA Astrophysics Data System (ADS)

    Li, Jianduo; Wang, Ying-Ping; Duan, Qingyun; Lu, Xingjie; Pak, Bernard; Wiltshire, Andy; Robertson, Eddy; Ziehn, Tilo

    2016-09-01

    Differences in the predicted carbon and water fluxes by different global land models have been quite large and have not decreased over the last two decades. Quantification and attribution of the uncertainties of global land surface models are important for improving the performance of global land surface models, and are the foci of this study. Here we quantified the model errors by comparing the simulated monthly global gross primary productivity (GPP) and latent heat flux (LE) by two global land surface models with the model-data products of global GPP and LE from 1982 to 2005. By analyzing model parameter sensitivities within their ranges, we identified about 2-11 most sensitive model parameters that have strong influences on the simulated GPP or LE by two global land models, and found that the sensitivities of the same parameters are different among the plant functional types (PFT). Using parameter ensemble simulations, we found that 15%-60% of the model errors were reduced by tuning only a few (<4) most sensitive parameters for most PFTs, and that the reduction in model errors varied spatially within a PFT or among different PFTs. Our study shows that future model improvement should optimize key model parameters, particularly those parameters relating to leaf area index, maximum carboxylation rate, and stomatal conductance.

  3. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  4. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  5. Increasing thermomagnetic stability of composite superconductors with additives of extremely-large-heat-capacity substances

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lupanov, D. É.; Shcherbakov, V. I.

    2008-05-01

    We have studied the thermomagnetic stability (with respect to magnetic flux disturbances) of composite superconductors screened by additives of rare earth compounds possessing extremely high heat capacity at low temperatures. Three tubular composite structures have been manufactured and studied with respect to screening of the central region from variations of an external magnetic field. The effect of large-heat-capacity substances (LHCSs) was evaluated by measuring a jump in the magnetic flux in response to the rate of variation (ramp) of the external magnetic field. It is established that the adiabatic criterion of stability (magnetic-flux jump field) in the sample structures containing LHCSs significantly increases—by 20% for HoCu2 intermetallic compound and 31% for Gd2O2S ceramics—as compared to the control structure free of such additives.

  6. Experimental study of enhanced heat transfer by addition of CuO nanoparticle

    NASA Astrophysics Data System (ADS)

    Jesumathy, Stella; Udayakumar, M.; Suresh, S.

    2012-06-01

    An energy storage system has been designed to study the thermal characteristics of paraffin wax with an embedded nano size copper oxide (CuO) particle. This paper presents studies conducted on phase transition times, heat fraction as well as heat transfer characteristics of paraffin wax as phase change material (PCM) embedded with CuO nanoparticles. 40 nm mean size CuO particles of 2, 5 and 10% by weight were dispersed in PCM for this study. Experiments were performed on a heat exchanger with 1.5-10 l/min of heat transfer fluid (HTF) flow. Time-based variations of the temperature distributions are revealed from the results of observations of melting and solidification curves. The results strongly suggested that the thermal conductivity enhances 6, 6.7 and 7.8% in liquid state and in dynamic viscosity it enhances by 5, 14 and 30% with increasing mass fraction of the CNEPs. The thermal conductivity ratio of the composites can be augmented by a factor up to 1.3. The heat transfer coefficient during solidification increased about 78% for the maximum flow rate. The analysis of experimental results reveals that the addition of copper oxide nanoparticles to the paraffin wax enhances both the conduction and natural convection very effectively in composites and in paraffin wax. The paraffin wax-based composites have great potential for energy storage applications like industrial waste heat recovery, solar thermal applications and solar based dynamic space power generation with optimal fraction of copper oxide nanoparticles.

  7. Investigation of the stability of paraffin-exfoliated graphite nanoplatelet composites for latent heat thermal storage systems

    SciTech Connect

    Abdelaziz, Omar; Mallow, Anne; Graham, Samuel; Kalaitzidou, Kyriaki

    2012-01-01

    Organic materials, such as paraffin wax, are sought as stable and environmentally friendly phase change materials (PCM) for thermal energy storage, but they suffer from low thermal conductivity which limits the rate at which thermal energy flows into and out of the material. A common method to improve the PCM thermal behavior is through loading with high thermal conductivity particulate fillers. However, the stability of these composites in the molten state is a concern as settling of the fillers will change the effective thermal conductivity. In this work, we investigate the stability of wax loaded with exfoliated graphite nanoplatelets either of 1 m (xGnP-1) or 15 m (xGnP-15) diameter. The effect of dispersants, oxidation of the wax, viscosity of the wax, mixing time, and hydrocarbon chain length on stability is reported. It was found that the addition of octadecylphosphonic acid (ODPA) is an effective dispersant for xGnP in paraffin and microcrystalline wax. In addition, mixing time, viscosity, and oxidation of the wax influence stability in the molten state. Overall, it was found that a mixing time of 24 hours for xGnP-15 along with ODPA mixed in a high viscosity, oxidized microcrystalline wax results in composite PCM systems with the greatest stability determined at 80 C in the molten state.

  8. Drag reducing effects of polymer additives in a plate heat exchanger for the OTEC system

    SciTech Connect

    Kim, N.; Yoon, S.; Kim, C.; Seo, T.

    1999-07-01

    Experiments were undertaken for a 15kW Alfa-Laval plate heat exchanger utilizing polyethylene oxide as a polymer additive. Concentrations of polymer additives were 5, 10, 20, 30, 40, 50, 100, 200 and 400 wppm at 25 C and mass flow rates were 0.6kg/s, 0.7kg/s, 0.8kg/s and 0.9kg/s in normal operating ranges of the plate heat exchanger. The maximum effects of drag reductions were found at 20 wppm polymer concentration and at approximately 0.7kg/s of mass flow rate. The results show that there exist optimum polymer concentration and at approximately 0.7kg/s of mass flow rate. The results show that there exist optimum polymer concentration and mass flow rate for the plate heat exchanger for maximum drag reduction effects. In most cases, drag reduction of approximately 20% has been obtained. It means considerable savings in pumping power for a large size OTEC plant.

  9. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  10. Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2009-06-01

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  11. Test of the additivity principle for current fluctuations in a model of heat conduction.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2009-06-26

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  12. Comparison of the spatial and temporal distribution of fluxes of sensible heat, latent heat and CO2 from grid flights in BOREAS 1994 and 1996

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, Segun O.; Schuepp, Peter H.; MacPherson, Ian J.; Desjardins, Ray L.

    1999-11-01

    Analysis of airborne eddy correlation flux measurements of heat (H), moisture (LE) and CO2 (C) over two 16 km × 16 km heterogeneous grid sites in BOREAS 1994 (IFC-2) and 1996 are compared in order to examine persistence and variability in the distributions of surface characteristics and fluxes between the two years. The data used were obtained in grid patterns flown at 30 m above ground level, under generally clear sky and thermally unstable conditions. Maps of fluxes and surface characteristics were constructed by block averaging over 2 km windows along the flight lines, analyzed for similarities, and used to quantify spatial variability of the fluxes. Sensitivity analysis suggested minor effects of boundary layer variability and window size on the main features of the source/sink distributions. Incident radiation was more highly correlated with grid-averaged values of C than with H and LE. The dominant role of surface inhomogeneity, as opposed to local variations in solar energy input, on spatial variation of flux distributions was confirmed, and mesoscale motion was found negligible, probably because of the small sizes of homogeneous subareas with sufficient surface contrast to induce thermally generated motion. CO2 flux and greenness index were highly correlated, but correlation was site- and time-specific. The previously observed low correlation between sensible heat flux and surface minus air temperature difference (Ts-Ta), primarily over old black spruce, was confirmed. The high Bowen ratio over the forest contributed to the growth and development of the observed deep boundary layers over the sites, but no clear correlation emerged between boundary layer depth and observed near-surface fluxes.

  13. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  14. Heat-Induced Reactivation of HSV-1 in Latent Mice: Upregulation in the TG of CD83 and Other Immune Response Genes and Their LAT-ICP0 Locus

    PubMed Central

    Clement, Christian; Bhattacharjee, Partha S.; Kaufman, Herbert E.; Hill, James M.

    2009-01-01

    Purpose To determine changes in host gene expression in HSV-1 latent trigeminal ganglia (TG) after hyperthermic stress. Methods Scarified corneas of 6-week-old female BALB/c mice were inoculated with either HSV-1 17Syn+ (high phenotypic reactivator) or 17ΔPst(LAT−) (low phenotypic reactivator) at 104 plaque-forming units/eye. At 28 days after infection, viral reactivation was induced in some of the infected mice with hyperthermic stress, and the mice were killed after 1 hour. Heat-treated uninfected mice served as the control. Labeled cRNA derived from TG-isolated total RNA was hybridized to 430 2.0 chips containing 14,000 mouse genes. Gene expression was confirmed by quantitative real-time PCR. Results There was no difference in gene expression in the non–heat-treated mice. Gene expression in the TG of each of the heat-treated mouse groups (17Syn+, 17ΔPst(LAT−) and uninfected) yielded upregulation of more than twofold of a group of the same genes, designated as heat stress–induced gene expression. Twenty-nine genes (0.2%) were significantly upregulated (2- to 17-fold) when the heat stress–induced gene expression was subtracted from the gene expression of 17Syn+ latent TG relative to 17ΔPst(LAT−) latent TG 1 hour after mouse hyperthermic stress. Nine host adaptive immunity genes comprising Ig molecules, CD83, CD8A, ADA, and CCL8 were the largest subset upregulated, and all were confirmed by real-time PCR. Others identified included genes involved in hypothalamic-pituitary gland functions. Conclusions Hyperthermic stress–induced reactivation of the HSV-1 high phenotypic reactivator can upregulate gene expression involved in B-cell function and in T-cell function. CD83 is implicated in HSV-1 latency, suggesting it could also be involved in immune-mediated mechanisms of viral reactivation. PMID:19151393

  15. Evaluation of heat-cured resin bases following the addition of denture teeth using a second heat cure.

    PubMed

    Polukoshko, K M; Brudvik, J S; Nicholls, J I; Smith, D E

    1992-04-01

    This study compared heat-cured acrylic resin denture baseplate distortions following a second heat cure used to add the denture teeth. The second heat cure was done with three different water-bath curing temperatures. The distortions were evaluated in three planes by use of a measuring microscope. Recorded distortions were not clinically significant.

  16. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be

  17. Modular system for studying tonal sound excitation in resonators with heat addition and mean flow.

    PubMed

    Matveev, Konstantin I; Hernandez, Rafael

    2012-03-01

    An educational experimental system has been developed for studying tonal sound generation in acoustic resonators. Tones are excited by either heat addition or vortex shedding in the presence of mean flow. The system construction is straightforward and inexpensive. Several test arrangements and experimental data are described in this paper. The experimental setups include a modified Rijke tube, a standing-wave thermoacoustic engine, a baffled tube with mean flow, and an acoustic energy harvester with a piezoelement. Simplified mathematical models for interpreting data are discussed, and references are provided to literature with more advanced analyses. The developed system can assist both graduate and undergraduate students in understanding acoustic instabilities via conducting and analyzing interesting experiments.

  18. Additions to compact heat exchanger technology: Jet impingement cooling & flow & heat transfer in metal foam-fins

    NASA Astrophysics Data System (ADS)

    Onstad, Andrew J.

    Compact heat exchangers have been designed following the same basic methodology for over fifty years. However, with the present emphasis on energy efficiency and light weight of prime movers there is increasing demand for completely new heat exchangers. Moreover, new materials and mesoscale fabrication technologies offer the possibility of significantly improving heat exchanger performance over conventional designs. This work involves fundamental flow and heat transfer experimentation to explore two new heat exchange systems: in Part I, large arrays of impinging jets with local extraction and in Part II, metal foams used as fins. Jet impingement cooling is widely used in applications ranging from paper manufacturing to the cooling of gas turbine blades because of the very high local heat transfer coefficients that are possible. While the use of single jet impingement results in non-uniform cooling, increased and more uniform mean heat transfer coefficients may be attained by dividing the total cooling flow among an array of smaller jets. Unfortunately, when the spent fluid from the array's central jets interact with the outer jets, the overall mean heat transfer coefficient is reduced. This problem can be alleviated by locally extracting the spent fluid before it is able to interact with the surrounding jets. An experimental investigation was carried out on a compact impingement array (Xn/Djet = 2.34) utilizing local extraction of the spent fluid (Aspent/Ajet = 2.23) from the jet exit plane. Spatially resolved measurements of the mean velocity field within the array were carried out at jet Reynolds numbers of 2300 and 5300 by magnetic resonance velocimetry, MRV. The geometry provided for a smooth transition from the jet to the target surface and out through the extraction holes without obvious flow recirculation. Mean Nusselt number measurements were also carried out for a Reynolds number range of 2000 to 10,000. The Nusselt number was found to increase with the

  19. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect

    Ammerman, C.N.; You, S.M.; Hong, Y.S.

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  20. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    NASA Astrophysics Data System (ADS)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  1. Additive impacts on particle emissions from heating low emitting cooking oils

    NASA Astrophysics Data System (ADS)

    Amouei Torkmahalleh, M.; Zhao, Y.; Hopke, P. K.; Rossner, A.; Ferro, A. R.

    2013-08-01

    The effect of five additives, including table salt, sea salt, black pepper, garlic powder, and turmeric, on the emission of PM2.5 and ultrafine particles (UFP) from heated cooking oil (200 °C) were studied. One hundred milligrams of the additives were added individually to either canola or soybean oil without stirring. Black pepper, table salt, and sea salt reduced the PM2.5 emission of canola oil by 86% (p < 0.001), 88% (p < 0.001), and 91% (p < 0.001), respectively. Black pepper, table salt, and sea salt also decreased the total particle number emissions of canola oil by 45% (p = 0.003), 52% (p = 0.001), and 53% (p < 0.001), respectively. Turmeric and garlic powder showed no changes in the PM2.5 and total number emissions of canola oil. Table salt and sea salt, decreased the level of PM2.5 emissions from soybean oil by 47% (p < 0.001) and 77% (p < 0.001), respectively. No differences in the PM2.5 emissions were observed when other additives were added to soybean oil. Black pepper, sea salt, and table salt reduced the total particle number emissions from the soybean oil by 51%, 61% and 68% (p < 0.001), respectively. Turmeric and garlic powder had no effect on soybean oil with respect to total particle number emissions. Our results indicate that table salt, sea salt, and black pepper can be used to reduce the particle total number and PM2.5 emissions when cooking with oil.

  2. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  3. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  4. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  5. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    NASA Astrophysics Data System (ADS)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-03-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  6. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.

    PubMed

    Reddy, N R; Tetzloff, R C; Skinner, G E

    2010-08-01

    The effect of additives and post-treatment incubation conditions on the recovery of high pressure and heat-injured (i.e., processed at 620 MPa and 95 and 100 degrees C for 5 min) spores of Clostridium botulinum strains, 62-A (proteolytic type A) and 17-B (nonproteolytic type B) was studied. High pressure and heat-injured spores were inoculated into TPGY (Trypticase-Peptone-Glucose-Yeast extract) anaerobic broth media containing additives (lysozyme, L-alanine, L-aspartic acid, dipicolonic acid, sodium bicarbonate, and sodium lactate) at various concentrations (0-10 microg/ml) individually or in combination. The spore counts of high pressure and heat-injured 62-A and 17-B recovered from TPGY broth containing lysozyme (10 microg/ml) incubated for 4 months versus that recovered from peptone-yeast extract-glucose-starch (PYGS) plating agar containing lysozyme (10 microg/ml) incubated under anaerobic conditions for 5 days were also compared. None of the additives either individually or in combination in TPGY broth improved recovery of injured spore enumeration compared to processed controls without additives. Addition of lysozyme at concentrations of 5 and 10 microg/ml in TPGY broth improved initial recovery of injured spores of 17-B during the first 4 days of incubation but did not result in additional recovery at the end of the 4 month incubation compared to the processed control without lysozyme. Adding lysozyme at a concentration of 10 microg/ml to PYGS plating agar resulted in no effect on the recovery of high pressure and heat-injured 62-A and 17-B spores. The recovery counts of high pressure and heat-injured spores of 62-A and 17-B were lower (i.e., <1.0 log units) with PYGS plating agar compared to the MPN method using TPGY broth as the growth medium.

  7. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.

    PubMed

    Tamura, Yuki; Matsunaga, Yutaka; Masuda, Hiroyuki; Takahashi, Yumiko; Takahashi, Yuki; Terada, Shin; Hoshino, Daisuke; Hatta, Hideo

    2014-10-01

    A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 myotubes, thereby implying that heat stress may be an effective treatment to enhance endurance training-induced mitochondrial adaptations in skeletal muscle. However, whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo is unclear. In the present study, we report the novel findings that 1) whole body heat stress produced by exposure of ICR mice to a hot environment (40°C, 30 min/day, 5 days/wk, 3 wk) induced mitochondrial adaptations such as increased mitochondrial enzyme activity (citrate synthase and 3-hydroxyacyl CoA dehydrogenase) and respiratory chain protein content (complexes I-V) in skeletal muscle in vivo and 2) postexercise whole body heat stress additively enhanced endurance training-induced mitochondrial adaptations (treadmill running, 25 m/min, 30 min/day, 5 days/wk, 3 wk). Moreover, to determine the candidate mechanisms underlying mitochondrial adaptations, we investigated the acute effects of postexercise whole body heat stress on the phosphorylation status of cellular signaling cascades that subsequently induce mitochondrial gene transcription. We found that whole body heat stress boosted the endurance exercise-induced phosphorylation of p38 MAPK, increased the phosphorylation status of p70S6K, a biomarker of mammalian target of rapamycin complex 1 activity, and unexpectedly dephosphorylated AMP-activated protein kinase and its downstream target acetyl-CoA carboxylase in skeletal muscle. Our present observations suggest that heat stress can act as an effective postexercise treatment. Heat stress treatment appeared to be clinically beneficial for people who have difficulty participating in sufficient exercise training, such as the elderly, injured athletes, and patients.

  8. LATENT LIFE OF ARTERIES.

    PubMed

    Carrel, A

    1910-07-23

    When a segment of artery, killed by heat, formalin or glycerin is transplanted, it undergoes a rapid degeneration. Its muscle fibers disappear while the tissue of the host reacts by building a new wall of connective tissue. When the transplanted vessel has been preserved in a condition of latent life, no degeneration of the wall occurs, or the wall undergoes only partial degeneration. The muscle fibers can keep their normal appearance, even for a long time after the operation. It is, therefore, demonstrated that arteries can be preserved outside of the body in a condition of unmanifested actual life. The best method of preservation consists of placing the vessels, immersed in vaselin, in an ice box, the temperature of which is slightly above the freezing point. From a surgical standpoint, the transplantation of preserved vessels can be used with some safety. When the arteries were kept in defibrinated blood or vaselin and in cold storage, the proportion of positive results was 75 and 80 per cent., and this can probably be increased.

  9. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers

    SciTech Connect

    Miller, W.A.

    1999-03-24

    Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected

  10. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  11. Latent Period of Relaxation.

    PubMed

    Kobayashi, M; Irisawa, H

    1961-10-27

    The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.

  12. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.

  13. Effect of mass-addition distribution and injectant on heat transfer and transition criteria.

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Mccloskey, M. H.; Stalmach, C. J., Jr.; Wright, R. L.

    1972-01-01

    Surface pressures, heat-transfer rates, and transition locations for a sharp cone (whose semivertex angle is 12 deg) were obtained in a hypervelocity wind tunnel at a free-stream Mach number of 12 and a free-stream Re/ft range of 3,000,000 to 6,000,000. The effects of injecting either methane, nitrogen, or Freon-22 (at rates up to 2.1% of free-stream rate) were studied for a uniform injection-distribution and for a variable injection-distribution. Gaseous injection had little effect on the surface pressure measurements. For a given mass injection distribution, the laminar region heat-transfer decreases as the injection rate increases or as the molecular weight of the injectant decreases. For a given mass-injection rate (integrated over the surface of the entire cone), the transition location and heat-transfer rates were sensitive to the injection distribution. The transition Reynolds numbers were significantly greater when the local injection rate was constant over the surface of the cone.

  14. Solar heat storage in phase change material

    SciTech Connect

    Phillips, H.J.

    1984-02-28

    The objective of this project was to develop a chemical heat storage system that had a phase change with release of latent heat at about 105/sup 0/F. The primary reason this kind on system was sought was that heat storage capacity of commonly used storage systems do not match the heat collection capacity of open air collectors. In addition to the phase change three other factors were considered: the cost of the material, the amount of heat the system would hold per unit volume, and the rate at which the system released sensible and latent heat. One hundred nineteen tests were made on 32 systems. Only data on six of the more promising are presented. In the six systems, borax was used as the major component with other materials used as nucleating agents toraise the temperature of phase change.

  15. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division

    2005-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong

  16. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  17. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Monitoring and Reporting § 96.76 Additional...

  18. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Monitoring and Reporting § 96.76 Additional...

  19. Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest

    NASA Astrophysics Data System (ADS)

    Clulow, A. D.; Everson, C. S.; Mengistu, M. G.; Price, J. S.; Nickless, A.; Jewitt, G. P. W.

    2015-05-01

    A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Actual total evaporation (ETa) was measured during three window periods (between 7 and 9 days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sap flows of an understory tree and an emergent tree were measured using a low-maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between ETa from the Nkazana PSF and sap-flow measurements. These overlapped during two of the window periods (R2 = 0.92 and 0.90), providing hourly estimates of ETa from the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that to include the understory tree sap flow provided no benefit to the model performance. In addition, the relationship between the emergent tree sap flow with ETa between the two field campaigns was consistent and could be represented by a single empirical model (R2 = 0.90; RMSE = 0.08 mm h-1). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ETa satisfactorily. However, in terms of evaporation models, the hourly FAO Penman-Monteith reference evaporation (ETo) best described ETa during the August 2009 (R2 = 0.75), November 2009 (R2 = 0.85) and March 2010 (R2 = 0.76) field campaigns, compared to the Priestley-Taylor potential evaporation (ETp) model (R2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the extended record of ETa (derived in this study from sap flow) and ETo, a monthly crop factor (Kc) was derived for the Nkazana PSF, providing a method of estimating long-term swamp forest water-use from

  20. Surface tension of aqueous lithium bromide solutions containing 1-octanol as a heat-transfer additive

    SciTech Connect

    Ishida, Kenji; Mori, Y.H.

    1996-11-01

    The surface tension of simulated heat-pump working fluids, aqueous solutions of lithium bromide containing 1-octanol, has been measured, for the first time using a recently developed technique (Ishida et al., Rev. Sci. Instrum. 64, 1,324 (1993)) which is inherently suitable for characterizing the surfactant solution surfaces from the aspects of thermodynamic adsorption equilibrium and adsorption kinetics. The measurement has revealed that even the highest-grade reagents of lithium bromide commercially available are not necessarily free from surfactant impurities. Obtained data on the surface tension vs 1-octanol concentration have been examined on the basis of an equilibrium adsorption model. Through the optimal fitting of the Langmuir-type surface equation of state to the data, they have calculated the surface tension vs surface excess relation and also the variation in surface tension vs 1-octanol concentration relation with the surface area per unit volume of a given solution.

  1. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  3. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge.

    PubMed

    Chairattanamanokorn, Prapaipid; Tapananont, Supachok; Detjaroen, Siriporn; Sangkhatim, Juthatip; Anurakpongsatorn, Patana; Sirirote, Pramote

    2012-01-01

    Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H(2)) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H(2) production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H(2) production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/g(TVS)). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H(2) production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H(2) production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/g(TVS).

  4. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  5. Global Atmospheric Heat Distributions Observed from Space

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Fan, Tai-Fang

    2009-01-01

    This study focuses on the observations of global atmospheric heat distributions using satellite measurements. Major heat components such as radiation energy, latent heat and sensible heat are considered. The uncertainties and error sources are assessed. Results show that the atmospheric heat is basically balanced, and the observed patterns of radiation and latent heat from precipitation are clearly related to general circulation.

  6. Observational Estimates of Wave Heating and Momentum Addition in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Kortenkamp, P. S.

    2004-05-01

    Theoretical models of the outer solar corona and inner solar wind require heating and acceleration by turbulence to achieve the observed flow speed and plasma temperature at 1 astronomical unit. Observational tests of these models require knowledge of the turbulent magnetic field amplitude as a function of heliocentric distance (r), but direct measurements are not available. In this paper, we present a new method of estimating the spatial power spectrum and fluctuation amplitude of magnetic field fluctuations in the solar wind acceleration region. We utilize a set of 38 measurements of density fluctuations in the slow solar wind, for heliocentric distances in the range 5 - 60 R⊙. These data result from VLBI phase scintillation measurements made between 1991 and 2002. These observations give the density fluctuation parameter CN2(r). We also utilize a recent result on the relative magnitude of density and magnetic field fluctuations in slow solar wind turbulence at 1 a.u. (Spangler and Spitler, Physics of Plasmas, May 2004). We can then estimate the magnetic field fluctuation parameter CB2 and the magnetic field fluctuation amplitude as a function of heliocentric distance. These estimates of turbulence amplitudes are compared with those required by slow solar wind models. For illustration, the estimated turbulent energy flux at a heliocentric distance of 16 R⊙ is 6 - 23 % of the kinetic energy flux. The higher portion of this range is consistent with a significant dynamical role for turbulence. Future improvements in this technique will utilize global MHD models of the solar wind at the times of observations. This work was supported by the National Science Foundation via grants ATM99-86887 and ATM-0311825.

  7. Potentiation of latent inhibition.

    PubMed

    Rodriguez, Gabriel; Hall, Geoffrey

    2008-07-01

    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  8. Group additive values for the gas-phase standard enthalpy of formation, entropy and heat capacity of oxygenates.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2013-11-25

    A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS-QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α- and β-branched, mono- and bifunctional oxygenates. Internal rotations were accounted for by using one-dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS-QB3 standard enthalpies of formation. Furthermore, 14 corrections for non-nearest-neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol(-1) and 4 J mol(-1) K(-1) for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.- 1995, 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (Δ(f)H°, S°, C(p)°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide-ranging application.

  9. Effects of Heat and Momentum Addition Inside and Outside the Compound Sonic Point of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Webb, G. M.; McKenzie, J. F.

    2014-12-01

    We consider the effect of heat and momentum addition to the solar wind for a model including the effects of Alfven waves and plasma pressure (proton plus electron pressure). The mass flux per unit area in 1D flow maximizes when the flow speed equals the compound sound speed, including the effects of the Alfven wave pressure. We discuss the analogue of the Laval nozzle for the solar wind flow, and the dependence of the effective nozzle area as a function of radial distance, and the relationship of the nozzle area to the momentum equation and the Mach number of the flow. An analysis is carried out of the effects of heat and momentum addition to the wind, using a thin slice approximation, which leads to Rankine Hugoniot relations for weak deflagrations and detonations (i.e. the combustion Hugoniot). The linearized Hugoniot is used to analyze the effects of small momentum and energy addition to the wind in the thin slice approximation. We obtain the fully nonlinear Rankine Hugoniot equation solutions. The analysis also holds in the presence of Alfven waves, in which the wave energy exchange equation yields the wave action flux conservation law when their contribution to the compound sound speed is taken into account. The effective polytropic index γgamma and flow speed relative to the compound flow speed ahead of the slice play crucial roles in determining whether local acceleration or deceleration results. Some results are at first sight unexpected since γgamma for Alfven waves ranges from -1/2 (in sub-Alfvenic flow) to 3/2 in super-Alfvenic flow.

  10. Latent Variable Interaction Modeling.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.

    2002-01-01

    Used simulation to study two different approaches to latent variable interaction modeling with continuous observed variables: (1) a LISREL 8.30 program and (2) data analysis through PRELIS2 and SIMPLIS programs. Results show that parameter estimation was similar but standard errors were different. Discusses differences in ease of implementation.…

  11. Latent Semantic Analysis.

    ERIC Educational Resources Information Center

    Dumais, Susan T.

    2004-01-01

    Presents a literature review that covers the following topics related to Latent Semantic Analysis (LSA): (1) LSA overview; (2) applications of LSA, including information retrieval (IR), information filtering, cross-language retrieval, and other IR-related LSA applications; (3) modeling human memory, including the relationship of LSA to other…

  12. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  13. Thermally Stable, Latent Olefin Metathesis Catalysts

    PubMed Central

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  14. Latent effects decision analysis

    DOEpatents

    Cooper, J. Arlin; Werner, Paul W.

    2004-08-24

    Latent effects on a system are broken down into components ranging from those far removed in time from the system under study (latent) to those which closely effect changes in the system. Each component is provided with weighted inputs either by a user or from outputs of other components. A non-linear mathematical process known as `soft aggregation` is performed on the inputs to each component to provide information relating to the component. This information is combined in decreasing order of latency to the system to provide a quantifiable measure of an attribute of a system (e.g., safety) or to test hypotheses (e.g., for forensic deduction or decisions about various system design options).

  15. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators.

  16. The invasion of non-native grasses into California grasslands has caused a shift in energy partitioning between latent and sensible heat flux, reduced albedo and higher surface temperatures

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2012-12-01

    of latent to sensible heat flux is higher where native perennial grasses are found, particularly in wet years. Annual sums of total evaporation are likewise higher in native-dominated regions, and soil moisture is lower relative to non-natives in the deep soil. We also found that PAR albedo is lower in native grasslands compared to non-natives during significant portions of the year, and corresponding to the hotter months. In all, our findings indicate that the non-native annual grasses which now dominate California grasslands, promote conditions that support higher surface temperatures relative to native perennial grasses.

  17. Addition polyimide adhesives containing various end groups

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1982-01-01

    Addition polyimode oligomers have been synthesized from 3,3 prime, 4,4 prime-benzophenone tetracarboxylic acid dianhydride and 3,3 prime-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232 C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.

  18. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    ERIC Educational Resources Information Center

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  19. Latent heat characteristics of biobased oleochemical carbonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates represent biobased materials that can be readily prepared through a carbonate interchange reaction between renewably available C10-C18 fatty alcohols. Although these carbonates have commercial use in cosmetics and lubricant applications, they have not been examined as phase ...

  20. Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2015-10-01

    One key aspect of many additive manufacturing processes is the deposition of heated mixtures of particulate materials onto surfaces, which then bond and cool, leading to complex microstructures and possible residual stresses. The overall objective of this work is to construct a straightforward computational approach that researchers in the field can easily implement and use as a numerically-efficient simulation and design tool. Specifically because multifield coupling is present, a recursive, staggered, temporally-adaptive, finite difference time domain scheme is developed to resolve the internal microstructural thermal and mechanical fields, accounting for the simultaneous elasto-plasticity and damage. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense. The deposited microstructure is embedded into spatial discretization. The regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation and minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the approach. This formulation is useful for material scientists who seek ways to deposit such materials while simultaneously avoiding inadvertent excessive residual stresses.

  1. Effect of additional heat treatment of 2024-T3 on the growth of fatigue crack in air and in vacuum

    NASA Technical Reports Server (NTRS)

    Louwaard, E. P.

    1986-01-01

    In order to determine the influence of ductility on the fatigue crack growth rate of aluminum alloys, fatigue tests were carried out on central notched specimens of 2024-T3 and 2024-T8 sheet material. The 2024-T8 material was obtained by an additional heat treatment applied on 2024-T3 (18 hours at 192 C), which increased the static yield strength from 43.6 to 48.9 kgf/sq mm. A change in the ultimate strength was not observed. Fatigue tests were carried out on both materials in humid air and in high vacuum. According to a new crack propagation model, crack extension is supported to be caused by a slip-related process and debonding triggered by the environment. This model predicts an effect of the ductility on the crack growth rate which should be smaller in vacuum than in humid air; however, this was not confirmed. In humid air the crack-growth rate in 2024-T8 was about 2 times faster than in 2024-T3, while in vacuum the ratio was about 2.5. Crack closure measurements gave no indications that crack closure played a significant role in both materials. Some speculative explanations are briefly discussed.

  2. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes.

    PubMed

    Gu, Wei-Jie; Ma, Hui-Jun; Zhao, Guang; Yuan, Xiao-Ying; Zhang, Ping; Liu, Wen; Ma, Li-Juan; Lei, Xiao-Bing

    2014-08-01

    Heat is known as an environmental factor that causes significant skin pigmentation, but its effects on melanogenesis have been poorly studied. It has been shown that mitogen-activated protein kinase (MAPK) is involved in ultraviolet B (UVB) and stress-induced melanogenesis in melanocytes. In this study, we investigated the effects of heat and UVB, on melanocyte melanogenesis, differentiation, and MAPK phosphorylation. The results showed that heat (1 h at 40 °C for 5 days) increased cell dendrites, enlarged cell bodies, and induced extracellular signal-regulated kinases (ERK)/p38/MITF activation but did not influence melanogenesis of human epidermal melanocytes from skin phototype III. UVB irradiation (20 mJ/cm(2) for 5 days) induced melanogenesis and c-jun N-terminal kinases (JNK)/p38/MITF/tyrosinase activation in melanocytes from skin phototype III. UVB combined with heat resulted in much more significant tyrosinase activation and melanogenesis as compared with UVB alone in melanocytes from skin phototype III. Furthermore, heat treatment and UVB irradiation induced JNK, ERK, and p38 activation but not melanogenic and morphological changes in melanocytes from skin phototype I. These findings suggested that heat promoted melanocyte differentiation, probably via heat-induced ERK/p38/MITF/activation. Furthermore, heat had an additive effect on the UVB-induced tyrosinase activation and melanogenesis. These results provide a new clue for dermatologists for the treatment of hypopigmented skin disease with heat combined with UVB irradiation.

  3. Advancement of Latent Trait Theory.

    DTIC Science & Technology

    1988-02-01

    latent trait theory further, and include more varieties of situations. I [51 Investigation of ways of bridging across mathematical psychology and...five years on various topics in Latent Trait Theory, including more general topics such as the method of moments as the least squares solution for...response theory." The address described as (3) in the above list was a one hour special lecture overviewing latent trait models. There were more than two

  4. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  5. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling

    SciTech Connect

    Seppaelae, Ari; Merilaeinen, Arttu; Wikstroem, Lisa; Kauranen, Pertti

    2010-07-15

    Some liquids can be kept in a supercooled or supersaturated metastable state for substantially long periods. Such liquids can be applied as long-term heat storage where the latent heat can be released when needed. As xylitol possesses a relatively high value of latent heat and as it can be easily supercooled, it has promising properties for this application. However, the speed of the crystallization of xylitol is low, leading to a low release rate of latent heat. Several additives have been experimentally tested for the purpose of accelerating the crystallization speed. The effect of the additives on the latent heat, on the melting temperatures, and on the long-term durability of the supercooled state was also measured. The highest speeds of the crystallization front, at a temperature of 22 C, were achieved with methanol as an additive leading to speeds 33 times higher in vertical experiments and in 170 times higher in horizontal ones than with pure xylitol. The improved speed of the crystallization front is mostly caused by the methanol flow currents generated as a result of the separation of methanol during crystallization, and to a lesser extent, as a result of the increase in the speed of the growth of the crystals. (author)

  6. Learning multimodal latent attributes.

    PubMed

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2014-02-01

    The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular, we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multimodal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we 1) introduce a concept of semilatent attribute space, expressing user-defined and latent attributes in a unified framework, and 2) propose a novel scalable probabilistic topic model for learning multimodal semilatent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multitask learning, learning with label noise, N-shot transfer learning, and importantly zero-shot learning.

  7. A Latent Transition Model with Logistic Regression

    ERIC Educational Resources Information Center

    Chung, Hwan; Walls, Theodore A.; Park, Yousung

    2007-01-01

    Latent transition models increasingly include covariates that predict prevalence of latent classes at a given time or transition rates among classes over time. In many situations, the covariate of interest may be latent. This paper describes an approach for handling both manifest and latent covariates in a latent transition model. A Bayesian…

  8. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    DOE PAGES

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; ...

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure ofmore » tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.« less

  9. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    SciTech Connect

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure of tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.

  10. Latent-failure risk estimates for computer control

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Folsom, Rolfe A.; Green, Owen R.

    1991-01-01

    It is shown that critical computer controls employing unmonitored safety circuits are unsafe. Analysis supporting this result leads to two additional, important conclusions: (1) annual maintenance checks of safety circuit function do not, as widely believed, eliminate latent failure risk; (2) safety risk remains even if multiple, series-connected protection circuits are employed. Finally, it is shown analytically that latent failure risk is eliminated when continuous monitoring is employed.

  11. Effect of heat treatment, pH, sugar concentration, and metal addition on green color retention in homogenized puree of Thompson seedless grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homogenized puree of Thompson seedless (Vitis vinifera ‘Thompson Seedless’) grape was treated under different conditions, including heating time (5-30 min), temperature (20-80°C) and pH (2-10). Treatments with separate additions of glucose, fructose, and sucrose at concentrations of 100-600 g/L and ...

  12. A Magnetically Responsive Polydiacetylene Precursor for Latent Fingerprint Analysis.

    PubMed

    Lee, Joosub; Lee, Chan Woo; Kim, Jong-Man

    2016-03-09

    A magnetically responsive diacetylene (DA) powder was developed for the visualization of latent fingerprints. A mixture of the DA and magnetite nanoparticles, applied to a surface containing latent fingermarks, becomes immobilized along the ridge patterns of the fingerprints when a magnetic field is applied. Alignment along the ridge structures is a consequence of favorable hydrophobic interactions occurring between the long alkyl chains in the DAs and the lipid-rich, sebaceous latent fingermarks. UV irradiation of the DA-magnetite composite immobilized on the latent fingerprint results in the generation of blue-colored PDAs. Heat treatment of the blue-colored image promotes a blue-to-red transition as well as fluorescence turn-on. A combination of the aligned pale brown-colored monomeric state, UV irradiation generated blue-colored PDA state, as well as the heat treatment generated red-colored and fluorescent PDA state enables efficient visual imaging of a latent fingerprint, which is deposited on various colored solid surfaces.

  13. Effect of cerium addition on casting/chill interfacial heat flux and casting surface profile during solidification of Al-14%Si alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Prabhu, K. N.

    2016-03-01

    In the present investigation, Al-14 wt. % Si alloy was solidified against copper, brass and cast iron chills, to study the effect of Ce melt treatment on casting/chill interfacial heat flux transients and casting surface profile. The heat flux across the casting/chill interface was estimated using inverse modelling technique. On addition of 1.5% Ce, the peak heat flux increased by about 38%, 42% and 43% for copper, brass and cast iron chills respectively. The effect of Ce addition on casting surface texture was analyzed using a surface profilometer. The surface profile of the casting and the chill surfaces clearly indicated the formation of an air gap at the periphery of the casting. The arithmetic average value of the profile departure from the mean line (Ra) and arithmetical mean of the absolute departures of the waviness profile from the centre line (Wa) were found to decrease on Ce addition. The interfacial gap width formed for the unmodified and Ce treated casting surfaces at the periphery were found to be about 35µm and 13µm respectively. The enhancement in heat transfer on addition of Ce addition was attributed to the lowering of the surface tension of the liquid melt. The gap width at the interface was used to determine the variation of heat transfer coefficient (HTC) across the chill surface after the formation of stable solid shell. It was found that the HTC decreased along the radial direction for copper and brass chills and increased along radial direction for cast iron chills.

  14. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    NASA Astrophysics Data System (ADS)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  15. Evaluating the addition of activated carbon to heat-treated mushroom casing for grain-based and compost-based substrates.

    PubMed

    Bechara, Mark A; Heinemann, P H; Walker, P N; Demirci, A; Romaine, C P

    2009-10-01

    Two substrates, a non-composted grain spawn substrate and a traditional composted substrate, each covered with peat-based casing that contained varying amounts of activated carbon (AC) and each receiving different heat-treatment durations, were tested for Agaricus bisporus mushroom production. The amounts of AC were 0, 5, 10, 15, and 20% v/v, and the heat treatments were 0, 60, and 180 min at 121 degrees C and 103.4 kPa. Overall, the addition of AC up to 10-15% of casing for a grain spawn substrate increased mushroom yield. However, the addition of AC to the casing for compost substrates had no significant effect on yield, whereas heat-treating the casing increased yield. The onset of fruiting was retarded in grain spawn treatments not receiving AC with heat-treatment durations of 60 and 180 min, whereas this effect was not as apparent for the compost substrates. On average, mushroom yield was greater for the grain spawn substrate (366 g) than for compost substrate (287 g). For grain spawn substrate, the results show that the addition of AC ranging from 5% to 10% was adequate for maximum mushroom production.

  16. Effects of heat treatments and Sn, Ga and In additives on mechanical properties of 35Ag-30Pd-20Au-15Cu alloy.

    PubMed

    Churnjitapirom, Pornkiat; Goto, Shin-ichi; Ogura, Hideo

    2004-12-01

    The mechanical properties of six 35Ag-30Pd-20Au-15Cu alloys containing different contents (2% and 4%) of Sn, Ga, or In and a 35Ag-30Pd-20Au-15Cu alloy without additives were evaluated. These alloys were subjected to four different heat treatments before a mechanical test. The distribution of the elements and their contents were analyzed. The mechanical properties of 35Ag-30Pd-20Au-15Cu alloy changed in wide-ranging ways with different heat treatments and with different additive contents. The effects of heat treatment on tensile strength and hardness significantly varied with different additives and their contents. These different changes could be attributed to the formation of different phases in these alloys. Based on the high strength and wide-ranging changes in the mechanical properties when subjected to softening and hardening heat treatments, the 2% Sn-added, 2% In-added, and 4% Ga-added alloys can be recommended for different dental restorations such as crown & bridges, inlays, and denture frameworks.

  17. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  18. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  19. Predicting Latent Class Scores for Subsequent Analysis

    ERIC Educational Resources Information Center

    Petersen, Janne; Bandeen-Roche, Karen; Budtz-Jorgensen, Esben; Larsen, Klaus Groes

    2012-01-01

    Latent class regression models relate covariates and latent constructs such as psychiatric disorders. Though full maximum likelihood estimation is available, estimation is often in three steps: (i) a latent class model is fitted without covariates; (ii) latent class scores are predicted; and (iii) the scores are regressed on covariates. We propose…

  20. Inactivation of Salmonella enteritidis and Salmonella senftenberg in liquid whole egg using generally recognized as safe additives, ionizing radiation, and heat.

    PubMed

    Alvarez, Ignacio; Niemira, Brendan A; Fan, Xuetong; Sommers, Christopher H

    2007-06-01

    The effect of combining irradiation and heat (i.e., irradiation followed by heat [IR-H]) on Salmonella Enteritidis and Salmonella Senftenberg inoculated into liquid whole egg (LWE) with added nisin, EDTA, sorbic acid, carvacrol, or combinations of these GRAS (generally recognized as safe) additives was investigated. Synergistic reductions of Salmonella populations were observed when LWE samples containing GRAS additives were treated by gamma radiation (0.3 and 1.0 kGy), heat (57 and 60 degrees C), or IR-H. The presence of additives reduced the initial radiation Dgamma -values (radiation doses required to eliminate 90% of the viable cells) by 1.2- to 1.5-fold, the thermal decimal reduction times (D,-values) by up to 3.5- and 1.8-fold at 57 and 60 degrees C, respectively, and the thermal D,-values after irradiation treatments by up to 3.4- and 1.5-fold at 57 and 60 degrees C, respectively, for both Salmonella serovars. Of all the additives investigated, nisin at a concentration of 100 IU/ml was the most effective at reducing the heat treatment times needed to obtain a 5-log reduction of Salmonella. Thus, while treatments of 21.6 min at 57 degrees C or of 5 min at 60 degrees C should be applied to achieve a 5-log reduction for Salmonella in LWE, only 5.5 min at 57 degrees C or 2.3 min at 60 degrees C after a 0.3-kGy radiation pretreatment was required when nisin at a concentration of 100 IU/ml was used. The synergistic reduction of Salmonella viability by IR-H treatments in the presence of GRAS additives could enable LWE producers to reduce the temperature or processing time of thermal treatments (current standards are 60'C for 3.5 min in the United States) or to increase the level of Salmonella inactivation.

  1. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    PubMed

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment.

  2. Diabatic heating fields and the generation of available potential energy during FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1986-01-01

    Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available potential energy is examined. It is observed that latent heating is most significant in generating available potential energy.

  3. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  4. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study.

    PubMed

    Bosmans, Geertrui M; Pareyt, Bram; Delcour, Jan A

    2016-02-01

    The impact of different hydration levels, on gelatinization of potato starch (PS), rice starch (RS) and a 1:1 blend thereof, was investigated by differential scanning calorimetry and related to nuclear magnetic resonance proton distributions of hydrated samples, before and after heating. At 20% or 30% hydration, the visual appearance of all samples was that of a wet powder, and limited, if any, gelatinization occurred upon heating. At 30% hydration, changes in proton distributions were observed and related to plasticization of amorphous regions in the granules. At 50% hydration, the PS-RS blend appeared more liquid-like than other hydrated samples and showed more pronounced gelatinization than expected based on additive behavior of pure starches. This was due to an additional mobile water fraction in the unheated PS-RS blend, originating from differences in water distribution due to altered stacking of granules and/or altered hydration of PS due to presence of cations in RS.

  5. Epigenotypes of latent herpesvirus genomes.

    PubMed

    Minarovits, J

    2006-01-01

    Epigenotypes are modified cellular or viral genotypes which differ in transcriptional activity in spite of having an identical (or nearly identical) DNA sequence. Restricted expression of latent, episomal herpesvirus genomes is also due to epigenetic modifications. There is no virus production (lytic viral replication, associated with the expression of all viral genes) in tight latency. In vitro experiments demonstrated that DNA methylation could influence the activity of latent (and/or crucial lytic) promoters of prototype strains belonging to the three herpesvirus subfamilies (alpha-, beta-, and gamma-herpesviruses). In vivo, however, DNA methylation is not a major regulator of herpes simplex virus type 1 (HSV-1, a human alpha-herpesvirus) latent gene expression in neurons of infected mice. In these cells, the promoter/enhancer region of latency-associated transcripts (LATs) is enriched with acetyl histone H3, suggesting that histone modifications may control HSV-1 latency in terminally differentiated, quiescent neurons. Epstein-Barr virus (EBV, a human gamma-herpesvirus) is associated with a series of neoplasms. Latent, episomal EBV genomes are subject to host cell-dependent epigenetic modifications (DNA methylation, binding of proteins and protein complexes, histone modifications). The distinct viral epigenotypes are associated with distinct EBV latency types, i.e., cell type-specific usage of latent EBV promoters controlling the expression of latent, growth transformation-associated EBV genes. The contribution of major epigenetic mechanisms to the regulation of latent EBV promoters is variable. DNA methylation contributes to silencing of Wp and Cp (alternative promoters for transcripts coding for the nuclear antigens EBNA 1-6) and LMP1p, LMP2Ap, and LMP2Bp (promoters for transcripts encoding transmembrane proteins). DNA methylation does not control, however, Qp (a promoter for EBNA1 transcripts only) in lymphoblastoid cell lines (LCLs), although in vitro

  6. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  7. Effect of milk protein addition to a carbohydrate-electrolyte rehydration solution ingested after exercise in the heat.

    PubMed

    James, Lewis J; Clayton, David; Evans, Gethin H

    2011-02-01

    The present study examined the effects of milk protein on rehydration after exercise in the heat, via the comparison of energy- and electrolyte content-matched carbohydrate and carbohydrate-milk protein solutions. Eight male subjects lost 1·9 (SD 0·2) % of their body mass by intermittent exercise in the heat and rehydrated with 150% of their body mass loss with either a 65 g/l carbohydrate solution (trial C) or a 40 g/l carbohydrate, 25 g/l milk protein solution (trial CP). Urine samples were collected before and after exercise and for 4 h after rehydration. Total cumulative urine output after rehydration was greater for trial C (1212 (SD 310) ml) than for trial CP (931 (SD 254) ml) (P < 0·05), and total fluid retention over the study was greater after ingestion of drink CP (55 (SD 12) %) than that after ingestion of drink C (43 (SD 15) %) (P < 0·05). At the end of the study period, whole body net fluid balance (P < 0·05) was less negative for trial CP (-0·26 (SD 0·27) litres) than for trial C (-0·52 (SD 0·30) litres), and although net negative for both the trials, it was only significantly negative after ingestion of drink C (P < 0·05). The results of the present study suggest that when matched for energy density and fat content, as well as for Na and K concentration, and when ingested after exercise-induced dehydration, a carbohydrate-milk protein solution is better retained than a carbohydrate solution. These results suggest that gram-for-gram, milk protein is more effective at augmenting fluid retention than carbohydrate.

  8. Latent geometry of bipartite networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  9. Effects of Al Content and Addition of Third Element on Fabrication of Ti-Al Intermetallic Coatings by Heat Treatment of Warm-Sprayed Precursors

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Kuroda, S.; Minagawa, K.; Murakami, H.; Araki, H.; Kurzydłowski, K. J.

    2015-06-01

    Four powder mixtures of titanium and aluminum with 50:50, 40:60, 30:70, and 20:80 atomic ratios were used as feedstock for Warm Spray process to produce composite coatings. A two-stage heat treatment at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical, and phase composition of the as-deposited and heat-treated coatings were investigated using SEM, EDS, and XRD. It was found that the Al content affects on the thickness expansion of the heat-treated Ti-Al coatings significantly and also has a major influence on the porosity development, which is caused by the Kirkendall effect. The effects of adding a third element Si and heat treatment with pressure to produce denser Ti-Al intermetallic coating were also examined. The investigated hot-pressed coatings with addition of Si exhibited much denser microstructure and contained Ti-Al intermetallic phases with titanium silicide precipitates.

  10. Influence of additives on the increase of the heating value of Bayah's coal with upgrading brown coal (UBC) method

    NASA Astrophysics Data System (ADS)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-01

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  11. Incorporating comorbidities into latent treatment pattern mining for clinical pathways.

    PubMed

    Huang, Zhengxing; Dong, Wei; Ji, Lei; He, Chunhua; Duan, Huilong

    2016-02-01

    In healthcare organizational settings, the design of a clinical pathway (CP) is challenging since patients following a particular pathway may have not only one single first-diagnosis but also several typical comorbidities, and thus it requires different disciplines involved to put together their partial knowledge about the overall pathway. Although many data mining techniques have been proposed to discover latent treatment information for CP analysis and reconstruction from a large volume of clinical data, they are specific to extract nontrivial information about the therapy and treatment of the first-diagnosis. The influence of comorbidities on adopting essential treatments is crucial for a pathway but has seldom been explored. This study proposes to extract latent treatment patterns that characterize essential treatments for both first-diagnosis and typical comorbidities from the execution data of a pathway. In particular, we propose a generative statistical model to extract underlying treatment patterns, unveil the latent associations between diagnosis labels (including both first-diagnosis and comorbidities) and treatments, and compute the contribution of comorbidities in these patterns. The proposed model extends latent Dirichlet allocation with an additional layer for diagnosis modeling. It first generates a set of latent treatment patterns from diagnosis labels, followed by sampling treatments from each pattern. We verify the effectiveness of the proposed model on a real clinical dataset containing 12,120 patient traces, which pertain to the unstable angina CP. Three treatment patterns are discovered from data, indicating latent correlations between comorbidities and treatments in the pathway. In addition, a possible medical application in terms of treatment recommendation is provided to illustrate the potential of the proposed model. Experimental results indicate that our approach can discover not only meaningful latent treatment patterns exhibiting

  12. Additional ECR heating of a radially inhomogeneous plasma via the absorption of satellite harmonics of the surface flute modes in a rippled magnetic field

    SciTech Connect

    Girka, V. O.; Girka, I. O.

    2006-12-15

    A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, {epsilon}{sub 1} (r{sub 1}) = [2{pi}c/({omega}L)]{sup 2}, where {epsilon}{sub 1} is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r{sub 1} determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.

  13. An extended crystal plasticity model for latent hardening in polycrystals

    NASA Astrophysics Data System (ADS)

    Bargmann, Swantje; Svendsen, Bob; Ekh, Magnus

    2011-12-01

    In this contribution, a computational approach to modeling size-dependent self- and latent hardening in polycrystals is presented. Latent hardening is the hardening of inactive slip systems due to active slip systems. We focus attention on the investigation of glide system interaction, latent hardening and excess dislocation development. In particular, latent hardening results in a transition to patchy slip as a first indication and expression of the development of dislocation microstructures. To this end, following Nye (Acta Metall 1:153-162, 1953), Kondo (in Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp. 41-47, 1953), and many others, local deformation incompatibility in the material is adopted as a measure of the density of geometrically necessary dislocations. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening effects. A large-deformation model for latent hardening is introduced. This approach is based on direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms of the constitutive relations as based on the free energy density and dissipation potential. The numerical implementation is done via a dual-mixed finite element method. A numerical example for polycrystals is presented.

  14. Heat treatment and the use of additives to improve the stability of paralytic shellfish poisoning toxins in shellfish tissue reference materials for internal quality control and proficiency testing.

    PubMed

    Burrell, Stephen; Clion, Valentin; Auroy, Virginie; Foley, Barry; Turner, Andrew D

    2015-06-01

    The need for homogenous reference materials stable for paralytic shellfish toxins is vital for the monitoring and quality assurance of these potent neurotoxins in shellfish. Two stabilisation techniques were investigated, heat treatment through autoclaving and the addition of preserving additives into the tissue matrix. Short and long-term stability experiments as well as homogeneity determination were conducted on materials prepared by both techniques in comparison with an untreated control using two LC-FLD methods. Both techniques improved the stability of the matrix and the PSP toxins present compared to the controls. A material was prepared using the combined techniques of heat treatment followed by spiking with additives and data is presented from this optimised reference material as used over a two year period in the Irish national monitoring program and in a development exercise as part of a proficiency testing scheme operated by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe) since 2011. The results were indicative of the long-term stability of the material as evidenced through consistent assigned values in the case of the proficiency testing scheme and a low relative standard deviation of 10.5% for total toxicity data generated over 24 months.

  15. Indexing by Latent Semantic Analysis.

    ERIC Educational Resources Information Center

    Deerwester, Scott; And Others

    1990-01-01

    Describes a new method for automatic indexing and retrieval called latent semantic indexing (LSI). Problems with matching query words with document words in term-based information retrieval systems are discussed, semantic structure is examined, singular value decomposition (SVD) is explained, and the mathematics underlying the SVD model is…

  16. Estimation in Latent Trait Models.

    ERIC Educational Resources Information Center

    Rigdon, Steven E.; Tsutakawa, Robert K.

    Estimation of ability and item parameters in latent trait models is discussed. When both ability and item parameters are considered fixed but unknown, the method of maximum likelihood for the logistic or probit models is well known. Discussed are techniques for estimating ability and item parameters when the ability parameters or item parameters…

  17. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    PubMed

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share.

  18. Euphorbia Kansui Reactivates Latent HIV

    PubMed Central

    Cary, Daniele C.; Fujinaga, Koh; Peterlin, B. Matija

    2016-01-01

    While highly active anti-retroviral therapy has greatly improved the lives of HIV infected individuals, these treatments are unable to eradicate the virus. Current approaches to reactivate the virus have been limited by toxicity, lack of an orally available therapy, and limited responses in primary CD4+ T cells and in clinical trials. The PKC agonist ingenol, purified from Euphorbia plants, is a potent T cell activator and reactivates latent HIV. Euphorbia kansui itself has been used for centuries in traditional Chinese medicine to treat ascites, fluid retention, and cancer. We demonstrate that an extract of this plant, Euphorbia kansui, is capable of recapitulating T cell activation induced by the purified ingenol. Indeed, Euphorbia kansui induced expression of the early T cell activation marker CD69 and P-TEFb in a dose-dependent manner. Furthermore, Euphorbia kansui reactivated latent HIV in a CD4+ T cell model of latency and in HIV+ HAART suppressed PBMC. When combined with the other latency reversing agents, the effective dose of Euphorbia kansui required to reactive HIV was reduced 10-fold and resulted in synergistic reactivation of latent HIV. We conclude that Euphorbia Euphorbia kansui reactivates latent HIV and activates CD4+ T cells. When used in combination with a latency reversing agent, the effective dose of Euphorbia kansui is reduced; which suggests its application as a combination strategy to reactivate latent HIV while limiting the toxicity due to global T cell activation. As a natural product, which has been used in traditional medicine for thousands of years, Euphorbia kansui is attractive as a potential treatment strategy, particularly in resource poor countries with limited treatment options. Further clinical testing will be required to determine its safety with current anti-retroviral therapies. PMID:27977742

  19. A Latent Class Model for Rating Data.

    ERIC Educational Resources Information Center

    Rost, Jurgen

    1985-01-01

    A latent class model for rating data is presented which provides an alternative to the latent trait approach of analyzing test data. It is the analog of Andrich's binomial Rasch model for Lazarsfeld's latent class analysis (LCA). Response probabilities for rating categories follow a binomial distribution and depend on class-specific item…

  20. Latent Growth Modeling for Logistic Response Functions

    ERIC Educational Resources Information Center

    Choi, Jaehwa; Harring, Jeffrey R.; Hancock, Gregory R.

    2009-01-01

    Throughout much of the social and behavioral sciences, latent growth modeling (latent curve analysis) has become an important tool for understanding individuals' longitudinal change. Although nonlinear variations of latent growth models appear in the methodological and applied literature, a notable exclusion is the treatment of growth following…

  1. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  2. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  3. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  4. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints.

  5. Interrater Agreement Evaluation: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.

    2013-01-01

    A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…

  6. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    Modifications .............................. 16 2.2.2 Explicit Grid Modifications .............................. 19 2.3 Latent Heat of Fusion ...equations are utilized more accurately The user may now input latent heat of fusion for melting materials and BRLASCC will account for this energy during...contact resistance to the finite-difference conduction equations, (3) improved in-depth modeling by inclusion of latent heat of fusion , (4) increased

  7. Direct contact heat transfer for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Wright, J. D.

    1980-11-01

    Direct contact heat exchange offers the potential for increased efficiency and lower heat transfer costs in a variety of thermal energy storage systems. Models of direct contact heat transfer based on literature information identified dispersed phase drop size, the mechanism of heat transfer within the drop, and dispersed phase holdup as the parameters controlling direct contact system performance. Tests were defined and equipment constructed to provide independent determination of drop size, heat transfer mechanism, and hold up. Experiments with heptane dispersed in water are described. The velocity at which drop formation changes from dropwise to jetting was overpredicted by all literature correlations. Further experiments are needed to conclusively determine whether the salt in a salt hydrate melt acts to block internal circulation. In addition, the potential of low temperature oil/salt hydrate latent heat storage systems is evaluated in the laboratory.

  8. Latent Viruses: A Space Travel Hazard??

    NASA Technical Reports Server (NTRS)

    Ling, P. D.; Peng, R. S.; Pierson, D.; Lednicky, J.; Butel, J. S.

    1999-01-01

    A major issue associated with long-duration space flight is the possibility of infectious disease causing an unacceptable medical risk to crew members. Our proposal is designed to gain information that addresses several issues outlined in the Immunology/Infectious disease critical path. The major hypothesis addressed is that space flight causes alterations in the immune system that may allow latent viruses which are endogenous in the human population to reactivate and shed to higher levels than normal which can affect the health of crew members during a long term space-flight mission. We will initially focus our studies on the human herpesviruses and human polyomaviruses which are important pathogens known to establish latent infections in the human population. Both primary infection and reactivation from latent infection with this group of viruses can cause a variety of illnesses that result in morbidity and occasionally mortality of infected individuals. Effective vaccines exist for only one of the eight known human herpesviruses and the vaccine itself can still reactivate from latent infection. Available antivirals are of limited use and are effective against only a few of the human herpesviruses. Although most individuals display little if any clinical consequences from latent infection, events which alter immune function such as immunosuppressive therapy following solid organ transplantation are known to increase the risk of developing complications as a result of latent virus reactivation. This proposal will measure both the frequency and magnitude of viral shedding and genome loads in the blood from humans participating in activities that serve as ground based models of space flight conditions. Our initial goal is to develop sensitive quantitative competitive PCR- based assays (QC-PCR) to detect the herpesvirus Epstein-Barr virus (EBV), and the polyomaviruses SV40, BKV, and JCV. Using these assays we will establish baseline patterns of viral genome load in

  9. Latent period in clinical radiation myelopathy

    SciTech Connect

    Schultheiss, T.E.; Higgins, E.M.; El-Mahdi, A.M.

    1984-07-01

    Seventy-seven papers containing data on more than 300 cases of radiation myelopathy have been analyzed. The data suggest that the latent periods are similar in the cervical and thoracic levels of the spinal cord and are bimodally distributed. Myelopathy of lumbar cord apparently has a shorter latent period. As in controlled animal experiments, the latent period decreases with increasing dose. Furthermore, the variation in latent periods also decreases with dose. It is also seen that retreated patients and pediatric or adolescent patients have greatly reduced latent periods. The implications of these findings as they compare with the animal data are discussed.

  10. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Shiun; Hu, Chi-Chang; Li, Yuan-Yao

    In this work, the rate of heat generation in the overcharge period for 103450 prismatic lithium ion batteries (LIBs) of the LiCoO 2-graphite jellyroll type with a basic electrolyte consisting of 1 M LiPF 6-PC/EC/EMC (1/3/5 in weight ratio) has been found to be more important than the gas evolution which was traditionally considered as the main reason in the overcharge protection mechanism. The cell voltage, charge current, and skin temperature were monitored during the charge process. For a single battery or batteries in parallel, LIBs without any additives is an acceptable design if the cell voltage is not charged above 4.55 V under the common charge program. The rate of heat generation from the polymerization of 3 wt% cyclohexyl benzene (CHB) is high enough to cause the explosion or thermal runaway of a battery, which is not found for an LIB containing 2 wt% CHB + 1 wt% tert-amyl benzene (TAB). In the 12 V overcharge test at 1C, the thermal fuse was broken by the high skin temperature (ca. 80 °C) due to the polymerization of 3 wt% CHB, which was also the case for LIBs containing 2 wt% CHB + 1 wt% TAB. The disconnection of the thermal fuse, however, did not interrupt the thermal runaway of LIBs without any additives because the battery voltage was too high (ca. 4.9 V). The influence of specific surface area of active materials in the anode on the polymerization kinetics of additives has to be carefully considered in order to add correct amount of overcharge protection agents.

  11. Tuberculosis Infection and Latent Tuberculosis

    PubMed Central

    2016-01-01

    Active tuberculosis (TB) has a greater burden of TB bacilli than latent TB and acts as an infection source for contacts. Latent tuberculosis infection (LTBI) is the state in which humans are infected with Mycobacterium tuberculosis without any clinical symptoms, radiological abnormality, or microbiological evidence. TB is transmissible by respiratory droplet nucleus of 1–5 µm in diameter, containing 1–10 TB bacilli. TB transmission is affected by the strength of the infectious source, infectiousness of TB bacilli, immunoresistance of the host, environmental stresses, and biosocial factors. Infection controls to reduce TB transmission consist of managerial activities, administrative control, engineering control, environmental control, and personal protective equipment provision. However, diagnosis and treatment for LTBI as a national TB control program is an important strategy on the precondition that active TB is not missed. Therefore, more concrete evidences for LTBI management based on clinical and public perspectives are needed. PMID:27790271

  12. A Framework for Reproducible Latent Fingerprint Enhancements.

    PubMed

    Carasso, Alfred S

    2014-01-01

    Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.

  13. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    PubMed Central

    Raja, Priya; Lee, Jennifer S.; Pan, Dongli; Pesola, Jean M.; Coen, Donald M.

    2016-01-01

    ABSTRACT Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. PMID:27190217

  14. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors

    NASA Astrophysics Data System (ADS)

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-01

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  15. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    SciTech Connect

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) and also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.

  16. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGES

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  17. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  18. Immune parameters differentiating active from latent tuberculosis infection in humans.

    PubMed

    Lee, Ji Yeon; Jung, Young Won; Jeong, Ina; Joh, Joon-Sung; Sim, Soo Yeon; Choi, Boram; Jee, Hyeon-Gun; Lim, Dong-Gyun

    2015-12-01

    Tuberculosis remains a highly prevalent infectious disease worldwide. Identification of the immune parameters that differentiate active disease from latent infection will facilitate the development of efficient control measures as well as new diagnostic modalities for tuberculosis. Here, we investigated the cytokine production profiles of monocytes and CD4(+) T lymphocytes upon encountering mycobacterial antigens. In addition, cytokines and lipid mediators with immune-modulating activities were examined in plasma samples ex vivo. Comparison of these parameters in active tuberculosis patients and healthy subjects with latent infection revealed that, active tuberculosis was associated with diminished Th1-type cytokine secretion from CD4(+) T cells and less augmented inflammatory cytokine secretion from monocytes induced by IFN-γ than that in latent tuberculosis infection. In addition, a higher plasma concentration of lipoxin A4 and lower ratio of prostaglandin E2 to lipoxin A4 were observed in active cases than in latent infections. These findings have implications for preparing new therapeutic strategies and for differential diagnosis of the two types of tuberculosis infection.

  19. The heat source of the foehn revisited

    NASA Astrophysics Data System (ADS)

    Ólafsson, H.; Petersen, G. N.

    2012-04-01

    A large observational data set from Iceland is used to explore the connection between the heat surplus on the downstream side of mountains, upstream precipitation and elements of the atmospheric flow. A typical foehn case is also simulated and used to explore the role of precipitation and latent heat in heating the downstream flow. Some of the key findings are that latent heating appears not to be an important factor for heating the foehn in Iceland and that there is no clear relationship between upstream precipitation and downstream heating. The heating on the downstream side is attributed to descent of potentially warm air and insolation. The case study suggests that the latent heating may have an impact, however not through heating aloft, but through cooling at low levels and enhanced upstream blocking effect.

  20. Toward Surface-Enhanced Raman Imaging of Latent Fingerprints

    SciTech Connect

    Connatser, Raynella M; Prokes, Sharka M.; Glembocki, Orest; Schuler, Rebecca A.; Gardner, Charles W.; Lewis Sr, Samuel Arthur; Lewis, Linda A

    2010-01-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods.

  1. Toward surface-enhanced Raman imaging of latent fingerprints.

    PubMed

    Connatser, R Maggie; Prokes, Sharka M; Glembocki, Orest J; Schuler, Rebecca L; Gardner, Charles W; Lewis, Samuel A; Lewis, Linda A

    2010-11-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands' intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods.

  2. The Biplot as a diagnostic tool of local dependence in latent class models. A medical application.

    PubMed

    Sepúlveda, R; Vicente-Villardón, J L; Galindo, M P

    2008-05-20

    Latent class models (LCMs) can be used to assess diagnostic test performance when no reference test (a gold standard) is available, considering two latent classes representing disease or non-disease status. One of the basic assumptions in such models is that of local or conditional independence: all indicator variables (tests) are statistically independent within each latent class. However, in practice this assumption is often violated; hence, the two-LCM fits the data poorly. In this paper, we propose the use of Biplot methods to identify the conditional dependence between pairs of manifest variables within each latent class. Additionally, we propose incorporating such dependence in the corresponding latent class using the log-linear formulation of the model.

  3. (Thermal energy storage technologies for heating and cooling applications)

    SciTech Connect

    Tomlinson, J.J.

    1990-12-19

    Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

  4. Thermal energy storage technologies for heating and cooling applications

    NASA Astrophysics Data System (ADS)

    Tomlinson, John J.

    1990-12-01

    Recent results from selected thermal energy storage (TES) research activities in Germany and Sweden are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 International Energy Agency (IEA) Executive Committee deliberations on TES is presented.

  5. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    PubMed

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  6. Bayesian variable selection for latent class models.

    PubMed

    Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria

    2011-09-01

    In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.

  7. Polymer alloys with balanced heat storage capacity and engineering attributes and applications thereof

    DOEpatents

    Soroushian, Parviz

    2002-01-01

    A thermoplastic polymer of relatively low melt temperature is blended with at least one of thermosets, elastomers, and thermoplastics of relatively high melt temperature in order to produce a polymer blend which absorbs relatively high quantities of latent heat without melting or major loss of physical and mechanical characteristics as temperature is raised above the melting temperature of the low-melt-temperature thermoplastic. The polymer blend can be modified by the addition of at least one of fillers, fibers, fire retardants, compatibilisers, colorants, and processing aids. The polymer blend may be used in applications where advantage can be taken of the absorption of excess heat by a component which remains solid and retains major fractions of its physical and mechanical characteristics while absorbing relatively high quantities of latent heat.

  8. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  9. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  10. Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses

    ERIC Educational Resources Information Center

    Huang, Guan-Hua; Wang, Su-Mei; Hsu, Chung-Chu

    2011-01-01

    Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the…

  11. Semi-Nonparametric Methods for Detecting Latent Non-Normality: A Fusion of Latent Trait and Ordered Latent Class Modeling

    ERIC Educational Resources Information Center

    Schmitt, J. Eric; Mehta, Paras D.; Aggen, Steven H.; Kubarych, Thomas S.; Neale, Michael C.

    2006-01-01

    Ordered latent class analysis (OLCA) can be used to approximate unidimensional latent distributions. The main objective of this study is to evaluate the method of OLCA in detecting non-normality of an unobserved continuous variable (i.e., a common factor) used to explain the covariation between dichotomous item-level responses. Using simulation,…

  12. The Latent Structure of Autistic Traits: A Taxometric, Latent Class and Latent Profile Analysis of the Adult Autism Spectrum Quotient

    ERIC Educational Resources Information Center

    James, Richard J.; Dubey, Indu; Smith, Danielle; Ropar, Danielle; Tunney, Richard J.

    2016-01-01

    Autistic traits are widely thought to operate along a continuum. A taxometric analysis of Adult Autism Spectrum Quotient data was conducted to test this assumption, finding little support but identifying a high severity taxon. To understand this further, latent class and latent profile models were estimated that indicated the presence of six…

  13. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  14. Graphene nanoplatelets prepared by electric heating Acid-treated graphite in a vacuum chamber and their use as additives in organic semiconductors.

    PubMed

    Derry, Cameron; Wu, Yiliang; Gardner, Sandra; Zhu, Shiping

    2014-11-26

    Graphene nanoplatelets (GNPs) were prepared from acid-treated expandable graphite using a novel method of electric heating the graphite in an evaporation chamber under high vacuum, followed by solvent exfoliation. Such prepared graphene nanoplatelets, the eGNPs, were compared to GNPs prepared from two conventional methods: thermal expansion in an isothermal oven followed by solvent exfoliation (oGNPs), and direct solvent exfoliation (sGNPs), using various characterization techniques including UV-vis spectroscopy, scanning electron microscopy, and atomic force microscopy. It was found that the eGNPs were very thin, with a thickness of 4-16 nm, and showed no oxidation. On the other hand, oGNPs exhibited much thicker sheets, upward of 40 nm, and the sGNPs showed a high degree of oxidation. Utilizing the high purity eGNPs as an additive in PQT-12 semiconductor layer has been shown to improve the mobility by a factor of 2 in thin-film transistor devices.

  15. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    PubMed

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology.

  16. Cognitive Diagnosis Using Latent Trait Models.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper discusses the competency space approach to diagnosing misconceptions, skill, and knowledge acquisition. In some approaches that combine misconceptions, skill, and knowledge acquisition, the latent ability theta is used more or less as an insignificant element, but in the competency space approach, a multidimensional latent space is…

  17. Introduction to Latent Class Analysis with Applications

    ERIC Educational Resources Information Center

    Porcu, Mariano; Giambona, Francesca

    2017-01-01

    Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…

  18. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  19. Latent Memory for Sensitization in "Aplysia"

    ERIC Educational Resources Information Center

    Philips, Gary T.; Tzvetkova, Ekaterina I.; Marinesco, Stephane; Carew, Thomas J.

    2006-01-01

    In the analysis of memory it is commonly observed that, even after a memory is apparently forgotten, its latent presence can still be revealed in a subsequent learning task. Although well established on a behavioral level, the mechanisms underlying latent memory are not well understood. To begin to explore these mechanisms, we have used "Aplysia,"…

  20. Consequences of Fitting Nonidentified Latent Class Models

    ERIC Educational Resources Information Center

    Abar, Beau; Loken, Eric

    2012-01-01

    Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…

  1. Enceladus' Enigmatic Heat Flow

    NASA Astrophysics Data System (ADS)

    Howett, C.; Spencer, J. R.; Spencer, D.; Verbiscer, A.; Hurford, T.; Segura, M.

    2013-12-01

    Accurate knowledge of Enceladus' heat flow is important because it provides a vital constraint on Enceladus' tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. In 2011 we published an estimate of the current heat flow from Enceladus' active south polar terrain: 15.8 +/- 3.1 GW (Howett et al., 2011). This value was calculated by first estimating by modeling, and then removing, the passive component from 17 to 1000 micron observations made of the entire south polar terrain by Cassini's Composite Infrared Spectrometer (CIRS). The heat flow was then directly calculated from the residual, assumed endogenic, component. The derived heat flow of 15.8 GW was surprisingly high, about 10 times greater than that predicted by steady-state tidal heating (Meyer and Wisdom, 2007). CIRS has also returned high spatial resolution observations of Enceladus' active south polar terrain. Two separate observations are used: 9 to 16 micron observations taken over nearly the complete south polar terrain and a single 17 to 1000 micron scan over Damascus, Baghdad and Cairo. The shorter wavelength observations are only sensitive to high temperature emission (>70 K), and so longer wavelength observations are required (despite their limited spatial coverage) to estimate the low temperature emission from the stripes. Analysis of these higher resolution observations tells a different story of Enceladus' endogenic heat flow: the preliminary estimate of the heat flow from the active tiger stripes using these observations is 4.2 GW. An additional 0.5 GW must be added to this number to account for the latent heat release by the plumes (Ingersoll and Pankine 2009), giving a total preliminary estimate of 4.9 GW. The discrepancy in these two numbers is significant and we are currently investigating the cause. One possible reason is that there is significantly higher endogenic emission from the regions between the tiger stripes than we currently estimate

  2. Variable Assessment in Latent Class Models

    PubMed Central

    Zhang, Q.; Ip, E. H.

    2014-01-01

    The latent class model provides an important platform for jointly modeling mixed-mode data — i.e., discrete and continuous data with various parametric distributions. Multiple mixed-mode variables are used to cluster subjects into latent classes. While the mixed-mode latent class analysis is a powerful tool for statisticians, few studies are focused on assessing the contribution of mixed-mode variables in discriminating latent classes. Novel measures are derived for assessing both absolute and relative impacts of mixed-mode variables in latent class analysis. Specifically, the expected posterior gradient and the Kolmogorov variation of the posterior distribution, as well as related properties are studied. Numerical results are presented to illustrate the measures. PMID:24910486

  3. Latent inhibition in human adults without masking.

    PubMed

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  4. Epstein-Barr virus latent genes.

    PubMed

    Kang, Myung-Soo; Kieff, Elliott

    2015-01-23

    Latent Epstein-Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.

  5. Diabatic heating, divergent circulation and moisture transport in the African monsoon system

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong

    2009-12-24

    The dynamics of the West African monsoon system is studied through the diagnosis of the roles of diabatic heating in the divergent circulation and moisture transport. The divergent circulation is partitioned into latent-heating and non-latent-heating (the sum of surface sensible heat flux and radiative heating) driven components based on its field properties and its relationship with diabatic heating profiles. Roles of latent and non-latent diabatic heating in the moisture transport of the monsoon system are thus distinguished. The gradient in surface sensible heat flux between the Saharan heat-low and the Gulf of Guinea drives a shallow meridional circulation, which transports moisture far into the continent on the northern side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence maximum is within the region of precipitation and thus enhances local monsoon precipitation. Meanwhile, latent heating also induces dry air advection from the north. The seasonal northward migration of precipitation is encouraged by neither of the two effects. On the other hand, the divergent circulation forced by remote latent heating influences local moisture distribution through advection. Specifically by bringing Saharan air from the north, and driving moisture to the adjacent oceans, global latent heating has an overall drying effect over the Sahel.

  6. Effects of alpha-tocopherol addition to polymeric coatings on the UV and heat resistance of a fibrous collagen material--chrome-free leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV and heat resistance are very important qualities of leather because most leather products are constantly exposed to outdoor environments. In recent years, we have focused on using environmentally friendly antioxidants that will improve the UV and heat resistance of chrome-free leather. Tocopher...

  7. Orientation field estimation for latent fingerprint enhancement.

    PubMed

    Feng, Jianjiang; Zhou, Jie; Jain, Anil K

    2013-04-01

    Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and terrorists. Compared to live-scan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex image background, unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is indispensable for enhancing and recognizing poor quality latents. However, conventional orientation field estimation algorithms, which can satisfactorily process most live-scan and inked fingerprints, do not provide acceptable results for most latents. We believe that a major limitation of conventional algorithms is that they do not utilize prior knowledge of the ridge structure in fingerprints. Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior knowledge of fingerprint structure. We represent prior knowledge of fingerprints using a dictionary of reference orientation patches. which is constructed using a set of true orientation fields, and the compatibility constraint between neighboring orientation patches. Orientation field estimation for latents is posed as an energy minimization problem, which is solved by loopy belief propagation. Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprint database demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms.

  8. GABA transmission in the ventral pallidum is not involved in the control of latent inhibition in the rat.

    PubMed

    Lawrence, N S; Sharp, T; Peters, S P; Gray, J A; Young, A M J

    2003-01-01

    Latent inhibition describes a process of learning to ignore stimuli of no consequence, and is disrupted in acute, positive-symptomatic schizophrenia. Understanding the neural basis of latent inhibition in animals may help to elucidate the neural dysfunction underlying positive schizophrenic symptoms in man. Evidence suggests a crucial role for dopamine transmission in the nucleus accumbens in the control of latent inhibition. The present studies investigated the role of the GABA-ergic efferent from the nucleus accumbens to the ventral pallidum in latent inhibition. The GABA(A) agonist muscimol (4.56 ng/microl), and antagonist picrotoxin (0.2 microg/microl), were infused into the ventral pallidum, and effects on latent inhibition were assessed using a conditioned suppression procedure. Neither drug produced specific effects on latent inhibition when given alone and, in the case of muscimol, failed to reverse the disruption of latent inhibition induced by systemic amphetamine. In addition to significant non-specific drug effects, a positive control experiment revealed that intra-pallidal picrotoxin significantly enhanced locomotion, suggesting that our manipulations of ventral pallidal GABA function were behaviourally effective. We conclude that modulating ventral pallidal GABA transmission does not affect latent inhibition. The implications of this finding for theories of the neural circuitry mediating latent inhibition and for understanding the functional role of ventral pallidal GABA transmission are discussed.

  9. Recent advances in testing for latent TB.

    PubMed

    Schluger, Neil W; Burzynski, Joseph

    2010-12-01

    After more than a century of relying on skin testing for the diagnosis of latent TB infection, clinicians now have access to blood-based diagnostics in the form of interferon γ release assays (IGRAs). These tests are generally associated with higher sensitivity and specificity for diagnosis of latent TB infection. This article reviews the indications for testing and treatment of latent TB infection in the overall context of a TB control program and describes how IGRAs might be used in specific clinical settings and populations, including people having close contact with an active case of TB, the foreign born, and health-care workers.

  10. Extraction of latent images from printed media

    NASA Astrophysics Data System (ADS)

    Sergeyev, Vladislav; Fedoseev, Victor

    2015-12-01

    In this paper we propose an automatic technology for extraction of latent images from printed media such as documents, banknotes, financial securities, etc. This technology includes image processing by adaptively constructed Gabor filter bank for obtaining feature images, as well as subsequent stages of feature selection, grouping and multicomponent segmentation. The main advantage of the proposed technique is versatility: it allows to extract latent images made by different texture variations. Experimental results showing performance of the method over another known system for latent image extraction are given.

  11. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  12. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  13. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  14. Reactivation of Latent Viruses in Space

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Tyring, S. K.; Lugg, D. J.

    1999-01-01

    Reactivation of latent viruses is an important health risk for people working and living in physically isolated extreme environments such as Antarctica and space. Preflight quarantine does not significantly reduce the risk associated with latent viruses, however, pharmaceutical countermeasures are available for some viruses. The molecular basis of latency is not fully understood, but physical and psychosocial stresses are known to initiate the reactivation of latent viruses. Presumably, stress induced changes in selected hormones lead to alterations in the cell- mediated immune (CMI) response resulting in increased shedding of latent viruses. Limited access to space makes the use of ground-based analogs essential. The Australian Antarctic stations serve as a good stress model and simulate many aspects of space flight. Closed environmental chambers have been used to simulate space flight since the Skylab missions and have also proven to be a valuable analog of selected aspects of space flight.

  15. CONTROL OF LASER RADIATION PARAMETERS: Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Kozhevatov, I. E.; Palashov, O. V.; Khazanov, E. A.

    2006-10-01

    A method is proposed for compensating thermally induced phase distortions of laser radiation in absorbing optical elements. The method is based on supplementary heating of the peripheral region of the distorting element by the radiation from an auxiliary laser. A programme code has been developed for calculating the optimal parameters of supplementary radiation for minimising phase distortions. This code is based on the numerical solution of the thermal conductivity and static elasticity equations for a nonuniformly heated solid of cylindrical symmetry. Experiments reveal a high efficiency of the method for compensating distortions resulting from absorption of radiation with a Gaussian intensity profile.

  16. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  17. Habituation, latent inhibition, and extinction.

    PubMed

    Jordan, Wesley P; Todd, Travis P; Bucci, David J; Leaton, Robert N

    2015-06-01

    In two conditioned suppression experiments with a latent inhibition (LI) design, we measured the habituation of rats in preexposure, their LI during conditioning, and then extinction over days. In the first experiment, lick suppression, the preexposed group (PE) showed a significant initial unconditioned response (UR) to the target stimulus and significant long-term habituation (LTH) of that response over days. The significant difference between the PE and nonpreexposed (NPE) groups on the first conditioning trial was due solely to the difference in their URs to the conditioned stimulus (CS)-a habituated response (PE) and an unhabituated response (NPE). In the second experiment, bar-press suppression, little UR to the target stimulus was apparent during preexposure, and no detectable LTH. Thus, there was no difference between the PE and NPE groups on the first conditioning trial. Whether the UR to the CS confounds the interpretation of LI (Exp. 1) or not (Exp. 2) can only be known if the UR is measured. In both experiments, LI was observed in acquisition. Also in both experiments, rats that were preexposed and then conditioned to asymptote were significantly more resistant to extinction than were the rats not preexposed. This result contrasts with the consistently reported finding that preexposure either produces less resistance to extinction or has no effect on extinction. The effect of stimulus preexposure survived conditioning to asymptote and was reflected directly in extinction. These two experiments provide a cautionary procedural note for LI experiments and have shown an unexpected extinction effect that may provide new insights into the interpretation of LI.

  18. Latent developmental and evolutionary shapes embedded within the grapevine leaf.

    PubMed

    Chitwood, Daniel H; Klein, Laura L; O'Hanlon, Regan; Chacko, Steven; Greg, Matthew; Kitchen, Cassandra; Miller, Allison J; Londo, Jason P

    2016-04-01

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processes and environmental influences. Because leaf shape can vary in many different ways, theoretically, the effects of distinct developmental and evolutionary processes are separable, even within the shape of a single leaf. Here, we measured the shapes of > 3200 leaves representing > 270 vines from wild relatives of domesticated grape (Vitis spp.) to determine whether leaf shapes attributable to genetics and development are separable from each other. We isolated latent shapes (multivariate signatures that vary independently from each other) embedded within the overall shape of leaves. These latent shapes can predict developmental stages independent from species identity and vice versa. Shapes predictive of development were then used to stage leaves from 1200 varieties of domesticated grape (Vitis vinifera), revealing that changes in timing underlie leaf shape diversity. Our results indicate that distinct latent shapes combine to produce a composite morphology in leaves, and that developmental and evolutionary contributions to shape vary independently from each other.

  19. Modeling healthcare data using multiple-channel latent Dirichlet allocation.

    PubMed

    Lu, Hsin-Min; Wei, Chih-Ping; Hsiao, Fei-Yuan

    2016-04-01

    Information and communications technologies have enabled healthcare institutions to accumulate large amounts of healthcare data that include diagnoses, medications, and additional contextual information such as patient demographics. To gain a better understanding of big healthcare data and to develop better data-driven clinical decision support systems, we propose a novel multiple-channel latent Dirichlet allocation (MCLDA) approach for modeling diagnoses, medications, and contextual information in healthcare data. The proposed MCLDA model assumes that a latent health status group structure is responsible for the observed co-occurrences among diagnoses, medications, and contextual information. Using a real-world research testbed that includes one million healthcare insurance claim records, we investigate the utility of MCLDA. Our empirical evaluation results suggest that MCLDA is capable of capturing the comorbidity structures and linking them with the distribution of medications. Moreover, MCLDA is able to identify the pairing between diagnoses and medications in a record based on the assigned latent groups. MCLDA can also be employed to predict missing medications or diagnoses given partial records. Our evaluation results also show that, in most cases, MCLDA outperforms alternative methods such as logistic regressions and the k-nearest-neighbor (KNN) model for two prediction tasks, i.e., medication and diagnosis prediction. Thus, MCLDA represents a promising approach to modeling healthcare data for clinical decision support.

  20. Stabilizing Cr species in incinerator fly ashes with/without kaolin addition through a firing process: a molecular study on heated Cr.

    PubMed

    Wei, Yu-Ling; Wang, Hsi-Chih; Peng, Yen-Shiun

    2016-10-06

    Cr speciation in Cr-sorbing washed incinerator fly ash after heating up to 1100°C is temperature dependent. Higher temperature leads to greater level of chemical reduction of Cr(VI) that is considerably more toxic than Cr(III). Most Cr(VI) sorbed washed incinerator fly ash is effectively transformed into Cr(III) after heating to 1100°C for 2 hr, as indicated by the disappearance of hexavalent pre-edge peak of Cr K-edge XANES spectrum. After heating the Cr-sorbing incinerator fly ash to 100(o)C and 500(o)C for 2 hr, water soluble CaCrO4 is determined to be the principal Cr species due to the chemical reaction between the sorbed Cr(VI) and CaO component of washed fly ash, based on the comparison between sample and reference XANES spectra. Replacing half of the washed fly ash with kaolin could effectively reduce all Cr(VI) after heating to ≧900(o)C for 2 hr.

  1. Nonstationary Heat Conduction in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Singh, Amit K.

    Understanding heat at the atomistic level is an interesting exercises. It is fascinating to note how the vibration of atoms result into thermodynamic concept of heat. This thesis aims to bring insights into different constitutive laws of heat conduction. We also develop a framework in which the interaction of thermostats to the system can be studied and a well known Kapitza effect can be reduced. The thesis also explores stochastic and continuum methods to model the latent heat release in the first order transition of ideal silicon surfaces into dimers. We divide the thesis into three works which are connected to each other: 1. Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. In this thesis, we first propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to

  2. Primary Energy Efficiency Analysis of Different Separate Sensible and Latent Cooling Techniques

    SciTech Connect

    Abdelaziz, Omar

    2015-01-01

    Separate Sensible and Latent cooling (SSLC) has been discussed in open literature as means to improve air conditioning system efficiency. The main benefit of SSLC is that it enables heat source optimization for the different forms of loads, sensible vs. latent, and as such maximizes the cycle efficiency. In this paper I use a thermodynamic analysis tool in order to analyse the performance of various SSLC technologies including: multi-evaporators two stage compression system, vapour compression system with heat activated desiccant dehumidification, and integrated vapour compression with desiccant dehumidification. A primary coefficient of performance is defined and used to judge the performance of the different SSLC technologies at the design conditions. Results showed the trade-off in performance for different sensible heat factor and regeneration temperatures.

  3. Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells

    PubMed Central

    Reed, Aimee N.; Putman, Timothy; Sullivan, Christopher; Jin, Ling

    2015-01-01

    One of the unique features of herpesvirus infection is latent infection following an initial exposure, which is characterized by viral genome persistence in a small fraction of cells within the latently infected tissue. Investigation of the mechanisms of herpesvirus latency has been very challenging in tissues with only a small fraction of cells that are latently infected. Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is an important and deadly pathogen of koi and common carp, Cyprinus carpio. Acute infection can cause up to 100% mortality in exposed fish, and fish that survive the infection become latently infected. KHV becomes latent in a small percentage of B lymphocytes and can reactivate under stressful conditions. During latency, KHV ORF6 transcript is expressed in the latently infected B lymphocytes. In order to study KHV latent infection in cells that are only latently infected, a nanoflare probe specific to ORF6 RNA was used to separate KHV latently infected cells from total peripheral white blood cells (WBC). Using the ORF6 nanoflare probe, less than 1% of peripheral WBC was isolated from KHV latently infected koi. When this enriched population of WBC was examined by real-time PCR specific for KHV, it was estimated that about 1 to 2 copies of viral genome persists in the sorted cells. In addition, KHV ORF6 transcript was shown to be the major transcript expressed during latency by RNA-seq analysis. This study demonstrated that an RNA nanoflare probe could be used to enrich latently infected cells, which can subsequently be used to investigate the molecular mechanisms of KHV latency. PMID:26087404

  4. Computational Evaluation of a Latent Heat Energy Storage System

    DTIC Science & Technology

    2013-01-01

    Release; Distribution Unlimited. PA#13098 13. SUPPLEMENTARY NOTES Journal Article submitted to Solar Energy Materials and Solar Cells. 14. ABSTRACT...A system capable of receiving, absorbing, and converting solar energy was designed for use on a satellite in low Earth orbit. The proposed system, an...fronts the amount of solar irradiation required to fully utilize the phase change material was determined to be between 4 and 5 kW depending on the orbit

  5. Latent Curve Models and Latent Change Score Models Estimated in R

    ERIC Educational Resources Information Center

    Ghisletta, Paolo; McArdle, John J.

    2012-01-01

    In recent years the use of the latent curve model (LCM) among researchers in social sciences has increased noticeably, probably thanks to contemporary software developments and the availability of specialized literature. Extensions of the LCM, like the the latent change score model (LCSM), have also increased in popularity. At the same time, the R…

  6. Improvement of virus safety of a S/D-treated factor VIII concentrate by additional dry heat treatment at 100 degrees C.

    PubMed

    Dichtelmüller, H; Rudnick, D; Breuer, B; Kotitschke, R; Kloft, M; Darling, A; Watson, E; Flehmig, B; Lawson, S; Frösner, G

    1996-06-01

    In order to increase the virus safety of a solvent/detergent-treated Factor VIII concentrate in regard to non-lipid coated viruses and to respond to the continuous discussion about reports on hepatitis A transmission by Factor VIII preparations, we have investigated the effect of a terminal dry heat treatment (30 min 100 degrees C) on HAV and various other viruses. By this treatment Hepatitis A virus was inactivated below detectable level after a few minutes (> 5.3 log10). Other RNA viruses such as the Human Immunodeficiency Virus (> 6.6 log10), bovine viral diarrhoea virus (> 6.6 log10) and vesicular stomatitis virus (> 5.8 log10) were also inactivated below detectable level. Pseudo rabies virus and reovirus Type 3 are inactivated by 5.7 and > 6.0 log10, respectively. SV40 and bovine parvo virus showed significant resistance to dry heat treatment. We conclude that the involvement of two strong virus inactivation steps, acting by different mechanisms, improves the virus safety of Factor VIII concentrates without destroying the Factor VIII activity. Moreover, the terminal 100 degrees C heat treatment for 30 min represents an effective measure to inactivate non-lipid enveloped viruses, in particular hepatitis A, which is resistant to solvent/detergent treatment.

  7. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  8. A further assessment of the Hall-Rodriguez theory of latent inhibition.

    PubMed

    Leung, Hiu Tin; Killcross, A S; Westbrook, R Frederick

    2013-04-01

    The Hall-Rodriguez (G. Hall & G. Rodriguez, 2010, Associative and nonassociative processes in latent inhibition: An elaboration of the Pearce-Hall model, in R. E. Lubow & I. Weiner, Eds., Latent inhibition: Data, theories, and applications to schizophrenia, pp. 114-136, Cambridge, England: Cambridge University Press) theory of latent inhibition predicts that it will be deepened when a preexposed target stimulus is given additional preexposures in compound with (a) a novel stimulus or (b) another preexposed stimulus, and (c) that deepening will be greater when the compound contains a novel rather than another preexposed stimulus. A series of experiments studied these predictions using a fear conditioning procedure with rats. In each experiment, rats were preexposed to 3 stimuli, 1 (A) taken from 1 modality (visual or auditory) and the remaining 2 (X and Y) taken from another modality (auditory or visual). Then A was compounded with X, and Y was compounded with a novel stimulus (B) taken from the same modality as A. A previous series of experiments (H. T. Leung, A. S. Killcross, & R. F. Westbrook, 2011, Additional exposures to a compound of two preexposed stimuli deepen latent inhibition, Journal of Experimental Psychology: Animal Behavior Processes, Vol. 37, pp. 394-406) compared A with Y, finding that A was more latently inhibited than Y, the opposite of what was predicted. The present experiments confirmed that A was more latently inhibited than Y, showed that this was due to A entering the compound more latently inhibited than Y, and finally, that a comparison of X and Y confirmed the 3 predictions made by the theory.

  9. Reduced toxicological activity of cigarette smoke by the addition of ammonia magnesium phosphate to the paper of an electrically heated cigarette: subchronic inhalation toxicology.

    PubMed

    Moennikes, O; Vanscheeuwijck, P M; Friedrichs, B; Anskeit, E; Patskan, G J

    2008-05-01

    Cigarette smoke is a complex chemical mixture that causes a variety of diseases, such as lung cancer. With the electrically heated cigarette smoking system (EHCSS), temperatures are applied to the tobacco below those found in conventional cigarettes, resulting in less combustion, reduced yields of some smoke constituents, and decreased activity in some standard toxicological tests. The first generation of electrically heated cigarettes (EHC) also resulted in increased formaldehyde yields; therefore, a second generation of EHC was developed with ammonium magnesium phosphate (AMP) in the cigarette paper in part to address this increase. The toxicological activity of mainstream smoke from these two generations of EHC and of a conventional reference cigarette was investigated in two studies in rats: a standard 90-day inhalation toxicity study and a 35-day inhalation study focusing on lung inflammation. Many of the typical smoke exposure-related changes were found to be less pronounced after exposure to smoke from the second-generation EHC with AMP than to smoke from the first-generation EHC or the conventional reference cigarette, when compared on a particulate matter or nicotine basis. Differences between the EHC without AMP and the conventional reference cigarette were not as prominent. Overall, AMP incorporated in the EHC cigarette paper reduced the inhalation toxicity of the EHCSS more than expected based on the observed reduction in aldehyde yields.

  10. Tensor Decompositions for Learning Latent Variable Models

    DTIC Science & Technology

    2012-12-08

    of a tensor, 2011. arXiv:1004.4953. [CSC+12] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar . Spectral learning of latent-variable...12] P. S. Dhillon, J. Rodu, M. Collins, D. P. Foster, and L. H. Ungar . Spectral dependency parsing with latent variables. In EMNLP-CoNLL, 2012. [DS07...Foster, J. Rodu, and L. H. Ungar . Spectral dimensionality reduction for HMMs, 2012. arXiv:1203.6130. [GvL96] G. H. Golub and C. F. van Loan. Matrix

  11. Intractable diarrhoea of infancy and latent otomastoiditis.

    PubMed Central

    Salazar de Sousa, J; da Silva, A; da Costa Ribeiro, V

    1980-01-01

    In 16 infants with intractable diarrhoea, latent otomastoiditis was found in 9 (3 at necropsy and 6 at myringotomy-antrotomy). In 5 of the 6 operated group, surgery was followed by a striking cessation of the diarrhoea and with weight gain. It is concluded that (1) latent otomastoiditis may be a perpetuating factor in intractable diarrhoea; (2) myringotomy-antrotomy should be considered if other forms of treatment have failed, and especially if there is leucocytosis; (3) mastoiditis with diffuse osteitis seems to be associated with a poor prognosis. PMID:7458392

  12. Estimates of zonally averaged tropical diabatic heating in AMIP GCM simulations. PCMDI report No. 25

    SciTech Connect

    Boyle, J.S.

    1995-07-01

    An understanding of the processess that generate the atmospheric diabatic heating rates is basic to an understanding of the time averaged general circulation of the atmosphere and also circulation anomalies. Knowledge of the sources and sinks of atmospheric heating enables a fuller understanding of the nature of the atmospheric circulation. An actual assesment of the diabatic heating rates in the atmosphere is a difficult problem that has been approached in a number of ways. One way is to estimate the total diabatic heating by estimating individual components associated with the radiative fluxes, the latent heat release, and sensible heat fluxes. An example of this approach is provided by Newell. Another approach is to estimate the net heating rates from consideration of the balance required of the mass and wind variables as routinely observed and analyzed. This budget computation has been done using the thermodynamic equation and more recently done by using the vorticity and thermodynamic equations. Schaak and Johnson compute the heating rates through the integration of the isentropic mass continuity equation. The estimates of heating arrived at all these methods are severely handicapped by the uncertainties in the observational data and analyses. In addition the estimates of the individual heating components suffer an additional source of error from the parameterizations used to approximate these quantities.

  13. Influence of nanographene platelets (NGP) incorporation on Fe3O4 nanoparticles as materials additives for enhancement thermal properties stearic acid

    NASA Astrophysics Data System (ADS)

    Nuryadin, M. K.; Andiarto, R.; Taufik, A.; Saleh, R.

    2016-11-01

    In this work, Fe3O4 nanoparticles, and Fe3O4/NGP composite were used as material additive for enhancement thermal properties of stearic acid (SA). The both material additive were synthesized using sol-gel method. Phase change material (PCM) composites SA-Fe3O4 and Sa-Fe3O4/NGP mixtures were made through the dispersion technique with three different weight % ratio of material additives into stearic acid: 1 wt.%, 3 wt.%, and 5 wt.%. X-Ray Diffractometer (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to investigate the structural properties. Magnetic properties also measured by vibrating sample magnetometer (VSM) to see influence of NGP in PCM composites. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used in order to analyse the thermal properties of the samples. The results show an enhancement of the latent heat, thermal stability as well as specific heat by the presence of material additives in SA. Compare to SA- Fe3O4, SA-Fe3O4/NGP show better improvement in enhancement of thermal performance of SA. The improvement by about 41.2% in specific heat and 21.2% in latent heat.

  14. Regression mixture models: Does modeling the covariance between independent variables and latent classes improve the results?

    PubMed Central

    Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956

  15. Regression Mixture Models: Does Modeling the Covariance Between Independent Variables and Latent Classes Improve the Results?

    PubMed

    Lamont, Andrea E; Vermunt, Jeroen K; Van Horn, M Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we tested the effects of violating an implicit assumption often made in these models; that is, independent variables in the model are not directly related to latent classes. Results indicate that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. In addition, we tested whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a reanalysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted.

  16. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  17. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  18. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  19. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  20. CICATRIZATION OF WOUNDS : XI. LATENT PERIOD.

    PubMed

    Carrel, A; du Noüy, P L

    1921-09-30

    1. The latent period of cicatrization varies generally from 5 to 7 days. 2. It stops abruptly and contraction starts with its maximum velocity. 3. The formula of du Noüy applies to the beginning of the contraction period as well as to the subsequent periods.

  1. Detection of latent prints by Raman imaging

    DOEpatents

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  2. An Introduction to Latent Semantic Analysis.

    ERIC Educational Resources Information Center

    Landauer, Thomas K; Foltz, Peter W.; Laham, Darrell

    1998-01-01

    Offers an introduction to the theory and implementation of Latent Semantic Analysis (LSA), a theory and method for extracting and representing the contextual-usage meaning of words by statistical computations applied to a large corpus of text. Gives an overview of applications and modeling of human knowledge to which LSA has been applied. (SR)

  3. Essay Assessment with Latent Semantic Analysis

    ERIC Educational Resources Information Center

    Miller, Tristan

    2003-01-01

    Latent semantic analysis (LSA) is an automated, statistical technique for comparing the semantic similarity of words or documents. In this article, I examine the application of LSA to automated essay scoring. I compare LSA methods to earlier statistical methods for assessing essay quality, and critically review contemporary essay-scoring systems…

  4. Forensic Chemistry: The Revelation of Latent Fingerprints

    ERIC Educational Resources Information Center

    Friesen, J. Brent

    2015-01-01

    The visualization of latent fingerprints often involves the use of a chemical substance that creates a contrast between the fingerprint residues and the surface on which the print was deposited. The chemical-aided visualization techniques can be divided into two main categories: those that chemically react with the fingerprint residue and those…

  5. Component Latent Trait Models for Test Design.

    ERIC Educational Resources Information Center

    Embretson, Susan Whitely

    Latent trait models are presented that can be used for test design in the context of a theory about the variables that underlie task performance. Examples of methods for decomposing and testing hypotheses about the theoretical variables in task performance are given. The methods can be used to determine the processing components that are involved…

  6. Extended Generalized Linear Latent and Mixed Model

    ERIC Educational Resources Information Center

    Segawa, Eisuke; Emery, Sherry; Curry, Susan J.

    2008-01-01

    The generalized linear latent and mixed modeling (GLLAMM framework) includes many models such as hierarchical and structural equation models. However, GLLAMM cannot currently accommodate some models because it does not allow some parameters to be random. GLLAMM is extended to overcome the limitation by adding a submodel that specifies a…

  7. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  8. Latent mnemonic strengths are latent: a comment on Mickes, Wixted, and Wais (2007).

    PubMed

    Rouder, Jeffrey N; Pratte, Michael S; Morey, Richard D

    2010-06-01

    Mickes, Wixted, and Wais (2007) proposed a simple test of latent strength variability in recognition memory. They asked participants to rate their confidence using either a 20-point or a 99-point strength scale and plotted distributions of the resulting ratings. They found 25% more variability in ratings for studied than for new items, which they interpreted as providing evidence that latent mnemonic strength distributions are 25% more variable for studied than for new items. We show here that this conclusion is critically dependent on assumptions--so much so that these assumptions determine the conclusions. In fact, opposite conclusions, such that study does not affect the variability of latent strength, may be reached by making different but equally plausible assumptions. Because all measurements of mnemonic strength variability are critically dependent on untestable assumptions, all are arbitrary. Hence, there is no principled method for assessing the relative variability of latent mnemonic strength distributions.

  9. The entorhinal cortex, but not the dorsal hippocampus, is necessary for single-cue latent learning.

    PubMed

    Stouffer, Eric M

    2010-09-01

    Two experiments were conducted to examine the roles of the entorhinal cortex (EC), dorsal hippocampus (DH), and ventral hippocampus (VH) in a modified Latent Cue Preference (LCP) task. The modified LCP task utilized one visual cue in each compartment, compared to several multimodal cues used in a previous version. In the single-cue LCP task, water-replete rats drink water in one compartment of the LCP box on 1 day, and then have no water in a second compartment of the LCP box the following day (one training trial), for a total of three training trials. Rats are then water-deprived prior to a preference test, in which they are allowed to move freely between the two compartments with the water removed. Latent learning is demonstrated when water-deprived rats spend more time in the compartment that previously contained the water. Experiment 1 demonstrated that the single-cue LCP task results in the same irrelevant-incentive latent learning as the multicue LCP task. In addition, Experiment 1 replicated the finding that a compartment preference based on this latent learning requires a deprivation state during the preference test, while a compartment preference based on conditioning does not. Experiment 2 examined the effects of pretraining neurotoxin lesions of the EC, DH, and VH on this single-cue LCP task. Results showed that lesions of the EC and VH disrupted the irrelevant-incentive latent learning, while lesions of the DH did not. These results indicate that a latent learning task that involves one discrete compartment cue, rather than several compartmental cues, does not require the DH. Therefore, the EC appears to play a central role in single-cue latent learning in the LCP task.

  10. Reactions of latent prints exposed to blood.

    PubMed

    Praska, Nicole; Langenburg, Glenn

    2013-01-10

    We explored whether an undeveloped latent print (fingermark) exposed to blood and later developed by enhancement with blood reagents such as amido black (AB) or leucocrystal violet (LCV) could appear as a genuine blood mark. We examined three different experimental conditions. In Experiment I, fingermark residue only was tested, as a control to confirm that fingermark residue alone does not react with the blood reagents AB and LCV. Experiment II investigated whether latent fingermarks exposed to blood dilutions could be treated with AB or LCV and subsequently appear as a genuine blood mark enhanced with AB or LCV. Experiment III tested whether latent fingermarks exposed to whole blood could be processed with AB or LCV and subsequently appear as a genuine blood mark enhanced with AB or LCV. The present study found that indeed, fingermark residue alone does not react with the blood reagents AB and LCV. In Experiment II, an interaction occurred between the fingermark residue and the diluted blood that caused the ridges to appear a red color. In the present study, this interaction is called a faux blood mark. While the faux blood mark phenomenon occurred most often following exposure to diluted blood, it did not occur consistently, and a predictable pattern could not be established. However, the reaction occurred more frequently following extended fingermark residue drying times. Faux blood marks are distinguishable from genuine blood marks prior to enhancement with blood reagents. Following treatment with blood reagents, it became increasingly difficult to determine whether the enhanced mark was a genuine blood print or a latent fingermark exposed to diluted blood. Latent fingermarks exposed to whole blood often resulted in a void prior to enhancement, but following treatment with blood reagents, were difficult to distinguish from a genuine blood mark enhanced with blood reagents.

  11. Water Based Phase Change Material Heat Exchanger Development

    NASA Technical Reports Server (NTRS)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  12. Subscale Water Based Phase Change Material Heat Exchanger Development

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  13. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate.

    PubMed

    Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel

    2016-11-14

    Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl2 concentration ([CaCl2] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl2 and SC. However, WPI solutions gelled above a critical CaCl2 concentration that increased with increasing SC concentration. In the absence of CaCl2, WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl2 was added. In an intermediate range of CaCl2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca(2+), a chaperon effect, and microphase separation.

  14. Current status of decay heat measurements, evaluations, and needs

    SciTech Connect

    Dickens, J.K.

    1986-07-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been: (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs., 4 figs., 1 tab.

  15. A Latent Variable Approach to the Simple View of Reading

    ERIC Educational Resources Information Center

    Kershaw, Sarah; Schatschneider, Chris

    2012-01-01

    The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…

  16. The latent cytomegalovirus decreases telomere length by microcompetition

    PubMed Central

    Javaherian, Adrian

    2015-01-01

    Reduced telomere length has been associated with aging and age-related diseases. Latent infection with the Cytomegalovirus (CMV) induces telomere shortening in the infected cells. Latent CMV infection may cause reduced telomere length via GABP transcription factor deficiency, according to the Microcompetition Theory. Microcompetition and viral-induced transcription factor deficiency is important since most people harbor a latent viral infection.

  17. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  18. Skills Diagnosis Using IRT-Based Continuous Latent Trait Models

    ERIC Educational Resources Information Center

    Stout, William

    2007-01-01

    This article summarizes the continuous latent trait IRT approach to skills diagnosis as particularized by a representative variety of continuous latent trait models using item response functions (IRFs). First, several basic IRT-based continuous latent trait approaches are presented in some detail. Then a brief summary of estimation, model…

  19. Modeling Interaction Effects in Latent Growth Curve Models.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Acock, Alan

    2000-01-01

    Presents an extension of the method of estimating interaction effects among latent variables to latent growth curve models developed by K. Joreskog and F. Yang (1996). Illustrates the procedure and discusses results in terms of practical and statistical problems associated with interaction analyses in latent curve models and structural equation…

  20. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  1. Using Latent Class Analysis To Set Academic Performance Standards.

    ERIC Educational Resources Information Center

    Brown, Richard S.

    The use of latent class analysis for establishing student performance standards was studied. Latent class analysis (LCA) is an established procedure for investigating the latent structure of a set of data. LCA presumes that groups, classes, or respondents differ qualitatively from one another, and that these differences account for all of the…

  2. Fingerprint Minutiae from Latent and Matching Tenprint Images

    National Institute of Standards and Technology Data Gateway

    NIST Fingerprint Minutiae from Latent and Matching Tenprint Images (PC database for purchase)   NIST Special Database 27 contains latent fingerprints from crime scenes and their matching rolled fingerprint mates. This database can be used to develop and test new fingerprint algorithms, test commercial and research AFIS systems, train latent examiners, and promote the ANSI/NIST file format standard.

  3. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  4. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  5. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    SciTech Connect

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  6. Integrated Evaluation of Latent Viral Reactivation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    This application proposes a continuation of our current effort, which has provided the first demonstration of viral reactivation during space flight. We have used the herpesvirus EBV as a model for latent viral reactivation and have shown that increased amounts of EBV DNA were shed by astronauts during space flight. Analysis of the Antarctic space flight analog indicated that the frequency of viral shedding may also increase (along with the increased numbers of virus) during long periods of isolation. However, a number of critical questions remain before the findings may be considered a significant health risk during extended space flight. These include: Are other latent viruses (e.g., other herpesviruses and polyornaviruses) in addition to EBV also reactivated and shed more frequently and/or in higher numbers during space flight? Is the viral reactivation observed in space flight and ground-based analogs mediated through the hypothalamus-pituitary-adrenal (HPA) axis resulting in a decreased cell-mediated immune response? How does detection of viral DNA by PCR analysis correlate with infectious virus? How does the amount of virus found during flight compare with viral levels observed in acute/chronic viral illnesses and in control individuals? This expanded study will examine the phenomenon of viral reactivation from the initiating stress through the HPA axis with the accompanying suppression of the immune system resulting in viral reactivation. This information is essential to determine if latent viral reactivation among crewmembers represents a sufficient medical risk to space travel to require the development of suitable countermeasures.

  7. Latent Class Analysis of college women's Thursday drinking.

    PubMed

    Ward, Rose Marie; Cleveland, Michael J; Messman-Moore, Terri L

    2013-01-01

    College students drink in consistent patterns over the course of the academic semester and year (Beets et al., 2009; Del Boca et al., 2004). However, it is unclear if there are naturally occurring groups of female Thursday drinkers who display their own unique patterns of drinking across the semester. In a fall semester 10-week mixed online- and paper-based study of college female drinking, classes of Thursday drinkers were identified using Repeated Measures Latent Class Analysis. The 424 participants were recruited via flyers and advertisements in the student newspaper. It was determined that three latent classes provided optimal fit to the data: 1. Unlikely to report Thursday drinking; 2. Normal probability of Thursday drinkers; and 3. High probability of Thursday drinkers. The proportion of students within the latent classes differed across academic year in school. Seniors were least likely to be in the Unlikely group, and juniors and seniors were not in the Normal group. An additional analysis indicated that women in a sorority were four times more likely to be in the Normal or High groups compared to the Unlikely group. A final set of analyses indicated that women who enrolled in Friday morning classes were more likely to be in the Unlikely or Normal groups compared to the High group. Results indicated that the Unlikely group consumed significantly less alcohol at baseline, had lower levels of negative alcohol-related consequences prior to and during the study, and drank less on the weekends (Friday and Saturday). Female students who report drinking on Thursdays tend to be older, to be part of sororities, to have later classes or no classes on Friday, and to experience more negative alcohol-related consequences. Female students whose "weekends" start early are high-risk drinkers and might be targeted for future prevention and intervention efforts.

  8. Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor.

    PubMed

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui; Wang, Tony T

    2016-02-01

    We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4(+) T cells.

  9. Short Communication: Preferential Killing of HIV Latently Infected CD4+ T Cells by MALT1 Inhibitor

    PubMed Central

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui

    2016-01-01

    Abstract We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4+ T cells. PMID:26728103

  10. Serotonin transporter knockout rats show improved strategy set-shifting and reduced latent inhibition.

    PubMed

    Nonkes, Lourens J P; van de Vondervoort, Ilse I G M; de Leeuw, Mark J C; Wijlaars, Linda P; Maes, Joseph H R; Homberg, Judith R

    2012-04-13

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT(-/-)) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting (EDSS), heavily depends on the medial prefrontal cortex. This region shows functional changes in 5-HTT(-/-) rodents as well. Here we subjected 5-HTT(-/-) rats and their wild-type counterparts to an EDSS paradigm and a supplementary latent inhibition task. Results indicate that 5-HTT(-/-) rats also show improved EDSS, and indicate that reduced latent inhibition may contribute as an underlying mechanism.

  11. A sex difference in the onset of the latent learning impairment in rats.

    PubMed

    Stouffer, Eric M; Barry, Jessica L

    2014-07-01

    The current study examined a sex difference in the onset of a latent learning impairment in Sprague-Dawley rats. Forty rats (20 male, 20 female) were tested on the Latent Cue Preference (LCP) task at 3 or 11 months of age. Additionally, 19 female rats were tested at 14 or 18 months of age. All rats were given four training trials in the LCP task using a three-compartment box, during which the rats explored a water-paired compartment and an unpaired compartment (each with a different visual cue) on consecutive days. Rats were then water-deprived for 23 hr and given a compartment preference test, in which more time spent in the water-paired compartment demonstrated latent learning. Results showed that 11-month old males and 18-month old females showed impaired latent learning, but 11- and 14-month old females showed intact latent learning, which may possibly be due to the neuroprotective effects of estrogen.

  12. Latent inhibition is affected by phase of estrous cycle in female rats.

    PubMed

    Quinlan, Matthew G; Duncan, Andrew; Loiselle, Catherine; Graffe, Nicole; Brake, Wayne G

    2010-12-01

    Estrogen has been shown to have a strong modulatory influence on several types of cognition in both women and female rodents. Latent inhibition is a task in which pre-exposure to a neutral stimulus, such as a tone, later impedes the association of that stimulus with a particular consequence, such as a shock. Previous work from our lab demonstrates that high levels of estradiol (E2) administered to ovariectomized (OVX) female rats abolishes latent inhibition when compared to female rats with low levels of E2 or male rats. To determine if this E2-induced impairment also occurs with the natural variations of ovarian hormones during the estrous cycle, this behavior was investigated in cycling female rats. In addition, pre-pubertal male and female rats were also tested in this paradigm to determine if the previously described sex differences are activational or organizational in nature. In a latent inhibition paradigm using a tone and a shock, adult rats were conditioned during different points of the estrous cycle. Rats conditioned during proestrus, a period of high E2 levels, exhibited attenuated latent inhibition when compared to rats conditioned during estrus or metestrus, periods associated with low levels of E2. Moreover, this effect is not seen until puberty indicating it is dependent on the surge of hormones at puberty. This study confirms recent findings that high E2 interferes with latent inhibition and is the first to show this is based in the activational actions of hormones.

  13. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  14. A finite element analysis of the freeze/thaw behavior of external artery heat pipes

    NASA Technical Reports Server (NTRS)

    Lu, X. J.; Peterson, G. P.

    1993-01-01

    A two-dimensional finite element model was used to determine the freeze/thaw characteristics of an external artery heat pipe. During startup, the working fluid, which was located in the liquid channel and the circumferential wall grooves, experienced a phase transformation from a solid to a liquid state. The transient heat conduction equations with moving interfacial conditions were solved using the appropriate initial boundary conditions. The modelling results include the cross-sectional temperature distribution and the interfacial or melt front position as a function of time. A fixed grid approach was adopted in the model for the phase-change process during thawing of frozen working fluid. The interfacial position between the liquid and solid regions was found by balancing the latent heat caused by interfacial movement with the heat addition or extraction at the related grid points.

  15. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOEpatents

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  16. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  17. Importance of soil heating, liquid water loss, and vapor flow enhancement for evaporation

    NASA Astrophysics Data System (ADS)

    Novak, Michael D.

    2016-10-01

    Field measurements conducted by Cahill and Parlange (1998) are reanalyzed to verify if their conclusion that daytime peak values of 60-70 W m-2 of latent heat flux divergence occurred in the 7-10 cm soil layer of a drying Yolo silt loam when maximum values of surface latent heat flux are estimated to have been about 100 W m-2. The new analyses, as similar to theirs as possible, are validated using a numerical simulation of coupled soil moisture and heat flow based on Philip and de Vries (1957) as a test bed. The numerical simulation is extended to include the flow of air induced by diurnal soil heating and evaporative water loss to verify the flux divergence calculations reported in Parlange et al. (1998) that explained the findings of Cahill and Parlange (1998). It is shown that the conclusions of both of these papers are in error, so that the original version of the Philip and de Vries (1957) theory is consistent with their field measurements after all and the effects of airflow associated with soil heating and liquid water loss (and low-frequency barometric pressure variations also considered) are negligible in practice. In an additional investigation, enhancement of diffusive vapor flow (first postulated by Philip and de Vries (1957)) and discussed extensively in the literature since is shown to have negligible effects on cumulative evaporation under field conditions.

  18. Two Studies of Specification Error in Models for Categorical Latent Variables

    ERIC Educational Resources Information Center

    Kaplan, David; Depaoli, Sarah

    2011-01-01

    This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…

  19. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  20. Blocking of potentiation of latent inhibition.

    PubMed

    Hall, Geoffrey; Rodriguez, Gabriel

    2011-01-01

    We present a theory of latent inhibition based on the Pearce-Hall (Pearce & Hall, 1980) model for classical conditioning. Its central features are (1) that the associability of a stimulus declines as it comes to predict its consequences and (2) that nonreinforced exposure to a stimulus engages an associative learning process that makes the stimulus an accurate predictor of its consequences (in this case, the occurrence of no event). A formalization of this theory is shown to accommodate the finding that preexposure in compound with another cue can potentiate latent inhibition to the target cue. It further predicts that preexposure to the added cue will eliminate the potentiation effect. An experiment using rats and the flavor-aversion procedure confirmed this prediction.

  1. A latent trait approach to the development of persistent stuttering.

    PubMed

    Kalinowski, A G; Kalinowski, J; Stuart, A; Rastatter, M P

    1998-12-01

    The premise that stuttering disorders develop according to the orthogenetic principle, preceding in a continuous, unilinear fashion from a state of relative lack of differentiation to a state of increasing differentiation and hierarchic integration, was examined. Responses to Woolf's Perceptions of Stuttering Inventory of 87 individuals who stutter were analyzed using a Rasch 1980 latent trait model for dichotomously scored data. Analyses of responses indicated struggle, avoidance, and expectation through the development of stuttering that became increasingly articulated, integrated, stable, and yet responsive to environmental changes. Four stages of development were noted: Stage I was characterized by the expectation of interruptions in the flow of speech, the addition of unnecessary sounds, and general body tension. Stage II was typified by distinctions between troublesome and not so troublesome words and sounds and between the speaker and various audiences and contexts for speaking. In Stage III, speech control decreased despite more focused and complex efforts to control the environment and the speech apparatus. Stage IV was characterized by automatic scanning of all speech, increasingly uncontrolled body movements, and attempts to produce fluent speech by way of comprehensive changes to sound, rhythm, and pitch. Follow-up of 29 respondents suggested the latent struggle was generally stable over time.

  2. Discovering latent commercial networks from online financial news articles

    NASA Astrophysics Data System (ADS)

    Xia, Yunqing; Su, Weifeng; Lau, Raymond Y. K.; Liu, Yi

    2013-08-01

    Unlike most online social networks where explicit links among individual users are defined, the relations among commercial entities (e.g. firms) may not be explicitly declared in commercial Web sites. One main contribution of this article is the development of a novel computational model for the discovery of the latent relations among commercial entities from online financial news. More specifically, a CRF model which can exploit both structural and contextual features is applied to commercial entity recognition. In addition, a point-wise mutual information (PMI)-based unsupervised learning method is developed for commercial relation identification. To evaluate the effectiveness of the proposed computational methods, a prototype system called CoNet has been developed. Based on the financial news articles crawled from Google finance, the CoNet system achieves average F-scores of 0.681 and 0.754 in commercial entity recognition and commercial relation identification, respectively. Our experimental results confirm that the proposed shallow natural language processing methods are effective for the discovery of latent commercial networks from online financial news.

  3. Partial purification of latent persimmon fruit polyphenol oxidase.

    PubMed

    Núñez-Delicado, Estrella; Sojo, M Mar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2003-03-26

    Persimmon fruit polyphenol oxidase (PPO) was partially purified using a combination of phase partitioning with Triton X-114 and ammonium sulfate fractionation between 50 and 75%. The enzyme, which showed both monophenolase and diphenolase activities, was partially purified in a latent form and could be optimally activated by the presence of 1 mM sodium dodecyl sulfate (SDS) with an optimum pH of 5.5. In the absence of SDS, the enzyme showed maximum activity at acid pH. SDS-PAGE showed the presence of a single band when L-DOPA was used as substrate. The apparent kinetic parameters of the latent enzyme were determined at pH 5.5, the V(m) value being 15 times higher in the presence of SDS than in its absence, whereas the K(M) was the same in both cases, with a value of 0.68 mM. The effect of several inhibitors was studied, tropolone being the most active with a K(i) value of 0.45 microM. In addition, the effect of cyclodextrins (CDs) was studied, and the complexation constant (K(c)) between 4-tert-butylcatechol (TBC) and CDs was calculated using an enzymatic method. The value obtained for K(c) was 15580 M(-1).

  4. Latent log-linear models for handwritten digit classification.

    PubMed

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  5. Energy-Storage Modules for Active Solar Heating and Cooling

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  6. The latent class multitrait-multimethod model.

    PubMed

    Oberski, Daniel L; Hagenaars, Jacques A P; Saris, Willem E

    2015-12-01

    A latent class multitrait-multimethod (MTMM) model is proposed to estimate random and systematic measurement error in categorical survey questions while making fewer assumptions than have been made so far in such evaluations, allowing for possible extreme response behavior and other nonmonotone effects. The method is a combination of the MTMM research design of Campbell and Fiske (1959), the basic response model for survey questions of Saris and Andrews (1991), and the latent class factor model of Vermunt and Magidson (2004, pp. 227-230). The latent class MTMM model thus combines an existing design, model, and method to allow for the estimation of the degree to and manner in which survey questions are affected by systematic measurement error. Starting from a general form of the response function for a survey question, we present the MTMM experimental approach to identification of the response function's parameters. A "trait-method biplot" is introduced as a means of interpreting the estimates of systematic measurement error, whereas the quality of the questions can be evaluated by item information curves and the item information function. An experiment from the European Social Survey is analyzed and the results are discussed, yielding valuable insights into the functioning of a set of example questions on the role of women in society in 2 countries.

  7. Latent common genetic components of obesity traits

    PubMed Central

    Harders, R; Luke, A; Zhu, X; Cooper, RS

    2008-01-01

    Background Obesity is rapidly becoming a global epidemic. Unlike many complex human diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of anthropometry and metabolic status. Methods We applied maximum likelihood factor analysis to identify common latent factors underlying observed covariance in multiple obesity-related measures. Both the genetic components and the mode of inheritance of the common factors were evaluated. A total of 1775 participants from 590 families for whom measures on obesity-related traits were available were included in this study. Results The average age of participants was 37 years, 39% of the participants were obese (body mass index ≥ 30.0 kg/m2) and 26% were overweight (body mass index 25.0 - 29.9 kg/m2). Two latent common factors jointly accounting for over 99% of the correlations among obesity-related traits were identified. Complex segregation analysis of the age and sex-adjusted latent factors provide evidence for a Mendelian mode of inheritance of major genetic effect with heritability estimates of 40.4% and 47.5% for the first and second factors, respectively. Conclusions These findings provide a support for multivariate-based approach for investigating pleiotropic effects on obesity-related traits which can be applied in both genetic linkage and association mapping. PMID:18936762

  8. Factors associated with latent fingerprint exclusion determinations.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2017-02-22

    Exclusion is the determination by a latent print examiner that two friction ridge impressions did not originate from the same source. The concept and terminology of exclusion vary among agencies. Much of the literature on latent print examination focuses on individualization, and much less attention has been paid to exclusion. This experimental study assesses the associations between a variety of factors and exclusion determinations. Although erroneous exclusions are more likely to occur on some images and for some examiners, they were widely distributed among images and examiners. Measurable factors found to be associated with exclusion rates include the quality of the latent, value determinations, analysis minutia count, comparison difficulty, and the presence of cores or deltas. An understanding of these associations will help explain the circumstances under which errors are more likely to occur and when determinations are less likely to be reproduced by other examiners; the results should also lead to improved effectiveness and efficiency of training and casework quality assurance. This research is intended to assist examiners in improving the examination process and provide information to the broader community regarding the accuracy, reliability, and implications of exclusion decisions.

  9. Visualization of latent fingerprint corrosion of metallic surfaces.

    PubMed

    Bond, John W

    2008-07-01

    Chemical reactions between latent fingerprints and a variety of metal surfaces are investigated by heating the metal up to temperatures of approximately 600 degrees C after deposition of the fingerprint. Ionic salts present in the fingerprint residue corrode the metal surface to produce an image of the fingerprint that is both durable and resistant to cleaning of the metal. The degree of fingerprint enhancement appears independent of the elapsed time between deposition and heating but is very dependent on both the composition of the metal and the level of salt secretion by the fingerprint donor. Results are presented that show practical applications for the enhancement to fingerprints deposited in arson crime scenes, contaminated by spray painting, or deposited on brass cartridge cases prior to discharge. The corrosion of the metal surface is further exploited by the demonstration of a novel technique for fingerprint enhancement based on the electrostatic charging of the metal and then the preferential adherence of a metallic powder to the corroded part of the metal surface.

  10. Desiccant Humidity Control System Using Waste Heat of Water Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Wada, Kazuki; Mashimo, Kouichi; Takahashi, Mikio; Tanaka, Kitoshi; Toya, Saburo; Tateyama, Ryotaro; Miyamoto, Kazuhiro; Yamaguchi, Masahiro

    The authors hope to develop an air-conditioning system that processes the latent heat load and the sensible heat load separately. This would enable the efficiency of the chilling unit to be improved because the temperature of the chilled water used for cooling would be higher than normal. However, if lukewarm water is used, there is insufficient cooling and dehumidification. Therefore, a dehumidifier such as a desiccant air-conditioning system is needed. Using the waste heat generated when the desiccant air-conditioning system is in operation increases efficiency. The authors are developing a prototype desiccant humidity control system that makes use of the waste heat generated by a water source heat pump. This paper describes the results of an experiment that was conducted for this prototype based on the assumption that it would be installed in an office building. The dehumidification performance achieved was sufficient to process the indoor latent heat load. The prototype was able to adjust the indoor relative humidity from 40% to 60% under conditions in which the indoor latent heat load varied. Humidification without the use of water was possible even in the absence of an indoor latent heat load when the outdoor absolute humidity was 3.5 g/kg' or more.

  11. Microwave selective thermal development of latent fingerprints on porous surfaces: potentialities of the method and preliminary experimental results.

    PubMed

    Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina

    2013-09-01

    The thermal development of latent fingerprints on paper surfaces is a simple, safe, and chemicals-free method, based on the faster heating of the substrate underlying the print residue. Microwave heating is proposed for the first time for the development of latent fingerprints on cellulose-based substrate, in order to add to the thermal development mechanism the further characteristic of being able to heat the fingerprint residues to a different extent with respect to the substrate, due to the intrinsic difference in their dielectric properties. Numerical simulation was performed to confirm and highlight the selectivity of microwaves, and preliminary experimental results point out the great potentialities of this technique, which allowed developing both latent sebaceous-rich and latent eccrine-rich fingerprints on different porous surfaces, in less than 30 sec time with an applied output power of 500 W. Microwaves demonstrated more effectiveness in the development of eccrine-rich residues, aged up to 12 weeks.

  12. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiOx core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M.; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-04-01

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants. Electronic supplementary information (ESI) available: Detailed experimental results are included for the following: SEM images of the HITEC molten salt with and without a mixture of Sn/SiOx core-shell NPs; statistical diameter distribution of pure Sn and Sn/SiOx core-shell NPs; the HAADF image and EDS linescan profile of a Sn/SiOx core-shell NP; XRD analysis for Sn NPs annealing at different heating

  13. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  14. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  15. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.

    2015-10-01

    The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  16. Rifapentine, Moxifloxacin, or DNA Vaccine Improves Treatment of Latent Tuberculosis in a Mouse Model

    PubMed Central

    Nuermberger, Eric; Tyagi, Sandeep; Williams, Kathy N.; Rosenthal, Ian; Bishai, William R.; Grosset, Jacques H.

    2005-01-01

    Rationale: Priorities for developing improved regimens for treatment of latent tuberculosis (TB) infection include (1) developing shorter and/or more intermittently administered regimens that are easier to supervise and (2) developing and evaluating regimens that are active against multidrug-resistant organisms. Objectives and Methods: By using a previously validated murine model that involves immunizing mice with Mycobacterium bovis bacillus Calmette-Guérin to augment host immunity before infection with virulent Mycobacterium tuberculosis, we evaluated new treatment regimens including rifapentine and moxifloxacin, and assessed the potential of the Mycobacterium leprae heat shock protein-65 DNA vaccine to augment the activity of moxifloxacin. Measurements: Quantitative spleen colony-forming unit counts, and the proportion of mice with culture-positive relapse after treatment, were determined. Main Results: Three-month, once-weekly regimens of rifapentine combined with either isoniazid or moxifloxacin were as active as daily isoniazid for 6–9 mo. Six-month daily combinations of moxifloxacin with pyrazinamide, ethionamide, or ethambutol were more active than pyrazinamide plus ethambutol, a regimen recommended for latent TB infection after exposure to multidrug-resistant TB. The combination of moxifloxacin with the experimental nitroimidazopyran PA-824 was especially active. Finally, the heat shock protein-65 DNA vaccine had no effect on colony-forming unit counts when given alone, but augmented the bactericidal activity of moxifloxacin. Conclusions: Together, these findings suggest that rifapentine, moxifloxacin, and, perhaps, therapeutic DNA vaccination have the potential to improve on the current treatment of latent TB infection. PMID:16151038

  17. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  18. Ranunculus latent virus: a strain of artichoke latent virus or a new macluravirus infecting artichoke?

    PubMed

    Ciuffo, M; Testa, M; Lenzi, R; Turina, M

    2011-06-01

    An elongated virus was isolated from artichoke crops in Liguria, and a 700-bp fragment was amplified by RT-PCR using oligonucleotides to detect members of the family Potyviridae. Comparison of fragment sequences showed 98% identity at the nucleotide level with the ranunculus isolate of the macluravirus Ranunculus latent virus (RaLV). RaLV was then detected by DAS-ELISA in symptomatic and asymptomatic artichoke plants from Liguria, Sardinia and Latium. The sequence of a 5.5-kb region was assembled from a cDNA library, and a 500-bp NIa fragment showed 80% identity to Artichoke latent virus.

  19. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  20. Detecting intervention effects using a multilevel latent transition analysis with a mixture IRT model.

    PubMed

    Cho, Sun-Joo; Cohen, Allan S; Bottge, Brian

    2013-07-01

    A multilevel latent transition analysis (LTA) with a mixture IRT measurement model (MixIRTM) is described for investigating the effectiveness of an intervention. The addition of a MixIRTM to the multilevel LTA permits consideration of both potential heterogeneity in students' response to instructional intervention as well as a methodology for assessing stage sequential change over time at both student and teacher levels. Results from an LTA-MixIRTM and multilevel LTA-MixIRTM were compared in the context of an educational intervention study. Both models were able to describe homogeneities in problem solving and transition patterns. However, ignoring a multilevel structure in LTA-MixIRTM led to different results in group membership assignment in empirical results. Results for the multilevel LTA-MixIRTM indicated that there were distinct individual differences in the different transition patterns. The students receiving the intervention treatment outscored their business as usual (i.e., control group) counterparts on the curriculum-based Fractions Computation test. In addition, 27.4 % of the students in the sample moved from the low ability student-level latent class to the high ability student-level latent class. Students were characterized differently depending on the teacher-level latent class.

  1. Studies on the development of latent fingerprints by the method of solid-medium ninhydrin.

    PubMed

    Yang, Ruiqin; Lian, Jie

    2014-09-01

    A new series of fingerprint developing membrane were prepared using ninhydrin as the developing agent, and pressure-sensitive emulsifiers as the encapsulated chemicals. The type of emulsifier, plastic film, concentration of the developing agent, modifying ions and thickness of the membrane were studied in order to get the optimized fingerprint developing effect. The membrane can be successfully applied to both latent sweat fingerprints and blood fingerprint on many different surfaces. The sensitivity of the method toward the latent sweat fingerprint is 0.1 mg/L amino acid. The membrane can be applied to both porous and non-porous surfaces. Fingerprints that are difficult to develop on surfaces such as leather, glass and heat-sensitive paper using traditional chemical methods can be successfully developed with this membrane.

  2. Restoring Latent Visual Working Memory Representations in Human Cortex.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2016-08-03

    Working memory (WM) enables the storage and manipulation of limited amounts of information over short periods. Prominent models posit that increasing the number of remembered items decreases the spiking activity dedicated to each item via mutual inhibition, which irreparably degrades the fidelity of each item's representation. We tested these models by determining if degraded memory representations could be recovered following a post-cue indicating which of several items in spatial WM would be recalled. Using an fMRI-based image reconstruction technique, we identified impaired behavioral performance and degraded mnemonic representations with elevated memory load. However, in several cortical regions, degraded mnemonic representations recovered substantially following a post-cue, and this recovery tracked behavioral performance. These results challenge pure spike-based models of WM and suggest that remembered items are additionally encoded within latent or hidden neural codes that can help reinvigorate active WM representations.

  3. On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance

    SciTech Connect

    Gleckler, P J

    2004-11-03

    The oceanic meridional heat transport (T{sub o}) implied by an atmospheric General Circulation Model (GCM) can help evaluate a model's readiness for coupling with an ocean GCM. In this study we examine the T{sub o} from benchmark experiments of the Atmospheric Model Intercomparison Project, and evaluate the sensitivity of T{sub o} to the dominant terms of the surface energy balance. The implied global ocean TO in the Southern Hemisphere of many models is equatorward, contrary to most observationally-based estimates. By constructing a hybrid (model corrected by observations) T{sub o}, an earlier study demonstrated that the implied heat transport is critically sensitive to the simulated shortwave cloud radiative effects, which have been argued to be principally responsible for the Southern Hemisphere problem. Systematic evaluation of one model in a later study suggested that the implied T{sub o} could be equally as sensitive to a model's ocean surface latent heat flux. In this study we revisit the problem with more recent simulations, making use of estimates of ocean surface fluxes to construct two additional hybrid calculations. The results of the present study demonstrate that indeed the implied T{sub o} of an atmospheric model is very sensitive to problems in not only the surface net shortwave, but the latent heat flux as well. Many models underestimate the shortwave radiation reaching the surface in the low latitudes, and overestimate the latent heat flux in the same region. The additional hybrid transport calculations introduced here could become useful model diagnostic tests as estimates of implied ocean surface fluxes are improved.

  4. Targeting the latent reservoir to achieve functional HIV cure

    PubMed Central

    Cary, Daniele C.; Peterlin, B. Matija

    2016-01-01

    While highly active anti-retroviral therapy has greatly improved the lives of HIV-infected individuals, current treatments are unable to completely eradicate the virus. This is due to the presence of HIV latently infected cells which harbor transcriptionally silent HIV. Latent HIV does not replicate or produce viral proteins, thereby preventing efficient targeting by anti-retroviral drugs. Strategies to target the HIV latent reservoir include viral reactivation, enhancing host defense mechanisms, keeping latent HIV silent, and using gene therapy techniques to knock out or reactivate latent HIV. While research into each of these areas has yielded promising results, currently no one mechanism eradicates latent HIV. Instead, combinations of these approaches should be considered for a potential HIV functional cure. PMID:27303638

  5. On updating problems in latent semantic indexing

    SciTech Connect

    Simon, H.D.; Zha, H.

    1997-11-01

    The authors develop new SVD-updating algorithms for three types of updating problems arising from Latent Semantic Indexing (LSI) for information retrieval to deal with rapidly changing text document collections. They also provide theoretical justification for using a reduced-dimension representation of the original document collection in the updating process. Numerical experiments using several standard text document collections show that the new algorithms give higher (interpolated) average precisions than the existing algorithms and the retrieval accuracy is comparable to that obtained using the complete document collection.

  6. On updating problems in latent semantic indexing

    SciTech Connect

    Zha, H.; Simon, H.D.

    1999-10-01

    The authors develop new SVD-updating algorithms for three types of updating problems arising from latent semantic indexing (LSI) for information retrieval to deal with rapidly changing text document collections. They also provide theoretical justification for using a reduced-dimension representation of the original document collection in the updating process. Numerical experiments using several standard text document collections show that the new algorithms give higher (interpolated) average precisions that the existing algorithms, and the retrieval accuracy is comparable to that obtained using the complete document collection.

  7. Control of Impingement Heat Transfer Using Mist

    NASA Astrophysics Data System (ADS)

    Kanamori, Azusa; Hiwada, Munehiko; Mimatsu, Junji; Sugimoto, Hiraku; Oyakawa, Kenyuu

    Impingement heat transfer from a circular orifice jet by using latent heat of water mists was studied experimentally. The amounts of mists of about Zauter's mean diameter 14 µm were from 60 to 200 g/h within a range where liquid films were not formed on the target plate and mists were added near the orifice edge. Experiments covered Reynolds numbers from 12,500 to 50,000 and a heat flux is 1,400 W/m2. The experimental results indicate that adding mists had little influence on free jet mean velocity profiles and target plate pressure coefficients. On the other hand, mists had a strong influence on temperature and humidity profiles of a free jet and they also influenced Nusselt number distributions on the target plate. Increases of mists and Reynolds number caused increases in Nusselt number on the developed region. In addition, we investigated influence of the way mists were added and these results showed that Nusselt number was influenced not only by the amounts of mists but also by the adding method. Local Nusselt number profiles with mists were closely related to temperature distributions of the free jet at the location corresponding to the target plate.

  8. Dimensionality of the Latent Structure and Item Selection via Latent Class Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Bartolucci, F.; Montanari, G. E.; Pandolfi, S.

    2012-01-01

    With reference to a questionnaire aimed at assessing the performance of Italian nursing homes on the basis of the health conditions of their patients, we investigate two relevant issues: dimensionality of the latent structure and discriminating power of the items composing the questionnaire. The approach is based on a multidimensional item…

  9. Bayesian Analysis of Multivariate Latent Curve Models with Nonlinear Longitudinal Latent Effects

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum; Hser, Yih-Ing

    2009-01-01

    In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly…

  10. Inorganic compounds for passive solar energy storage: Solid-state dehydration materials and high specific heat materials

    NASA Astrophysics Data System (ADS)

    Struble, L. J.; Brown, P. W.

    1986-04-01

    Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al2O3-SO3-H2O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6(0)C to 33(0)C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g/(0)C and for the monosubstituted phases between 0.23 and 0.28 cal/g/(0)C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

  11. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  12. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  13. The ongoing challenge of latent tuberculosis

    PubMed Central

    Esmail, H.; Barry, C. E.; Young, D. B.; Wilkinson, R. J.

    2014-01-01

    The global health community has set itself the task of eliminating tuberculosis (TB) as a public health problem by 2050. Although progress has been made in global TB control, the current decline in incidence of 2% yr−1 is far from the rate needed to achieve this. If we are to succeed in this endeavour, new strategies to reduce the reservoir of latently infected persons (from which new cases arise) would be advantageous. However, ascertainment of the extent and risk posed by this group is poor. The current diagnostics tests (tuberculin skin test and interferon-gamma release assays) poorly predict who will develop active disease and the therapeutic options available are not optimal for the scale of the intervention that may be required. In this article, we outline a basis for our current understanding of latent TB and highlight areas where innovation leading to development of novel diagnostic tests, drug regimens and vaccines may assist progress. We argue that the pool of individuals at high risk of progression may be significantly smaller than the 2.33 billion thought to be immune sensitized by Mycobacterium tuberculosis and that identifying and targeting this group will be an important strategy in the road to elimination. PMID:24821923

  14. Latent TGF-[beta] structure and activation

    SciTech Connect

    Shi, Minlong; Zhu, Jianghai; Wang, Rui; Chen, Xing; Mi, Lizhi; Walz, Thomas; Springer, Timothy A.

    2011-09-16

    Transforming growth factor (TGF)-{beta} is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-{beta}1 requires the binding of {alpha}v integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-{beta} binding proteins. Crystals of dimeric porcine proTGF-{beta}1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between {alpha}v{beta}6 integrin and the prodomain is insufficient for TGF-{beta}1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-{beta} family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.

  15. Nonparametric Bayes Stochastically Ordered Latent Class Models

    PubMed Central

    Yang, Hongxia; O’Brien, Sean; Dunson, David B.

    2012-01-01

    Latent class models (LCMs) are used increasingly for addressing a broad variety of problems, including sparse modeling of multivariate and longitudinal data, model-based clustering, and flexible inferences on predictor effects. Typical frequentist LCMs require estimation of a single finite number of classes, which does not increase with the sample size, and have a well-known sensitivity to parametric assumptions on the distributions within a class. Bayesian nonparametric methods have been developed to allow an infinite number of classes in the general population, with the number represented in a sample increasing with sample size. In this article, we propose a new nonparametric Bayes model that allows predictors to flexibly impact the allocation to latent classes, while limiting sensitivity to parametric assumptions by allowing class-specific distributions to be unknown subject to a stochastic ordering constraint. An efficient MCMC algorithm is developed for posterior computation. The methods are validated using simulation studies and applied to the problem of ranking medical procedures in terms of the distribution of patient morbidity. PMID:22505787

  16. Representing Documents via Latent Keyphrase Inference

    PubMed Central

    Liu, Jialu; Ren, Xiang; Shang, Jingbo; Cassidy, Taylor; Voss, Clare R.; Han, Jiawei

    2017-01-01

    Many text mining approaches adopt bag-of-words or n-grams models to represent documents. Looking beyond just the words, i.e., the explicit surface forms, in a document can improve a computer’s understanding of text. Being aware of this, researchers have proposed concept-based models that rely on a human-curated knowledge base to incorporate other related concepts in the document representation. But these methods are not desirable when applied to vertical domains (e.g., literature, enterprise, etc.) due to low coverage of in-domain concepts in the general knowledge base and interference from out-of-domain concepts. In this paper, we propose a data-driven model named Latent Keyphrase Inference (LAKI) that represents documents with a vector of closely related domain keyphrases instead of single words or existing concepts in the knowledge base. We show that given a corpus of in-domain documents, topical content units can be learned for each domain keyphrase, which enables a computer to do smart inference to discover latent document keyphrases, going beyond just explicit mentions. Compared with the state-of-art document representation approaches, LAKI fills the gap between bag-of-words and concept-based models by using domain keyphrases as the basic representation unit. It removes dependency on a knowledge base while providing, with keyphrases, readily interpretable representations. When evaluated against 8 other methods on two text mining tasks over two corpora, LAKI outperformed all. PMID:28229132

  17. Latent-Class Hough Forests for 6 DoF Object Pose Estimation.

    PubMed

    Kouskouridas, Rigas; Tejani, Alykhan; Doumanoglou, Andreas; Tang, Danhang; Kim, Tae-Kyun

    2017-02-07

    In this paper we present Latent-Class Hough Forests, a method for object detection and 6 DoF pose estimation in heavily cluttered and occluded scenarios. We adapt a state of the art template matching feature into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. We train with positive samples only and we treat class distributions at the leaf nodes as latent variables. During testing we infer by iteratively updating these distributions, providing accurate estimation of background clutter and foreground occlusions and, thus, better detection rate. Furthermore, as a by-product, our Latent- Class Hough Forests can provide accurate occlusion aware segmentation masks, even in the multi-instance scenario. In addition to an existing public dataset, which contains only single-instance sequences with large amounts of clutter, we have collected two, more challenging, datasets for multiple-instance detection containing heavy 2D and 3D clutter as well as foreground occlusions. We provide extensive experiments on the various parameters of the framework such as patch size, number of trees and number of iterations to infer class distributions at test time. We also evaluate the Latent-Class Hough Forests on all datasets where we outperform state of the art methods.

  18. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  19. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  20. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The